稳定与降解(第3 章)6-8

合集下载

第三章 (1) 高分子材料的物理化学性质

第三章 (1) 高分子材料的物理化学性质
热胀温度敏感型水凝胶指水凝胶的体积在某一温度附近随温度升高而突然增加这一温度叫做较高临界溶解温度ucstuppercriticalsolutiontemperatureucst以上大分子链亲水性增加因水合而伸展使水凝胶在ucst以上突然体积膨热缩温度敏感型水凝胶则是随温度升高大分子链疏水性增强发生卷曲使水凝胶体积急剧下降体积发生突变的温度叫较低临界溶解温度lcstlowercriticalsolutiontemperature
19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。

聚氯乙烯(PVC)型材配方设计和加工工艺

聚氯乙烯(PVC)型材配方设计和加工工艺

CH ki
Cl
R CH2 CH Cl
2、链增长阶段
H2 C
CH + H2C
Cl
kp
CH Cl
H2 C
CH
CH2
CH (头-尾)
Cl
Cl
H2 C CH
H C
CH2 (头-头)
Cl Cl
湖南师范大学高分子材料研究所
第四节 聚合反应机理及结构
3、链终止阶段
H2C CH + HC CH2
ktc
Cl
Cl
H2C CH Cl
放HCl,形成羰基、共轭双键而变色。
6、化学稳定性 在酸、碱和盐类溶液中较稳定。
7、耐溶剂性 除芳烃(苯、二甲苯)、苯胺、二甲基甲酰胺、四氢呋喃、含氯烃(二
氯甲烷、四氯甲烷、氯乙烯)、酮、酯类以外,对水、汽油和酒精均为稳 定。
8、耐磨性 室温下耐磨性能超过硫化橡胶。
湖南师范大学高分子材料研究所
第二节 聚氯乙烯的应用
Cl Cl
残留的引发剂引发链分解反应,形成带有不稳定氯结构的大分子,进 而形成双键;然后,自由基氯原子会进攻最靠近的亚甲基上的氢原子,形 成小分子,并形成新的自由基,使反应继续下去。
湖南师范大学高分子材料研究所
第一节 聚氯乙烯的降解机理
(2) 离子型
Cl Cl Cl Cl
Cl Cl Cl
Cl Cl Cl Cl Cl Cl Cl
100
200
300
400
500
600
700
2、热性能
Temperature(oC)
85℃以下呈玻璃态,85~175℃呈粘弹态,无明显熔点,175~190℃为熔
融状态,190~200℃属粘流态。脆化点-50~-60℃,软化点75~85℃,玻璃化

聚合物的降解与稳定化

聚合物的降解与稳定化

2011-2012学年上学期聚合物的降解及稳定化复习资料第一章绪论老化(降解):高分子材料在加工、贮存、使用的过程中,物理化学性质和力学性能会逐渐变差。

导致聚合物降解的因素:内因:聚合物的组成及其链结构;聚合物的聚集态结构;杂质。

外因:热、环境温度和热氧的影响;光的影响;氧和臭氧的影响;水和潮湿的影响;其他的因素影响,比如微生物(真菌的活性或酶作用)、某些高级生命体(昆虫)等生物降解。

聚合物再生的意义:保护人类赖以生存的自然环境;充分利用自然资源,变废为宝。

第二章聚合物降解与稳定化的基本定理热降解的三大类:解聚反应(拉链降解);无规断链反应;主链不断裂的小分子消除反应。

热氧降解主要特征以及核心:自动氧化反应。

当氧浓度等于或大于空气中的氧浓度时,氧化反应速率与氧浓度无关;当氧浓度很低时,吸氧速率是氧浓度的函数,即氧化反应速率与氧浓度有关。

抗氧剂的两大类:主抗氧剂(自由基捕获剂):作用——改变自动氧化历程。

辅助抗氧剂(预防型抗氧剂):作用——只能降低氧化速率,而不改变自动氧化历程。

主抗氧剂的分为4类:氢给予体、电子给予体、自由基捕获体、苯并呋喃酮类。

抗氧剂的配合:协同效应、加合效应、对抗效应。

羰基的引发作用:(P42)光稳定剂四大类:光屏蔽剂、紫外光吸收剂、猝灭剂、受阻胺光稳定剂。

邻羟基二苯甲酮类(一类重要的紫外线吸收剂)(P44)臭氧龟裂:具有不饱和键的橡胶,在应力作用的条件下,能和臭氧发生独特的破坏作用,即在垂直与应力方向引起开裂。

第三章聚合物降解各论聚合物分子链中,各种键和基团的热稳定性顺序:(P59、60)对聚丙烯的光氧化而言,氢过氧化物也是主要的起始光引发剂。

由于聚丙烯光氧化的动力学链长大约是聚乙烯的10倍,所以在光氧化的聚丙烯中氢过氧化物浓度比氧化的聚乙烯中高很多。

(P62)聚氯乙烯的降解:典型特征是释放HCl,具有催化作用加速了降解。

厚的试样比薄的试样降解更快,是由于厚的试样中HCl逸出更慢而起到了催化作用。

第三章 蛋白质化学

第三章  蛋白质化学
水解不彻底。
应用:用于蛋白质的部分水解。一级结构分析。
二、氨基酸的结构和分类
(一)常见氨基酸
1、结构通式
R
R
2、20种氨基酸在结构上的共同特点 (1)除脯氨酸以外都是α-氨基酸;脯是 α-亚氨基酸。 (2)除了甘氨酸均有手性碳,具有旋光性。 (3)除甘氨酸外,蛋白质分子中的氨基酸都是L-氨基酸。 (4)不同的α-氨基酸其R基侧链不同,其余部分都相同。
[质子受体] pH=pK’+lg
[质子供体]
应用:
(1)已知各离子浓度,求溶液的pH值。
(2)根据氨基酸解离基团的pK值,可计算出任何pH 条件下,各离子浓度的比例。
例题1:计算赖氨酸的ε -NH3+20%被解离时 的溶液pH值。
解:首先写出解离方程
根据: 所以:
pK3=10.53 pH=pK’+lg
等电点时,氨基酸的溶解度最小
小结
引入等电点概念之后,AA的解离情况与环境PH的关 系可以描述为:
A、当环境PH=PI时氨基酸以两性离子形式存在。 B、当环境PH<PI时(相当于加入了H+)氨基酸带正
电荷,环境PH偏离等电点越远,氨基酸带正电荷越 多;电泳时移向负极。 C、当环境PH>PI时(相当于加入了OH-)氨基酸带 负电荷,环境PH偏离等电点越远,氨基酸带负电荷 越多;电泳时移向正极。
①解离方程:略 ②Glu-和Glu=各50%时pH为9.67 ③pH<3.22时 Glu总带正电荷 ④Glu±和Glu-缓冲范围pH4.25左右
(三)氨基酸的重要化学性质
1、α -NH2参与的重要的反应 (1)与亚硝酸的反应
NH2 R-CH-COOH + HNO2

