利用三角代换法求函数的值域
求三角函数的值域(或最值)的方法
求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。
求函数值域(最值)的方法大全
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,ac b ⎡⎫-+∞⎢,当0a <时的值1. 例1、 例2、 故函数的值域是:[ -∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 例 A 例解:21x x ++222x x x x -=++当2y -=当20y -≠时,x R ∈时,方程根.()()221420y y ∴=+-⨯-≥15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1)x ∈R ,∴△=4(y+1)2-8y≥0解得:1-2≤y≤1+2但此时的函数的定义域由x (2-x )≥0,得:0≤x≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[1,3]。
可以采取如下方法进一步确定原函数的值域。
4例y 5 、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
三角函数的值域与解析式
三角函数的值域与解析式三角函数是高中数学中的重要概念,它们在几何学和物理学等领域有广泛的应用。
在学习三角函数时,我们需要了解它们的值域和解析式,以便能够正确地运用它们。
本文将重点探讨正弦函数和余弦函数的值域与解析式。
一、正弦函数的值域与解析式正弦函数的解析式为:y = sin(x)正弦函数的值域是[-1, 1],即其取值范围在-1与1之间。
正弦函数的图像是一条连续的波浪线,它在x轴上是周期性的,在y轴上取值介于-1到1之间。
当x为0、π、2π及其整数倍时,正弦函数的值为0;当x为π/2、3π/2及其奇数倍时,正弦函数的值为1或-1;当x为π/4、3π/4及其奇数倍时,正弦函数的值介于0和1之间;当x为5π/4、7π/4及其奇数倍时,正弦函数的值介于-1和0之间。
根据这些特点,我们可以绘制出正弦函数的图像,并正确理解其值域。
二、余弦函数的值域与解析式余弦函数的解析式为:y = cos(x)余弦函数的值域也是[-1, 1],与正弦函数相同。
余弦函数的图像也是一条连续波浪线,但与正弦函数的图像相位差π/2,即余弦函数的图像在x轴上是正弦函数图像向左平移π/2个单位。
余弦函数的值域与正弦函数相同,当x为0、2π、4π及其整数倍时,余弦函数的值为1;当x为π、3π、5π及其奇数倍时,余弦函数的值为-1;当x为π/2、5π/2及其奇数倍时,余弦函数的值介于0和-1之间;当x为3π/2、7π/2及其奇数倍时,余弦函数的值介于-1和0之间。
理解余弦函数的值域有助于正确应用该函数解决问题。
综上所述,正弦函数和余弦函数的值域都是[-1, 1],但在特定的x取值时,它们的值会有所不同。
熟练掌握它们的值域和解析式是理解三角函数的重要一步,为应用三角函数解决实际问题打下基础。
我们可以通过反复练习和实际运用来加深对三角函数值域和解析式的理解,提高数学应用的能力。
常见的三种三角函数值域的求法
常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。
一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。
具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。
而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。
二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。
具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。
而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。
三、正切函数值域的求法正切函数的值域为实数集。
具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。
因此,正切函数的值域为实数集。
2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。
这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。
3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。
正切函数值域为实数集,可以表示所有可能的长度。
综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。
值域的表示方法
值域的表示方法值域,数学名词,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为y≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R图像法根据函数图象,观察最高点和最低点的纵坐标。
配方法利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
判别式法判别式法即利用二次函数的判别式求值域。
复合函数法设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
三角代换法利用基本的三角关系式,进行简化求值。
例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦用三角代换法比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
不等式法基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
干货高中数学三角函数代换公式大集锦!
