(完整版)一次函数专项练习题
中考数学模拟题汇总《一次函数》专项练习(附答案)
中考数学模拟题汇总《一次函数》专项练习(附答案)一、选择题1.若函数y=(k﹣1)x+b+2是正比例函数,则( )A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=22.下列函数:①y=16x;②y=-4x;③y=3-12x;④y=3x2﹣2;⑤y=x2﹣(x﹣3)(x+2);⑥y=6x.其中,是一次函数的有( ).A.5个B.4个C.3个D.2个3.经过以下一组点可以画出函数y=2x图象的是( )A.(0,0)和(2,1)B.(1,2)和(-1,-2)C.(1,2)和(2,1)D.(-1,2)和(1,2)4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.﹣2C.4D.﹣45.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<36.一次函数y1=kx+b与y2=x+a的图象如图所示.则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0B.1C.2D.37.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( ).A.(0,﹣2)B.(32,0) C.(8,20) D.(12,12)8.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位9.下图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的一次函数表达式为( )A.y=95x+32 B.y=x+40 C.y=59x+32 D.y=59x+3110.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为( )A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1311.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y= (50-2x)(0<x<50)D.y= (50-x)(0<x<25)12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4.正确的是( )A.①③B.②⑤C.②④D.④⑤二、填空题13.点(0.5,y1),(2,y2)是一次函数y=﹣0.5x﹣3图像上的两点,则y1y2.(填“>”、“=”或“<”)14.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.15.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的解析式是y=-2x+4,则直线BC的解析式为_________________16.一次函数y= -4x+12的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .17.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.18.如图,矩形ABCD边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD周长分成2:1两部分,则x值为.三、解答题19.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.20.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数 y=kx+b的图象与x轴的交点是A(a,0),求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=32x的图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x<-1,求k的取值范围.25.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.参考答案1.B2.C3.B4.B5.D6.C7.C 8.B 9.A. 10.A 11.D 12.C. 13.答案为:>; 14.答案为:m <4且m ≠1 15.答案为:y=12x+4.16.答案为:(3,0),(0,12),18. 17.答案为:x <3 18.答案为:±23.19.解:(1)将x =2,y =﹣3代入y =kx ﹣4, 得﹣3=2k ﹣4,解得k=12.故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y =0时,x =﹣4,故平移后的图象与x 轴交点的坐标为(﹣4,0). 20.解:(1)由题意知解得∴k ,b 的值分别为1,2. (2)由(1)得y =x +2.∴当y =0时,x =﹣2,即a =﹣2.21.解:(1)∵点P(2,n)在正比例函数y =32x 的图象上,∴n =32×2=3.把点P 的坐标(2,3)代入y =﹣x +m ,得 3=﹣2+m , ∴m =5.即m=5,n=3.(2)由(1)知,一次函数为y=﹣x+5,令x=0,得y=5,∴点B的坐标为(0,5),∴S△POB =12×5×2=5.22.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=-1.(2)当x=a时,yC =2a+1.当x=a时,yD=4-a.∵CD=2,∴|2a+1-(4-a)|=2,解得a=13或53.23.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得:.答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴1800﹣m≤2m,∴m≥600.依题意,得:w=40m+30(1800﹣m)=10m+54000,∵10>0,∴w随m值的增大而增大,∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.24.解:(1)①∵直线y=-2x+1过点B,点B的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点, ∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4, ∴A(0,4), ∵y =-2x +1, ∴C(0,1), ∴AC =4-1=3,∴△ABC 的面积为12×1×3=32.(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1, ∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4, 解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4, 解得:k =4,故k 的取值范围是:2<k <425.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2) 设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2), 得解得,∴直线l 的解析式为y =x +2. 设点P 的坐标为(m ,m +2), 由题意得12×2×|m +2|=3, ∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD所在直线为y=k1x(k1≠0),经过点D(﹣1,2),∴2=﹣k1,∴k1=﹣2,∴直线OD为y=﹣2x,由解得,∴点E的坐标为(﹣23,43),又∵点D的坐标为(﹣1,2),∴由勾股定理可得OD=5.即|BE+DE|的最小值为5.(3)如图3中,∵O与B关于直线l对称,∴BE=OE,∴|BE﹣DE|=|OE﹣DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE﹣DE|的值最大,最大值为OD.∵D(﹣1,﹣2),∴直线OD的解析式为y=2x,OD=5,由,解得,∴点E(2,4),∴|BE﹣D′E|的最大值为5此时点E的坐标为(2,4).。