精细化学品化学习题解答

精细化学品化学习题解答

第一章绪论1.解释名词:(1)精细化学品:凡能增进或赋予一种(类)产品以特定功能,或本身拥有特定功能的小批量、高纯度的化学品,称为精细化学品。

(2)附加值:是指在产品的产值中扣去原材料、税金、设备和厂房的折旧费后,剩余部分的价值。

包括工资、动力消耗、开发费用和利润等。

(3)复配技术:复配是指两种或两种以上原料通过恰当比例的混合去表现特定主题的一种技术。

原料之间不发生化学反应,但能起到协调、增效的作用。

(4)功能高分子材料:功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

2. 精细化学品的具有哪些特点(1)生产特性小批量、多品种、复配型居多;技术密集度高;采用间歇式多功能生产装置。

(2)经济特性投资效率高、附加价值高、利润率高。

附加价值:是指在产品的产值中扣去原材料、税金、设备和厂房的折旧费后,剩余部分的价值。

包括工资、动力消耗、开发费用和利润等。

(3)商业特性独家经营,技术保密;重视市场调研,适应市场需求;配有应用技术和技术服务。

3. 精细化学品的发展趋势是什么(1)品种门类继续增加(2)发展速度继续领先(3)结构调整趋向优化(4)大力采用高新技术第二章表面活性剂1.表面活性剂的概念和特点是什么加入少量该物质就能显着降低溶液表面张力并改变体系界面状态的物质叫表面活性剂。

2.表面活性剂的一般作用有哪些(1)润湿、渗透作用(2)乳化和破乳作用(3)增溶作用热力学稳定体系(4)起泡和消泡作用3.根据亲水基团的特点表面活性剂分哪几类各举几个实例。

根据亲水基团的特点表面活性剂分为:(1)阴离子型表面活性剂。

如羧酸盐型阴离子表面活性剂硬脂酸钠、磺酸盐型阴离子表面活性剂十二烷基磺酸钠等。

(2)阳离子型表面活性剂。

如季铵盐型阳离子表面活性剂新洁尔灭等。

第三章__思考题[1]

第三章__思考题[1]

环境0702,郭雪,07233034第三章 思考题(1) 自由沉淀的颗粒沉速如何计算?答:水中所含悬浮物的大小、形状、性质是十分复杂的,因而影响颗粒沉淀的因素很多。

为了简化讨论,假定:①颗粒外形为球形,不可压缩,也无凝聚性,沉淀过程中其大小、形状和重量等均不变;②水处于静止状态;③颗粒沉淀仅受重力和水的阻力作用。

静水中的悬浮颗粒开始沉淀时,因受重力作用而产生加速运动,但同时水的阻力也增大。

经过一很短的时间后,颗粒在水中的有效重量与阻力达到平衡,此后作等速下沉运动。

等速沉淀的速度常称为沉淀末速度,简称沉速。

如以F 1、F 2分别表示颗粒的重力和水对颗粒的浮力,则颗粒在水中的有效重量为 g d g d g d F F s a )(61616133321ρρπρπρπ-=-=- (1)式中 d ——球体颗粒的直径;ρS 、ρ——分别表示颗粒及水的密度;g ——重力加速度;如以F 3表示水对颗粒沉淀的摩擦阻力,则223u A F λρ= (2)式中 A ——颗粒在沉淀方向上的投影面积,对球形颗粒,A=1/4πd 2 u ——颗粒沉速;λ——阻力系数,它是雷诺数(Re =ρud /μ)和颗粒形状的函数。

根据实验得知,对球形颗粒有如图4-2所示关系,分三段拟合该曲线得Re <1,λ=24/Re (Stokes 式)34.0Re 3Re 24,10Re 13++=<<λ (Pair 式)103<Re <105,λ=0.44 (Newton 式)在等速沉淀情况下,F 1-F 2=F 3,即23381)(61u d g d s ρλπρρπ=-λρρρ3)(4-=s gd u (3)将上述阻力系数公式代人式(4-3)得到相应流态下的沉速计算式。

对于层流,在Re <1时,218)(d g u s μρρ-= (4)这就是Stokes 公式,式中μ为水的粘度。

该式表明:①颗粒与水的密度差(ρs -ρ)愈大,沉速愈快,成正比关系。

《化学药品注射剂配伍稳定性药学研究技术指导原则(2023版)》

《化学药品注射剂配伍稳定性药学研究技术指导原则(2023版)》

1一、概述2对于临床使用过程中需复溶和/或稀释后使用的化学药3品注射剂,如注射用无菌粉末和注射用浓溶液等,需进行配4伍稳定性研究,考察药物在临床配制、存放和使用过程中质5量随时间的变化情况,为注射剂药品的配制、配制后药液的6存放条件和允许时限等提供依据。

