电路四输入与非门设计

合集下载

电路四输入与非门设计

电路四输入与非门设计

课程设计任务书学生姓名:专业班级:电子1003班指导教师:封小钰工作单位:信息工程学院题目: CMOS四输入与非门电路设计初始条件:计算机、ORCAD软件、L-EDIT软件要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:2周2、技术要求:(1)学习ORCAD软件、L-EDIT软件。

(2)设计一个CMOS四输入与非门电路。

(3)利用ORCAD软件、L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:2013.11.22布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。

2013.11.25-11.27学习ORCAD软件、L-EDIT软件,查阅相关资料,复习所设计内容的基本理论知识。

2013.11.28-12.5对CMOS四输入与非门电路进行设计仿真工作,完成课设报告的撰写。

2013.12.6 提交课程设计报告,进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日摘要 (I)Abstract (II)1 绪论 (1)2 设计内容及要求 (2)2.1 设计的目的及主要任务 (2)2.2 设计思想 (2)3软件介绍 (3)3.1 OrCAD简介 (3)3.2 L-Edit简介 (4)4 COMS四输入与非门电路介绍 (5)4.1 COMS四输入与非门电路组成 (5)4.2 四输入与非门电路真值表 (6)5 Cadence中四输入与非门电路的设计 (7)5.1 四输入与非门电路原理图的绘制 (7)5.2 四输入与非门电路的仿真 (8)6 L-EDIT中四输入与非门电路版图的设计 (10)6.1 版图设计的基本知识 (10)6.2 基本MOS单元的绘制 (11)6.3 COMS四输入与非门的版图设计 (13)7课程设计总结 (14)参考文献 (15)与非门是一种非常常用的数字门电路,本文详细介绍了基于CMOS管的L-EDIT环境下的四输入与非门电路设计仿真及版图布局设计验证。

四输入与非门7420工作原理

四输入与非门7420工作原理

四输入与非门7420工作原理
四输入与非门(7420)是一种集成电路,通常用于数字电子系统中。

每个输入都是一个非门,也就是一个反相器。

这意味着,如果输入是1,输出就是0,反之亦然。

7420 IC 的工作原理如下:
1. 输入阶段:这个器件有四个输入引脚(A、B、C、D)。

每个输入都连接到一个非门。

2. 非门:每个输入都通过一个非门,进行逻辑非操作。

这意味着,如果输入是高电平(1),那么非门输出低电平(0),反之亦然。

3. 与非门:接下来,这四个非门的输出连接到一个与非门。

与非门是一个与门后跟一个非门,其输出是与门输出的逻辑非。

4. 与门:四个非门的输出在与门中进行逻辑与运算。

只有当所有输入都是高电平时,与门的输出才是高电平。

否则,输出为低电平。

5. 最终输出:与非门将与门的输出进行逻辑非操作,最终输出的结果是:只要有一个输入为低电平,那么输出就为高电平。

这种设计使得四输入与非门的输出在只有当所有输入都是高电平时才为低电平,其他情况都为高电平。

这种门电路在数字逻辑电路中有许多应用,用于实现复杂的逻辑功能。

与非门、或非门和异或门的版图设计

与非门、或非门和异或门的版图设计

实验四:与非门和或非门的版图设计、异或门的后仿真一、实验目的1、使用virtuoso layout XL工具创建或非门(NOR)和与非门(NAND)的电路原理图和版图;2、利用已创建好的或非门、与非门和反相器设计异或门(XOR)的电路原理图;3、对异或门提取的参数进行模拟仿真。

二、实验要求1、打印出由或非门、与非门和反相器设计成的异或门的仿真结果;2、打印出异或门的电路原理图和版图。

三、实验工具Virtuoso四、实验内容1、或非门的设计;2、与非门的设计;3、异或门的设计;4、异或门的仿真。

1、或非门的设计step1:创建或非门的电路原理图,其中,NMOS的宽度120nm为PMOS的宽度为480nm.图1 或非门的电路原理图step2:验证或非门是否可以正常工作,即创建SPICE netlist.图2 验证或非门图3验证成功产生的报告step3:创建一个layout view,并选择菜单栏上Tools->Lyaout XL,此时刚刚保存的电路原理图会自动弹出来,接着选择菜单栏上的Connectivity->Updata->Components and Nets,在弹出得对话框中修改参数,修改完成后点击OK,将会出现如下图所示布局。

图4 利用virtuoso XL工具生成的布局step4:参照前面的实验,在矩形边框内画上电源轨道和NWELL,并创建M1_PSUB 和MI_NWELL,将vdd!、gnd!移至电源轨道上,再将其他原件也移至矩形边框内。

对照电路原理图将NMOS、PMOS、电源、地、以及输入输出端口连接起来,在连线时,注意观察电路原理图,确保不会出现短路情况,连接好的版图如下图所示。

图5 连接好的或非门版图step5:对画好的版图进行DRC,成功后验证提取参数并做LVS验证,再生成网表文件。

图6 或非门版图的DRC验证图7 或非门的参数提取视图图8 或非门的LVS验证图9 或非门的网表文件2、与非门的设计与或非门的设计类似,在此不再赘述,直接给出与非门的电路原理图、版图以及DRC、LVS验证。