一次函数练习题(必做30道)
1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y ≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?x轴,y轴,分别交于A、B 8.在直角坐标系x0y中,一次函数y=3两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.x17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.18. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x 20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?物资种类 食品 药品 生活用品 每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨) 120 160 100天)19. 武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A地到C地所用的时间.(2)求水流的速度.(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为11112y x=-+,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?20. 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?x(分)21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按>)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系每吨b元(b a如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;(2)求b的值,并写出当10(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P= (注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?(3)该品牌衬衣本月共销售了件.25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.26.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.。
完整版)一次函数专项练习题
完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。
1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。
题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。
任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。
1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。
一次函数练习题(大题30道)
一次函数练习题(大题30道)1.已知一次函数y=ax+b的图象经过点A(2,k)与B(m,4)。
1) 求一次函数的解析式,并在直角坐标系画出这个函数的图象;2) 如果(1)中所求的函数y的值在-4≤y≤4围,求相应的x的取值范围。
2.已知y=p+kx,这里p是一个常数,k与x成正比例,且x=2时,y=1;x=3时,y=-1.1) 写出y与x之间的函数关系式;2) 如果x的取值范围是1≤x≤4,求y的取值范围。
3.一次函数的图象经过点(2,1)和(-1,-3)。
1) 求此一次函数表达式;2) 求此一次函数与x轴、y轴的交点坐标;3) 求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.已知一次函数y=kx+b的图象经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,a)。
1) 求a的值;2) 求k和b的值;3) 求这两个函数图象与x轴所围成的三角形面积。
5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位。
求正比例函数和一次函数的解析式。
6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长度。
7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系xOy中,一次函数y=2x+2的图象与x轴、y 轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。
9.已知:如图一次函数y=(1/2)x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。
10.已知直线y=(4/3)x+4与x轴、y轴的交点分别为A、B。
又P、Q两点的坐标分别为P(0,-1),Q(k,m),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,圆与直线AB相切?11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台。
一次函数练习题(附答案)
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
一次函数专题练习题含答案
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
(word完整版)一次函数习题集锦(含答案),推荐文档
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数练习题