本指导原则重点阐述化学7药品注射剂复溶和/或稀释配伍稳定性研究的试验样品、试验8设计、试验结果评估和说明书相关内容撰写等方面内容,为9研发和技术审评提供参考。

10本指导原则主要适用于化学药品注射剂上市申请与一11致性评价申请,不包括放射性药品。

12本指导原则仅代表药品监管机构当前的观点和认识,不13具有强制性的法律约束力。

随着科学研究进展,本指导原则14中的相关内容将不断完善与更新。

15二、总体考虑16根据药品特性与临床使用情况开展配伍稳定性研究。

上17市注册申报配伍稳定性试验的样品应具有代表性,并涵盖新18生产样品和近效期样品。

配伍稳定性药液的浓度应涵盖临床19使用中的最高和最低浓度,考察时间应不短于说明书中允许20时限,研究时应尽可能模拟药物临床使用中的实际情况。

由21于稀释后药物浓度降低可能导致杂质无法准确检出,或配伍22后可能产生新杂质,应注意评估分析方法的适用性。

23新药可根据药品特性、临床需要、临床使用条件(时间、24温度、光照等)等合理设计试验,在新药研发早期,可采用25小试样品或早期临床样品开展配伍稳定性研究,新药研发中26发生处方变更等情况时,可基于风险评估和需要重新开展配27伍稳定性研究,上市注册申报配伍稳定性试验样品应具有代28表性,对配伍稳定性中出现的新杂质应按杂质研究相关指导29原则进行归属研究,必要时进行安全性研究或提供其他安全30性依据。

根据研究结果在说明书中明确药品的配制方法、保31存条件和允许时限等相关内容。

32仿制药质量和疗效应与参比制剂一致。

应参照参比制剂33说明书进行临床配伍稳定性研究,参比制剂说明书中配伍相34关信息不明确的,建议参照新药要求开展配伍稳定性研究,35并与参比制剂进行对比研究。

生物化学第三章蛋白质化学名词解释

生物化学第三章蛋白质化学名词解释

第三章蛋白质化学1蛋白质:是一类生物大分子,由一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定序列以肽键连接形成。

蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。

2标准氨基酸:是可以用于合成蛋白质的20种氨基酸。

3、茚三酮反应:是指氨基酸、肽和蛋白质等与水合茚三酮发生反应,生成蓝紫色化合物,该化合物在570mm波长处存在吸收峰。

4、两性电解质:在溶液中既可以给出H+而表现出酸性,又可以结合H+而表现碱性的电解质。

5、兼性离子:即带正电和、又带负电荷的离子。

6、氨基酸的等电点:氨基酸在溶液中的解离程度受PH值影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子形式存在,且净电荷为零,此时溶液的PH值成为氨基酸的等电点。

7、单纯蛋白质:完全由氨基酸构成的蛋白质。

8、缀合蛋白质:含有氨基酸成分的蛋白质。

9、蛋白质的辅基:缀合蛋白质所含有的非氨基酸成分。

10、肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合时形成的化学键。

11、肽平面:在肽单元中,羧基的π键电子对与氮原子的孤电子对存在部分共享,C-N键具有一定程度的双键性质,不能自由旋转。

因此,肽单元的六个原子处在同一个平面上,称为肽平面。

12、肽:是指由两个或者多个氨基酸通过肽键连接而成的分子。

13、氨基酸的残基:肽和蛋白质分子中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸的残基。

14、多肽:由10个以上氨基酸通过肽键连接而成的肽。

15、多肽链:多肽的化学结构呈链状,所以又称多肽链。

16、生物活性肽:是指具有特殊生理功能的肽类物质。

它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。

食物蛋白质的消化产物中也有生物活性肽,他们可以被直接吸收。

17、谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的酸性三肽,是一种生物活性肽,是机体内重要的抗氧化剂。

第三章聚酰胺

第三章聚酰胺
建筑与民用:窗、门、窗帘导轨滑轮 、安全帽、绳索、打印机框架等。
玻璃纤维增强 改性,可大幅度 提高P第A三耐章聚热酰性胺
玻纤增强PA被用于制 造汽车发动机零部件
第三章聚酰胺
3. 芳香族聚酰胺(芳纶)
分子链骨架上含有芳香环的聚酰胺称芳香族聚酰胺,又称芳 纶。尽管芳香族聚酰胺的品种很多,目前投入实际应用的主 要有两种:聚间苯二甲酰间二胺和全对位聚芳酰胺。
2 2 0 O C n H O O C ( C H 2 ) 8 N H 2 [ N H ( C H 2 ) 8 C O ] n + n H 2 O
9-氨基壬酸
自缩聚
聚酰胺9
聚酰胺6 [—HN(CH2)5CO—]n
第三章聚酰胺
➢ mp型聚酰胺
由二元胺与二元羧酸缩聚所得到的聚酰胺是mp型聚酰胺, 称为聚酰胺mp,其中m代表所用二元胺中所含碳原子数,p 代表所用二元羧酸的碳原子数。 mp型聚酰胺的典型代表如PA66:
• 酰胺基是亲水基团,因此聚酰胺是吸湿性较强的塑料, 较强的极性酰胺基又对聚合物电性能等有不利影响。
第三章聚酰胺
1. 结 构
➢ PA分子链段中重复出现的酰 胺基是一个带极性的基团,
对这于个不基同团品上种的的H聚,酰能胺够,与因另单一 体个所分含子碳上原的子羰数基不的同氧,结分合子形链 之成间相所当能强形大成的的氢氢键键。疏密程度 不同,则会影响到不同聚酰胺 ➢的,大熔氢间晶使结分点,键的聚能晶子材也的作合力能链料愈形用物进力上的高成力的一和形结。增,熔步熔成晶大使点增点的能了聚升强,氢力分合,高一键就子物。同般比愈链的时来例强之结也说愈,
结构对于不同品种的聚酰胺因单体所含碳原子数不同分子链之间所能形成的氢键疏密程度不同则会影响到不同聚酰胺的结晶能力和熔点一般来说分子链上形成的氢键比例愈大材料的结晶能力就愈强熔点也愈高