输入与非门、或非门版图设计

输入与非门、或非门版图设计

课程名称Course 集成电路设计技术项目名称Item二输入与非门、或非门版图设计与非门电路的版图:.spc文件(瞬时分析):* Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;* TDB File: E:\cmos\yufeimen, Cell: Cell0* Extract Definition File: C:\Program Files\Tanner EDA\L-Edit\spr\morbn20.ext * Extract Date and Time: 05/25/2011 - 10:03.include H:\ml2_125.mdVPower VDD GND 5va A GND PULSE (0 5 0 5n 5n 100n 200n)vb B GND PULSE (0 5 0 5n 5n 50n 100n).tran 1n 400n.print tran v(A) v(B) v(F)* WARNING: Layers with Unassigned AREA Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* WARNING: Layers with Unassigned FRINGE Capacitance.* <Pad Comment>* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* <Poly1-Poly2 Capacitor>* WARNING: Layers with Zero Resistance.* <Pad Comment>* <Poly1-Poly2 Capacitor>* <NMOS Capacitor>* <PMOS Capacitor>* NODE NAME ALIASES* 1 = VDD (34,37)* 2 = A (29.5,6.5)* 3 = B (55.5,6.5)* 4 = F (42.5,6.5)* 6 = GND (25,-22)M1 VDD B F VDD PMOS L=2u W=9u AD=99p PD=58u AS=54p PS=30u* M1 DRAIN GATE SOURCE BULK (47.5 14.5 49.5 23.5)M2 F A VDD VDD PMOS L=2u W=9u AD=54p PD=30u AS=99p PS=58u* M2 DRAIN GATE SOURCE BULK (39.5 14.5 41.5 23.5)M3 F B 5 GND NMOS L=2u W=9.5u AD=52.25p PD=30u AS=57p PS=31u * M3 DRAIN GATE SOURCE BULK (47.5 -18 49.5 -8.5)M4 5 A GND GND NMOS L=2u W=9.5u AD=57p PD=31u AS=52.25p PS=30u * M4 DRAIN GATE SOURCE BULK (39.5 -18 41.5 -8.5)* Total Nodes: 6* Total Elements: 4* Extract Elapsed Time: 0 seconds.END与非门电路仿真波形图(瞬时分析):.spc文件(直流分析):* Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;* TDB File: E:\cmos\yufeimen, Cell: Cell0* Extract Definition File: C:\Program Files\Tanner EDA\L-Edit\spr\morbn20.ext * Extract Date and Time: 05/25/2011 - 10:03.include H:\ml2_125.mdVPower VDD GND 5va A GND 5vb B GND 5.dc va 0 5 0.02 vb 0 5 0.02.print dc v(F)* WARNING: Layers with Unassigned AREA Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* WARNING: Layers with Unassigned FRINGE Capacitance.* <Pad Comment>* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* <Poly1-Poly2 Capacitor>* WARNING: Layers with Zero Resistance.* <Pad Comment>* <Poly1-Poly2 Capacitor>* <NMOS Capacitor>* <PMOS Capacitor>* NODE NAME ALIASES* 1 = VDD (34,37)* 2 = A (29.5,6.5)* 3 = B (55.5,6.5)* 4 = F (42.5,6.5)* 6 = GND (25,-22)M1 VDD B F VDD PMOS L=2u W=9u AD=99p PD=58u AS=54p PS=30u* M1 DRAIN GATE SOURCE BULK (47.5 14.5 49.5 23.5)M2 F A VDD VDD PMOS L=2u W=9u AD=54p PD=30u AS=99p PS=58u* M2 DRAIN GATE SOURCE BULK (39.5 14.5 41.5 23.5)M3 F B 5 GND NMOS L=2u W=9.5u AD=52.25p PD=30u AS=57p PS=31u * M3 DRAIN GATE SOURCE BULK (47.5 -18 49.5 -8.5)M4 5 A GND GND NMOS L=2u W=9.5u AD=57p PD=31u AS=52.25p PS=30u * M4 DRAIN GATE SOURCE BULK (39.5 -18 41.5 -8.5)* Total Nodes: 6* Total Elements: 4* Extract Elapsed Time: 0 seconds.END与非门电路仿真波形图(直流分析):或非门电路的版图:.spc文件(瞬时分析):* Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;* TDB File: E:\cmos\huofeimen, Cell: Cell0* Extract Definition File: C:\Program Files\Tanner EDA\L-Edit\spr\morbn20.ext * Extract Date and Time: 05/25/2011 - 10:04.include H:\CMOS\ml2_125.mdVPower VDD GND 5va A GND PULSE (0 5 0 5n 5n 100n 200n)vb B GND PULSE (0 5 0 5n 5n 50n 100n).tran 1n 400n.print tran v(A) v(B) v(F)* WARNING: Layers with Unassigned AREA Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* WARNING: Layers with Unassigned FRINGE Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <Pad Comment>* <P Base Resistor>* <Poly1-Poly2 Capacitor>* WARNING: Layers with Zero Resistance.* <Pad Comment>* <Poly1-Poly2 Capacitor>* <NMOS Capacitor>* <PMOS Capacitor>* NODE NAME ALIASES* 1 = VDD (34,37)* 2 = A (29.5,6.5)* 3 = B (55.5,6)* 4 = F (42.5,6.5)* 5 = GND (25,-22)M1 6 A VDD VDD PMOS L=2u W=9u AD=54p PD=30u AS=49.5p PS=29u* M1 DRAIN GATE SOURCE BULK (39.5 14.5 41.5 23.5)M2 F B 6 VDD PMOS L=2u W=9u AD=49.5p PD=29u AS=54p PS=30u* M2 DRAIN GATE SOURCE BULK (47.5 14.5 49.5 23.5)M3 F A GND GND NMOS L=2u W=9.5u AD=57p PD=31u AS=104.5p PS=60u* M3 DRAIN GATE SOURCE BULK (39.5 -18 41.5 -8.5)M4 GND B F GND NMOS L=2u W=9.5u AD=104.5p PD=60u AS=57p PS=31u* M4 DRAIN GATE SOURCE BULK (47.5 -18 49.5 -8.5)* Total Nodes: 6* Total Elements: 4* Extract Elapsed Time: 0 seconds.END或非门电路仿真波形图(瞬时分析):.spc文件(直流分析):* Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;* TDB File: E:\cmos\huofeimen, Cell: Cell0* Extract Definition File: C:\Program Files\Tanner EDA\L-Edit\spr\morbn20.ext* Extract Date and Time: 05/25/2011 - 10:04.include H:\CMOS\ml2_125.mdVPower VDD GND 5va A GND 5vb B GND 5.dc va 0 5 0.02 vb 0 5 0.02.print dc v(F)* WARNING: Layers with Unassigned AREA Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <P Base Resistor>* WARNING: Layers with Unassigned FRINGE Capacitance.* <Poly Resistor>* <Poly2 Resistor>* <N Diff Resistor>* <P Diff Resistor>* <N Well Resistor>* <Pad Comment>* <P Base Resistor>* <Poly1-Poly2 Capacitor>* WARNING: Layers with Zero Resistance.* <Pad Comment>* <Poly1-Poly2 Capacitor>* <NMOS Capacitor>* <PMOS Capacitor>* NODE NAME ALIASES* 1 = VDD (34,37)* 2 = A (29.5,6.5)* 3 = B (55.5,6)* 4 = F (42.5,6.5)* 5 = GND (25,-22)M1 6 A VDD VDD PMOS L=2u W=9u AD=54p PD=30u AS=49.5p PS=29u* M1 DRAIN GATE SOURCE BULK (39.5 14.5 41.5 23.5)M2 F B 6 VDD PMOS L=2u W=9u AD=49.5p PD=29u AS=54p PS=30u* M2 DRAIN GATE SOURCE BULK (47.5 14.5 49.5 23.5)M3 F A GND GND NMOS L=2u W=9.5u AD=57p PD=31u AS=104.5p PS=60u * M3 DRAIN GATE SOURCE BULK (39.5 -18 41.5 -8.5)M4 GND B F GND NMOS L=2u W=9.5u AD=104.5p PD=60u AS=57p PS=31u * M4 DRAIN GATE SOURCE BULK (47.5 -18 49.5 -8.5)* Total Nodes: 6* Total Elements: 4* Extract Elapsed Time: 0 seconds.END或非门电路仿真波形图(直流分析):课程名称Course集成电路设计技术项目名称Item二输入与非门、或非门版图设计目的Objective 1. 掌握利用E-EDIT进行IC设计方法,设计二输入与非门版图并仿真2. 掌握利用L-EDIT进行IC设计方法,设计二输入或非门版图并仿真3. 领会并掌握版图设计最优化实现方法。

IC课程设计 四位与非门电路设计

IC课程设计   四位与非门电路设计

IC课程设计四位与非门电路设计兰州交通大学电子与信息工程学院I C 课程设计报告课题一:四位与非门电路设计课题二:三输入加法器电路专业电子科学与技术班级电子1001学号 201010024学生姓名牛昕炜设计时间2012—2013学年第二学期目录目录 -------------------------------------------------------------------------------------------- 1课程一四位与非门的电路设计 ------------------------------------------------------ 1一概要 -------------------------------------------------------------------------- 2二设计的原理------------------------------------------------------------------- 21 两输入与非门------------------------------------------------------ 22 四输入与非门符号图及原理 ----------------------------------- 23 电路图--------------------------------------------------------------- 4三、课程设计的过程 ----------------------------------------------------------- 41 网表文件 ------------------------------------------------------------- 42 打开网表文件仿真------------------------------------------------ 53 延时分析: ---------------------------------------------------------- 6课程二组合逻辑加法器----------------------------------------------------------------- 6一设计目的---------------------------------------------------------------------- 6二设计原理---------------------------------------------------------------------- 61 加法器真值表: ---------------------------------------------------- 72 逻辑图 ---------------------------------------------------------------- 73 电路图 ---------------------------------------------------------------- 8三课程设计的过程 ----------------------------------------------------------- 81 网表文件------------------------------------------------------------ 82 打开网表文件仿真 ------------------------------------------------- 93 仿真分析(延时分析) ----------------------------------------- 10四课程设计总结-------------------------------------------------------------- 11课程一 四位与非门的电路设计一 概 要随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。

四输入或非门版图设计

四输入或非门版图设计

四输入或非门课程设计学生姓名:专业班级:指导教师:工作单位:题目: 四输入或非门的设计初始条件:计算机、ORCAD软件,L-EDIT软件要求完成的主要任务:(包括集成电路专项实践工作量及其技术要求,以及说明书撰写等具体要求)1、集成电路专项实践工作量:1周2、技术要求:(1)学习ORCAD软件,L-EDIT软件。

(2)设计一个四输入或非门电路。

(3)利用ORCAD软件,L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:2015.6.19布置集成电路专项实践任务、选题;讲解集成电路专项实践具体实施计划与课程设计报告格式的要求;集成电路专项实践答疑事项。

2015.6.19-6.20学习ORCAD软件,L-EDIT软件,查阅相关资料,复习所设计内容的基本理论知识。

2015.6.21-6.25用ORCAD软件设计四输入或非门电路并进行仿真工作,再利用L-EDIT软件绘制其版图,完成集成电路专项实践报告的撰写。

2015.6.26 提交集成电路专项实践报告,进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 .............................................................................................................................................. Abstract . (I)1 绪论 02 四输入或非门 (1)2.1 四输入或非门的电路结构 (1)2.2 四输入或非门的电路设计与仿真 (2)2.2.1 ORCAD软件介绍 (2)2.2.2 绘制电路图 (2)2.2.3 电路仿真 (3)2.4 四输入或非门的版图绘制 (5)2.4.1 L-EDIT软件介绍 (5)2.4.2 版图绘制 (5)3 总结 (9)参考文献 (10)摘要性能优越的四输入或非门是数字电路中很常见的一种逻辑电路,可广泛应用于算术逻辑单元等电路中。

数电实验实验报告

数电实验实验报告

数字电路实验报告实验一 组合逻辑电路分析一.试验用集成电路引脚图74LS00集成电路 74LS20集成电路 四2输入与非门 双4输入与非门 二.实验内容 1.实验一X12.5 VA BCD示灯:灯亮表示“1”,灯灭表示“0”ABCD 按逻辑开关,“1”表示高电平,“0”表示低电平自拟表格并记录:2.实验二密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。

否则,报警信号为“1”,则接通警铃。

试分析密码锁的密码ABCD 是什么?ABCDABCD 接逻辑电平开关。

最简表达式为:X1=AB ’C ’D 密码为: 1001 表格为:三.实验体会:1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。

2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片,和使用仿真软件来设计和构造逻辑电路来求解。

实验二组合逻辑实验(一)半加器和全加器一.实验目的1.熟悉用门电路设计组合电路的原理和方法步骤二.预习内容1.复习用门电路设计组合逻辑电路的原理和方法步骤。

2.复习二进制数的运算。

3. 用“与非门”设计半加器的逻辑图。

4. 完成用“异或门”、“与或非”门、“与非”门设计全加器的逻辑图。

5. 完成用“异或”门设计的3变量判奇电路的原理图。

三.元件参考依次为74LS283、74LS00、74LS51、74LS136其中74LS51:Y=(AB+CD )’,74LS136:Y=A ⊕B (OC 门) 四.实验内容1. 用与非门组成半加器,用或非门、与或非门、与非门组成全加器(电路自拟)NOR2SC半加器全加器2.用异或门设计3变量判奇电路,要求变量中1的个数为奇数是,输出为1,否则为0.3变量判奇电路3.“74LS283”全加器逻辑功能测试测试结果填入下表中:五.实验体会:1.通过这次实验,掌握了熟悉半加器与全加器的逻辑功能2.这次实验的逻辑电路图比较复杂,涉及了异或门、与或非门、与非门三种逻辑门,在接线时应注意不要接错。