八年级《一次函数》专题训练一、正比例函数:1、下列函数中,图象经过原点的为 ----------------------------------( )A .y=-3x+8B .y =-6x-1C .y =-5xD .y=21-x2、下列函数中,是正比例函数,且y 随x 增大而减小的是----------------( )A. 14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2xy -=3、若函数y=(|m|+1)x 2+(1-m )x 是正比例函数,则m 的值是-----------( ) A .m=-3 B .m=1 C .m=3 D .m>-34、下列关系中的两个量成正比例的是----------------------------------( ) A .从甲地到乙地,所用的时间和速度; B .正方形的面积与边长 C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高二、一次函数的定义:1、下列关于x 的函数中,是一次函数的是----------------------------------------------------( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y2、若函数y=(|m|–2)x 2+(2-m )x+2(m 为常数)是一次函数,则m 值为---( ) A .m>2 B .m=2 C .m ±2 D .m=-23、下列说法正确的是--------------------------------------------------( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数4、已知函数121m y mxm -=+-,当m =_____时,表示y 是x 的一次函数,此时函数解析式为______ ____三、一次函数的性质:1、已知一次函数y=6x + 1:① 随着x 的增大,y 将 (填“增大”或“减小” ); ② 它的图象从左到右 (填“上升”或“下降” ); 2、一次函数y=(m-3)x+6+m 的函数值y 随着x 值的增大而减小,那么的取值范围是_____________;3、一次函数y=(m+5)x+6+m 的函数的图像经过第二、四象限,那么的取值范围是_____________;4、一次函数y=(m -3)x+2-m 与y 轴的交点在x 轴的下方,则m_____ ____;5、点A (1x ,1y )和点B (2x ,2y )在一次函数y=2x+5上,若12x x >,则1y ,2y 的关系是-------------------------------------------------------( ) A 、12y y > B 、12y y < C 、12y y = D 、无法确定四、一次函数解析式的求法:(一)、由一次函数定义求一次函数解析式:Ⅰ:已知y 与x 成一次函数,且x=-3时y =6.x=3时y =2.① 求此一次函数的解析式? ② 当y =12时,求x 的值;Ⅱ: 已知y+2与 x 成一次函数,且当x=1时y=2,当x =-1时y =-4.求:(1)此一次函数的解析式?(2)若x 的取值范围是-2<x <6,求y 的取值范围?(二)由一次函数图像上的两点坐标求一次函数解析式:1、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采 取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的 函数图像是一条折线(如图所示),根据图像解答下列问题: (1)分别写出0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;2、如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行的时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出: (1)求:直线AC 和BD 的解析式?(2)求:当他们行走多少小时时,他们之间的距离是2千米?(三)、由自变量、函数值的取值范围求一次函数解析式:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而增大,求该一次函数解析式?变式一:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而减小,求该一次函数解析式?变式二:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,则该一次函数解析式为 ;(四)、由图象平行求一次函数解析式:①、已知直线m 与直线y=-0.5x+2平行,且与y 轴交点的纵坐标为8,求:直线m 的解析式?②、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),求此一次函数的解析式?(五)、由所围几何图形的面积求一次函数解析式①、已知一次函数的图象在第一、三象限,过点(0,4),且与坐标轴围成的三角形的面积为12,求该一次函数的解析式?②、已知一次函数的图象过点( 3,0 ),且与坐标轴围成的三角形的面积为6, 求该一次函数的解析式?五、一次函数图像与坐标轴交点坐标:(1)、直线y=-x+5与x轴的交点坐标是,与y轴的交点坐标是;(2)、直线y=4x-8与x轴的交点坐标是,与y轴的交点坐标是;六、一次函数图像与两坐标轴围成的三角形面积:(1)已知一次函数y=-2x+4的图象与两坐标轴围成的三角形面积为;(2)若直线y=2x+b与两坐标轴围成的三角形的面积是9,则b= ;七、一次函数图像所经象限的确定方法:(一)知识点归纳:(1)当k>0----------图像经过第一、三象限:① k>0,b>0-----图像经过第一、二、三象限:② k>0,b<0-----图像经过第一、四、三象限:③ k>0,b=0------图像经过第一、三象限:(2)当k<0-----------图像经过第一、三象限:① k<0,b>0------图像经过第一、二、四象限:② k<0,b<0------图像经过第二、三、四象限:③ k<0,b=0-------图像经过第二、四象限:(二)习题演练:(1)一次函数y= -3x+2的图象经过象限为第象限;(2)一次函数y= 3x-8的图象经过象限为第象限;(3)一次函数y=(m+3)x+2-m经过原点,则m__________ _;(4)一次函数y=(m+3)x+2-m经过一、三、四象限,则m_______ _ _ ;(5)一次函数y=(m-3)x+2-m不经过第三象限,则m__________ _;八、一次函数图像的平移:(1)直线y=2x+1向上平移4个单位得到直线;(2)直线y=5x-3向左平移2个单位得到直线;(3)一次函数y=(m+3)x+5-m与y=2x+1的图像平行,则m的值为;此直线方程为;(4)、已知一次函数y=(m+3)x+2- n向上平移一个单位与y=x+1重合,则m =____________;n= ; 九、两个一次函数图像交点坐标的求法:★两条直线 y = x-2与y =-4x+8的交点坐标为;十、一次函数性质的应用:1、如图,直线MB的解析式为y=-x+2与x轴交于B点,直线MA与x轴交于A点,点M(-2,n), 点A(-4,0)(1)求M点的坐标;(2)求△ABM的面积(3)在y轴上找一点P,使S△OMP=S△ABM2、如图,直线1l的解析表达式为33y x=-+,且1l与x轴交于点D,直线2l经过点A B,,直线1l,2l交于点C.(1)求点D的坐标;(2)求直线2l的解析表达式;(3)求ADC△的面积;(4)在直线2l上存在异于点C的另一点P,使得ADP△与ADC△的面积相等,请直接..写出点P3、如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆ 与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不 更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在 哪里.4、如图15,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒.(1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围; (3)当△OPM 的为10时,求t 的值?(4)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.5、(2018河北)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.十一、一次函数的简单应用:1、为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的。