第3章第1节卤代烃导学案2021-2022学年下学期高二化学人教版(2019)选择性必修2

第3章第1节卤代烃导学案2021-2022学年下学期高二化学人教版(2019)选择性必修2

卤代烃【学习目标】1、掌握溴乙烷的物理性质和化学性质2、掌握卤代烃的组成和结构的特点,熟悉卤代烃的水解反应和消去反应【重点知识梳理】一、烃的衍生物的相关概念1、烃的衍生物:烃分子里的氢原子被其它原子或原子团取代而生成的化合物,称之为烃的衍生物2、常见烃的衍生物有:卤代烃、醇、酚、醛、羧酸、酯3、官能团:决定化合物特殊性质的原子或原子团4、常见的官能团:碳碳双键(C=C)、碳碳三键(C≡C)、卤素原子(—X)、羟基(—OH)、醚键(C —O —C)、醛基(—CHO)、羰基(C=O)、 羧基(—COOH)、酯基(—COOC)、氨基(—NH 2)、硝基(—NO 2)常见有机物类别及官能团有机物类别 官能团 典型代表物 有机物类别 官能团 典型代表物烷烃 ——甲烷 酚 羟基(—OH) 苯酚 烯烃 碳碳双键(C=C) 乙烯 醚 醚键(C —O —C) 乙醚炔烃 碳碳三键(C≡C) 乙炔 醛 醛基(—CHO) 乙醛芳香烃 ——苯 酮 羰基(C=O) 丙酮 卤代烃 卤素原子(—X) 溴乙烷 羧酸 羧基(—COOH) 乙酸醇 羟基(—OH) 乙醇 酯 酯基(—COOC) 乙酸乙酯二、溴乙烷的分子组成和结构分子式 电子式 结构式 结构简式 球棍模型 比例模型 官能团C 2H 5Br CH 3CH 2Br 或C 2H 5Br—Br 三、溴乙烷的物理性质:纯净的溴乙烷是无色的液体,沸点比乙烷的高(38.4℃),密度比水大,不溶于水,易溶于多种有机溶剂对比:乙烷无色气体,沸点—88.6 ℃,不溶于水四、溴乙烷的化学性质:在溴乙烷分子中,由于Br 的吸引电子的能力大于C ,则C —Br 键中的共用电子对就偏向于Br 原子一端, 使Br 带有部分负电荷,C 原子带部分正电荷。

当遇到—OH 、—NH 2等试剂(带负电或富电子基团)时,该基团就会进攻带正电荷 的C 原子,—Br 则带一个单位负电荷离去(1)溴乙烷的水解反应:反应原理:CH 3CH 2Br+H 2O CH 3CH 2OH+HBr或:CH 3CH 2Br +NaOH −−→−O H 2CH 3CH 2OH +NaBr实验装置:实验步骤:取一支试管,滴入10~15滴溴乙烷,再加入5%的NaOH 溶液,充分振荡、静置,待液体分层后,用胶头滴管小心吸 取10滴上层水溶液,移入另一支盛有10ml 稀硝酸溶液的试管中,然后加入2~3滴2%的AgNO 3溶液,观察反应现象 实验现象:有淡黄色沉淀生成【注意问题】①溴乙烷水解的实质:溴乙烷分子里的溴原子被水分子里的羟基所取代生成乙醇②断裂键的位置:C —Br 键③反应类型:取代反应④溴乙烷水解的条件:NaOH 的水溶液、加热。

全国通用2023高中生物第3章细胞的基本结构笔记重点大全

全国通用2023高中生物第3章细胞的基本结构笔记重点大全

全国通用2023高中生物第3章细胞的基本结构笔记重点大全单选题1、下列各组细胞器均具单层膜的是A.液泡和核糖体B.中心体和叶绿体C.溶酶体和高尔基体D.内质网和线粒体答案:C试题分析:A、核糖体没有膜结构,A错误;B、中心体没有膜结构,叶绿体具有双层膜,B错误;C、溶酶体和高尔基体都是含有单层膜的细胞器,C正确;D、线粒体是具有双层膜的细胞器,D错误.故选C.考点:细胞器中其他器官的主要功能;线粒体、叶绿体的结构和功能.2、科学家用红色、绿色荧光染料分别标记人和小鼠细胞表面的蛋白质分子,将这两种标记细胞进行融合。

这两种细胞刚融合时,融合细胞的一半发红色荧光,另一半发绿色荧光,最后两种颜色的荧光均匀分布。

这一实验现象支持的结论是()A.膜蛋白能自主翻转B.膜蛋白贯穿磷脂双分子层C.细胞膜具有流动性D.细胞膜具有选择透过性答案:C分析:分析题意可知:两种荧光染料分别标记人和小鼠细胞表面的蛋白质分子,将这两种标记细胞进行融合。

细胞刚发生融合时,两种荧光染料在融合细胞表面对等分布(即各占半边),最后在融合细胞表面均匀分布。

这一现象说明构成细胞膜的蛋白质分子是可以运动的,体现细胞膜的流动性。

由实验可知,用两种荧光染料分别标记人和小鼠细胞表面的蛋白质分子,将这两种标记细胞进行融合。

细胞刚发生融合时,两种荧光染料在融合细胞表面对等分布(即各占半边),最后在融合细胞表面均匀分布。

说明小鼠细胞膜和人细胞膜相融合,这一实验证明细胞膜具有一定的流动性。

即C正确,ABD错误。

故选C。

3、大量事实表明,在蛋白质合成旺盛的细胞中,常有较大的核仁。

根据这一事实可以推测()A.遗传物质主要存在于核仁中B.细胞中的蛋白质主要由核仁合成C.无核仁的细胞往往不能合成蛋白质D.核仁是核糖体RNA合成、加工等的场所答案:D分析:细胞核的结构:1 .核膜:(1)结构:核膜是双层膜,外膜上附有许多核糖体,常与内质网相连;其上有核孔,是核质之间频繁进行物质交换和信息交流的通道;在代谢旺盛的细胞中,核孔的数目较多。

生物化学:第三章 蛋白质参考答案

生物化学:第三章 蛋白质参考答案

第三章 蛋白质1. 在生物缓冲体系中,何种氨基酸具有缓冲作用?答:组氨酸具有缓冲作用。

因为组氨酸含有咪唑基团。

而咪唑基解离常数为6.0,即解离的质子浓度与水的相近,因此组氨酸既可作为质子供体,又可作为质子受体。

在pH=7附近有明显的缓冲作用。

2. 什么是氨基酸的p K和 pI ?它们的关系如何?答:p K指解离常数的负对数,表示一半的氨基酸解离时的pH值;pI指氨基酸所带的正负电荷相等时的溶液的pH值,即等电点。

