热点专题9二次函数综合专题(1)-2020年《三步冲刺中考·数学》之热点专题冲刺(广东专用)(解析版)
2020年九年级数学中考三轮冲刺:《二次函数综合训练》(含解析)
中考三轮冲刺:《二次函数综合训练》1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.解:(1)将A(﹣3,0)、B(2,0)、C(0,3)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x+3;(2)①将E(m,2)代入y=﹣x+3中,得﹣m+3=0,解得m=﹣2或1(舍去),∴E(﹣2,2),∵A(﹣3,0)、B(2,0),∴AB=5,AE=,BE=2,∴AB2=AE2+BE2,∴∠AEB=∠DOB=90°,∴∠EAB+∠EBA=∠ODB+∠EBA=90°,∴∠EAB=∠ODB,(Ⅰ)当△FEA∽△BOD时,∴∠AEF=∠DOB=90°,∴F与B点重合,∴EF=BE=2,(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为2或2;②点H的坐标为(﹣,)或(﹣,),(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=x+3,∴P(﹣6,0),∴EP=EB=2,∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH=∠APE=∠EBA=∠CHN=∠MGH,∴GC∥PB,又C(0,3),∴G点的纵坐标为3,代入y=﹣x+3中,得:x=﹣1或0(舍去),∴MN=1,∵∠AEB=90°,AE=,BE=2,∴tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,∴MH+HN=2m+m=1,解得,m=,∴H点的橫坐标为﹣,代入y=x+3,得:y=,∴点H的坐标为(﹣,).(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,∴CN∥PB,∴∠NCH=∠APE,由(Ⅰ)知:∠APE=∠EBA,则∠NCH=∠EBA,∵∠GMN=∠CNH=90°,又∠GHC=90°,∴∠HCN+∠NHC=∠MHG+∠NHC=90°,∴∠HCN=∠MHG,∵∠GCH=∠EBA,∴∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,∵∠NCH=∠MHG,∠N=∠M,∴△HMG∽△CNH,∴,∴NH=2a,CN=4a,又C(0,3),∴G(﹣3a,3﹣4a),代入y=﹣x+3中,得,a=或0(舍去),∴CN=,∴H点的橫坐标为﹣,代入y=x+3,得,y=.∴点H的坐标为(﹣).综合以上可得点H的坐标为(﹣,)或(﹣).2.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(﹣1,0),B(3,0)两点,点C为抛物线的顶点.点M(0,m)为y轴上的动点,将抛物线绕点M旋转180°,得到新的抛物线,其中B、C旋转后的对应点分别记为B'、C′.(1)若原抛物线经过点(﹣2,5),求原抛物线的函数表达式;(2)在(1)条件下,当四边形BCB'C′的面积为40时,求m的值;(3)探究a满足什么条件时,存在点M,使得四边形BCB'C′为菱形?请说明理由.解:(1)由题意得:,解得,∴原抛物线的函数表达式为:y=x2﹣2x﹣3;(2)连接CC′、BB′,延长BC,与y轴交于点E,∵二次函数y=x2﹣2x﹣3的顶点为(1,﹣4),∴C(1,﹣4),∵B(3,0),∴直线BC的解析式为:y=2x﹣6.∴E(0,﹣6),∵抛物线绕点M旋转180°,∴MB=MB′,MC=MC′,∴四边形BCB′C′是平行四边形,∴S△BCM=×40=10,∵S△BCM =S△MBE﹣S△MCE=×(3﹣1)×ME=ME,∴ME=10,∴m=4或m=﹣16;(3)如图,过点C作CD⊥y轴于点D,当平行四边形BCB'C′为菱形时,应有MB⊥MC,故点M在O、D之间,当MB⊥MC时,△MOB∽△CDM,∴=,即MO•MD=BO•CD.∵二次函数y=a(x+1)(x﹣3)的顶点为(1,﹣4a),M(0,m),B(3,0),∴CD=1,MO=﹣m,MD=m+4a,OB=3,∴﹣m(m+4a)=3,∴m2+4am+3=0,∵△=16a2﹣12≥0,a>0,∴a≥.所以a≥时,存在点M,使得四边形BCB'C′为菱形.3.已知抛物线y=﹣x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC 上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.解:(1)∵抛物线y=﹣x2+bx+c经过点A(4,3),对称轴是直线x=2,∴,解得:,∴抛物线的函数表达式为:y=﹣x2+x+3,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则,解得:,∴直线BE的函数表达式为:y=x+,令y=x+=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S=OC•AC=3×4=12,矩形ACODS=(OM+EC)•OC=(4m﹣6+m)×3=,梯形ECOM分两种情况:①=,即=,解得:m=,∴点E的坐标为:(,3);②=,即=,解得:m=,∴点E的坐标为:(,3);综上所述,点E的坐标为:(,3)或(,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣a2+a+3),则NF=3﹣(﹣a2+a+3)=a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴=,即=,整理得:a2+a=0,解得:a=﹣或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为.4.抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y =x +k 的图象经过点B 、C . (1)试求二次函数及一次函数的解析式;(2)如图1,点D (2,0)为x 轴上一点,P 为抛物线上的动点,过点P 、D 作直线PD 交线段CB 于点Q ,连接PC 、DC ,若S △CPD =3S △CQD ,求点P 的坐标;(3)如图2,点E 为抛物线位于直线BC 下方图象上的一个动点,过点E 作直线EG ⊥x 轴于点G ,交直线BC 于点F ,当EF +CF 的值最大时,求点E 的坐标.解:(1)∵抛物线y =ax 2+bx ﹣5的图象与y 轴交于点C , ∴C (0,﹣5),∵一次函数y =x +k 的图象经过点B 、C , ∴k =﹣5, ∴B (5,0),设抛物线的解析式为y =a (x +1)(x ﹣5)=ax 2﹣4ax ﹣5a , ∴﹣5a =﹣5, ∴a =1,∴二次函数的解析式为y =x 2﹣4x ﹣5,一次函数的解析式为y =x ﹣5.(2)①当点P 在直线BC 的上方时,如图2﹣1中,作DH ∥BC 交y 轴于H ,过点D 作直线DT 交y 轴于T ,交BC 于K ,作PT ∥BC 交抛物线于P ,直线PD 交抛物线于Q .∵S △CPD =3S △CQD , ∴PD =3DQ , ∵PT ∥DH ∥BC , ∴===3,∵D (2,0),B (5,0),C (﹣5,0), ∴OA =OB =5,OD =OH =2, ∴HC =3, ∴TH =9,OT =7,∴直线PT 的解析式为y =x +7,由,解得或,∴P (,)或(,),②当点P 在直线BC 的下方时,如图2﹣2中,当点P 与抛物线的顶点(2,﹣9)重合时,PD =9.DQ =3, ∴PQ =3DQ , ∴S △CPD =3S △CQD ,过点P 作PP ′∥BC ,此时点P ′也满足条件, ∵直线PP ′的解析式为y =x ﹣11, 由,解得或,∴P ′(3,﹣8),综上所述,满足条件的点P 的坐标为(,)或(,)或(2,﹣9)或(3,﹣8).(3)设E (m ,m 2﹣4m ﹣5),则F (m ,m ﹣5), ∴EF =(m ﹣5)﹣(m 2﹣4m ﹣5)=5m ﹣m 2,CF =m ,∴EF +CF =﹣m 2+6m =﹣(m ﹣3)2+9,∵﹣1<0, ∴m =3时,EF +CF 的值最大,此时E (3,﹣8).5.如图,直线y=x﹣2与x轴交于点B,y轴交于点A,抛物线y=ax2﹣x+c经过A,B 两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当NA:NM=2:3时,求点M的坐标;(3)在直线AB下方的抛物线上是否存在点P,使得∠PAB=2∠OBA,如果存在这样的点P,请求出点P的坐标,如果不存在,请说明理由.解:(1)直线y=x﹣2与x轴交于点B,与y轴交于点A,令x=0,则y=﹣2,令y =0,则x=4,故点A、B的坐标分别为:(0,﹣2)、(4,0),抛物线过点A,则c=﹣2,将点B的坐标代入抛物线表达式得:16a﹣×4﹣2=0,解得:a=,故抛物线的表达式为:y=x2﹣x﹣2①;(2)设点M(m,m2﹣m﹣2)、而点A(0,﹣2),设直线MA的表达式为:y=kx+b,则,解得:,故直线MA的表达式为:y=(m﹣)x﹣2,令y=0,则x=,∴点N(,0),过点M作MH⊥x轴于点H,∵MH∥OA,∴,当=时,则=,即:=,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)存在,理由:由(1)知,点A、B的坐标分别为:(0,﹣2)、(4,0),则tan∠OBA===,过点A作AH∥x轴交抛物线于点H,∵AH∥x轴,∴∠BAH=∠OBA,而∠PAB=2∠OBA,∴∠HAP=∠OBA,tan∠HAP=tan∠OBA=,即直线AP水平线AH夹角的正切值为,故设直线AP的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:b′=﹣2,故直线AP的表达式为:y=﹣x﹣2②,联立①②并解得:x=0或2(舍去0),当x=2时,y=﹣x﹣2=﹣3,故点P的坐标为:(2,﹣3).6.