四输入与非门电路版图设计

四输入与非门电路版图设计

成绩评定表学生姓名班级学号专业电子科学与技术课程设计题目四输入与非门电路和版图设计评语组长签字:成绩日期2013年月日课程设计任务书学院信息科学与工程学院专业电子科学与技术学生姓名杨光锐班级学号1003040106课程设计题目四输入与非门电路和版图设计实践教学要求与任务:1.用tanner软件中的S-Edit编辑四输入与非门电路原理图。

2.用tanner软件中的TSpice对四输入与非门电路进行仿真并观察波形。

3.用tanner软件中的L-Edit绘制四输入与非门版图,并进行DRC验证。

4.用tanner软件中的TSpice对版图电路进行仿真并观察波形。

5.用tanner软件中的layout-Edit对电路网表进行LVS检验观察原理图与版图的匹配程度。

工作计划与进度安排:第一周周一:教师布置课设任务,学生收集资料,做方案设计。

周二:熟悉软件操作方法。

周三~四:画电路图周五:电路仿真。

第二周周一~二:画版图。

周三:版图仿真。

周四:验证。

周五:写报告书,验收。

指导教师:2012年月日专业负责人:2013年月日学院教学副院长:2013年月日目录1 绪论 (1)1.1设计背景 (1)1.2设计目标 (1)2 四输入与非门电路 (2)2.1电路原理图 (2)2.2四输入与非门电路仿真观察波形 (2)2.3四输入与非门电路的版图绘制 (3)2.4四输入与非门版图电路仿真观察波形 (4)2.5LVS检查匹配 (5)总结 (7)参考文献 (8)附录一:电路原理图网表 (9)附录二:版图网表 (10)1绪论1.1 设计背景tanner是用来IC版图绘制软件,许多EDA系统软件的电路模拟部分是应用Spice程序来完成的,而tanner软件是一款学习阶段应用的版图绘制软件,对于初学者是一个上手快,操作简单的EDA软件。

Tanner集成电路设计软件是由Tanner Research 公司开发的基于Windows 平台的用于集成电路设计的工具软件。

四输入与非门芯片

四输入与非门芯片

四输入与非门芯片四输入与非门芯片是一种常见的数字电子元件,用于逻辑电路的设计和实现。

它的基本功能是将多个输入信号进行逻辑非运算,并输出运算结果。

本文将介绍四输入与非门芯片的工作原理、应用场景以及如何正确使用它。

首先,我们来了解四输入与非门芯片的工作原理。

四输入与非门芯片通常由多个逻辑门组成,其中每个逻辑门都能进行逻辑非运算。

当输入信号为低电平时,逻辑门会输出高电平;而当输入信号为高电平时,逻辑门则输出低电平。

四输入与非门芯片通过将多个逻辑门连接在一起,实现了对多个输入信号进行逻辑非运算的功能。

四输入与非门芯片广泛应用于数字电路的设计和实现。

它可以用于逻辑电路中的数据处理、控制和信号传输等方面。

例如,在计算机中,四输入与非门芯片可以用于实现逻辑运算、数据比较和控制信号的生成。

在通信系统中,它可以用于信号的解码和调整。

此外,四输入与非门芯片还可以应用于电子设备的开关控制、电路板设计和信号处理等方面。

正确使用四输入与非门芯片对于设计和实现复杂的逻辑电路非常重要。

以下是一些使用指导:首先,确保正确连接芯片的供电和接地端口,以确保芯片的正常工作。

同时,还需要根据设计需求,正确连接输入和输出端口,确定信号的流向和接口。

其次,根据输入信号的特点和逻辑功能的需求,设置适当的输入阈值和延迟时间。

输入阈值是指输入信号的电压范围,超出此范围芯片将无法正确判断输入信号的逻辑状态;延迟时间是指芯片输出信号与输入信号之间的时间差,需要根据设计要求进行合理设置,以确保逻辑电路的稳定性和准确性。

此外,还需要合理布局和设计电路板,以确保信号的稳定传输。

避免干扰源和干扰信号的干扰,减少信号损耗和失真。

最后,在使用四输入与非门芯片时,需要进行严格的测试和验证。

通过输入正确的逻辑信号,并观察输出结果,以确保芯片的正常工作和逻辑功能的准确性。

在测试过程中,还需要对芯片进行性能和稳定性测试,以评估其质量和可靠性。

总而言之,四输入与非门芯片作为常见的数字电子元件,在逻辑电路设计和实现中发挥着重要的作用。

一个4与门电路的例子来说明LUT实现逻辑功能的原理

一个4与门电路的例子来说明LUT实现逻辑功能的原理

一个4与门电路的例子来说明LUT实现逻辑功能的原理如前所述,FPGA是在PAL、GAL、EPLD、CPLD等可编程器件的基础上进一步发展的产物。

它是作为ASIC领域中的一种半定制电路而出现的,即解决了定制电路的不足,又克服了原有可编程器件门电路有限的缺点。

由于FPGA需要被反复烧写,它实现组合逻辑的基本结构不可能像ASIC那样通过固定的与非门来完成,而只能采用一种易于反复配置的结构。

查找表可以很好地满足这一要求,目前主流FPGA都采用了基于SRAM工艺的查找表结构,也有一些军品和宇航级FPGA 采用Flash或者熔丝与反熔丝工艺的查找表结构。

通过烧写文件改变查找表内容的方法来实现对FPGA的重复配置。

根据数字电路的基本知识可以知道,对于一个n输入的逻辑运算,不管是与或非运算还是异或运算等等,最多只可能存在2n种结果。

所以如果事先将相应的结果存放于一个存贮单元,就相当于实现了与非门电路的功能。

FPGA的原理也是如此,它通过烧写文件去配置查找表的内容,从而在相同的电路情况下实现了不同的逻辑功能。

查找表(Look-Up-Table)简称为LUT,LUT本质上就是一个RAM。

目前FPGA中多使用4输入的LUT,所以每一个LUT可以看成一个有4位地址线的的RAM。

当用户通过原理图或HDL语言描述了一个逻辑电路以后,PLD/FPGA开发软件会自动计算逻辑电路的所有可能结果,并把真值表(即结果)事先写入RAM,这样,每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。

下面给出一个4与门电路的例子来说明LUT实现逻辑功能的原理。

例1-1:给出一个使用LUT实现4输入与门电路的真值表。

表1-1 4输入与门的真值表从中可以看到,LUT具有和逻辑电路相同的功能。

实际上,LUT具有更快的执行速度和更大的规模。

由于基于LUT的FPGA具有很高的集成度,其器件密度从数万门到数千万门不等,可以完成极其复杂的时序与逻辑组合逻辑电路功能,所以适用于高速、高密度的高端数字逻辑电路设计领域。

4位与非门电路设计

4位与非门电路设计

(3)说明要进行的分析(4)说明所要求的输出输入网表文件和库文件可以由原理图的网表生成器或文本编辑器产生。

输入网表文件中的第一行必须是标题行,并且.ALTER辅助模型只能出现在文件最后的.END语句之前,除此之外,其它语句可以按任意顺序排列。

三.设计步骤1、写网表文件首先在orcad中将上述原理图绘制出,仿真后确保电路图正确且能够实现与非功能,然后生成网表文件。

在文本文档中写出Hspice软件所要求的网表文件,并另存为*.sp文件。

网表文件如下所示:NANDMOS Circuit.OPTIONS LIST NODE POST.TRAN 200P 60NM1 OUT 4 VCC VCC PCH L=1U W=20UM2 OUT 5 VCC VCC PCH L=1U W=20UM3 OUT 6 VCC VCC PCH L=1U W=20UM4 OUT 7 VCC VCC PCH L=1U W=20UM5 1 4 0 0 NCH L=1U W=20UM6 2 5 1 1 NCH L=1U W=20UM7 3 6 2 2 NCH L=1U W=20UM8 OUT 7 3 3 NCH L=1U W=20UVCC VCC 0 5V1 4 0 PULSE .2 4.8 2N 1N 1N 5N 20NV2 5 0 PULSE .2 4.8 2N 1N 1N 5N 20NV3 6 0 PULSE .2 4.8 2N 1N 1N 5N 20NV4 7 0 PULSE .2 4.8 2N 1N 1N 5N 20NC OUT 0 .01p.MODEL PCH PMOS LEVEL=1.MODEL NCH NMOS LEVEL=1.END注释:第三行.TRAN 200P 60N表示瞬态分析步长为200ps,时间为60ns 第四~十二行为电路连接关系描述语句。