干货高中数学三角函数代换公式大集锦!三角函数一直是高中数学的重难点,也是很多同学的痛点,今天小编给大家送来了专门针对三角函数的代换公式,一定要牢记啊!基本公式公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tanA = sinA/cosA两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB ? cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式 tan2A = 2tanA/(1-tan?? A) Sin2A=2SinA??cosA三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} ? tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式 a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a·sin(a)-b·cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2 1-sin(a) = [sin(a/2)-cos(a/2)]^2其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)。
三角代换求函数最值问题
巧用三角代换求无理函数的最值上海市第五十四中学(邮编200030)裴华明求无理函数的最值问题,是中学数学中常见的问题之一,若用常规方法求解,对于有些题目来说就显得较为繁杂,计算量也较大,但若根据问题的特点巧妙的用三角代换来求解,则可把求无理函数的最值问题转化为求三角函数的最值问题,使问题得已简化,达到事半功倍的效果。
下面就介绍几类可用三角代换法来求无理函数最值的题型,仅供参考。
一、当函数的定义域为 x0, a a 0 时,可设x a sin2,0,2例 1、求函数y 1 x x 的最大值和最小值。
解:∵函数的定义域为则原函数可化为x 0,1 ,∴可设x sin 2,0,2 y sin cos 2 sin4又∵ 0则34424∴2sin1即 1y2 24故当0 或2时,ym i n1当时,ymax24例 2、求函数y3x x1的最值。
解:∵函数的定义域为x0,3,∴设 x3sin 2,0,2则原函数可化为y 3 cos 3 sin1 6 sin14∵ 02则444∴2sin2即31y 3 1 242故当4即0 时,y m a x 3 14当4即2时,ymin314二、 当 函 数 的 定 义 域 为 xa,a a 0 时 , 则 可 设 x a sin ,2 ,2例 3、 求函数 yx 24 x 2 的最大值和最小值。
解:∵函数的定义域为 x2,2 ,∴可设 x 2 sin,2 ,2 则原函数可化为 y2 sin2 2 cos2 2 sin4 2∵则322444∴2 sin1 即4 y 22 224故当 42 即时,ymax2 224当4 即2 时,ymin44三、 当 函 数 的 定 义 域 为 xa, b , 可 设 xa b a cos 2,0,或者设 xa b bacos ,0,222例 4、 求函数 yx 2 21 3x 的最值。
解:∵函数的定义域为 x 2,7 ,∴可设 x2 7 2 cos 22 5 cos 2,0,2则原函数可化为y5 cos15 sin2 5 sin6∵ 02 则3 66∴3sin1即15 y5226故当6 即0 时,ymax56当即 时,ymin15632例 5、 求函数 y8 2x x 23x 的最大值或最小值。
三角函数值域的常见求法
三角函数值域的常见求法
函数值域的求法:
1、配方法:转化为二次函数,利用二次函数的特征来求值。
2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围。
3、换元法:通过变量代换转化为能求值域的函数,化归思想。
4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域。
5、基本不等式法:利用平均值不等式公式来求值域。
6、单调性法:函数为单调函数,可根据函数的单调性求值域。
7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三角代换公式讲解
三角代换公式讲解三角代换公式是利用三角函数的性质将代数或几何问题转化成三角问题,使题目得以突破的解题方法。
其基本思路是观察、分析、变换、证明。
针对有条件等式的证明,一是将条件代入求证式子,把问题转化成恒等式的证明;二是从条件出发,作为求证式为目标的变形,逐步推出求证式。
三角代换公式的策略思想是:根据题目的结构特征,引进三角代换,利用三角知识解题的一种方法。
用这种方法解某些数学题,往往能化繁为简,变难为易,得到简捷合理的解题途径。