中性氨基酸:pI= (p K1 + p K2) / 2酸性氨基酸:pI= (p K1 + p K R) / 2碱性氨基酸: pI= (p K2+ p K R) / 23. 计算 0.1 mol/L 的谷氨酸溶液在等电点时主要的离子浓度。

答:因此,0.1 mol/L 的谷氨酸溶液在等电点时主要离子(即两性离子)的浓度为0.083mol/L。

4. 大多数的氨基酸,其α-羧基的p K a都在 2.0 左右,其α-氨基的p K a都在 9.0 左右。

然而,肽中的α-羧基p K a值为 3.8,α-氨基p K a值在7.8。

请解释这种差异。

答:α-氨基酸分子中带正电荷的α-氨基阻止了α-羧基负离子的质子化,即能稳定羧基负离子,因而提高了羧基的酸性。

同理,羧基负离子对质子化的氨基(NH3+)同样有稳定作用,从而降低了其酸性,提高了其碱性。

在肽分子中,由于两个端基(COO-和NH3+)相距较远,这种电荷间的相互作用要弱得多,因此其p K a值与α-氨基酸中氨基和羧基的p K a值存在明显差异。

5、写出五肽 Ser-Lys-Ala-Leu-His 的化学结构,计算该肽的 pI,并指出该肽在pH = 6.0 时带何种电荷。

答:6、人的促肾上腺皮质激素是一种多肽激素。

它的氨基酸序列为Ser-Tyr-Ser- Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asp-Ala-Gly-Glu-Asp-Gln-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe;(1)在pH=7条件下,此多肽带有何种电荷?(2)用CNBr处理此多肽,可以得到多少肽段?答:(1)经分析,当pH=7时,多肽中的Ser的游离氨基,Phe的游离羧基以及4个Glu、3个Arg、4个Lys、2个Asp的侧链基团带有电荷。

医用高分子材料的稳定与降解

医用高分子材料的稳定与降解

01
材料炎性反应取决于材料表面与体液中蛋白质的相互作用,蛋白的吸附和变性是细胞和材料界面上生物学反应的原因。
01
降解机理总结
添加生物抗氧剂 如维生素E
01
结构上设计生物稳定的结构
02
含硅的聚合物
03
含氟的聚合物
04
8.2生物医用高分子的稳定化
可降解的生物医用高分子材料
定义:是指在生物体内经水解、酶解等过程,逐渐降解成低分子量化合物或单体,降解产物能被排出体外或能参加体内正常新陈代谢而消失的材料。
2
什么是生物医用材料
生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。
01
生物材料市场发展势头迅猛,其发展态势已可以与信息、汽车产业在世界经济中的地位相比。
Density Coverage
生物学环境
定义:指处于生物系统中的生物医用材料周围的情况或条件,包括与其接触的体液、有机大分子、酶、自由基、细胞等多种因素。 生物学环境可分为四个级别: 生理环境:受化学和热学条件控制 生物生理环境:生物学条件加上适当的细胞产物(如血清的蛋白、酶) 生物环境:生物生理条件加上适当的有生命的活跃的细胞 细胞周围环境:生物环境的一种特殊情况,即:直接邻近有生命的 活跃细胞周围的条件
775万肢残患者和每年新增的300万骨损伤患者需要大量骨修复材料,
1
2000万心血管病患者每年需要24万套人工心瓣膜,
2
2亿至3亿肝炎患者每年需要30万个人工肝,
3
肾衰患者每年需要12万个肾透析器。

第6章微生物的生长繁殖习题[整理]

第6章微生物的生长繁殖习题[整理]

第六章微生物的生长繁殖及其控制习题填空题:1.一条典型的生长曲线至少可分为迟缓期、对数生长期、稳定生长期和衰亡期 4个生长时期。

2.测定微生物的生长量常用的方法有单细胞计数、细胞物质的重量和代谢活性。

而测定微生物数量变化常用的方法有培养平板计数法、膜过滤法、液体稀释法和显微镜直接计数;以生物量为指标来测定微生物生长的方法有比浊法、重量法和生理指标法。

3.获得细菌同步生长的方法主要有(1) 机械法和(2) 环境条件控制法,其中(1)中常用的有离心法、过滤分离法和硝酸纤维素滤膜法。

4.控制连续培养的方法有恒浊法和恒化法。

5.影响微生物生长的主要因素有营养物质、水活性、温度、pH和氧等。

6.对玻璃器皿、金属用具等物品可用高压蒸汽灭菌法或干热灭菌法进行灭菌;而对牛奶或其他液态食品一般采用超高温灭菌灭菌,其温度为135-150~C,时间为2—6s。

7.通常,细菌最适pH的范围为6.5—7.5,酵母菌的最适pH范围为4.5~5.5,霉菌的最适pH 范围4.5—5.5。

8.杀灭或抑制微生物的物理因素有温度、辐射作用、过滤、渗透压、干燥和超声波等。

9.抗生素的作用机制有抑制细菌细胞壁合成、破坏细胞质膜、作用于呼吸链以干扰氧化磷酸化和抑制蛋白质和核酸合成。

10.抗代谢药物中磺胺类是由于与对氨基苯甲酸相似,从而竞争性地与二氢叶酸合成酶结合,使其不能合成叶酸选择题:1.以下哪个特征表示二分裂? ( (3) )(1)产生子细胞大小不规则 (2)隔膜形成后染色体才复制(3)子细胞含有基本等量的细胞成分 (4)新细胞的细胞壁都是新合成的2.代时为0.5h的细菌由103个增加到109个时需要多长时间?( (3) )(1)40h (2)20h (3)10h (4)3h3.某细菌2h中繁殖了5代,该菌的代时是( (2) )。