一次函数的解析式专项练习30题(有答案)
求一次函数解析式专项练习1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x 轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.已知一次函数的图象经过点A (,m)和B (,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点(2,﹣1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:(3)如果y的取值范围是0≤y≤5,求x的取值范围;(4)若函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当时,求y的值;(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点(2,a),求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.30.已知:关于x的一次函数y=(2m﹣1)x+m ﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x 轴围成的三角形面积.一次函数的解析式30题参考答案:1.(1)设直线AB解析式为y=kx+b,依题意,得,解得∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,∴a=﹣a+1,解得a=;(2)直线AB与x轴、y轴的交点分别为(1,0),(0,1)∴直线AB 与坐标轴围成的三角形的面积为2.(1)设直线l的解析式为y=kx+b,∵直线l与x轴交于点A(﹣1.5,0),与y轴交于点B (0,3),∴代入得:,解得:k=2,b=3,∴直线l的解析式为y=2x+3;(2)解:分为两种情况:①当P在x轴的负半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3﹣1.5=1.5,∴△ABP 的面积是×AP×OB=×1.5×3=2.25;②当P在x轴的正半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3+1.5=4.5,∴△ABP 的面积是×AP×OB=×4.5×3=6.25.3.设一次函数的解析式为y=kx+b(k≠0),由已知得:,解得:,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,∴x=﹣1,∴该函数图象与x轴交点的坐标是(﹣1,0)4.(1)由图象可知,直线l过点(1,0)和(0,),则,解得:,即k=,b=;(2)由(1)知,直线l的解析式为y=x+,当x=2时,有y=×2+=;(3)当y=4时,代入y=x+得:4=x+,解得x=﹣5.5.∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k ①,∵图象与y轴的交点是B(0,b),∴•OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或6.根据题意,得,解得.故该一次函数的关系式是y=﹣x+.7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得k=1,所以y与x的函数关系式是y=x+2;(2)由,得;由,得,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交点坐标为:(0,2).8.(1)∵y+3与x+2成正比例,∴设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.则y+3=2(x+2),即y=2x+1;(2)由(1)知,y=2x+1.令x=0,则y=1,.令y=0,则x=﹣,所以,该直线经过点(0,1)和(﹣,0),其图象如图所示:由图示知,当x<﹣时,y<09.(1)一次函数y=kx+b的图象经过点(﹣2,6),且与y=﹣x的图象平行,则y=kx+b中k=﹣1,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.则直线的解析式为:y=﹣x+4;(2)如图所示:∵直线的解析式与x轴交于点B,∴y=0,0=﹣x+4,∴x=4,∴B点坐标为:(4,0),∵直线y=mx+n经过点B,且y随x的增大而减小,∴m<0,此图象与y=﹣x+4增减性相同,∴关于x的不等式mx+n<0的解集为:x>410.(1)设y=k(x+2),∵x=1时,y=﹣6.∴﹣6=k(1+2)k=﹣2.∴y=﹣2(x+2)=﹣2x﹣4.图象过(0,﹣4)和(﹣2,0)点(2)从图上可以知道,当﹣1<y≤0时x的取值范围﹣2≤x<﹣.11.∵y﹣2与2x+1成正比例,∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k(﹣4+1),∴k=3,∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.所以y与x 之间的函数关系式是13.设过点A,B的一次函数的解析式为y=kx+b,则m=k+b,﹣1=k+b,两式相减,得m+1=k+k,即m+1=(m+1),∵m≠﹣1,则k=2,∴b=m﹣1,则函数的解析式为y=2x+m﹣1(m≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x﹣2)的一切直线14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,3),∴3=(k﹣1)×1+5.∴k=﹣1.(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x=2.15.(1)把点(2,﹣1)代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,所以解析式为:y=x﹣4;把点(2,﹣1)代入y=k2x得:2k2=﹣1,解得:k2=﹣,所以解析式为:y=﹣x;(2)因为函数y=x﹣4与x 轴的交点是(,0),且两图象都经过点(2,﹣1),所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.16.(1)设y﹣3=k(4x﹣2),(2分)当x=1时,y=﹣1,∴﹣1﹣3=k(4×1﹣2),∴k=﹣2(4分),∴y﹣3=﹣2(4x﹣2),∴函数解析式为y=﹣8x+7.(5分)(2)当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x 的取值范围是≤x ≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为(0,b)(﹣,0),∴三角形面积为:×|b|×|﹣|=24,即b2=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣12 18.