常见的三角代换有:1. 设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα(公式一)。
2. 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα(公式二)。
3. 任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tan α,cot(-α)=-cotα(公式三)。
4. 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα(公式四)。
5. 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα(公式五)。
6. π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα,cos(π/2+α)=-sin α,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα;sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα(公式六)。
求分式函数值域的几种方法
求分式函数值域的几种方法摘要:本文介绍了高中数学教学中求分式函数值域的常见方法,包括配方法、反函数法、判别式法、单调性法、换元法、不等式法、方程法和斜率法等。
这些方法在解决函数值域和最值问题中发挥了重要作用。
1 引言求分式函数值域是解决函数最值问题的一个重要工具,也是高中数学教学中的一个难点和重点。
本文总结了求分式函数值域的常见方法,包括配方法、反函数法、判别式法、单调性法、换元法、不等式法、方程法和斜率法等,以便更好地解决各种类型的分式函数值域问题。
2 求分式函数值域的常见方法2.1 配方法通过配方法,将分式函数变形为可以直接求值域的形式,例如y=a/(2a+x)+b,可以将其配方为y=b+(a/(2a+x)),然后利用直接法求得函数的值域。
在使用配方法时,需要注意自变量的取值范围。
2.2 判别式法利用二次函数的判别式,即Δ=b^2-4ac,来求分式函数的值域。
例如y=x^2-3x+4/(2x+3x+4),可以将其变形为(y-1)x^2+(3y+3)x+(4y-4)=0,然后根据Δ的取值范围,求出y的取值范围。
2.3 反函数法通过求分式函数的反函数,可以得到其值域。
例如y=1/(x-1),可以求出其反函数为x=1/y+1,然后确定x的取值范围,即可求出y的取值范围。
2.4 单调性法通过分析分式函数的单调性,可以确定其值域。
例如y=1/(x^2-x),可以求出其导函数为y'=-1/(x-1)^2+x/(x^2-x)^2,然后分析其单调性,可以确定其值域。
2.5 换元法通过根式代换、三角代换等方法,将分式函数变形为可以直接求值域的形式。
例如y=1/(x^2-1),可以将其根式代换为y=1/(u^2-1),然后利用直接法求得函数的值域。
2.6 不等式法通过分析分式函数的不等式,可以确定其值域。
例如y=(2x-3)/(x^2+x-12),可以将其变形为y=2/(x-4)-1/(x+3),然后通过不等式求解,可以确定其值域。
三角函数专题:三角函数最值(值域)的5种常见考法(解析版)
三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。
4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。
与三角函数有关的值域求法总结
c sin x d
ccosx d
同角、同次;常采用分离常数的方法化为部分分式,再利用三角函数的有界性结合反比
例函数性质求解或者也可先反解再用三角函数的有界性求解
七.数形结合、三角换元
例7.1.求函数y sin x 0 x 的最小值 2.求函数y sin x 1 的值域
2 cosx
a sin x
acosx
或者y
a sin x
、y
acosx
b sin 2 x c sin x d
bcos2 x ccosx d
六.分离常数
例6.求函数y 2cosx 1的值域 2cosx 1
此为 y a sin x b 或 y acosx b 型的三角函数求最值问题,分子分母的三角函数同名、
x
பைடு நூலகம்
4
cos
x
sin
x
6
1,求f
x在区间-
6
,,4 上的最大值和最小值。
4.已知函数f x 2 cos 2x sin 2 x 4 cos x,求f x的最值。
5.求函数y
3sin x 1的最值。 sin x 2
6.求函数y
2 cosx 0
sin x
x 的最小值
7.1.求函数y x 4 9 x2的值域2.求函数y x 4 15 3x的值域
2 或sin x cosx t 2 1,但一定要注意换元后新元的范围
2
五.换元然后运用对勾函数单调性求值域或最值
例5.已知x 0, ,求函数 y sin x 2 的最小值