如图,抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)两点,与y轴交于点C,D为y 轴上一点,点D关于直线BC的对称点为D′.(1)求抛物线的解析式;(2)当点D在x轴上方,且△OBD的面积等于△OBC的面积时,求点D的坐标;(3)当点D'刚好落在第四象限的抛物线上时,求出点D的坐标;(4)点P在抛物线上(不与点B、C重合),连接PD、PD′、DD′,是否存在点P,使△PDD′是以D为直角顶点的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)∴解得,∴抛物线解析式为:y=x2﹣3x﹣4;(2)∵抛物线y=x2﹣3x﹣4与y轴交于点C,∴点C(0,﹣4),∴OC=4,设点D(0,y)(y>0)∵△OBD的面积等于△OBC的面积,∴×OB×y=OB×4,∴y=4,∴点D(0,4)(3)∵OB=OC=4,∴∠OCB=45°,∵点D关于直线BC的对称点为D′.∴∠DCB=∠D'CB=45°,CD=CD',∴∠DCD'=90°,∴CD'∥OB,∴点D'的纵坐标为﹣4,∴﹣4=x2﹣3x﹣4,∴x1=0(舍去),x2=3,∴CD=CD'=3,∴点D(0,﹣1)(4)若点D在点C上方,如图1,过点P作PH⊥y轴,∵∠DCD'=90°,CD=CD',∴∠CDD'=45°,∵∠D'DP=90°∴∠HDP=45°,且PH⊥y轴,∴∠HDP=∠HPD=45°,∴HP=HD,∵∠CDD'=∠HDP,∠PHD=∠DCD'=90°,DP=DD',∴△DPH≌△DD'C(AAS)∴CD=CD'=HD=HP,设CD=CD'=HD=HP=a,∴点P(a,﹣4+2a)∴a2﹣3a﹣4=﹣4+2a,∴a=5,a=0(不合题意舍去),∴点P(5,6)若点D在点C下方,如图2,∵DD'=DP,∠DCD'=90°,∴CD=CP,∠DCP=∠COB,∴CP∥AB,∴点P纵坐标为﹣4,∴﹣4=x2﹣3x﹣4,∴x1=0(舍去),x2=3,∴点P(3,﹣4)综上所述:点P(5,6)或(3,﹣4).7.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=,∵点A与点B关于对称轴x=对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=时,y=﹣5,∴点D的坐标为(,﹣5);(3)如图2,连接OE , 设点E (a ,a 2﹣a ﹣6), S △BCE =S △OCE +S △OBE ﹣S △OBC =×6a +×3(﹣a 2+a +6)﹣×3×6 =﹣a 2+a =﹣(a ﹣)2+,根据二次函数的图象及性质可知,当a =时,△BCE 的面积有最大值,此时点E 坐标为(,﹣).8.如图,在平面直角坐标系中,∠ACB =90°,OC =2OB ,tan ∠ABC =2,点B 的坐标为(1,0).抛物线y =﹣x 2+bx +c 经过A 、B 两点. (1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE 最大.①求点P 的坐标和PE 的最大值.②在直线PD 上是否存在点M ,使点M 在以AB 为直径的圆上;若存在,求出点M 的坐标,若不存在,请说明理由.解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴BC=3,C(﹣2,0),在Rt△ABC中,tan∠ABC=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c,得,,解得,b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①将点A(﹣2,6),B(1,0)代入y=kx+b,得,,解得,k=﹣2,b=2,∴直线AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+,根据二次函数的图象及性质可知,当a=﹣时,PE有最大值,∴此时P(﹣,);②∵M在直线PD上,且P(﹣,),设M(﹣,m),∴AM2=()2+(m﹣6)2,BM2=()2+m2,AB2=32+62=45,∵点M在以AB为直径的圆上,此时∠AMB=90°,∴AM2+BM2=AB2,∴()2+(m﹣6)2+()2+m2=45,解得,m1=,m2=,∴M(﹣,)或(﹣,).9.如图,已知抛物线y=ax2+bx﹣5(a≠0)与x轴相交于A、B两点,与y轴相交于C点,对称轴为x=﹣1,直线y=﹣x+3与抛物线相交于A、D两点.(1)求此抛物线的解析式;(2)P为抛物线上一动点,且位于y=﹣x+3的下方,求出△ADP面积的最大值及此时点P的坐标;(3)设点Q在y轴上,且满足∠OQA+∠OCA=∠CBA,求CQ的长.解:(1)∵对称轴为x=﹣1,∴﹣=﹣1,∴b=2a,∴y=ax2+2ax﹣5,∵y=﹣x+3与x轴交于点A(3,0),将点A代入y=ax2+2ax﹣5可得a=;(2)y=x2+x﹣5与y=﹣x+3的交点D(﹣8,11),∴AD=11,设P(m,m2+m﹣5),则过点P与直线y=﹣x+3垂直的直线解析式为y=x+b,将点P代入解析式得到m2+m﹣5=m+b,∴b=m2﹣m﹣5,∴过点P与直线y=﹣x+3垂直的直线解析式为y=x+m2﹣m﹣5,两直线的交点为T(﹣m2+m+4,m2﹣m﹣1),∴TP=|m2+m﹣4|=|(m+)2﹣|,∴当m=﹣时,TP有最小值为,∴P(﹣,﹣),S=11×=;(3)当Q点在y轴正半轴上时,过点Q作AC的垂线交AC延长线于点G,连接QA,由题意可求:OA=3,BO=5,OC=5,∴△BOC是等腰直角三角形,∴∠CBA=45°,∵∠QAG=∠OCA+∠AQO,∠OQA+∠OCA=∠CBA,∴∠QAG=45°,∴△AQG是等腰直角三角形,∴GQ=AG,∵∠OCA=∠QCG,∠QGC=∠AOC,∴△OAC∽△GQC,∴=,在Rt△AOC中,AC=,∴=,∴AG=,∴=,∴=,∴CQ=17;在y轴负半轴上截取OQ'=OQ,连接AQ',则∠OQA=∠OQ'A,∴∠OQ'A+∠OCA=∠OQA+∠OCA=∠CBA=45°,∴Q'也满足题意,此时Q'C=OQ﹣OC=CQ﹣OC﹣OC=17﹣5﹣5=7;综上所述:OQ的长为7或17.10.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.11.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴于A(﹣4,0),B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.①求△ADE面积最大值并写出此时点D的坐标;②若tan∠AED=,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A,则动点Q所经过的路径长等于2(直接写出答案)解:(1)将A(﹣4,0),B(2,0)代入y=ax2+bx+6(a≠0),可得a=﹣,b=﹣,∴y=﹣x2﹣x+6;(2)①∵A(﹣4,0),E(0,﹣2),设D(m,﹣m2﹣m+6),过点D作DK⊥y轴交于点K;K(0,﹣m2﹣m+6),S△ADE =S梯形DKOA+S△AOE﹣S△KED=×(KD+AO)×OK+×AO×OE﹣×KD×KE=(﹣m+4)×(﹣m2﹣m+6)+×4×2﹣×(﹣m)×(2﹣m2﹣m+6)=﹣(m+)2+,当m=﹣时,S△ADE的面积最大,最大值为,此时D点坐标为(﹣,);②过点A作AN⊥DE,DE与x轴交于点F,∵tan∠AED=,∴AN=,NE=3,Rt△AFN∽Rt△EFO,∴=,∵EF2=OF2+4,∴NF=3﹣EF,∴=,∴OF=2,∴F(﹣2,0),∴EF直线解析式为y=﹣x﹣2,∴﹣x﹣2=﹣x2﹣x+6时,x=,∴D(,);(3)∵Q点随P点运动而运动,P点在线段AC上运动,∴Q点的运动轨迹是线段,当P点在A点时,Q(﹣4,﹣4),当P点在C点时,Q(﹣6,6),∴Q点的轨迹长为2,故答案为2.12.如图1,已知抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B (6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P是抛物线上的动点,若在此抛物线上有且只有三个P点使得△PAB的面积是定值S,求这三个点的坐标及定值S.(3)若点F是抛物线对称轴上的一点,点P是(2)中位于直线AB上方的点,在抛物线上是否存在一点Q,使得P、Q、B、F为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存请说明理由.解:(1)∵抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).∴∴∴抛物线解析式为:y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴顶点坐标为(2,8)(2)∵点A(0,6),点B(6,0),∴直线AB解析式y=﹣x+6,当x=2时,y=4,∴点D(2,4)如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设直线PC解析式为y=﹣x+b,∴﹣x2+2x+6=﹣x+b,且只有一个交点,∴△=9﹣4××(b﹣6)=0∴b=,∴直线PC解析式为y=﹣x+,∴当x=2,y=∴点C坐标(2,),∴CD=∵﹣x2+2x+6=﹣x+,∴x=3,∴点P(3,)∵在此抛物线上有且只有三个P点使得△PAB的面积是定值S,∴另两个点所在直线与AB,PC都平行,且与AB的距离等于PC与AB的距离,∴DE=CD=,∴点E(2,﹣),设P'E的解析式为y=﹣x+m,∴﹣=﹣2+m,∴m=∴P'E的解析式为y=﹣x+,∴﹣x2+2x+6=﹣x+,∴x=3±3,∴点P'(3+3,﹣﹣3),P''(3﹣3,﹣+3),∴S=×6×(﹣3)=.