第十三行VCC VCC0 5表示在节点VCC,0之间加5v直流电压。

4位数字密码锁的设计

4位数字密码锁的设计

1技术指标用与非门设计一个4位或多位代码的数字锁,要求如下:A:设计一个保险箱用的多位代码数字锁,比如4位代码ABCD四个输入端和一个开锁用的钥匙插孔输入端E,当开箱时(E=1),如果输入代码(例如ABCD=1010)与设定的代码相同,则保险箱被打开,即输出端Z=1,否则电路发出报警信号:B:进行电路仿真,并说明其工作原理。

2方案比较方案一:由4个单刀双掷开关构成密码开关,用户可以通过控制开关来控制A、B、C、D四个输入端的电平的高低,进而控制输出电平的高低以及报警信号的工作。

当输入端与设置的密码相符时,则输出为高电平,二极管亮,否则输出为低电平,并且发出报警,即蜂鸣器发出响声,至此完成电路的设计。

其电路图如图2.1方案二:用4个异或门连接输入端,并分别于反相器连接,再相与。

当输入密码与设置密码相同时,电路输出为高电平,发光二极管不亮,当输入密码与设置密码不相同时,电路输出为低电平,发出报警,发光二极管亮。

其电路图如图6.13Proteus软件介绍Proteus软件是来自英国Labcenterelectronics公司的EDA工具软件。

Proteus软件有十多年的历史,在全球广泛使用,除了其具有和其它EDA工具一样的原理布图、PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,他的电路仿真是互动的,针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试,如有显示及输出,还能看到运行后输入输出的效果,配合系统配置的虚拟仪器如示波器、逻辑分析仪等,您不需要别的,Proteus为您建立了完备的电子设计开发环境!尤其重要的是ProteusLite可以完全免费,也可以花微不足道的费用注册达到更好的效果;功能最强的Proteus专业版也非常便宜,人人用得起,对高校还有更多优惠。

Proteus组合了高级原理布图、混合模式SPICE仿真,PCB设计以及自动布线来实现一个完整的电子设计系统。

山东交通学院实验四 门电路逻辑功能及测试

山东交通学院实验四   门电路逻辑功能及测试

实验四门电路逻辑功能及测试一、实验目的1、熟悉门电路逻辑功能。

2、熟悉数字电路箱及示波器使用方法。

二、实验原理门电路是开关电路的一种,它具有一个或多个输入端,只有一个输出端,当一个或多个输入端有信号时其输出才有信号。

门电路在满足一定条件时,按一定规律输出信号,起着开关作用。

基本门电路采用与门、或门、非门三种,也可将其组合而构成其它门,如与非门、或非门等。

图4-1为与非门电路原理图,其基本功能是:在输入信号全为高电平时输出才为低电平。

输出与输入的逻辑关系为:Y=ABCD平均传输延迟时间tpd是衡量门电路开关速度的参数。

它是指输出波形边沿的0.5Vm点相对于输入波形对应边沿的0.5Vm点的时间延迟。

如图4-2所示,门电路的导通延迟时间为tpdL,截止延迟时间为tpdH,则平均传输延迟时间为:1。

tpd=(tpdL+tpdH)2图4-3为异或门电路原理图,其基本功能是:当两个输入端相异(即一个为‘0’,另一个为‘1’)时,输出为‘1’;当两个输入端相同时,输出为‘0’。

即: 。

Y=A B=AB+AB图4-1与非门电路原理图 4-2门电路导通延迟时间与截止延迟时间图4-3异或门电路原理图三、实验仪器及材料1、双踪示波器2、器件74LS00 二输入端四与非门 2片74LS20 四输入端双与非门 1片74LS86 二输入端四异或门 1片74LS04 六反相器 1片四、预习要求1、复习门电路工作原理及相应逻辑表达式。

2、熟悉所用集成电路的引脚位置及各引脚用途。

3、了解双踪示波器使用方法。

五、实验内容及步骤实验前按实验箱的使用说明先检查实验箱电源是否正常。

然后选择实验用的集成电路。

按自已设计的实验接线图连线,特别注意Vcc及地线不能接错。

线接好后经实验指导教师检查无误后方可通电实验。

实验中改动接线须先断开电源,接好线后再通电实验。

1、测试门电路逻辑功能(1)选用双四输入与非门74LS20一只,插入实验板上的IC插座,按图4-1接线,输入端A、B、C、D分别接K1~K4(电平开关输出插口),输出端接电平显示发光二极管(L1~L16任意一个)。

病房呼叫系统讲解

病房呼叫系统讲解

名称:综合训练项目一题目:病床呼叫电路设计专业:电气工程及其自动化班级:电气14-1 ,第四组姓名:马文达,学号:1405040117马煜翔 1405040118乔琳 1405040119史童星 1405040120孙浩锋 1405040121王瑞臻 14050401221设计任务和要求1. 3个病房,分别编号为一、二、三号,每个病床4张病床,分别编号为1、 2、3 、4号。

要求每个病房任意时刻只允许一张病床呼叫。

有病床呼叫时,发出响铃的同时显示房间号和病床号。

2.直到护士应答时响铃和显示停止。

2设计方案选择方案一:该系统采用拨动开关来模拟各病房的呼叫按钮。

按键信息经优先编码器,七段显示器传达给医护人员。

医护人员将所有的病例处理完后,将病例的呼叫开关断开。

七段显示器自动熄灭,蜂鸣器停止响铃电路分为三个模块:开关控制模块,数码显示模块,警报模块。

方案二:采用单一优先编码器,直接对信号进行处理。

任意一个床位先呼叫,则这个床位的优先级最高,所以每个床位使用一个优先编码器,当某一个优先编码器工作时,将其输入到其他三个选通端,使其他优先编码器不工作。

再将四个床位信号通过编码器对信号进行编码输出到数码管。

本设计采用方案一。

3单元电路设计3.1 呼叫应答电路设计1、以一号房间为例,用4个单刀双掷开关由四个床位控制,单刀双掷开关如图3-1-1.每个开关的一号端接五伏电源,二号端接地,如图3-1-2。

图3-1-1 开关三端标号图3-1-2 病床呼叫设计2、应答设计:当四个床位开关任意接通低电平时,房间显示器显示房间号,床位显示器显示床号,蜂鸣器鸣响。

四个床位对应的单刀双掷开关的三号端一起接四输入与非门(74C20N_6V)如图3-1-3。

护士将开关三号端置于接地的二号端,此时由于护士开关接编码器的D7非端,优先级最高,输入为低电平,所以输出为000,开关设计如图3-1-4图3-1-3 四输入与非门图3-1-4 护士回应开关设计3.2 编码电路设计为了房间床位号的显示,将输入高低电平信号改为二进制代码的形式,所以设计编码电路。

电气电子毕业设计158十线——四线优先编码器版图设计

电气电子毕业设计158十线——四线优先编码器版图设计

引言随着科学技术的发展和高新技术的广泛应用,电子技术在国民经济的各个领域所起的作用越来越大,并深深地渗透到人们的生活、工作、学习的各个方面。

新的世纪已经跨入以电子技术为基础的信息化社会,层出不穷的电子新业务、电子新设施几乎无处不在、举目可见。

作为一名微电子学专业的大学生,尽快地学习和掌握电子技术基础知识和技能是一项基本的任务。

为了更好地将理论和实际相结合,也为了增强动手能力,同时加深对理论知识的理解,笔者进行了十线-四线优先编码器的设计。

1设计原理分析1.1 编码器介绍用数字或文字对一组事件进行编号排队的过程称为编码。

如邮政编码、宿舍房间编码、计算机键盘上键的编码等等。

编码器是以数字化信息将角度、长度、速度等物理量的信息以数字量0、1编码的方式输出的传感器,由于其具有高精度,大量程测量,反应快,数字化输出特点;体积小,重量轻,机构紧凑,安装方便,维护简单,工作可靠等优良特点,故成为当今工业控制系统备受青睐及不可或缺的一部分。

编码器是由若干个与非门组合而成的,输入端是各事件代号,如n个事件用Y0~Yn-1表示,输出端是相应的二进制各位值N0~Nk-1,2k-1=Yn-1。

编码器分二进制编码器和十进制编码器,各种译码器的工作原理类似,设计方法也相同。

集成二进制编码器和集成十进制编码器均采用优先编码方案。

下面介绍一些编码器的相关概念:二进制编码器:实现以二进制数进行编码的电子电路称二进制编码器。

n位二进制数可对2n个事件进行编码,如8位计算机中地址寄存器是8位,可对28=256个指令进行编码。

二—十进制编码器:用4位二进制对十进制的10个数字0~9进行编码的电路称二-十进制编码器,常用的是8421加权码,简称BCD码。

输入是10个有效数字0~9,输出是10个4位二进制代码0000~1001。

本次设计所做的10线-4线编码器就是其中一种。

优先编码器:在使用二进制编码器和二-十进制编码器中,当两个以上信号同时输入编码器时将产生错误码输出,而优先编码器则对输入信号依照规定的先后顺序进行编码。

四输入与非门版图

四输入与非门版图

作业报告作业题目:画一个4输入与非门的版图,w=5~20. L =2~10.作业要求:(1)画出版图并进行设计规则检查,提取T-spice 网表文件(2)根据从版图中提取的参数,用T-space软件进行仿真,观测器输出波形。