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+4 19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,∴函数的解析式为:y=x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y=x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A(﹣3,1),B(0,﹣2),∴,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的交点坐标为(0,﹣5),∴直线MN 与两坐标轴围成的三角形面积为×|﹣5|×||﹣5=12.5.21.设与x轴的交点为B,则与两坐标轴围成的直角三角形的面积=AO•BO,∵AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B(﹣3,0),把A(0,﹣2),B(﹣3,0)代入y=kx+b,得k=﹣,b=﹣2,所以:y=﹣x﹣2.22.(1)依题意,设y+2=k(x+1),将x=1,y=﹣5代入,得k(1+1)=﹣5+2,解得k=﹣1.5,∴y+2=﹣1.5(x+1),即y=﹣1.5x﹣3.5;(2)把y=4代入y=﹣1.5x﹣3.5中,得﹣1.5x﹣3.5=4,解得x=﹣5,即当x=﹣5时,函数值为423.(1)设y﹣3=k(4x﹣2),∵x=1时,y=5,∴5﹣3=k(4﹣2),解得k=1,∴y与x的函数关系式y=4x+1;(2)将x=﹣2代入y=4x+1,得y=﹣7;(3)∵y的取值范围是0≤y≤5,∴0≤4x+1≤5,解得﹣≤x≤1;(4)令x=0,则y=1;令y=0,则x=﹣,∴A(0,1),B(﹣,0),∴S△AOB =××1=.24.(1)∵y﹣3与x成正比例,∴y﹣3=kx(k≠0)成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;∴y与x的函数关系式为:y=2x+3,(2)把x=﹣代入得:y=2×(﹣)+3=2;(3)设平移后直线的解析式为y=2x+3+b,把点(2,﹣1)代入得:﹣1=2×2+3+b,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣525.根据题意得:当b=3时,y=kx+3,过A(2,1).1=2k+3k=﹣1.∴解析式为:y=﹣x+3.当b=﹣3时,y=kx﹣3,过A(2,1),1=2k﹣3,k=2.故解析式为:y=2x﹣3.26.(1)∵一次函数y=(3﹣k)x+2k+1的图象经过(﹣1,2),∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2,解得k=;(2))∵一次函数y=(3﹣k)x+2k+1的图象经过一、二、四象限,∴,解得,k>3.故k的取值范围是k>3.27.根据题意,得,解得,,所以一次函数的解析式是y=﹣x+3.28.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数,且k≠0).∵当x=1时,y=2,∴2+5=(3×1)k,解得,k=1,故y与x的函数关系式是:y=3x﹣1;(2)∵点P(a,﹣2)在这条直线上,∴﹣2=3a﹣1,解得,a=﹣,∴P 点的坐标是(﹣,﹣2)29.把(1,5)、(6,0)代入y=kx+b中,得,解得,∴一次函数的解析式是y=﹣x+6.30.(1)由题意得:,解得:<m<2,又∵m为正整数,∴m=1,函数解析式为:y=x﹣1.(2)由(1)得,函数图象与x轴交点为(1,0)与y 轴交点为(0,﹣1),∴所围三角形的面积为:×1×1=。
一次函数的应用专项练习30题有答案
一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数基础知识专题练习题(解析版)
一次函数基础知识专题练习题一、选择题1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)3.已知y轴上点P到x轴的距离为3,则点P坐标为()A.(0,3)B.(3,0)C.(0,3)或(0,﹣3)D.(3,0)或(﹣3,0)4.在如图所示的平面直角坐标系内,画在透明胶片上的?ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,.若点A的坐标是(1,2),则点A′的坐标是()得到△A′B′OA.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)8.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A. B. C. D.9.甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)二、填空题10.点M(1,2)关于原点的对称点的坐标为.11.将点P(﹣1,3)向右平移2个单位得到点P′,则P′的坐标是.12.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为.13.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是.三、解答题14.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.15.[阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.《19.1 函数》参考答案与试题解析一、选择题1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】常规题型.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.【点评】本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.2.如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点P(﹣3,5)关于y轴的对称点的坐标为(3,5).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.已知y轴上点P到x轴的距离为3,则点P坐标为()A.(0,3)B.(3,0)C.(0,3)或(0,﹣3)D.(3,0)或(﹣3,0)【考点】点的坐标.【分析】根据题意,结合点的坐标的几何意义,可得点P横坐标为0,且纵坐标的绝对值为3,即可得点P的坐标.【解答】解:∵y轴上点P到x轴的距离为3,∴点P横坐标为0,且纵坐标的绝对值为3,∴点P坐标为(0,3)或(0,﹣3).故选C.【点评】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.4.在如图所示的平面直角坐标系内,画在透明胶片上的?ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【考点】坐标与图形变化﹣平移.【分析】利用平面坐标系中点的坐标平移方法,利用点A的坐标是(0,2),点A′(5,﹣1)得出横纵坐标的变化规律,即可得出平移特点.【解答】解:根据A的坐标是(0,2),点A′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B.【点评】此题主要考查了平面坐标系中点的平移,用到的知识点为:左右移动横坐标,左减,右加,上下移动,纵坐标上加下减.5.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)【考点】坐标与图形变化﹣对称;坐标与图形变化﹣平移.