(3)设点Q(x,y)若PB是对角线,∵P、Q、B、F为顶点的四边形是平行四边形∴BP与FQ互相平分,∴∴x=7∴点Q(7,﹣);若PB为边,∵P、Q、B、F为顶点的四边形是平行四边形,∴BF∥PQ,BF=PQ,或BQ∥FP,BQ=PF,∴x B﹣x F=x P﹣x Q,或x B﹣x Q=x P﹣x F,∴x Q=3﹣(6﹣2)=﹣1,或x Q=6﹣(3﹣2)=5,∴点Q(﹣1,)或(5,);综上所述,点Q(7,﹣)或(﹣1,)或(5,).13.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a1=,a2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).如图2,过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.14.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.解:(1)∵抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),∴解得:∴抛物线解析式为y=x2﹣6x+5=(x﹣3)2﹣4,∴顶点C坐标为(3,﹣4);(2)∵点A关于抛物线对称轴x=3的对应点为点D,∴点D的坐标(4,﹣3),∴OD=5,如图1,过O作OG⊥BD于G,∵点B(5,0),∴OB=OD,∴DG=BG=BD==,∴OG===,∴tan∠ODB===3;(3)如图2,∵抛物线y=x2+bx+c向上平移t(t>0)个单位,∴E(3,﹣4+t),F(5,t),∵BE=BF,B(5,0),∴(3﹣5)2+(﹣4+t)2=(5﹣5)2+t2,t=.15.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为y=|x2﹣4x|﹣3;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:函数关于x=2对称;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=1;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x ﹣3的解集:0或3≤x≤5.解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为y=|x2﹣4x|﹣3.(2)如图:函数关于x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5,故答案为0或3≤x≤5.16.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)的顶点为A (﹣2,0),且经过点B (﹣5,9),与y 轴交于点C ,连接AB ,AC ,BC . (1)求该抛物线对应的函数表达式;(2)点P 为该抛物线上点A 与点B 之间的一动点. ①若S △PAB =S △ABC ,求点P 的坐标.②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M .连接BP 并延长,交AD 于点N .试说明DN (DM +DB )为定值.解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的顶点为A (﹣2,0), ∴设抛物线的解析式为y =a (x +2)2,将点B (﹣5,9)代入y =a (x +2)2中,得,9=a (﹣5+2)2, ∴a =1,∴抛物线的解析式为y =(x +2)2=x 2+4x +4;(2)①如图①,由(1)知,抛物线的解析式为y=x2+4x+4,∴C(0,4),∵B(﹣5,9),∴直线BC的解析式为y=﹣x+4,过点A作AH∥y轴,交直线BC于H,过P作PG∥y轴,交直线BA于HG,∵A(﹣2,0),∴H(﹣2,6),∴S△ABC=AH×(x C﹣x B)=×6×5=15,∵S△PAB =S△ABC,∴S△PAB=×15=3,∵A(﹣2,0),B(﹣5,9),∴直线AB的解析式为y=﹣3x﹣6设点P(p,p2+4p+4),∴G(p,﹣3p﹣6),∴S△PAB=PG×(x A﹣x B)=[﹣3p﹣6﹣(p2+4p+4)]×(﹣2+5)=3,∴p=﹣3或p=﹣4,∴P(﹣3,1)或(﹣4,4);②如图②,∵BD⊥x轴,且B(﹣5,9),∴D(﹣5,0),设直线BN的解析式为y=k(x+5)+9①,令y=0,则k(x+5)+9=0,∴x=﹣=﹣5﹣,∴N(﹣5﹣,0),∴DN=﹣5﹣+5=﹣,∵点A(﹣2,0),∴设直线AM的解析式为y=k'(x+2)②,当x=﹣5时,y=﹣3k',∴M(﹣5,﹣3k'),∴DM=﹣3k',联立①②得,解得,,∴P(﹣2﹣3×,﹣3k'×),∵点P在抛物线y=(x+2)2上,∴(﹣2﹣3×+2)2=﹣3k'×,∴,∴k=k'﹣3,∴DN(DM+DB)=﹣(﹣3k'+9)=27×(k'﹣3)=27××k=27;即:DN(DM+DB)为定值27.17.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4=ax2+2ax+a+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;(3)①设点D、G、H的坐标分别为:(x,﹣x2﹣2x+3)、(x,2x+6)、(x,x+3),DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3;当DG=HK时,﹣x2﹣4x﹣3=x+3,解得:x=﹣2或﹣3(舍去﹣3),故x=﹣2,当x=﹣2时,DG=HK=GH=1,故DG、GH、HK这三条线段相等时,点D的坐标为:(﹣2,3);②CG==;AE==2,故AE=2CG.18.已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C 点.(1)求抛物线的解析式;(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y =t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.解:(1)抛物线y=ax2﹣2ax+3的对称轴为x=1,又AB=4,由对称性得A(﹣1,0)、B(3,0).把A(﹣1,0)代入y=ax2﹣2ax+3,得a+2a+3=0,∴a=﹣1.∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,过M作GH⊥x轴,PG∥x轴,NH∥x轴,由PM=MN,则△PMG≌△NMH(AAS),∴PG=NH,MG=MH.设M(m,﹣m2+2m+3),则N(2m,﹣4m2+4m+3),∵P(0,b),GM=MH,∴y G+y H=2y M,即b+(﹣4m2+4m+3)=2(﹣m2+2m+3),∴2m2=b﹣3,∵b>3,∴关于m的方程总有两个不相等的实数根,此即说明了点M、N存在,并使得PM=MN.证毕;(3)图象翻折前后如右图所示,其顶点分别为D(1,4)、D′(1,2t﹣4).①当D′在点H(4,﹣5)上方时,2t﹣4≥﹣5,∴t≥﹣,此时,m=t,n=﹣5,∵m﹣n≤6,∴t+5≤6,∴t≤1,∴﹣≤t≤1;②当点D′在点H(4,﹣5)下方时,同理可得:t<﹣,m=t,n=2t﹣4,由m﹣n≤6,得t﹣(2t﹣4)≤6,∴t≥﹣2,∴﹣2≤t<﹣.综上所述,t的取值范围为:﹣2≤t≤1.19.如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.解:(1)点C(0,),则直线y=﹣x+n=﹣x+,则点B(3,0),则抛物线的表达式为:y=a(x﹣3)(x+2)=a(x2﹣x﹣6),故﹣6a=,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+…①;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,则∠HPG=∠CBA=α,tan∠CBA===tanα,则cosα=,设点P(m,﹣m2+m+),则点G(m,﹣m+),则PH=PG cosα=(﹣m2+m++m﹣)=﹣m2+m;(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(1,);②当点Q在x轴下方时,(Ⅰ)当∠BAQ=∠CAB时,△QAB∽△BAC,则=,由勾股定理得:AC=,AQ===10,过点Q作QH⊥x轴于点H,由△HAQ∽△OAC得:==,∵OC=,AQ=10,∴QH=6,则AH=8,OH=8﹣2=6,∴Q(6,﹣6);该点在抛物线上;根据点的对称性,当点Q在第三象限时,符合条件的点Q(﹣5,﹣6);故点Q的坐标为:(6,﹣6)或(﹣5,﹣6);(Ⅱ)当∠BAQ=∠CBA时,则直线AQ∥BC,直线BC表达式中的k为:﹣,则直线AQ的表达式为:y=﹣x﹣1…②,联立①②并解得:x=5或﹣2(舍去﹣2),故点Q(5,﹣),=,而=,故≠,即Q,A,B为顶点的三角形与△ABC不相似,故舍去,Q的对称点(﹣4,﹣)同样也舍去,即点Q的为:(﹣4,﹣)、(5,﹣)均不符合题意,都舍去;综上,点Q的坐标为:(1,)或(6,﹣6)或(﹣5,﹣6).20.如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB 的面积为2d,求点P的坐标.