sin x
此种类型函数解析式通常是形如y b sin 2 x c sin x d 或者y bcos2 x ccosx d
三角函数值域的求法
三角函数值域的求法三角函数是数学中的重要概念之一,它在几何学、物理学、工程学等领域中有着广泛的应用。
在学习三角函数时,我们不仅需要了解它们的定义和性质,还需要掌握它们的值域。
本文将围绕三角函数值域的求法展开讨论。
我们来回顾一下三角函数的定义。
在直角三角形中,我们可以定义三个基本的三角函数:正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
对于一个给定的角度θ,这些函数的值可以通过三角形的边长比例来计算。
接下来,我们将重点讨论三角函数的值域。
值域是函数在定义域上所有可能的输出值的集合。
对于正弦函数和余弦函数来说,它们的值域是[-1, 1]。
换句话说,对于任意的θ,-1 ≤ sinθ ≤ 1,-1 ≤ cosθ ≤ 1。
这是因为在单位圆上,正弦函数和余弦函数的取值范围都在-1到1之间。
而正切函数的值域则是整个实数集。
也就是说,对于任意的θ,tanθ可以取到任意的实数值。
这是因为正切函数是通过sinθ除以cosθ得到的,而在某些角度上,cosθ可能等于0,导致无法除以0。
因此,我们可以得到tanθ的值域是整个实数集。
除了这三个基本的三角函数,还存在其它的三角函数,如余切函数(cot)、正割函数(sec)和余割函数(csc)。
这些函数的值域与它们的定义有关,但可以通过基本的三角函数进行推导和计算。
在实际问题中,我们经常需要根据已知条件来求解三角函数的值域。
这时,我们可以利用三角函数的性质和定义来推导。
例如,当给定θ的范围时,我们可以确定sinθ和cosθ的取值范围。
然后,根据这些取值范围来确定三角函数的值域。
我们还可以利用三角函数的周期性来求解值域。
正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。
这意味着在一个周期内,三角函数的值会重复出现。
因此,我们可以利用周期性来确定三角函数的值域。
总结起来,三角函数的值域是根据其定义和性质来确定的。
正弦函数和余弦函数的值域是[-1, 1],而正切函数的值域是整个实数集。
求函数值域的几种常见方法详解
求函数值域的几种常见方法1.直接法:利用常见函数的值域来求。
一次函数y=ax+b(a ≠0)的定义域为R,值域为R; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R,当a>0时,值域为{a y y 4|2≥};当a<0时,值域为{ay y 4|2}、 例1.求下列函数的值域① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1+=x xy 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域就是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f即函数x x f -+=42)(的值域就是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y 即函数的值域就是 { y| y ∈R 且y ≠1}(此法亦称分离常数法)(思考:如何使用口算法?) 2.二次函数在给定区间上的值域(最值)。
例2. 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②]4,3[,142∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 解:①∵抛物线的开口向上,对称轴2x =,函数的定义域R, ∴x=2时,y min =-3 ,∴函数的值域就是{y|y ≥-3 }、②∵抛物线的开口向上,对称轴2x =∉ [3,4],此时142+-=x x y 在[3,4]Z∴当x=3时,min y =-2 当x=4时,m ax y =1 ∴值域为[-2,1]、③∵抛物线的开口向上,对称轴2x =∉ [0,1], 此时142+-=x x y 在[0,1] ]∴当x=0时,m ax y =1 当x =1时,min y =-2 ∴值域为[-2,1]、④∵抛物线的开口向上,对称轴2x =∈ [0,5],∴当x=2时,m in y =-3 当 x=5时,m ax y =6(思考:为什么这里直接就说当 x=5时,m ax y =6,而不去考虑x=0对应的函数值情况?