【分析】将△ABC向右平移4个单位得△A1B1C1,让A的横坐标加4即可得到平移后A1的坐标;再把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,那么点A2的横坐标不变,纵坐标为A1的纵坐标的相反数.【解答】解:∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为﹣2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为﹣3;∴点A2的坐标是(2,﹣3).故选B.【点评】本题考查了坐标与图形的变化﹣﹣对称及平移的知识;认真观察图形,根据各种特点做题是正确解答本题的关键.7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,.若点A的坐标是(1,2),则点A′的坐标是()得到△A′B′OA.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据以原点O为位似中心,将△ABO扩大到原来的2倍,即可得出对应点的坐标应乘以﹣2,即可得出点A′的坐标.【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故选:C.【点评】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k或﹣k是解题关键.8.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A. B. C. D.【考点】函数的图象.【专题】压轴题;数形结合;函数思想.【分析】根据题意可对每个选项逐一分析判断图象得正误.【解答】解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是.故选:C.【点评】此题考查的知识点是函数的图象,关键是根据题意看图象是否符合已知要求.9.甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)【考点】利用轴对称设计图案.【分析】分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答案.【解答】解:A、若放入黑(3,7);白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;C、若放入黑(2,7);白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形,故本选项正确;D、若放入黑(3,7);白(2,6),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;故选:C.【点评】此题考查了轴对称图形的定义,属于基础题,注意将选项各棋子的位置放入,检验是否为轴对称图形,有一定难度,注意细心判断.二、填空题10.点M(1,2)关于原点的对称点的坐标为(﹣1,﹣2).【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点的对称点,横纵、坐标都互为相反数解答.【解答】解:点(1,2)关于原点的对称点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横纵、坐标都互为相反数”是解题的关键.11.将点P(﹣1,3)向右平移2个单位得到点P′,则P′的坐标是(1,3).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将点P(﹣1,3)向右平移2个单位,则点横坐标加2,纵坐标不变,即P′的坐标为(1,3).故答案为:(1,3).【点评】本题考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.12.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为210.【考点】规律型:图形的变化类.【专题】压轴题.【分析】第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积,然后相加即可得出答案.【解答】解:图中阴影部分的面积为:(22﹣1)+(42﹣32)+…+(202﹣192)=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(20+19)(20﹣19)=3×1+7×1+11×1+…+39×1=3+7+11+15+19+23+27+31+35+39=210;故答案为:210.【点评】此题考查了图形的变化类,关键是找出每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.13.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣,则点A的对应点A′的坐标3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′是(16,1+).【考点】翻折变换(折叠问题);坐标与图形性质.【专题】压轴题.【分析】首先由△ABC是等边三角形,点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),求得点A的坐标,然后根据题意求得第1次、2次、3次变换后的点A的对应点的坐标,即可得规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣),继而求得把△ABC经过连续9次这样的变换得到,则点A的对应点A′的坐标.△A′B′C′【解答】解:∵△ABC是等边三角形,点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴点A的坐标为(﹣2,﹣1﹣),根据题意得:第1次变换后的点A的对应点的坐标为(﹣2+2,1+),即(0,1+),第2次变换后的点A的对应点的坐标为(0+2,﹣1﹣),即(2,﹣1﹣),第3次变换后的点A的对应点的坐标为(2+2,1+),即(4,1+),第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣),,则点A的对应点A′的坐标是:(16,∴把△ABC经过连续9次这样的变换得到△A′B′C′1+).故答案为:(16,1+).【点评】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣)是解此题的关键.三、解答题14.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为直角三角形.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【专题】作图题.【分析】(1)由A点的坐标为(1,2),而点A关于y轴的对称点为点B,点A关于原点O的对称点为点C,根据关于原点对称的坐标特点得到B点坐标为(﹣1,2),C 点坐标为(﹣1,﹣2),则D点坐标为(0,2),利用三角形面积公式有S△ADO=OD?AD=×2×1=1,S△ABC=BC?AB=×4×2=4,即可得到=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),则AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,得到△ABC的形状为直角三角形.