解:(1)∵四边形ABCD是矩形,∴CD=AO=2,∠AOC=90°,且∠CAO=60°,OA=2,∴OC=2,∴点C(0,2),点D(﹣2,2),设抛物线解析式为y=a(x+1)2+c,代B(2,0),C(0,2)∴解得:∴抛物线解析式为y=﹣(x+1)2+=,(2)∵M为AC中点,∴MA=MD,∵△PAM≌△PDM,∴PA=PD,∴点P在AD的垂直平分线上∴点P纵坐标为,∴∴x1=﹣1+,x2=﹣1﹣∴点P(﹣1+,)或(﹣1﹣,)(3)如图2,∵AO=BO=2,CO⊥AB,∴AC=BC=4,∠CAO=60°,∴△ACB是等边三角形,由题意可得:CM=2t﹣4,BF=(8﹣2t)=4﹣t,MF=4﹣t,AF=t.∵四边形AEMF是矩形,∴AE=MF,EM=AF,EM∥AB,∴∠CMH=∠CBA=60°,∠CHM=∠CAO=60°,∴△CMH是等边三角形,∴CM=MH=2t﹣4,∵S=(2t﹣4+t)(4﹣t)=﹣(t﹣)2+当t=时,S最大=,(4)∵S△ABP=4×d=2d,又S△BPQ=2d∴S△ABP =S△BPQ,∴AQ∥BP设直线AC解析式为y=kx+b,把A(﹣2,0),C(0,2)代入其中,得∴∴直线AC解析式为:y=x+2,设直线BP的解析式为y=x+n,把B(2,0)代入其中,得0=2+n,∴b=﹣2∴直线BP解析式为:y=x﹣2,∴=x﹣2,∴x1=2(舍去),x2=﹣8,∴P(﹣8,).。
2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)
三轮冲刺复习培优同步练习:《二次函数综合》1.如图1,二次函数y=﹣x2+bx+c的图象过A(5,0)和B(0,)两点,射线CE绕点C(0,5)旋转,交抛物线于D,E两点,连接AC.(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接OE,AE,当△CEO是以CO为底的等腰三角形时,求点E的坐标和△ACE的面积;(3)如图2,射线CE旋转时,取DE的中点F,以DF为边作正方形DFMN.当点E和点A 重合时,正方形DFMN的顶点M恰好落在x轴上.①求点M的坐标;②当点E和点A重合时,将正方形DFMN沿射线CE方向以每秒个单位长度平移.设运动时间为t秒.直接写出正方形DFMN落在x轴下方的面积S与时间t(0≤t≤4)的函数表达式.2.如图,抛物线L:y=﹣(x﹣t)2+t+2,直线l:x=2t与抛物线、x轴分别相交于Q、P.(1)t=1时,Q点的坐标为;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数为.3.定义:把函数C1:y=ax2﹣6ax+5a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴为直线x=h.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)填空:h的值为(用含m的代数式表示);(2)若a=1,m=1,当t﹣1≤x≤t时,函数C2的最大值为y1,最小值为y2,且y1﹣y2=3,求t的值;(3)当m=2时,C2的图象与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点D.把线段BD绕原点O顺时针旋转90°,得到它的对应线段B′D′.若线段B′D′与C2的图象有公共点,结合函数图象,求a的取值范围.4.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(4,0),点C坐标为(0,4),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=2∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBGH,随着点P的运动,正方形的大小、位置也随着改变,当顶点G或H恰好落在y轴上时,请直接写出点P的横坐标.6.已知点P 为抛物线y =x 2上一动点,以P 为顶点,且经过原点O 的抛物线,记作“y p ”,设其与x 轴另一交点为A ,点P 的横坐标为m .(1)①当△OPA 为直角三角形时,m = ;②当△OPA 为等边三角形时,求此时“y p ”的解析式;(2)若P 点的横坐标分别为1,2,3,…n (n 为正整数)时,抛物线“y p ”分别记作“”、“”…,“”,设其与x 轴另外一交点分别为A 1,A 2,A 3,…A n ,过P 1,P 2,P 3,…P n 作x 轴的垂线,垂足分别为H 1,H 2,H 3,…H n .1)①P n 的坐标为 ;OA n = ;(用含n 的代数式来表示)②当P n H n ﹣OA n =16时,求n 的值.2)是否存在这样的A n ,使得∠OP 4A n =90°,若存在,求n 的值;若不存在,请说明理由.7.如图,二次函数y =﹣x 2+2(m ﹣2)x +3的图象与x 、y 轴交于A 、B 、C 三点,其中A (3,0),抛物线的顶点为D .(1)求m 的值及顶点D 的坐标;(2)如图1,若动点P 在第一象限内的抛物线上,动点N 在对称轴1上,当PA ⊥NA ,且PA =NA 时,求此时点P 的坐标;(3)如图2,若点Q 是二次函数图象上对称轴右侧一点,设点Q 到直线BC 的距离为d ,到抛物线的对称轴的距离为d 1,当|d ﹣d 1|=2时,请求出点Q 的坐标.8.如图,抛物线y =x 2﹣ax +a ﹣1与x 轴交于A ,B 两点(点B 在正半轴上),与y 轴交于点C ,OA =3OB .点P 在CA 的延长线上,点Q 在第二象限抛物线上,S △PBQ =S △ABQ .(1)求抛物线的解析式.(2)求直线BQ 的解析式.(3)若∠PAQ =∠APB ,求点P 的坐标.9.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.10.如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x 轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1)求抛物线的解析式;(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值;(3)当﹣1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.11.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B、C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值;(2)连接OF,求△OEF的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.13.如图1,已知抛物线y=ax2+bx+c的顶点为P(1,9),与x轴的交点为A(﹣2,0),B.(1)求抛物线的解析式;(2)M为x轴上方抛物线上的一点,MB与抛物线的对称轴交于点C,若∠COB=2∠CBO,求点M的坐标;(3)如图2,将原抛物线沿对称轴平移后得到新抛物线为y=ax2+bx+h,E,F新抛物线在第一象限内互不重合的两点,EG⊥x轴,FH⊥x轴,垂足分别为G,H,若始终存在这样的点E,F,满足△GEO≌△HOF,求h的取值范围.14.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y 轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,抛物线y=﹣+bx+c的对称轴是直线x=与x轴的交点为点A,且经过点B、C两点.(1)求抛物线的解析式;(2)点M为抛物线对称轴上一动点,当|BM﹣CM|的值最小时,请你求出点M的坐标;(3)抛物线上是否存在点N,过点N作NH⊥x轴于点H,使得以点B、N、H为顶点的三角形与△ABC相似?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标(,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE =45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH 时,请你直接写出此时点Q的坐标.19.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为,点B的坐标为.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.20.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),C(0,2),对称轴为直线x=.(1)求该抛物线和直线BC的解析式;(2)点G是直线BC上方抛物线上的动点,设G点的横坐标为m,试用含m的代数式表示△GBC的面积,并求出△GBC面积的最大值;(3)设R点是直线x=1上一动点,M为抛物线上的点,是否存在点M,使以点B、C、R、M为顶点的四边形为平行四边形,若存在,请直接写出符合条件的所有点M坐标,不存在说明理由.