(1)15 min (2)24min (3)30min (4)45min4.代时是指( (4) )。

(1)培养物从接种到开始生长所需要的时间 (2)从对数期结束到稳定期开始的间隔时间 (3)培养物生长的时间(4)细胞分裂繁殖一代所需要的时间5.如果将处于对数期的细菌移至相同组分的新鲜培养基中,该批培养物将处于哪个生长期?( (4) )(1)死亡期 (2)稳定期 (3)延迟期 (4)对数期6.细菌细胞进入稳定期是由于:①细胞已为快速生长作好了准备;②代谢产生的毒性物质发生了积累;③能源已耗尽;④细胞已衰老且衰老细胞停止分裂;⑤在重新开始生长前需要合成新的蛋白质( (2) )。

第三章 水环境化学习题解答

第三章 水环境化学习题解答

第三章水环境化学一、填空题1、天然水体中常见的八大离子包括:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-、SO42-。

2、天然水体中的碳酸平衡体系a0、a1、a2分别表示[H2CO3*]、[HCO3-]、[CO32-]的分配系数,其表达式分别为:(用pH\K1\K2表达):a 0=[H2CO3*]/{[ H2CO3*]+[ HCO3-]+[ CO32-]}=[H+]2/{[H+]2+K1[H+]+K1K2}a 1=[ HCO3-] /{[ H2CO3*]+[ HCO3-]+[ CO32-]}= K1[H+]/{[H+]2+K1[H+]+K1K2}a 2=[ CO32-] /{[ H2CO3*]+[ HCO3-]+[ CO32-]}= K1K2/{[H+]2+K1[H+]+K1K2}。

(注:此三个公式前半段教材119-120页有错误!)a 0+a1+a2=13、根据溶液质子平衡条件得到酸度低表达式:总酸度=[H+]+2[ H2CO3*]+[HCO3-]-[OH-];CO2酸度= [H+]+[H2CO3*]-[CO32-]-[OH-](注:教材121此公式错误),无机酸度= [H+]-[HCO3-]-2[CO32-] -[OH-] 。

4、根据溶液质子平衡条件得到酸度低表达式:总碱度= [OH-] +2[CO32-]+[HCO3-]-[H+];酚酞碱度= [OH-] +[CO32-]-[H+]-[ H2CO3*];苛性碱度= [OH-] -2[ H2CO3*]-[HCO3-]-[H+]。

5、“骨痛病事件”的污染物是镉;水俣病的污染物是汞(或甲基汞)。

6、水体的富营养化程度一般可用总磷(TP)、总氮(TN)、叶绿素a、透明度等指标来衡量。

7、水环境中氧气充足的条件下有机物发生的生物降解称为有氧(或好氧)降解,最终产物主要为二氧化碳和水,有机氮转化为硝酸根,有机硫转化为硫酸根。

水中的有机物在无氧条件经微生物分解,称为厌氧降解,降解产物除二氧化碳和水外,还有小分子的醇、酮、醛、酸等,无机态氮主要以氨氮存在、硫主要以硫化物存在,水体发臭发黑。

第三章 表面活性剂解读

第三章 表面活性剂解读


碳原子个数越多 CMC取值越小
双键或支链越多 CMC取值越大
小 非离子型 表面活性剂 <0.0001mol/L

忽略
(CH2CH2O)n越长 CMC取值越大
3.4 临界胶束浓度

影响CMC取值的因素
2.4.1 表面活性剂化学结构的影响 ①同系物中疏水基碳氢链上的碳原子数越多,则其临界胶束 浓度越小。
浓度即为CMC。
溶解度 5.浊度法:非极性有机物(烃类)在表面活性剂中的浊度随表
面活性剂浓度而变化,浊度突变点的浓度即为CMC。
3.4 临界胶束浓度

CMC取值与表面活性剂结构的关系
表面活性剂 类型
取值范围
亲水基团 亲油基团 影响 影响 小
结论 忽略
一般离子型 表面活性剂
0.0001mol/L0.02mol/L
胶束聚集数增大
形成新的胶团

临界胶束浓度:表面活性剂分子缔合形成胶束的最低浓度
0.002%-0.5% (0.0001mol/L-0.02mol/L)
3.4 临界胶束浓度
3.4 临界胶束浓度
CMC是表面活性剂表面活性的一种度量。
形成胶束所需要的浓度愈低; 达到表面饱和吸附的浓度愈低;
CMC愈小
使表面张力降到最低值所需浓度愈低; 也就是表面活性愈高。 在使用表面活性剂时,浓度一般比CMC稍大些, 否则表面性能不能充分发挥。
C:8~20
不对称的 极性结构
非极性
极性
3.2 表面活性剂的分类 根据疏水基结构进行分类,分直链、支链、芳香 链、含氟长链等;
根据亲水基进行分类,分为羧酸盐、硫酸盐、季 铵盐、PEO衍生物、内酯等;
根据其水溶性、化学结构特征、原料来源等各种 分类方法。

第三章 水体有机污染

第三章  水体有机污染

§3-2 污染水体中的有机化合物
二、耗氧有机污物
耗氧有机污染物:烃类、脂肪、蛋白质等在水中降解时要
消耗大量的氧,因此被称为耗氧有机污染物。
含氮有机污染物的分解:
若水中无氧,
若水中有氧,
NH3
O O
NO2-
NO3-
§3-2 污染水体中的有机化合物
三、有机金属络合物
1、水体中常见的有机配体: 单齿配体 双齿配体
第三章
水体有机污染
环境工程专业
§3-1 天然水中的有机化合物
一、天然水体中的有机物来源
1、流动和循环过程中溶解和携带有机物
碳水化合物、蛋白质、 2、水生生物(动植物)的活动引入有机物 肽类、氨基酸、脂肪、 易被微生物分解, 色素 其残留量很低 二、水中有机物分类
1、非腐殖质:可辨认化学特征的化合物 2、腐殖质
§3-2 污染水体中的有机化合物
四、环境中的有机金属化合物
2.环境中的有机汞化合物
有机汞化合物的生成
2CH3Hg+ + H2S
H2 O
(CH3Hg)2S + 2H+
CH3CoB12 + Hg(CH3COO)2
CH3Hg(OCOCH3) + CH3COO-
CH3CoB12
+ CH3Hg
H2O
(CH3)2Hg
土壤中的微生物引起了有机锡的降解。有氧条件下比 (C6H5)3SnX (C6H5)2 C6H5SnX3 无机锡 缺氧条件下降解快。SnX2
(2)微生物降解: 有机锡化合物 微生物
无机锡化合物
(3)化学降解:
亲核和亲电试剂都能引起化学反应。
§3-2 污染水体中的有机化合物