(3)采用CMOS 2 um工艺。

(4)撰写设计报告,设计报告如有雷同均视为不及格,请各位妥善保管好自己的设计文档。

(5)提交报告的最后截止日期位6月10号。

一四输入与非门电路图如下图所示:四输入与非门的工作原理为:四输入端CMOS与非门电路,其中包括四个串联的N沟道增强型MOS管和四个并联的P沟道增强型MOS管。

每个输入端连到一个N沟道和一个P沟道MOS管的栅极。

当输入端A、B、C、D中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B、C、D全为高电平时,才会使四个串联的NMOS管都导通,使四个并联的PMOS管都截止,输出为低电平。

真值表如下所示:二版图的绘制这次作业要求四输入与非门的宽和长的范围是w=5~20. L =2~10。

我绘制的版图选取W=16 um L=2um ,绘制的过程为:(1)绘制接合端口Abut(2)绘制电源Vdd和Gnd,以及相应端口(3)绘制Nwell层(4)绘制N阱节点(5)绘制衬底节点(6)绘制Nselect区和Pselect区(7)绘制NMOS有源区和PMOS有源区(8)绘制多晶硅层(9)绘制NAND 4 的输入口(10)绘制NAND 4 的输出口(11)绘制NMOS有源区和PMOS的源极三T-spice仿真在绘制完版图之后,经过设计规则检查无误后就可以提取网表进行仿真了。

(1)版图的网表提取结果为:* Circuit Extracted by Tanner Research's L-Edit Version 13.00 / Extract Version 13.00 ; * TDB File: D:\20113250\youwenhao-NAND4.tdb* Cell: Cell0 Version 1.03* Extract Definition File: D:\Tanner EDA\Tanner Tools v13.0\ExampleSetup\lights.ext* Extract Date and Time: 06/10/2014 - 01:20.include "C:\Users\Administrator\Desktop\ml5_20.md"V1 Vdd Gnd 5va A Gnd PULSE (0 2.5 100n 2.5n 2.5n 100n 200n)vb B Gnd PULSE (0 2.5 50n 2.5n 2.5n 50n 100n)vc C Gnd PULSE (0 2.5 25n 2.5n 2.5n 25n 50n)vd D Gnd PULSE (0 2.5 12.5n 2.5n 2.5n 12.5n 25n).tran 1n 400n.print tran v(A) v(B) v(C) v(D) v(Out)* Warning: Layers with Unassigned FRINGE Capacitance.* <Pad Comment>* <Poly1-Poly2 Capacitor ID>* NODE NAME ALIASES* 1 = GND (34.5 , -41.5)* 2 = vdd (32, 15)* 3 = OUT (47.5 , 9)* 4 = D (84 , -6)* 5 = C (70.5 , -5.5)* 6 = B (59.5 , -6)* 7 = A (38 , -5)V1 Vdd Gnd 5va A Gnd PULSE (0 12.5 500n 12.5n 12.5n 5100n 1000n)vb B Gnd PULSE (0 12.5 250n 12.5n 12.5n 250n 500n)vc C Gnd PULSE (0 12.5 125n 12.5n 12.5n 125n 250n)vd D Gnd PULSE (0 12.5 62.5n 12.5n 12.5n 62.5n 125n).tran 1n 1000n.print tran v(D) v(C) v(B) v(A) v(Out)M1 Vdd 4 Out Vdd PMOS L=2u W=16u AD=88p PD=47u AS=60p PS=23.5u $ (44 37 46 53)M2 Out 5 Vdd Vdd PMOS L=2u W=16u AD=60p PD=23.5u AS=56p PS=23u $ (34.5 37 36.5 53)M3 Vdd 6 Out Vdd PMOS L=2u W=16u AD=56p PD=23u AS=112p PS=30u $ (25.5 37 27.5 53)M4 Out 7 Vdd Vdd PMOS L=2u W=16u AD=112p PD=30u AS=88p PS=47u $ (9.5 37 11.5 53)M5 Out 4 Out Gnd NMOS L=2u W=16u AD=120p PD=47u AS=60p PS=23.5u $ (44 0 46 16)M6 Out 5 Out Gnd NMOS L=2u W=16u AD=60p PD=23.5u AS=56p PS=23u $ (34.5 0 36.5 16)M7 Out 6 Out Gnd NMOS L=2u W=16u AD=56p PD=23u AS=112p PS=30u $ (25.5 0 27.516)M8 Out 7 Gnd Gnd NMOS L=2u W=16u AD=112p PD=30u AS=92p PS=47u $ (9.5 0 11.5 16)* Pins of element D1 are shorted:* D1 vdd vdd D_lateral $ (88 18.5 91 26.5)* Pins of element D2 are shorted:* D2 vdd vdd D_lateral $ (36 18.5 39.5 26.5)* Total Nodes: 11* Total Elements: 10* Total Number of Shorted Elements not written to the SPICE file: 0* Output Generation Elapsed Time: 0.001 sec* Total Extract Elapsed Time: 0.746 sec.END(2)提取的网表经过T-spice运行后的文件为:T-Spice - Tanner SPICET-Spice - Tanner SPICEVersion 13.00Standalone hardware lockProduct Release ID: T-Spice Win32 13.00.20080321.01:01:33Copyright ?1993-2008 Tanner EDAOpening output file "C:\Users\Administrator\Desktop\游文浩20113250\youwenhao-NAND4.out"Parsing "C:\Users\Administrator\Desktop\游文浩20113250\youwenhao-NAND4.spc"Initializing parser from header file "C:\Users\Administrator\Desktop\游文浩20113250\header.sp"Including "C:\Users\Administrator\Desktop\ml5_20.md"Loaded MOSLevel2 model library, SPICE Level 2 MOSFET revision 1.0Warning : Pulse period is too small, reset to rt + ft + pw = 5.125e-006Accuracy and Convergence options:numndset|dchold = 100Timestep and Integration options:relq|relchgtol = 0.0005Model Evaluation options:dcap = 2 defnrb = 0 [sq] defnrd = 0 [sq]defnrs = 0 [sq] tnom = 25 [deg C]General options:search = C:\Users\Administrator\Desktop temp = 25 [deg C]threads = 4Output options:acout = 1 ingold = 0Device and node counts:MOSFETs - 8 MOSFET geometries - 8BJTs - 0 JFETs - 0MESFETs - 0 Diodes - 0Capacitors - 0 Resistors - 0Inductors - 0 Mutual inductors - 0Transmission lines - 0 Coupled transmission lines - 0V oltage sources - 5 Current sources - 0VCVS - 0 VCCS - 0CCVS - 0 CCCS - 0V-control switch - 0 I-control switch - 0Macro devices - 0 External C model instances - 0HDL devices - 0Subcircuits - 0 Subcircuit instances - 0Independent nodes - 5 Boundary nodes - 6Total nodes - 11*** 1 WARNING MESSAGE GENERATED DURING SETUPParsing 0.00 secondsSetup 0.01 secondsDC operating point 0.00 secondsTransient Analysis 0.11 secondsOverhead 1.50 seconds-----------------------------------------Total 1.62 secondsSimulation completed with 1 Warning(3)仿真结果为:四作业总结:完成这次作业之后,我对于集成电路版图的绘制有了一个全新的认识,初步掌握了Tunner软件的使用以及T-spice仿真软件的使用。