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=﹣x2+2x+①;(2)当△CEO是以CO为底的等腰三角形时,则OC的中点(0,)的纵坐标和点E的纵坐标相同,而点B(0,),即点E、B关于抛物线对称轴对称,∵抛物线的对称轴为直线x=2,故点E的坐标为(4,);△ACE的面积S=S△COE +S△OAE﹣S△AOC=OC•|x E|+OA•|y E|﹣×AO×CO=5×4+×5×﹣×5×5=;(3)①∵OA=OC=5,∴∠CAO=45°,∵对角线DM与AC的夹角为45°,∴∠DMA=90°,即DM⊥x轴,即点D、M的横坐标相同,由A、C的坐标得:直线AC的表达式为:y=﹣x+5②,联立①②并解得:x=1或5(舍去5),故x=1,故点D(1,4),∴点M的坐标为(1,0);②设正方形MFDN平移后为M′F′D′N′,如图1,2所示;由A 、D 的坐标得,DA ==4,∵点F 是AD 的中点,故DF =2,即正方形MFDN 的边长为2,∴正方形MFDN 的面积为S 1=(2)2=8;(Ⅰ)当0≤t ≤2时,如图1所示,设M ′F ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,∴MM ′=t =M ′H ,∴S =S △M ′MH =MM ′•M ′H =(t )2=t 2;(Ⅱ)当2<t ≤4时,如图2所示,设N ′D ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,则DD ′=t ,∴AD ′=AD ﹣DD ′=4﹣t =HD ′,∴S =S 1﹣S △AD ′H =8﹣×AD ′×HD ′=8﹣×(4﹣t )=﹣t 2+8t ﹣8,综上,S =.2.解:(1)当t =1时,x =2t =2, 当x =2时,y =﹣(2﹣1)2+1+2=2, 故点Q 的坐标为(2,2), 故答案为(2,2);(2)点P 、Q 的坐标分别为:(2t ,0)、(2t ,﹣t 2+t +2), 当P 、Q 两点重合时,﹣t 2+t +2=0,解得:t =﹣1或2;(3)当Q 点达到最高时,点Q (t ,t +2),由(2)知函数的对称轴为x=(2﹣1)=,故点Q(,),故抛物线的表达式为:y=﹣(x﹣)2+;(4)①当t=1时,如图1,抛物线表达式为:y=﹣(x﹣1)2+3,令y=0,则x=1,“可点”的个数如图黑点所示,有6个;②当t=2时,抛物线的表达式为:y=﹣(x﹣2)2+4,令y=0,则x=0或4,“可点”的个数如图黑点所示,有8个;②当1<t<2时,点Q的坐标为(t,2+t),即抛物线在y=x+2上运动,2AB<4,当L过点(3,0)时,“可点”的个数如图黑点所示,有7个.故“可点”的个数为6或7或8个,故答案为:6或7或8.3.解:(1)y=ax2﹣6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m,故h=2m﹣3,故答案为:2m﹣3;(2)a=1,C1:y=x2﹣6x+5=(x﹣3)2﹣4,顶点为(3,﹣4),m=1时,C2的顶点为(﹣1,4),C2:y=﹣(x+1)2+4=﹣x2﹣2x+3,①当t≤﹣1时,y随x的增大而增大,y 1﹣y2=﹣t2﹣2t+3﹣[﹣(t﹣1)2﹣2(t﹣1)+3]=3,解得:t=﹣2;②当t﹣1<﹣1<t时,即﹣1<t<0时,分两种情况:(Ⅰ)当﹣1﹣(t﹣1)≥t﹣(﹣1)时,即﹣1<t≤﹣时,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣t2=3,解得:t=(舍去)(Ⅱ)当﹣1﹣(t﹣1)<t﹣(﹣1)时,即﹣<t<0时,y 1﹣y2=3=4﹣(t2﹣2t+3)=t2+2t+1,解得:t=﹣1(舍去);③当t﹣1≥﹣1时,即t≥0时,y随x的增大而减小,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣[﹣t2﹣2t+3]=3,解得:t=1;综上,t=﹣2或t=1;(3)当m=2时,C:y=ax2﹣6ax+5a=a(x﹣3)2﹣4a,1的表达式为:y=﹣a(x﹣1)2+4a,∴C2当y=0时,x=﹣1或3,当x=0时,y=3a,∴点A、B、D的坐标分别为:(3,0)、(﹣1,0)、(0,3a);∵线段BD绕原点O顺时针旋转90°,∴点B′的坐标为(3,0),点D′的坐标为(3a,0).①当a>0时,分两种情况:(Ⅰ)当点D′在点A的右侧(含点A)时,线段B′D′与C的图象有公共点,如图1,2∴3a≥3,解得a≥1;(Ⅱ)当点D′在点A的左侧,且点D在点B′的下方(含点B′)时,线段B′D′与C2的图象有公共点,如图2,∴3a≤1,∴0<a≤;的图象有公共点,如②当a<0时,点D′在点B的左侧(含点B)时,线段B′D′与C2图3,∴3a≤﹣1,解得:a≤;综上,a≤﹣或0<a≤或a≥1;4.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BCE的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).5.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+4=﹣(x﹣1)2+;(2)如图1,在线段DE上取点M,使MD=MB,此时∠EMB=2∠BDE,设ME=a,在Rt△BME中,ME2+BE2=BM2,即a2+32=(﹣a)2,解得:a=,∴tan∠EMB==,过点F作FN⊥x轴于点N,设点F(m,﹣m2+m+4),则FN=|﹣m2+m+4|,∵∠FBA=2∠BDE,∴∠FBA=∠EMB,∴tan∠FBA=tan∠EMB=,∵点B(4,0)、点E(1,0),∴BE=3,BN=4﹣m,∴tan∠FBA=,解得:m=4(舍去)或﹣或,故点F(﹣,﹣)或(,);(3)①当点P在对称轴右侧时,(Ⅰ)当点H在y轴上时,如图2,∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,∴∠CHP=∠MPB,∵∠BMP=∠PNH=90°,PH=BP,∴△BMP≌△PNH(AAS),∴MB=PC,设点P(x,y),则x=y=﹣x2+x+4,解得:x=(舍去负值),故点P的横坐标为;(Ⅱ)当点G在y轴上时,如图3,过点P作PR⊥x轴于点R,同理可得:△PRB≌△BOG(AAS),∴PR=OB=4,即y P=4=﹣x2+x+4,解得:x=2;②当点P在对称轴左侧时,同理可得:点P的横坐标为0或2﹣;综上,点P的横坐标为或2或0或2﹣.6.解:(1)①当△OPA为直角三角形时,∵PO=PA,故△OPA为以点P为顶点的等腰直角三角形,∴点P的横坐标和纵坐标相同,故点P(m,m),将点P的坐标代入y=x2得:m=m2,解得:m=0或2(舍去0),故答案为2;②当△OPA为等边三角形时,同理可得点P(m,m),将点P的坐标代入抛物线表达式并解得:m=2,故点P的坐标为(2,6),故“y p”的解析式为:y=a(x﹣2)2+6,点A的坐标为(2m,0),即(4,0),将点A的坐标代入y=a(x﹣2)2+6并解得:a=﹣,故“y p”的解析式为:y=﹣(x﹣2)2+6=﹣x2+2x;(2)1)①由题意得:P n 的横坐标为n ,则其坐标为(n ,n 2),则A n =2n , 故答案为:(n ,n 2);2n ;②由题意得:P n H n ﹣OA n =n 2﹣2n =16,解得:n =8或﹣4(舍去﹣4),∴n =8;2)存在,理由:如下图所示,由1)知,点P 4的坐标为(4,8),A n =2n ,即OH 4=4,P 4H 4=8,H 4A n =2n ﹣4,∵∠OP 4A n =90°,∴∠OP 4H 4+∠H 4P 4A n =90°,∵∠H 4P 4A n +∠P 4A n H 4=90°,∴∠OP 4H 4=∠P 4A n H 4,∴Rt △OP 4H 4∽Rt △P 4A n H 4,∴P 4H 42=OH 4•H 4A n ,即82=4×(2n ﹣4),解得:n =10.7.解:(1)将点A 的坐标代入函数表达式得:0=﹣32+2(m ﹣2)×3+3, 解得:m =3,故抛物线的表达式为:y =﹣x 2+2x +3,故点D 的坐标为:(1,4);(2)过点A 作y 轴的平行线交过点N 与x 轴的平行线于点M ,交过点P 与x 轴的平行线于点H ,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NA,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).8.解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ =S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BPA=∠QBP,而∠PAQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠PAQ=∠APB,∴DP=DA,∴PA=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).9.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4①.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)①当点P在BA下方时,如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为:y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8);②当点P(P′)在BA上方时,此时∠P′BA+∠CBO=45°,而∠PBA+∠CBO=45°,故∠P′BA=∠PBA,即BA是∠PBP′的角平分线,∵OA=OB=4,故△ABO为等腰三角形,以BA为对角线作正方形BOAM,设直线BP交边(x轴)OA于点H,直线BP′交AM于点H′,在点H、H′关于AB对称,∴AH=AH′,由①知:直线PB解析式为:y=﹣2x+4,令y=0,则x=3,故点H(2,0),即AH=4﹣2=2=AH′,∴点H′(4,2),由点H′、点B的坐标可得,直线BH′的表达式为:y=﹣x+4②,联立①②并解得:x=3,故点P′(3,);综上,点P的坐标为:(3,)或(6,﹣8).10.