【解答】解:(1)∵A点的坐标为(1,2),点A关于y轴的对称点为点B,点A关于原点O的对称点为点C,∴B点坐标为(﹣1,2),C点坐标为(﹣1,﹣2),连AB,BC,AC,AB交y轴于D点,如图,D点坐标为(0,2),∴S△ADO=OD?AD=×2×1=1,S△ABC=BC?AB=×4×2=4,∴=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,∴△ABC的形状为直角三角形.故答案为:;直角三角形.【点评】本题考查了关于原点对称的坐标特点:点P(a,b)关于原点的对称点P′的坐标为(﹣a,﹣b).也考查了关于x轴、y轴对称的坐标特点以及三角形的面积公式.15. [阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为(2,1.5).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【考点】平行四边形的性质;坐标与图形性质;矩形的性质.【专题】几何综合题;压轴题.【分析】(1)根据矩形的对角线互相平分及点E的坐标即可得出答案.(2)根据题意画出图形,然后可找到点D的坐标.【解答】解:(1)M(,),即M(2,1.5).(2)如图所示:根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵以点A、B、C、D构成的四边形是平行四边形,①当AB为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴BC=,∴AD=,∵﹣1+3﹣1=1,2+1﹣4=﹣1,∴D点坐标为(1,﹣1),②当BC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AC=2,BD=2,D点坐标为(5,3).③当AC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AB==,∴CD=,D点坐标为:(1﹣3﹣1,4﹣1+2),即(﹣3,5),(5,3).综上所述,符合要求的点有:D'(1,﹣1),D″(﹣3,5),D″′【点评】本题考查了平行四边形的性质及矩形的性质,关键是掌握已知两点求其中点坐标的方法.。
一次函数练习题(含答案)
一次函数练习题(含答案)1.已知x+3与y成正比例,并且当x=1时,y=8.则y与x之间的函数关系式为(C)y=8x+6.2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过(C)三象限。
3.直线y=-2x+4与两坐标轴围成的三角形的面积是(B)6.4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2.如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为(A)y1>y2.5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是(D)。
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第(A)一象限。
7.一次函数y=kx+2经过点(1,1),那么这个一次函数(B)y随x的增大而减小。
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在(C)第三象限。
9.要得到y=-33x-4的图像,可把直线y=-x/2向下平移4个单位。
10.若函数y=(m-5)x+(4m+1)x^2(m为常数)中的y与x 成正比例,则m的值为(A)m>-11.11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(B)-1<k<1.12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5.这样的直线可以作(B)3条。
13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是(A)-4<a<0.1.根据函数图像回答问题:XXX到达离家最远的地方需要几小时?此时离家多远?求XXX出发两个半小时离家多远?求XXX出发多长时间距家12千米?2.已知一次函数的图像,交x轴于A(-6,0),交正比例函数的图像于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式。
一次函数题30道计算题
一次函数题30道计算题1. 已知一次函数 y = 2x - 3,求当 x = 5 时,y 的值。
2. 已知一次函数 y = 4x + 1,求当 x = -2 时,y 的值。
3. 已知一次函数 y = 3x + 2,求当 x = 0 时,y 的值。
4. 已知一次函数 y = -x + 7,求当 x = 3 时,y 的值。
5. 已知一次函数 y = 5x - 9,求当 x = -1 时,y 的值。
6. 已知一次函数 y = -2x + 4,求当 x = -3 时,y 的值。
7. 已知一次函数 y = 6x + 5,求当 x = 2 时,y 的值。
8. 已知一次函数 y = 2x + 3,求当 x = -4 时,y 的值。
9. 已知一次函数 y = -3x + 2,求当 x = 1 时,y 的值。
10. 已知一次函数 y = 4x - 5,求当 x = 0 时,y 的值。
11. 已知一次函数 y = 3x + 1,求当 y = 7 时,x 的值。
12. 已知一次函数 y = -2x + 5,求当 y = -3 时,x 的值。
13. 已知一次函数 y = 5x - 4,求当 y = 11 时,x 的值。
14. 已知一次函数 y = 2x + 3,求当 y = -1 时,x 的值。
15. 已知一次函数 y = -4x + 6,求当 y = 2 时,x 的值。
16. 已知一次函数 y = 6x - 5,求当 y = -7 时,x 的值。
17. 已知一次函数 y = -3x + 2,求当 y = -1 时,x 的值。
18. 已知一次函数 y = 4x - 3,求当 y = 9 时,x 的值。
19. 已知一次函数 y = -2x + 7,求当 y = 1 时,x 的值。
20. 已知一次函数 y = -5x + 6,求当 y = 3 时,x 的值。
21. 求一次函数 y = 2x - 3 在 x = 2 和 x = 5 之间的变化量。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
(完整版)一次函数经典题型+习题(精华,含答案),推荐文档
题型一、点的坐标一次函数则MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A, 0), B(x B, 0) 的距离为x A-x B;若AB∥y 轴,则A(0, y A), B(0, y B) 的距离为y A-y B;点B(2,-2)到x 轴的距离是;到y 轴的距离是;1、点C(0,-5)到x 轴的距离是;到y 轴的距离是;到原点的距离是;2、点D(a,b)到x 轴的距离是;到y 轴的距离是;到4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y 叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。
一次函数的解析式专项练习30题(含答案解析)
∴函数解析式为y= x﹣6;
②当k<0时,函数值随x增大而减小,
∴当x=﹣2时,y=9,x=6时,y=﹣11,
∴ 解得 ,
∴函数解析式为y=﹣ x+4.