2输入四与非门

2输入四与非门

74ls00 2输入四与非门74ls01 2输入四与非门(oc)74ls02 2输入四或非门74ls03 2输入四与非门(oc)74ls04 六倒相器74ls05 六倒相器(oc)74ls06 六高压输出反相缓冲器/驱动器(oc,30v) 74ls07 六高压输出缓冲器/驱动器(oc,30v)74ls08 2输入四与门74ls09 2输入四与门(oc)74ls10 3输入三与非门74ls11 3输入三与门74ls12 3输入三与非门(oc)74ls13 4输入双与非门(斯密特触发)74ls14 六倒相器(斯密特触发)74ls15 3输入三与门(oc)74ls16 六高压输出反相缓冲器/驱动器(oc,15v) 74ls17 六高压输出缓冲器/驱动器(oc,15v)74ls18 4输入双与非门(斯密特触发)74ls19 六倒相器(斯密特触发)74ls20 4输入双与非门74ls21 4输入双与门74ls22 4输入双与非门(oc)74ls23 双可扩展的输入或非门74ls24 2输入四与非门(斯密特触发)74ls25 4输入双或非门(有选通)74ls26 2输入四高电平接口与非缓冲器(oc,15v) 74ls27 3输入三或非门74ls28 2输入四或非缓冲器74ls30 8输入与非门74ls31 延迟电路74ls32 2输入四或门74ls33 2输入四或非缓冲器(集电极开路输出) 74ls34 六缓冲器74ls35 六缓冲器(oc)74ls36 2输入四或非门(有选通)74ls37 2输入四与非缓冲器74ls38 2输入四或非缓冲器(集电极开路输出) 74ls39 2输入四或非缓冲器(集电极开路输出) 74ls40 4输入双与非缓冲器74ls41 bcd-十进制计数器74ls42 4线-10线译码器(bcd输入)74ls43 4线-10线译码器(余3码输入)74ls44 4线-10线译码器(余3葛莱码输入)74ls45 bcd-十进制译码器/驱动器74ls46 bcd-七段译码器/驱动器74ls47 bcd-七段译码器/驱动器74ls48 bcd-七段译码器/驱动器74ls49 bcd-七段译码器/驱动器(oc)74ls50 双二路2-2输入与或非门(一门可扩展)74ls51 双二路2-2输入与或非门74ls51 二路3-3输入,二路2-2输入与或非门74ls52 四路2-3-2-2输入与或门(可扩展)74ls53 四路2-2-2-2输入与或非门(可扩展)74ls53 四路2-2-3-2输入与或非门(可扩展)74ls54 四路2-2-2-2输入与或非门74ls54 四路2-3-3-2输入与或非门74ls54 四路2-2-3-2输入与或非门74ls55 二路4-4输入与或非门(可扩展)74ls60 双四输入与扩展74ls61 三3输入与扩展74ls62 四路2-3-3-2输入与或扩展器74ls63 六电流读出接口门74ls64 四路4-2-3-2输入与或非门74ls65 四路4-2-3-2输入与或非门(oc)74ls70 与门输入上升沿jk触发器74ls71 与输入r-s主从触发器74ls72 与门输入主从jk触发器74ls73 双j-k触发器(带清除端)74ls74 正沿触发双d型触发器(带预置端和清除端)74ls75 4位双稳锁存器74ls76 双j-k触发器(带预置端和清除端)74ls77 4位双稳态锁存器74ls78 双j-k触发器(带预置端,公共清除端和公共时钟端) 74ls80 门控全加器74ls81 16位随机存取存储器74ls82 2位二进制全加器(快速进位)74ls83 4位二进制全加器(快速进位)74ls84 16位随机存取存储器74ls85 4位数字比较器74ls86 2输入四异或门74ls87 四位二进制原码/反码/oi单元74ls89 64位读/写存储器74ls90 十进制计数器74ls91 八位移位寄存器74ls92 12分频计数器(2分频和6分频)74ls93 4位二进制计数器74ls94 4位移位寄存器(异步)74ls95 4位移位寄存器(并行io)74ls96 5位移位寄存器74ls97 六位同步二进制比率乘法器74ls100 八位双稳锁存器74ls103 负沿触发双j-k主从触发器(带清除端)74ls106 负沿触发双j-k主从触发器(带预置,清除,时钟) 74ls107 双j-k主从触发器(带清除端)74ls108 双j-k主从触发器(带预置,清除,时钟)74ls109 双j-k触发器(带置位,清除,正触发)74ls110 与门输入j-k主从触发器(带锁定)74ls111 双j-k主从触发器(带数据锁定)74ls112 负沿触发双j-k触发器(带预置端和清除端)74ls113 负沿触发双j-k触发器(带预置端)74ls114 双j-k触发器(带预置端,共清除端和时钟端) 74ls116 双四位锁存器74ls120 双脉冲同步器/驱动器74ls121 单稳态触发器(施密特触发)74ls122 可再触发单稳态多谐振荡器(带清除端)74ls123 可再触发双单稳多谐振荡器74ls125 四总线缓冲门(三态输出)74ls126 四总线缓冲门(三态输出)74ls128 2输入四或非线驱动器74ls131 3-8译码器74ls132 2输入四与非门(斯密特触发)74ls133 13输入端与非门74ls134 12输入端与门(三态输出)74ls135 四异或/异或非门74ls136 2输入四异或门(oc)74ls137 八选1锁存译码器/多路转换器74ls138 3-8线译码器/多路转换器74ls139 双2-4线译码器/多路转换器74ls140 双4输入与非线驱动器74ls141 bcd-十进制译码器/驱动器74ls142 计数器/锁存器/译码器/驱动器74ls145 4-10译码器/驱动器74ls147 10线-4线优先编码器74ls148 8线-3线八进制优先编码器74ls150 16选1数据选择器(反补输出)74ls151 8选1数据选择器(互补输出)74ls152 8选1数据选择器多路开关74ls153 双4选1数据选择器/多路选择器74ls154 4线-16线译码器74ls155 双2-4译码器/分配器(图腾柱输出)74ls156 双2-4译码器/分配器(集电极开路输出)74ls157 四2选1数据选择器/多路选择器74ls158 四2选1数据选择器(反相输出)74ls160 可预置bcd计数器(异步清除)74ls161 可预置四位二进制计数器(并清除异步)74ls162 可预置bcd计数器(异步清除)74ls163 可预置四位二进制计数器(并清除异步)74ls164 8位并行输出串行移位寄存器74ls165 并行输入8位移位寄存器(补码输出)74ls166 8位移位寄存器74ls167 同步十进制比率乘法器74ls168 4位加/减同步计数器(十进制)74ls169 同步二进制可逆计数器74ls170 4*4寄存器堆74ls171 四d触发器(带清除端)74ls172 16位寄存器堆74ls173 4位d型寄存器(带清除端)74ls174 六d触发器74ls175 四d触发器74ls176 十进制可预置计数器74ls177 2-8-16进制可预置计数器74ls178 四位通用移位寄存器74ls179 四位通用移位寄存器74ls180 九位奇偶产生/校验器74ls181 算术逻辑单元/功能发生器74ls182 先行进位发生器74ls183 双保留进位全加器74ls184 bcd-二进制转换器74ls185 二进制-bcd转换器74ls190 同步可逆计数器(bcd,二进制)74ls191 同步可逆计数器(bcd,二进制)74ls192 同步可逆计数器(bcd,二进制)74ls193 同步可逆计数器(bcd,二进制)74ls194 四位双向通用移位寄存器74ls195 四位通用移位寄存器74ls196 可预置计数器/锁存器74ls197 可预置计数器/锁存器(二进制)74ls198 八位双向移位寄存器74ls199 八位移位寄存器74ls210 2-5-10进制计数器74ls213 2-n-10可变进制计数器74ls221 双单稳触发器74ls230 八3态总线驱动器74ls231 八3态总线反向驱动器74ls240 八缓冲器/线驱动器/线接收器(反码三态输出)74ls241 八缓冲器/线驱动器/线接收器(原码三态输出)74ls242 八缓冲器/线驱动器/线接收器74ls243 4同相三态总线收发器74ls244 八缓冲器/线驱动器/线接收器74ls245 八双向总线收发器74ls246 4线-七段译码/驱动器(30v)74ls247 4线-七段译码/驱动器(15v)74ls248 4线-七段译码/驱动器74ls249 4线-七段译码/驱动器74ls251 8选1数据选择器(三态输出)74ls253 双四选1数据选择器(三态输出)74ls256 双四位可寻址锁存器74ls257 四2选1数据选择器(三态输出)74ls258 四2选1数据选择器(反码三态输出)74ls259 8为可寻址锁存器74ls260 双5输入或非门74ls261 4*2并行二进制乘法器74ls265 四互补输出元件74ls266 2输入四异或非门(oc)74ls270 2048位rom (512位四字节,oc)74ls271 2048位rom (256位八字节,oc)74ls273 八d触发器74ls274 4*4并行二进制乘法器74ls275 七位片式华莱士树乘法器74ls276 四jk触发器74ls278 四位可级联优先寄存器74ls279 四s-r锁存器74ls280 9位奇数/偶数奇偶发生器/较验器74ls28174ls283 4位二进制全加器74ls290 十进制计数器74ls291 32位可编程模74ls293 4位二进制计数器74ls294 16位可编程模74ls295 四位双向通用移位寄存器74ls298 四-2输入多路转换器(带选通)74ls299 八位通用移位寄存器(三态输出)74ls348 8-3线优先编码器(三态输出)74ls352 双四选1数据选择器/多路转换器74ls353 双4-1线数据选择器(三态输出)74ls354 8输入端多路转换器/数据选择器/寄存器,三态补码输出74ls355 8输入端多路转换器/数据选择器/寄存器,三态补码输出74ls356 8输入端多路转换器/数据选择器/寄存器,三态补码输出74ls357 8输入端多路转换器/数据选择器/寄存器,三态补码输出74ls365 6总线驱动器74ls366 六反向三态缓冲器/线驱动器74ls367 六同向三态缓冲器/线驱动器74ls368 六反向三态缓冲器/线驱动器74ls373 八d锁存器74ls374 八d触发器(三态同相)74ls375 4位双稳态锁存器74ls377 带使能的八d触发器74ls378 六d触发器74ls379 四d触发器74ls381 算术逻辑单元/函数发生器74ls382 算术逻辑单元/函数发生器74ls384 8位*1位补码乘法器74ls385 四串行加法器/乘法器74ls386 2输入四异或门74ls390 双十进制计数器74ls391 双四位二进制计数器74ls395 4位通用移位寄存器74ls396 八位存储寄存器74ls398 四2输入端多路开关(双路输出) 74ls399 四-2输入多路转换器(带选通)74ls422 单稳态触发器74ls423 双单稳态触发器74ls440 四3方向总线收发器,集电极开路74ls441 四3方向总线收发器,集电极开路74ls442 四3方向总线收发器,三态输出74ls443 四3方向总线收发器,三态输出74ls444 四3方向总线收发器,三态输出74ls445 bcd-十进制译码器/驱动器,三态输出74ls446 有方向控制的双总线收发器74ls448 四3方向总线收发器,三态输出74ls449 有方向控制的双总线收发器74ls465 八三态线缓冲器74ls466 八三态线反向缓冲器74ls467 八三态线缓冲器74ls468 八三态线反向缓冲器74ls490 双十进制计数器74ls540 八位三态总线缓冲器(反向)74ls541 八位三态总线缓冲器74ls589 有输入锁存的并入串出移位寄存器74ls590 带输出寄存器的8位二进制计数器74ls591 带输出寄存器的8位二进制计数器74ls592 带输出寄存器的8位二进制计数器74ls593 带输出寄存器的8位二进制计数器74ls594 带输出锁存的8位串入并出移位寄存器74ls595 8位输出锁存移位寄存器74ls596 带输出锁存的8位串入并出移位寄存器74ls597 8位输出锁存移位寄存器74ls598 带输入锁存的并入串出移位寄存器74ls599 带输出锁存的8位串入并出移位寄存器74ls604 双8位锁存器74ls605 双8位锁存器74ls606 双8位锁存器74ls607 双8位锁存器74ls620 8位三态总线发送接收器(反相)74ls621 8位总线收发器74ls622 8位总线收发器74ls623 8位总线收发器74ls640 反相总线收发器(三态输出)74ls641 同相8总线收发器,集电极开路74ls642 同相8总线收发器,集电极开路74ls643 8位三态总线发送接收器74ls644 真值反相8总线收发器,集电极开路74ls645 三态同相8总线收发器74ls646 八位总线收发器,寄存器74ls647 八位总线收发器,寄存器74ls648 八位总线收发器,寄存器74ls649 八位总线收发器,寄存器74ls651 三态反相8总线收发器74ls652 三态反相8总线收发器74ls653 反相8总线收发器,集电极开路74ls654 同相8总线收发器,集电极开路74ls668 4位同步加/减十进制计数器74ls669 带先行进位的4位同步二进制可逆计数器74ls670 4*4寄存器堆(三态)74ls671 带输出寄存的四位并入并出移位寄存器74ls672 带输出寄存的四位并入并出移位寄存器74ls673 16位并行输出存储器,16位串入串出移位寄存器74ls674 16位并行输入串行输出移位寄存器74ls681 4位并行二进制累加器74ls682 8位数值比较器(图腾柱输出)74ls683 8位数值比较器(集电极开路)74ls684 8位数值比较器(图腾柱输出)74ls685 8位数值比较器(集电极开路)74ls686 8位数值比较器(图腾柱输出)74ls687 8位数值比较器(集电极开路)74ls688 8位数字比较器(oc输出)74ls689 8位数字比较器74ls690 同步十进制计数器/寄存器(带数选,三态输出,直接清除)74ls691 计数器/寄存器(带多转换,三态输出)74ls692 同步十进制计数器(带预置输入,同步清除)74ls693 计数器/寄存器(带多转换,三态输出)74ls696 同步加/减十进制计数器/寄存器(带数选,三态输出,直接清除) 74ls697 计数器/寄存器(带多转换,三态输出)74ls698 计数器/寄存器(带多转换,三态输出)74ls699 计数器/寄存器(带多转换,三态输出)74ls716 可编程模n十进制计数器74ls718 可编程模n十进制计数器。