解(1)∵在Rt△AOC中,∠AOC=90°,∴OA==3,∴A(3,0),将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中得,解得,,∴抛物线解析式为y=﹣x2+x+4;(2)由A(3,0),C(0,4)可得直线AC解析式为y=﹣x+4,∴M坐标为(m,﹣m+4),∵MG∥BC,∴∠CBO=∠MGE,且∠COB=∠MEG=90°,∴△BCO∽△GME,∴=,即=,∴GE=﹣m+1,∴OG=OE﹣GE=m﹣1,∴S△COM =S梯形COGM﹣S△COG﹣S△GEM=m(﹣m+4+4)﹣4×(m﹣1)×﹣(﹣m+1)(﹣m+4),=﹣m2+m=﹣(m﹣)2+2,∴当m=时,S最大,即S最大=2;(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,∴△PCM的直角顶点可能是P或C,第一种情况:当∠CMP=90°时,如图③,则CP∥x轴,此时点P与点D重合,∴点P(2,4),此时m=2;第二种情况:当∠PCM=90°时,如图④,延长PC 交x 轴于点F ,由△FCA ∽△COA ,得 =, ∴AF =, ∴OF =﹣3=, ∴F (﹣,0),∴直线CF 的解析式为y =x +4,联立直线CF 和抛物线解析式可得,解得,,∴P 坐标为(,),此时m =;综上可知存在满足条件的实数m ,其值为2或. 11.解:(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a .∵点A 位于点B 的左侧,与y 轴的负半轴交于点C ,∴a <0,∴点B 坐标为(1,0).(2)①由(1)可得,点A 的坐标为(a ,0),点C 的坐标为(0,a ),a <0, ∴AB =1﹣a ,OC =﹣a ,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.12.解:(1)∵△ABC为等腰直角三角形,∴AO=BC,∵△ABC面积为4,∴BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴,∴,即a、c的值分别为﹣和2;(2)如图1,连接OF,由(1)可知:y=﹣x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线定点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣(x﹣m)2+m+2,将点C(2,0)代入y=﹣(x﹣m)2+m+2,得﹣(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣x2+6x﹣10,当y=0时,﹣x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF==10,EF==4,∴△OEF的周长为OE+OF+EF=10+10+4=20+4;(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ==2,∴Q(6,2),当P在x轴下方时,如图3,∵△PQE≌△POE,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK==8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,2)或Q(6,3).13.解:(1)∵抛物线y=ax2+bx+c的顶点为P(1,9),∴设该抛物线解析式为y=a(x﹣1)2+9(a≠0),把(﹣2,0)代入抛物线解析式得9a+9=0,a=﹣1,∴y=﹣(x﹣1)2+9=﹣x2+2x+8;(2)令y=0得﹣(x﹣1)2+9=0,x=﹣2,或x=4,∴B(4,0),∴OB=4抛物线对称轴直线x=1与x轴交点为T,如图1,作原点O关于直线x=1的对称点D(2,0),连接CD,则∠CDO=∠COD=2∠CBO,∵∠CDO=∠BCD+∠CBO,∴∠BCD=∠CBO,∴CD=DB=2.∴.∴.∴设直线BM的解析式为y=kx+t,则,解得,.∴直线BM解析式为,与抛物线y=﹣x2+2x+8联立得.∴,.∴,故点M坐标为;(3)如图2,设E(m,n)(m>0,n>0,m≠n),∵△GEO≌△HOF,∴OH=EG=n,FH=OG=m,∴F(n,m),设新抛物线解析式为y=﹣x2+2x+h,把点E,F的坐标代入抛物线的解析式得:m=﹣n2+2n+h,n=﹣m2+2m+h,即h=n2﹣2n+m,h=m2﹣2m+n,∴m2﹣2m+n=n2﹣2n+m,m2﹣n2+3(n﹣m)=0,(m﹣n)(m+n﹣3)=0,∵m≠n,∴m+n=3,m=3﹣n,∵m>0,n>0,m≠n,∴0<n<3且把m=3﹣n代入h=n2﹣2n+m,得.∵0<n<3且.∴.故h的取值范围.14.解:(1)把A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2得到,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)设D(m,m2﹣m﹣2),∵C(0,﹣2),B(4,0),∴直线BC的解析式为y=x﹣2,∴E(m,m﹣2),∴DE=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m,=•DE•OB=﹣m2+4m=﹣(m﹣2)2+4,∴S△BCD∵﹣1<0,∴m=2时,△BDC的面积最大,此时DE=﹣×22+2×2=2.(3)如图3中,连接BC.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(4,0),点C的坐标为(0,﹣2),点A的坐标为(﹣1,0),∴直线BC的解析式为y=x﹣2,直线AC的解析式为y=﹣2x﹣2,设点Q的坐标为(2,n),则过点Q且垂直AC的直线的解析式为y=x+n﹣1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(2﹣0)2+(n﹣0)2=(﹣2)2+(﹣n)2,整理,得:n2﹣3n﹣4=0,解得:n1=﹣1,n2=4,∴点Q的坐标为(2,﹣1)或(2,4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q 的坐标为(2,﹣1)或(2,4).15.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,∴.解这个方程,得.∴该抛物线解析式是y=﹣x2+x+4.∵y=﹣x2+x+4=y=﹣(x﹣)2+.∴这条抛物线的顶点坐标是(,);(2)∵A(﹣3,0),C(4,0),∴OA=3,OB=OC=4,则AB=5,AC=7,CD=2;如图1,连接DQ,由于BD垂直平分PQ,则DP=DQ,得:∠PDB=∠QDB,而AD=AB,得:∠ABD=∠ADB,故∠QDB=∠ABD,得QD∥AB;∴△CDQ∽△CAB,则有:==,∴=.∴PD=DQ=,AP=AD﹣PD=5﹣=,故t=;(3)存在,如图2,连接AQ交对称轴于M,此时MQ+MC为最小,过Q作QN⊥x轴于N,∵DQ∥AB,∴∠QDN=∠BAC,sin∠QDN=sin∠BAC==,∴=,∴QN=,设直线BC的解析式为:y=kx+b,把B(0,4)和C(4,0)代入得:,解得,∴直线BC的解析式为:y=﹣x+4,当y=时,=﹣x+4,x=,∴Q(,),同理可得:AQ的解析式为:y=x+,当x=时,y=×+=,∴M(,).16.解:(1)在直线y=x﹣4,令x=0,则y=﹣4,令y=0,则x=8,∴A(8,0)、B(0,﹣4),将A(8,0)、B(0,﹣4)代入y=x2+bx+c有,解得:;故抛物线的表达式为:y=x2﹣x﹣4;(2)①如图1,过C作CE∥y轴交直线AB于点E,过M作MF∥y轴交直线AB于点F.则CE∥MF,∴,设点M(x,x2﹣x﹣4),∵MF∥y轴交直线AB于点F,直线AB:y=x﹣4,故点F(x,x﹣4),则MF=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,可求得C(﹣2,0),C作CE∥y轴交直线AB于点E,∴E(﹣2,﹣5),CE=5,∴,∴当x=4时,的最小值为;②存在.理由如下:∵C(﹣2,0);B(0,﹣4);A(8,0).∴OC=2,OB=4,OA=8,∵∠CBO+∠ABO=90°,∠CAB+∠ABO=90°,∴∠CBO=∠CAB,又∠ABC=∠BCO=90°,∴△BOC∽△ABC.有∠ABC=∠AOB=90°,又MD⊥AB于D,∴∠BDM=∠ABC=90°,∠BAC<45°.因此在△BMD只能是∠BMD=2∠BAC或∠MBD=2∠BAC.在图2中,取AC中点H,连接BH,可得∠BHO=2∠BAC,OH=OA﹣AH=3,tan∠BHO=,过D作DT⊥y轴于T,过M作MG⊥TD交其延长线于G.∵∠GDM+∠TDB=90°,∠TDB+∠TBD=90°,∴∠GDM=∠TBD,又∵∠DTB=∠MGD=90°,∴△TBD∽△GDM,,又DM⊥AB,tan∠DMB=,tan∠DBM=.当∠BMD=2∠BAC时,则=,当∠MBD=2∠BAC时,则,设点D(a,a﹣4),点M(m2﹣m﹣4)(8>a>0,8>m>0),则点T(0,a﹣4),点G(m,a﹣4),∴DT=a,DG=m﹣a,∴BT=a﹣4﹣(﹣4)=a,当∠BMD=2∠BAC时,,又,∴,解得:m=0或(舍去0),故点M的坐标为(,﹣),如图2,当∠MBD=2∠BAC时,,又,∴,解得:m=0或4(舍去0),故点M(4,﹣6);综合得存在满足条件的点M的坐标为(,﹣)或(4,﹣6).17.