因此,函数解析式为y= x﹣6或y=﹣ x+4
19.设一次函数解析式为y=kx+b,根据题意
①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,
20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.
(1)求直线AB和直线MN的函数解析式;
(2)求直线MN与两坐标轴围成的三角形面积.
21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.
22.如果y+2与x+1成正比例,当x=1时,y=﹣5.
∴k=3,
∴y=6x+5.
12.设y=k(x﹣1),
把x=﹣5,y=2代入,得2=(﹣5﹣1)k,
解得 .
所以y与x之间的函数关系式是
13.设过点A,B的一次函数的解析式为y=kx+b,
则m= k+b,﹣1= k+b,
两式相减,得m+1= k+ k,即m+1= (m+1),
∵m≠﹣1,则k=2,
∴b=m﹣1,
30.已知:关于x的一次函数y=(2m﹣1)x+m﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.
(1)求这个函数的解析式.
(2)求直线y=﹣x和(1)中函数的图象与x轴围成的三角形面积.
一次函数的解析式30题参考答案:
1.(1)设直线AB解析式为y=kx+b,
一次函数专项训练题
一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。
A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。
答案是C。
2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。
答案是C。
二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。
解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。
2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。
解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。
三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。
解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。
所以这个一次函数的解析式为y = 3x + 11。
2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。
解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。
即2m - 1<0 且 3 - 2m>0。
解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。
综合起来,m 的取值范围是m<1/2。
3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。
一次函数专项练习(经典题型收集)
1 / 8一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。
2.y x=x 的取值X 围是。
3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。
4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。
5.函数224y mx m =+-的图象经过原点,如此m=。
6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。
8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。
10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。
一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。
2.y x=x 的取值X 围是。
3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。
4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。
5.函数224y mx m =+-的图象经过原点,如此m=。
6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。
8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。
10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。
2 / 8一次函数练习〔二〕1.假如(1)ny n x =-是正比例函数,如此n=。
2.23(21)my m x -=-是正比例函数,且y 随x 的增大而减小,如此这个函数的解析式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数专项练习题题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质方法:☆一次函数y=kx+b (k≠0)中k 、b 的意义:k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系:当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:X 轴 : 直线 Y 轴 : 直线与X 轴平行的直线 与Y 轴平行的直线一、 三象限角平分线 二、四象限角平分线1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。
6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。
5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。
题型六、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=-x-2向右平移2个单位得到直线3. 直线y=21x 向右平移2个单位得到直线4. 直线y=223+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线7. 直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
8. 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;12.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB 求两个函数的解析式;(2)求△AOB 的面积;第2题 第3题 第4题 第5题3、 已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y轴的交点是D 、C ;(1) 分别写出两条直线解析式,并画草图;(2)计算四边形ABCD 的面积;(3)若直线AB 与DC 交于点E ,求△BCE 的面积。
4、 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP的面积为6;(1)求△COP 的面积;(2)求点A 的坐标及p 的值;(3)若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。
5、已知:经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直线经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D (1)求直线的解析式; (2)若直线与交于点P ,求的值。
6. 如图,已知点A (2,4),B (-2,2),C (4,0),求△ABC 的面积。
7、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
第6题 第7题 第8 第9 8、如图,一次函数y=(m -1)x+3的图像与x 轴的负半轴相交于点A ,与y 轴相交于点B ,且△OAB 面积为9/4.(1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP=2OA ,求直线BP 的函数表达式 .(3)求这两个函数图像与轴所围成的△AOC 的面积.9、如图,直线l 1:y=kx+b 与x 轴交于点B (1,0),直线l 2:y=0.5x+1与y 轴交于点C ,这两条直线交于A (2,a ).(1)直接写出a 的值;(2)求点C 的坐标;(3)求直线l 1的表达式;(4)求四边形ABOC 的面积.10、已知y -2与x 成正比,且当x=1时,y= -6 (1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值11、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12x 的图象相交于点(2,a),求(1)a 的值(2)k ,b 的值 (3)这两个函数图象与x 轴所围成的三角形的面积。
12、已知函数y=(2m+1)x+m -3(1)若函数图象经过原点,求m 的值(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围。