第六章药物制剂的稳定性

第六章药物制剂的稳定性

09.04.2021
18
ቤተ መጻሕፍቲ ባይዱ
(二)酰胺类
O
R—C—NHR′+H2O→酸+胺 1. 氯霉素 2. pH2-7,对水解速度影响不大,pH=6最稳定。 pH<2,>8可加速水解、热、光等影响,反应复杂。
氨基物+二氯乙酸
09.04.2021
19
氯霉素滴眼液 硼酸-硼砂缓冲液处方pH=6.4,较稳定,有效期9个月。 灭菌方法影响其稳定性: 100℃ 30min,水解3-4% 115 ℃ 30min ,水解15%
一些反应的氧化-还原电位依赖于pH值。
通过调节pH增加药物稳定性,同时考虑药物的稳定性、 溶解度和药效等。HCl、NaOH最常用的调节剂。
09.04.2021
34
(二)广义酸碱催化的影响(液体制剂)
▪ BL酸碱理论:给出质子的广义酸,接受质子的广义碱, 有些药物可被广义酸碱催化水解------广义酸碱催化
09.04.2021
3
学习要求
▪ 3. 了解固体剂型的化学降解动力学;固体制剂稳定性实 验的特殊要求和特殊方法;稳定性重点考查项目及有效 期统计分析;新药开发过程中药物系统稳定性研究的内 容。
09.04.2021
4
第一节 概述
药物与药物制剂的稳定性:在一定期限内(有效期), 药品与制剂保持与生产时相同的质量和特性。
一级反应的有效期和半衰期与药物的初浓度无关,而与K 值成反比,K值愈大,稳定性愈差。 普遍,如药物体内代谢、消除。
某些二级反应(酯在水中的水解),由于水的浓度大大超 过酯,可认为水的浓度不变,表现出一级反应特征,称伪 一级反应。
09.04.2021
15
(二)反应级数的确定 预测药物稳定性,必须首先确定其降解反应级数,才能求出反

2020-2021学年新教材地理人教版选择性必修第三册学案:第三章第三节生态保护与国家安全含解析

2020-2021学年新教材地理人教版选择性必修第三册学案:第三章第三节生态保护与国家安全含解析

衡石量书整理第三节生态保护与国家安全课程标准素养目标结合实例,说明设立自然保护区对生态安全的意义1.举例说明生态退化的类型、危害及对国家安全的影响。

(综合思维)2.结合实例,说明生态修复的目的和类型,正确认识人地关系,树立因地制宜的思想。

(人地协调观)3.结合实例,理解自然保护区的类型、保护对象及主要分布区,说明设立自然保护区对生态安全的意义。

(区域认知)4.通过实地考察或查阅资料,初步认识我国设立的自然保护区的特点。

(地理实践力)必备知识·素养奠基一、生态退化及其对国家安全的影响1.生态退化:(1)原因:随着工业化进程和人口快速增长,人类对自然的干预和破坏不断加强,导致生态退化。

(2)类型:森林破坏、土壤侵蚀、土地荒漠化、物种灭绝等。

(3)特点:长期渐进、不同区域表现各异。

[辨一辨]下列图示是否属于生态退化?(在括号内打√或×)2.生态退化的危害:3.生态退化对国家安全的影响:(1)影响:生态退化一旦严重到某种程度,就会动摇国家安全的自然环境基础,演变为威胁人民福祉、经济社会可持续发展和社会长久稳定的区域乃至国家安全问题。

(2)解决措施。

二、实施生态修复1.生态修复:(1)含义:是指利用自然环境自身恢复能力或辅以人工措施,使受损的生态系统逐步恢复或趋向良性循环。

(2)类型。

类型含义自然恢复消除或减少人为干扰,使未完全崩溃的生态系统依靠自我调节能力,逐步恢复,维持其可更新能力人工修复采取一定的生物、工程等措施,加快生态系统的恢复速度,或帮助丧失自我调节能力的生态系统恢复到安全水平,其中见效快、成效好的是工程治理措施2.我国开展生态修复工作的主要成就:[判一判] 判断下列实例属于自然恢复的是①③⑤⑥。