答:因为观察图像可知x=5离对称轴较远,其函数值比x=0对应的函数值大)∴值域为[-3,6]、注:对于二次函数)0()(2≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值ab ac y 442min -=; ②当a<0时,则当a b x 2-=时,其最大值ab ac y 442max -=、 ⑵若定义域为x ∈ [a,b],则应首先判定其对称轴abx 2-=就是否属于区间[a,b]、 ①若2b a -∈[a,b],则()2bf a -就是函数的最小值(a>0)时或最大值(a<0)时,再比较)(),(b f a f 的大小决定函数的最大(小)值、②若2ba-∉[a,b],则[a,b]就是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值、注:①若给定区间不就是闭区间,则可能得不到最大(小)值;②当顶点横坐标就是字母时,则应根据其对应区间特别就是区间两端点的位置关系进行讨论、 3.有解判别法:有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数就是否为0的讨论例3.求函数y=1122+++-x x x x 值域解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题∆≥0, 即0)14(-)1(22≥+y-y , 解得331≤≤y 且 y ≠1、 综上:值域{y|331≤≤y }、 例4.求函数66522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?)解:把已知函数化为(2)(3)361(2)(3)33x x x y x x x x ---===--+++ (x ≠2且 x ≠-3) 由此可得 y ≠1∵ x=2时 51-=y ∴ 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}说明:此法就是利用方程思想来处理函数问题,一般称有解判别法、一般用于分式函数,其分子或分母只能为二次式并且分子、分母,没有公因式、解题中要注意二次项系数就是否为0的讨论、 4.换元法例5.求函数x x y -+=142的值域解:设 x t -=1 则 t ≥0 x=1-2t代入得 t t t f y 4)1(2)(2+-⋅==2242t t =-++开口向下,对称轴1t =[0,)∈+∞ ∴1t =时,max (1)4y f == ∴值域为(,4]-∞ 5.分段函数例6.求函数y=|x+1|+|x-2|的值域、解:将函数化为分段函数形式:21(2)3(12)21(1)x x y x x x ⎧-≥⎪=-≤<⎨⎪-+<-⎩,画出它的图象(下图),由图象可知,函数的值域就是{y|y ≥3}、说明:以上就是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习与经验的不断积累,还有如不等式法、三角代换法等、有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉与掌握各种解法,并在解题中尽量采用简捷解法、 ★练习:1、34252+-=x x y答案:值域就是{05}y y <≤、 2、求函数的值域①x x y -+=2;②y x =+答案:值域就是(-∞,49]、 答案:值域就是{2}y y ≥- 小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法、。
求函数值域的常见方法
求函数值域的常见方法总结【观察法】有的函数结构并不复杂,可以通过基本函数的值域及不等式的性质直接观察出函数的值域。
例题:求函数212y x =+【配方法】配方法是求“二次函数类”值域的基本方法。
2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法,解题过程中,要特别关注自变量的取值范围。
例题:确定函数(1)4y =(2)y x=的值域。
【分离常数法】此方法适合与分式函数的值域问题,思路是用分母表示分子,分离出常数,使分子不含变量,再借助基本函数的值域求解。
例题:确定下列函数的值域 (1)312x y x +=- (2)221x x y x x -=-+【判别式法】把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0∆≥,从而求得原函数的值域。
形如21112222a xb xc y a x b x c ++=++(12,a a 不同时为0)的函数的值域常用此法求得。
前提是定义域为R 且分子、分母没有公因式。
例题:求下列函数的值域 (1)22221x x y x x -+=++ (2)22321x x y x -+=-【反解x 法】将y 视为变量,利用数式的性质或已知函数的值域求y ,体现了方程思想。
例题:求下列函数的值域 (1)221xxy =+ (2)2sin 2sin xy x-=+ 【换元法】运用代数或者三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。
形如y ax b =+±,,,a b c d 均为常数,且0a ≠)的函数常用此法求解。