解:(1)针对于y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),∵点C在抛物线y=﹣+bx+c上,∴c=2,∴抛物线的解析式为y=﹣+bx+2,∵点B(4,0)在抛物线上,∴﹣8+4b+2=0,∴b=,∴抛物线的解析式为y=﹣+x+2;(2)∵|BM﹣CM|最小,∴|BM﹣CM|=0,∴BM=CM,∴BM2=CM2,设M(,m),∵B(4,0),C(0,2),∴BM2=(4﹣)2+m2,CM2=()2+(m﹣2)2,∴(4﹣)2+m2=()2+(m﹣2)2,∴m=0,∴M(,0);(3)由(1)知,抛物线的解析式为y=﹣+x+2,令y=0,则0=﹣+x+2,∴x=4或x=﹣1,∴A(﹣1,0),∵B(4,0),C(0,2),∴BC2=20,AC2=5,AB2=25,∴CB2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵NH⊥x,∴∠BHN=90°=∠ACB,设N(n,﹣n2+n+2),∴HN=|﹣n2+n+2|,BH=|n﹣4|,∵以点B、N、H为顶点的三角形与△ABC相似,∴①△BHN∽△ACB,∴,∴,∴n=﹣5或n=3或n=4(舍),∴N(﹣5,﹣18)或(3,2),②△BHN∽△BCA,∴,∴,∴n=0或n=4(舍)或n=﹣2,∴N(0,2)或(﹣2,﹣3),即满足条件的点N的坐标为(﹣5,﹣18)或(﹣2,﹣3)或(0,2)或(3,2).18.解:(1)∵抛物线经过A(1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x﹣1)(x﹣3),把C(0,3)代入得到a=1,∴抛物线的解析式为y=x2﹣4x+3,设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x+3,由,解得或,∴E(5,8).故答案为:y=x2﹣4x+3,y=x+3,5,8.(2)如图1中,过点E作EH⊥x轴于H.∵C(0,3),D(﹣3,0),E(5,8),∴OC=OD=3,EH=8,∴∠PDE=45°,CD=3,DE=8,EC=5,当∠CPE=45°时,∵∠PDE=∠EPC,∠CEP=∠PED,∴△ECP∽△EPD,∴=,∴PE2=EC•ED=80,在Rt△EHP中,PH===4,∴把点H向左或向右平移4个单位得到点P,∴P1(1,0),P2(9,0).(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.设Q(t,t2﹣4t+3),由题意点Q只能在点B的右侧的抛物线上,则QH=t2﹣4t+3,BH =t﹣3,AH=t﹣1,∴==t﹣3=,∵∠QHB=∠AHM=90°,∴△QHB∽△AHM,∴∠BQH=∠HAM,∵∠BQH+∠QBH=90°,∠QBH=∠ABN,∴∠HAM+∠ABN=90°,∴∠ANB=90°,∴QN⊥AM,∴当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,在Rt△BHM中,BH===,∴t=3+,∴Q(3+,3+2).19.解:(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),故点A、B的坐标分别为:(﹣1,0)、(3,0),故答案为:(﹣1,0)、(3,0);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,设:D(1,n),点C(0,﹣3m),∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,又∵∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴==,其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,将以上数值代入比例式并解得:m=±,∵m<0,故m=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),∴C(0,﹣3m),CO=﹣3m.∵A(﹣1,0),B(3,0),∴AB=4,∴S2=S△AOC=×1×(﹣3m)=﹣m,设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,BC==3,由面积法得:OM==﹣,∴tan∠COB==﹣m,则cos∠COB=,MB=OB•cos∠COB=,∴S1=S△BOD=×DO×MB=OM×MB=﹣,又S1=S2,∴m2+1=(m<0),故m=﹣.20.解:(1)∵A(﹣1,0),对称轴为直线x=.∴B(4,0),设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;设直线BC的表达式为:y=sx+t,则,解得:,故直线BC的表达式为:y=﹣x+2;(2)设G点坐标(m,﹣m2+m+2),过G作GH∥y轴,交直线BC于H点,则H坐标为(m,﹣m+2),∴△GBC面积S=S△GHC +S△GHB=GH×OB=[﹣m2+m+2﹣(﹣m+2)]×4=﹣m2+4m,∵﹣1<0,故S有最大值,当m=2时,S的最大值为4;(3)设点M的坐标为(m,n),n=﹣m2+m+2,点R(1,s),而点B、C的坐标分别为:(4,0)、(0,2);①当BC为平行四边形的边时,点C向右平移4个单位,向下平移2个单位得到点B,同样点M(R)向右平移4个单位,向下平移2个单位得到点R(M),即m±4=1,解得:m=﹣3或5,故点M的坐标为:(5,﹣3)或(﹣3,2);②当BC为平行四边形的对角线时,由中点公式得:m+1=4,解得:m=3,故点M(3,2),综上,点M的坐标为(5,﹣3)或(﹣3,﹣7)或(3,2).。
2019-2020年中考数学专题复习:二次函数专题.docx
2019-2020 年中考数学专题复习:二次函数专题一:三种形式的解析式,对称轴和顶点坐标解析式对称轴顶点坐标顶点式一般式交点式(不填)二:三种形式之间的转换及基本性质例 1. 将二次函数 y=-x2向右平移 1 个单位后的解析式为;再将它向上平移 4 个单位后的的解析式为;此抛物线的开口向;对称轴是;顶点坐标是;当 x时, y 随 x 的增大而增大,当 x时,y 随 x 的增大而减小;当 x时,y 有最值是;将平移后的抛物线化成一般形式为;它与 y轴的交点坐标是;它与 x 轴的交点坐标是;根据它与 x 轴的交点坐标,则此抛物线写成交点式为。
例 2. 抛物线 y=-2x 2+4x+1 的开口向;与 y 轴的交点坐标是;它的对称轴和顶点坐标能很快看出来吗?将它化成顶点式为;此时对称轴是;顶点坐标是;此抛物线关于x 轴对称的抛物线解析式为;此抛物线关于 y 轴对称的抛物线解析式为;此抛物线关于原点对称的抛物线解析式为;三:二次函数和图象与系数的关系例 3. 如图,二次函数 y=ax2+bx+c 的图象经过点( -1 ,2)和( 1,0),根据图象填空。
(1) a 0 ;( 2)c 0 ;( 3) b 0 ;(4) b2-4ac 0 ;(5) a+b+c 0 ;(6) a-b+c 0 ;(7) a+c 1 ;( 8)a 1 ;(9) 2a+b 0四:根据题意写出符合条件的二次函数例 4. 按下列要求写出满足条件的二次函数(自变量用 x 表示,因变量用 y 表示)( 1)与 x 轴有两个交点( 2)对称轴是 y 轴( 3)经过原点( 4)顶点在 x 轴上( 5)顶点在 y 轴上;;;;;五:二次函数与方程不等式的联系右图是二次函数y=ax2 +bx+c 的图象,请你根据图象回答下列问题:( 1)它的对称轴是;222( 4)不等式 ax +bx+c<0解集是;;;专项训练题型一:二次函数解析式及定义型问题( 顶点式中考要点 )1.把二次函数的图象向左平移 2 个单位,再向上平移 1 个单位,所得到的图象对应的二次函数关系式是y ( x 1) 2 2 则原二次函数的解析式为;2.二次函数的图象顶点坐标为( 2, 1),形状开口与抛物线 y= - 2x 2相同,这个函数解析式为 ________。
热点专题8二次函数综合题型-2020年《三步冲刺中考·数学》之热点专题冲刺(全国通用)(原卷版)
热点专题8 二次函数综合题型《课程标准》对二次函数这一知识点的学习要求比较高,它最能体现初中代数的综合性和能力性,因此,二次函数在近几年中考试卷中已形成必不可少的题型,2019年中考中对二次函数的考查角度有所调整,将二次函数的性质和特征作为试题主体来考查,促使我们在复习中把二次函数作为最核心的内容之一来学习,预计仍会以二次函数的性质和特征作为试题主体来考查,在此过程中会以周长、面积、相似、等腰三角形,特殊四边形以及新定义问题为载体进行命题.考向1 二次函数之周长与最值问题1.(2019·常德中考改编)如图11,已知二次函数图象的顶点坐标为A (1,4),与坐标轴交于B 、C 、D 三点,且B 点的坐标为(-1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值.考向2二次函数之面积问题xx yy备用图图11CADB B H N G DAMCOO2.(2019·衡阳)如图,二次函数y=x 2+bx +c 的图象与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E .(1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M ,连接MN 、MB ,请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.考向3 二次函数之等腰三角形问题3.(2019·兰州)二次函数22y ax bx =++的图象交x 轴于点(-1,0),B (4,0)两点,交y 轴于点C ,动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN ⊥x 轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当t=32时,求△DNB 的面积; (3)在直线MN 上存在一点P ,当△PBC 是以∠BPC 为直角的等腰直角三角形时,求此时点D 的坐标; (4)当t=54时,在直线MN 上存在一点Q ,使得∠AQC+∠OAC=90°,求点Q 的坐标.