①沿海及江湖实行的休渔制度。

②黄土高原的植树造林。

③退化草场的围栏封育。

④盐碱地的水系整治。

⑤退耕还湖。

⑥林区进行的封山育林。

三、建立自然保护区1.自然保护区的含义:自然保护区指对自然界中有代表性的保护对象所在的区域,依法划出一定面积予以特殊保护和管理的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主链断裂的情况: 主链断裂的情况:
第八节 杂 链 聚 合 物
一、聚酯类
1. 聚对苯二甲酸乙二醇酯(PET) 聚对苯二甲酸乙二醇酯( )
2000年,聚对苯二甲酸乙二醇酯(PET)世界 年 聚对苯二甲酸乙二醇酯 世界 产量约2707万吨, 万吨, 产量约 万吨 大约1826万吨用于涤纶生产, 万吨用于涤纶生产, 大约 万吨用于涤纶生产 万吨用于各种聚酯瓶, 约651万吨用于各种聚酯瓶, 万吨用于各种聚酯瓶 还有148万吨用于生产薄膜。 万吨用于生产薄膜。 还有 万吨用于生产薄膜
(1)光降解: )光降解: 真空中的光降解: 真空中的光降解:
大分子羧基自由基A可能进行两种反应 大分子羧基自由基 可能进行两种反应:
另一种可能的光降解过程: 另一种可能的光降解过程:
在有空气存在的情况下: 在有空气存在的情况下:
2. 聚碳酸酯(PC) 聚碳酸酯( )
(1)光降解: )光降解: PC具有很高的光稳定性。 具有很高的光稳定性。 具有很高的光稳定性
自由基聚合得到的PMMA,分子链上存在不 , 自由基聚合得到的 饱和端基,是会引发反应的薄弱点。 饱和端基,是会引发反应的薄弱点。
阴离子聚合的PMMA没有不饱和端基,降解 没有不饱和端基, 阴离子聚合的 没有不饱和端基 只能由主链的无规断链引发。 只能由主链的无规断链引发。
少量单体与MMA共聚可能会阻断 共聚可能会阻断PMMA的 少量单体与 共聚可能会阻断 的 解聚反应,从而提高其稳定性。 解聚反应,从而提高其稳定性。 小分子对PMMA的解聚影响不同。 的解聚影响不同。 小分子对 的解聚影响不同
侧酯基分解的难易程度依赖于其烷基基团上 氢原子数。 的β氢原子数。 氢原子数 聚甲基丙烯酸丁酯的四种异构体中, 氢原 聚甲基丙烯酸丁酯的四种异构体中, β氢原 子数越多,热降解时单体产率越低, 子数越多,热降解时单体产率越低,烯烃产 率依次提高。 率依次提高。其它聚甲基丙烯酸酯的热降解 行为与此类似。 行为与此类似。
的光降解: (2)PMMA的光降解: ) 的光降解 PMMA的光稳定性非常好,可以做透光材料。 的光稳定性非常好,可以做透光材料。 的光稳定性非常好 PMMA可以用来降低共聚物光降解的速率。 可以用来降低共聚物光降解的速率。 可以用来降低共聚物光降解的速率 PMMA在254nm处有很微弱的吸收。 在 处有很微弱的吸收。 处有很微弱的吸收 室温下,PMMA的光降解包括侧酯基的光降 室温下, 的光降解包括侧酯基的光降 解,侧甲基的光降解和聚合物主链的无规断 裂。
第七节 聚二烯类聚合物
一、聚二烯类聚合物的氧化和臭氧化
聚二烯类聚合物的分子主链或侧链中含有大 量的双键,在室温下都可受到氧的攻击, 量的双键,在室温下都可受到氧的攻击,且 易为光和氧所加热。 易为光和氧所加热。
1. 聚二烯类聚合物的氧化
纯聚二烯类聚合物仅吸收波长小于200nm 的 纯聚二烯类聚合物仅吸收波长小于 远紫外光,而一般样品可吸收240~ 远紫外光,而一般样品可吸收 ~290nm的 的 紫外光。聚合物中的金属残渣起催化作用。 紫外光。聚合物中的金属残渣起催化作用。 聚二烯类聚合物在光照过程中吸氧速率迅速 增加。 且与辐照时间和波长有关。 增加。 且与辐照时间和波长有关。
Thank you!
原因: 的光化学重排反应 的光化学重排反应。 原因:PC的光化学重排反应。
PC光降解过程: 光降解过程: 光降解过程
的热降解: (2)PC的热降解: ) 的热降解
3. 不饱和聚酯类
二、聚酰胺类
1. 脂肪族聚酰胺(PA) 脂肪族聚酰胺( )
(1)真空中的光降解: )真空中的光降解:
Lemaire的PA光氧化研究结论: 的 光氧化研究结论 光氧化研究结论:
异氰酸酯 聚合物二元醇 扩链剂
聚氨酯的水解
聚氨酯的热降解
聚氨酯的热氧降解
聚氨酯的光降解
聚氨酯变黄的原因: 聚氨酯变黄的原因
五、聚砜类
各种进一步的反应: 各种进一步的反应:
六、聚硅氧烷类
Si—O键的光稳定性和热稳定性都很好。 键的光稳定性和热稳定性都很好。 键的光稳定性和热稳定性都很好 C—Si易发生光催化水解。 易发生光催化水解。 易发生光催化水解
2. 聚甲基丙烯酸高级酯 聚甲基丙烯酸高级酯的降解行为各不相同。 聚甲基丙烯酸高级酯的降解行为各不相同。
例:聚甲基丙烯酸丁酯的四种异构体降解行为不同。 聚甲基丙烯酸丁酯的四种异构体降解行为不同。 ① 聚甲基丙烯酸异丁酯 ② 聚甲基丙烯酸正丁酯 ③ 聚甲基丙烯酸仲丁酯 ④ 聚甲基丙烯酸叔丁酯
McNeil的解释: 的解释: 的解释 酯基烷基上的β氢原子的作用。 酯基烷基上的 氢原子的作用。 氢原子的作用
聚二烯类聚合物的光氧化机理
பைடு நூலகம்
2. 聚二烯类聚合物的臭氧化
一般认为是臭氧与双键发生反应。 一般认为是臭氧与双键发生反应。
二、顺式聚1,4-丁二烯 顺式聚 丁二烯
真空中用254nm紫外光照射聚 真空中用 紫外光照射聚1,4-丁二烯, 丁二烯, 紫外光照射聚 丁二烯 顺反结构会发生异构化。 顺反结构会发生异构化。 其机理如下: 其机理如下:
(2)热降解: )热降解:
(3)水解降解: )水解降解: 水解可视为缩聚的逆过程。 水解可视为缩聚的逆过程。
PA加工的含水量: 加工的含水量: 加工的含水量
三、聚醚类
聚甲醛(POM) 聚甲醛
POM光降解
四、聚氨酯类
聚氨酯的稳定性与原料的性质有关: 聚氨酯的稳定性与原料的性质有关:
第三章 聚 合 物 降 解 各 论
第六节 丙烯酸酯类和甲基丙烯酸酯类聚合物
一、甲基丙烯酸酯类聚合物
1. 聚甲基丙烯酸甲酯 (1)热降解性能 )
PMMA的热降解是解聚反应,反应单体产率 的热降解是解聚反应, 的热降解是解聚反应 几乎是100%。 几乎是 %。 PMMA的热降解行为受到生产时聚合方式的 的热降解行为受到生产时聚合方式的 很大影响。 很大影响。
相关文档
最新文档