四路二输入与非门集成电路型号

四路二输入与非门集成电路型号

四路二输入与非门集成电路型号1. 引言集成电路是由大量的电子器件(电晶体、二极管、电阻等)以及电路元件(逻辑门、触发器、锁存器等)集成在一片半导体晶片上的微电子器件,是现代电子技术中的重要组成部分。

集成电路型号表示某一种特定的集成电路产品,可以通过型号来了解该产品的功能和性能特点。

本文将重点介绍四路二输入与非门集成电路的型号,包括其基本原理、应用领域以及市场上的主要型号等内容。

2. 四路二输入与非门基本原理四路二输入与非门是一种基本逻辑门电路,用于将输入信号进行逻辑非运算。

它有四个输入端(A、B、C、D)和一个输出端(Y)。

当A、B、C、D四个输入端的信号均为0时,输出端Y为1;而当任意一个输入端的信号为1时,输出端Y为0。

其逻辑符号如下:_____| |A ---| |--- YB ---| |C ---| |D ---|_____|逻辑表达式为:Y = (A * B * C * D)’3. 四路二输入与非门的应用领域四路二输入与非门作为一种常用的逻辑门电路,广泛应用于数字电路设计和集成电路芯片中。

其主要应用领域包括但不限于以下几个方面:3.1. 计算机系统在计算机系统中,四路二输入与非门常用于控制电路、存储器和缓冲器等部分的设计。

它可以实现逻辑运算、信号传输和数据处理等功能,对于计算机的运行和数据交换起到重要作用。

3.2. 通信系统在通信系统中,四路二输入与非门用于数字信号的处理和传输。

它可以将输入信号进行逻辑非运算,用于信号的解码、判断和处理。

同时,它还可以实现信号的放大和隔离,提高通信系统的传输质量和可靠性。

3.3. 控制系统在控制系统中,四路二输入与非门被广泛应用于逻辑控制电路的设计。

它可以实现控制信号的判断和转换,对于控制系统的运行和操作具有重要意义。

常见的应用场景包括开关控制、电机控制、传感器信号的处理等。

3.4. 数字显示系统在数字显示系统中,四路二输入与非门可用于控制数码管的显示。

与非门的工作原理

与非门的工作原理

与非门的工作原理与非门是一种基本的逻辑门类型,通常用于数字电路的设计和构建。

它是由两个输入引脚(A和B)和一个输出引脚(Y)组成。

与非门的工作原理可以通过逻辑表达式或真值表来描述。

1.逻辑表达式:与非门的逻辑表达式可以表示为:Y=A*B(其中*表示逻辑与运算和逻辑非运算的组合)。

2.真值表:A,B,Y---,---,---0,0,10,1,11,0,11,1,0根据真值表,可以得出以下结论:-当A和B的输入均为0时,输出Y为1;-当A和B的输入中至少有一个为1时,输出Y为0。

在实际电路中,与非门可以通过多种方式实现,如使用晶体管、电路元器件等。

其中,使用晶体管实现与非门是最常见的方法。

基于晶体管的与非门实现方法如下:1.使用两个输入引脚A和B分别连接两个晶体管的基极。

2.将两个晶体管的集电极连接在一起,作为输出引脚Y。

3.将两个晶体管的发射极分别连接到电源或接地。

这样,在输入A和B都为低电平(例如接地)时,两个晶体管的基极都会被拉低,导致两个晶体管关闭,输出引脚Y高电平(例如接电源)。

当输入A或B中至少有一个为高电平时,对应的基极会被拉高,使得对应的晶体管打开,输出引脚Y会被拉低。

通过上述实现方法,与非门可以实现逻辑与运算和逻辑非运算。

当输入A和B都为1时,对应晶体管的基极被拉高,导致对应的晶体管关闭,输出引脚Y为0。

而当输入A和B中至少有一个为0时,至少有一个对应的晶体管打开,输出引脚Y为1与非门在数字电路中具有重要的作用,它是其他更复杂的逻辑门和数字电路的基础。

通过组合与非门可以构建各种逻辑门,如与门、或门、异或门等。

此外,与非门也可用于编码器、解码器、计数器等数字电路的设计中。

总之,与非门是一种基础的逻辑门类型,它通过不同电平的输入引脚来实现逻辑与运算和逻辑非运算。

它可以通过晶体管等元器件来实现,并且在数字电路的设计和构建中扮演着重要的角色。

与或非门电路

与或非门电路
1. 可变频率TTL振荡器
2. 固定频率TTL振荡器
2.3.4 门电路构成控制门
◆ 与门控制电路
可应用在什么地方?
◆ 或门控制电路
2.3.4 门电路组成单稳态触发器 ◆ 什么是单稳态触发器
单稳态触发器具有两个开关状态:一个是稳定状 态,另一个是非稳定状态,也称为暂态。
1. 微分型单稳态触发器逻辑电路
L L L L L L L L L L 4 1 2 3 1 2 3 1 2 3
3) 满足以上逻辑关系的产品分类电路,如下图所示:
2.3.3 门电路组成数字信号源
◆ 概 述 数字信号源可由产生脉冲波形的振荡电路构成。在数字电 路的应用中,它可提供连续的且具有一定频率(周期)的脉冲 信号。可作为微型计算机、单片机等数字电路的时钟信号源。 可应用在哪些地方? ◆ 实 例
2.4.2 其他常用TTL门电路
1. 集电极开路门电路(OC门) ◆ 问题的提出 2. 三态门 3. 驱动电路 在实际应用中,有时要将n 个门电路的输 出端连接在一起,称为“线与”。 试分析:当其中一个F2输出为低电平,另一 个F1输出为高电平时会出现什么状况?
i
F1
F2
图2.37 i 过大一方面会使与非门F2的输出低电平状态受到破坏(使 L2=1);另一方面会使与非门F1的T3管烧坏。所以,实际应用 中这种接法是不允许的。 ◆ 问题的解决 集电极开路的TTL门电路,又称“OC门”
2.2.1 TTL系列门电路
◆ TTL(晶体管—晶体管逻辑)门电路只制成单片集成电路。 输入级由多发射极晶体管构成,输出级由推挽电路(功率输出 电路)构成。标准TTL与非门如下图所示。 ◆ 标准TTL与非门 ◆ 电路工作原理
1. 电路组成 2. 逻辑关系 3. 分析负载情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书学生姓名:专业班级:电子1003班指导教师:封小钰工作单位:信息工程学院题目: CMOS四输入与非门电路设计初始条件:计算机、ORCAD软件、L-EDIT软件要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:2周2、技术要求:(1)学习ORCAD软件、L-EDIT软件。