令t =3t d x c-=且t ≥,使之变为二次函数,再利用配方法;对于含有的结构的函数,可利用三角代换,令cos x a θ=,[0,]θπ∈,或令sin x a θ=,[,]22ππθ∈-。
例题:求下列函数的值域(1)2y x =+ (2)y x =【不等式法】利用基本不等式a b +≥,用此法求值域时,要注意条件“一正二定三相等”即①0a >,0b >;②a b +(ab )为定值;③取等号条件a b =。
用三角代换求函数的值域解读
用三角代换求函数fex dx cb ax y ++++=2的值域深圳市蛇口中学王远征(518067)对于函数f ex dx c b ax y ++++=2(o cd ≠)求它的值域(或最值),其解法灵活多变。
本文介绍一种统一的求法--------三角代换法。
即将原函数通过三角代换,转化为不含根式的三角函数式,进而借助三角函数的有界性,或者运用数形结合的思想方法求解。
例l .求函数322122++-++=x x x y 的值域。
解:原函数可化为:2)1(42)1(2--+-=x x y因为:()()22222141=⎪⎭⎫ ⎝⎛--+-x x所以:设()⎪⎩⎪⎨⎧=--=-ααcos 214sin 212x x ⎥⎦⎤⎢⎣⎡-∈2,2ππα 34sin 243sin 4sin 4+⎪⎭⎫ ⎝⎛+=++=παααy因为⎥⎦⎤⎢⎣⎡-∈+43,44πππα,所以⎥⎦⎤⎢⎣⎡-∈+1,22)4sin(πα 2431+≤≤-y ,函数的值域是[243,1+-]例2.求函数2012232++--=x x x y 的值域。
解:原函数可化为:61)3(2)3(2-+--+=x x y因为:()()22221313=+-⎪⎭⎫⎝⎛++x x所以: 设()⎪⎩⎪⎨⎧=++=+ααsec 13tan 32x x ⎪⎭⎫⎝⎛-∈2,2ππα 06cos 2sin 6sec 2tan <--=--=ααααy(0,0cos ,21sin <><≤y 所以,因为αα)()2cos 6sin =+-ααy()()2sin 612=+++βαy()70,161222-≤⇒<≤++y y y 又,所以函数的值域是-∞≤<y -7例3. 求函数23102-+-+=x x x y 的最值。
解:原函数可化为:2)5(2--+=x x y由 ()250522≤-⇒≥--x x令αcos 25=-x ,那么,πααα≤≤⇒≤⇒≤01cos 2cos 2于是:54sin 2sin 25cos 2+⎪⎭⎫ ⎝⎛+=++=παααy因为:⎥⎦⎤⎢⎣⎡∈+45,44πππα,所以⎥⎦⎤⎢⎣⎡-∈+1,22)4sin(πα 所以函数的最值是: =min y 5-2,=max y 7评注:解题时先利用配方法,对根式恒等变形成a X ±2或者2X a ±的形式。
三角代换求定积分
三角代换求定积分一、什么是三角代换?三角代换是一种常用的积分技巧,它的基本思想是将被积函数中的三角函数用一个新的变量来表示,然后通过代换将原式化为一个标准形式,从而达到求解定积分的目的。
二、三角代换的基本方法1. 代入法:将被积函数中的三角函数用一个新变量表示,并对该变量进行适当的替换。
2. 化简法:将被积函数中含有根号和平方项的部分进行化简,以便进行后续计算。
3. 恒等变形法:根据三角函数恒等式对被积函数进行恒等变形,使之能够更好地适应代入法或化简法。
4. 回带法:在计算完成后,通过回带将所得结果转化为原来的自变量形式。
三、常见三角代换1. sinx型当被积函数中含有sinx时,我们可以使用以下代换:$$t=\tan\frac{x}{2}$$此时,$$\sin x=\frac{2t}{1+t^2}$$$$\cos x=\frac{1-t^2}{1+t^2}$$$$\mathrm{d}x=\frac{2}{1+t^2}\mathrm{d}t$$通过这个代换,我们可以将任何形如$\int f(\sin x,\cos x)\mathrm{d}x$的积分转化为一个仅含有有理函数的积分。
2. cosx型当被积函数中含有cosx时,我们可以使用以下代换:$$t=\tan\frac{x}{2}$$此时,$$\sin x=\frac{2t}{1+t^2}$$$$\cos x=\frac{1-t^2}{1+t^2}$$$$\mathrm{d}x=\frac{2}{1+t^2}\mathrm{d}t$$通过这个代换,我们可以将任何形如$\int f(\sin x,\cos x)\mathrm{d}x$的积分转化为一个仅含有有理函数的积分。
3. tanx型当被积函数中含有tanx时,我们可以使用以下代换:$$t=\tan x$$此时,$$\sin x=\frac{t}{\sqrt{1+t^2}}$$$$\cos x=\frac{1}{\sqrt{1+t^2}}$$$$\mathrm{d}x=\frac{\mathrm{d}t}{1+t^2}$$通过这个代换,我们可以将任何形如$\int f(\tan x)\sec^mxdx$的积分转化为一个仅含有幂函数和对数函数的积分。