(2)设计一个CMOS四输入与非门电路。

(3)利用ORCAD软件、L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:2013.11.22布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。

2013.11.25-11.27学习ORCAD软件、L-EDIT软件,查阅相关资料,复习所设计内容的基本理论知识。

2013.11.28-12.5对CMOS四输入与非门电路进行设计仿真工作,完成课设报告的撰写。

2013.12.6 提交课程设计报告,进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日摘要........................................................................ I Abstract ................................................................... II1 绪论 (1)2 设计内容及要求 (2)2.1 设计的目的及主要任务 (2)2.2 设计思想 (2)3软件介绍 (3)3.1 OrCAD简介 (3)3.2 L-Edit简介 (4)4 COMS四输入与非门电路介绍 (5)4.1 COMS四输入与非门电路组成 (5)4.2 四输入与非门电路真值表 (6)5 Cadence中四输入与非门电路的设计 (7)5.1 四输入与非门电路原理图的绘制 (7)5.2 四输入与非门电路的仿真 (8)6 L-EDIT中四输入与非门电路版图的设计 (10)6.1 版图设计的基本知识 (10)6.2 基本MOS单元的绘制 (11)6.3 COMS四输入与非门的版图设计 (13)7课程设计总结 (14)参考文献 (15)与非门是一种非常常用的数字门电路,本文详细介绍了基于CMOS管的L-EDIT环境下的四输入与非门电路设计仿真及版图布局设计验证。

通过正向设计的思从逻辑设计、电路设计、版图设计和工艺设计封面出发,实现了电路指标明确化、功能电路化、逻辑明确化的工业版图制作标准,同时本设计还通过TSPICE仿真验证了设计的正确性。

关键词:与非门、L-EDIT、TSPICEAbstractNAND gate is a very common digital gates, This paper describes the design verification based on NAND gate circuit design simulation and layout layout MOS tube L-EDIT environment. By forward thinking design from logic design, circuit design, layout design and process design cover starting to realize the circuit indicators clear, functional circuit, then clear, then the logical layout of industrial production standards, while the design is verified through simulation TSPICE correctness of the design.Keywords: NAND gate、L-EDIT、TSPICE1 绪论集成电路工艺加工能力基本是按照摩尔定律的规则不断提高的,目前90nm 加工工艺已经成为量产的主流工艺。

集成电路加工能力每年的平均增长率可以达到58%,但设计方面生产力的提高与制造能力之间一直存在差距,根据统计数据,集成电路设计效率每年的增长率约为21%,与加工能力的增长率之间存在着较大的差距。

为了能有效利用制造能力,需要从各个层面来提高设计效率。

从历史上看,集成电路设计技术大约每10 年都会有一次方法学上的突破。

二十世纪70 年代开始出现了版图输入(LE)技术,发展到二十世纪80年代出现了布局布线(P&R)技术,再发展到二十世纪90年代的综合(Synthesis)技术直到目前的SoC设计技术,每次技术突破都带来了设计效率上的飞跃,这种影响如图2 所示。

同时,集成电路工艺水平已越来越受到半导体器件的物理限制,从而带来了许多新的器件结构、新工艺和新材料的极限,加工线宽不断缩减也产生了很多寄生效应问题。

这种变化对设计技术的影响是多方面的,它不仅使得集成电路的特征尺寸减少,同时也使工作时钟频率升高,设计复杂度变高,电源电压降低,功耗变大,而且很多过去可以不关心的寄生效应和参数等已经成为现代设计中必须处理的因素。

为了保证设计技术能够跟上制造工艺发展的需要,必须从多个方面入手来研究新工艺条件下的设计技术问题。

未来的集成电路设计过程中要考虑的因素越来越多,而且这些因素之间相互影响,很多情况下所使用的设计步骤和工具、设计流程等是紧密相关的。

在过去的设计过程中,综合、时序分析和部分布局的工作是结合在一起的,以便解决布局对综合和连线延迟的影响。

目前采用的设计流程中通过对模块进行分析和优化来保证芯片可以满足多种指标要求,包括性能、功耗、噪声、面积以及可测性和可制造性等;在将来的设计流程中,对设计要实现的软件/硬件部分需要进行协同分析、协同设计与协同优化等,以便达到要求的性能指标。

这对设计方法、工具、流程等都提出了新的挑战,需要以新的方法来解决实际问题。

集成电路系统的设计更多的是体现在设计方法学上,而不是设计工具的支持上。

CMOS集成电路由于工艺技术的进步以及功耗低、稳定性高、抗干扰性强、噪声容限大、可等比例缩小、以及可适应较宽的环境温度和电源电压等一系列优点,成为现在IC 设计的主流技术。

在CMOS集成电路设计中,异或电路的设计与应用是非常重要的。

IC 设计者可以根据芯片的不同功能和要求采用各种不同结构的异或电路,从而实现电路的最优化设计。

2 设计内容及要求2.1 设计的目的及主要任务(1)学习ORCAD软件,L-EDIT软件。

(2)设计一个CMOS四输入与非门电路。

(3)利用ORCAD软件,L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。

2.2 设计思想本设计首先在ORCAD中进行四输入与非门电路电路图的绘制,然后运用其中的仿真功能对电路予以仿真调试,接着在L-EDIT软件中制定规则、绘制版图、DRC检查。

整个设计的核心是版图的设计,充分了解设计的基本原理、设计的规则。

仿真检验是否达到最初的设计要求。

3软件介绍3.1 OrCAD简介OrCAD Capture(以下以Capture代称)是一款基于Windows操作环境下的电路设计工具。

利用Capture软件,能够实现绘制电路原理图以及为制作PCB和可编程的逻辑设计提供连续性的仿真信息。

Cadence OrCAD Captur e是一款多功能的PCB原理图输入工具。

OrCAD Capture作为行业标准的PCB原理图输入方式,是当今世界最流行的原理图输入工具之一,具有简单直观的用户设计界面。

O rCAD Capture CIS具有功能强大的元件信息系统,可以在线和集中管理元件数据库,从而大幅提升电路设计的效率。

OrCAD Capture提供了完整的、可调整的原理图设计方法,能够有效应用于PCB的设计创建、管理和重用。

将原理图设计技术和PCB布局布线技术相结合,OrCAD能够帮助设计师从一开始就抓住设计意图。

不管是用于设计模拟电路、复杂的PCB、FPGA和CPLD、PCB改版的原理图修改,还是用于设计层次模块,OrCAD Capture都能为设计师提供快速的设计输入工具。

此外,OrCAD Capture原理图输入技术让设计师可以随时输入、修改和检验PCB设计。

OrCAD软件系统的功能及特点:1.不仅可以对模拟电路进行直流、交流、瞬态等基本电路特性分析,而且可进行噪声分析、温度分析、优化设计等复杂的电路特性分析。

2.不仅可以对模拟电路进行计算机辅助分析,而且可对数字电路、数/模混合电路进行计算机模拟。

3.科研在WINDOWS环境下,以人机交互方式运行。

绘制好电路图以后,即可直接进行电路模拟,无需用户编制繁杂的输入文件。

再模拟过程中,可以随时分析观察模拟结果,从电路图上修改设计。

4.OrCAD软件集成了电路原理图绘制、印制电路板设计、数字/模拟电路仿真、可编程逻辑器建设计等等功能,它的元器件库也是所有EDA软件中最丰富的,再世界上它一只是EDA软件的首选。

OrCAD软件系统中主要包括OrCAD/Capture CIS、OrCAD/PSpice A/D、OrCAD/Layout Plus等,其中每一部分可以根据需要单独使用,也可以共同组成完整的EDA 系统。

3.2 L-Edit简介Tanner Pro 的设计流程很简单。

将要设计的电路先以S-Edit编辑出电路图,再将该电路图输出成SPICE文件。

接着利用T-Spice将电路图模拟并输出成SPICE文件,如果模拟结果有错误,则回到S-Edit检查电路图,如果T-Spice模拟结果无误,则以L-Edit 进行布局图设计。

用L-Edit进行布局图设计后要以DRC功能做设计规则检查,若违反设计规则,再将布局图进行修改直到设计规则检查无误为止。

将验证过的布局图转化成SPICE 文件,再利用T-Spice模拟,若有错误,再回到L-Edit修改布局图。

最后利用LVS将电路图输出的SPICE文件与布局图转化的SPICE文件进行对比,若对比结果不相等,则回去修正L-Edit或S-Edit的图。

直到验证无误后,将L-Edit设计好的布局图输出成GDSII 文件类型,再交由工厂去制作整个电路所需的掩膜板。

4 COMS四输入与非门电路介绍4.1 COMS四输入与非门电路组成与非门是与门和非门的结合,先进行与运算,再进行非运算。

与非运算输入要求有两个,如果输入都用0和1表示的话,那么与运算的结果就是这两个数的乘积。

相关文档
最新文档