考向4 二次函数之相似三角形问题4.(2019·娄底)如图(14),抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值. (3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.考向5 二次函数之特殊四边形问题5.(2019•广安)如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)A -,(5,6)D -,P 点为抛物线2y x bx c =-++上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式; (2)当点P 在直线l 上方的抛物线上时,过P 点作//PE x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.考向6 二次函数之角度存在性问题6. (2019·泰安) 若二次函数y=ax 2+bx+c 的图象与x 轴、y 轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且S △PBA =4,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M,使∠ABO=∠ABM ?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.考向7 二次函数之新定义问题7.(2019江西省)特例感知:(1)如图1,对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 下列结论正确的序号是 ;①抛物线1y ,2y ,3y 都经过点C(0,1);②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移21个单位得到;③抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等. 形成概念:(2)把满足12+--=nx x y n (n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由;③在②中,直线y=1分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n A C ,11--n n A C ,判断n n A C ,11--n n A C 是否平行?并说明理由.。
2020届中考数学压轴题全揭秘 专题09 二次函数的综合性问题(含解析)
2020届中考数学压轴题全揭秘专题09 二次函数综合性问题【典例分析】【考点1】二次函数与经济利润问题【例1】(2019·山东中考真题)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)【答案】(1)这种水果今年每千克的平均批发价是24元;(2)每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元. 【解析】 【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为()10120%12-=万元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元,可列出方程:12000010000010001x x -=+,求得x 即可.(2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值.【详解】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去). 故这种水果今年每千克的平均批发价是24元. (2)设每千克的平均售价为m 元,依题意 由(1)知平均批发价为24元,则有()41241803003m w m -⎛⎫=-⨯+ ⎪⎝⎭260420066240m m =-+-,整理得()260357260w m =--+, ∵600a =-<, ∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.【变式1-1】(2019·浙江中考真题)某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25 时可近似用函数11505P t =-刻画;当25≤t≤37 时可近似用函数21()0.4160P t h =--+ 刻画. (1)求h 的值.(2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系: 生长率P0.2 0.25 0.3 0.35 提前上市的天数m (天)51015①请运用已学的知识,求m 关于P 的函数表达式; ②请用含t 的代数式表示m ;(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【答案】(1)29h =;(2)①10020m p =-,②2(05829)2m t =--+;(3)当29t =时,提前上市20天,增加利润的最大值为15000元. 【解析】 【分析】 (1)根据11505P t =-求出t=25时P 的值,代入21()0.4160P t h =--+即可; (2)①由表格可知m 与p 的一次函数,用待定系数法求解即可;②分当1025t 剟时与当25137剟时两种情况求解即可;(3)分当2025t 剟时与当2537t ≤≤时两种情况求出增加的利润,然后比较即可. 【详解】(1)把t=25代入11505P t =-,得P=0.3, 把(25,0.3)的坐标代入2116).0(04p t h =--+得29h =或21h = 25h >Q ,29h ∴=.(2)①由表格可知m 与p 的一次函数,设m=kp+b ,由题意得0.200.255k b k b +=⎧⎨+=⎩, 解之得10020k b =⎧⎨=-⎩,10020m p ∴=-;②当1025t 剟时,11505p t =-,1110020240505m t t ⎛⎫∴=--=- ⎪⎝⎭当25137剟时,21(29)0.4160p t =--+. 22100[(29)0.4]2015160(29)280m t t ∴=--+-=--+;(3)(Ⅰ)当2025t 剟时, 由(20,200),(25,300),得20200w t =-.∴增加利润为2600[20030(30)]406004000m w m t t +⨯--=--.∴当25t =时,增加利润的最大值为6000元.(Ⅱ)当2537t ≤≤时,300w =.增加利润为25600[20030(30)]=900(29)150008m w m t ⎛⎫+⨯--⨯-⨯-+ ⎪⎝⎭21125(29)150002t =--+, ∴当29t =时,增加利润的最大值为15000元.综上所述,当29t =时,提前上市20天,增加利润的最大值为15000元. 【点睛】本题考查了一次函数与二次函数的应用,用到的知识点有二次函数图上点的坐标特征,待定系数法求一次函数解析式,二次函数的图像与性质,利用二次函数求最值及分类讨论的数学思想.熟练掌握二次函数图上点的坐标特征是解(1)的关键,分类讨论是解(2)与(3)的关键.【变式1-2】(2019·辽宁中考真题)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中030x <…).(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元?(3)设每天销售该特产的利润为W 元,若1430x <„,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元? 【答案】(1)640(1014)20920(1430)x y x x <⎧=⎨-+<⎩„„;(2)销售单价x 应定为15元;(3)当28x =时,每天的销售利润最大,最大利润是6480元. 【解析】 【分析】(1)当1014x <„时,可直接根据图象写出;当1430x <„时,y 与x 成一次函数关系,用待定系数法求解即可;(2)根据销售利润=每千克的利润(x -10)×销售量y ,列出方程,解方程即得结果;(3)根据销售利润w =每千克的利润(x -10)×销售量y ,可得w 与x 的二次函数,再根据二次函数求最值的方法即可求出结果. 【详解】解:(1)由图象知,当1014x <„时,640y =;当1430x <„时,设y kx b =+,将(14,640),(30,320)代入得1464030320k b k b +=⎧⎨+=⎩,解得20920k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为20920y x =-+;综上所述,640(1014)20920(1430)x y x x <⎧=⎨-+<⎩„„;(2)(1410)6402560-⨯=, ∵25603100<,∴14x >, ∴(10)(20920)3100x x --+=,解得:141x =(不合题意舍去),215x =, 答:销售单价x 应定为15元;(3)当1430x <„时,2(10)(20920)20(28)6480W x x x =--+=--+,∵200-<,1430x <„,∴当28x=时,每天的销售利润最大,最大利润是6480元.【点睛】本题考查了一次函数、二次函数和一元二次方程的实际应用,正确理解题意求出函数关系式、熟练掌握一元二次方程的解法和求二次函数的最值的方法是解题的关键.【考点2】二次函数与几何图形问题【例2】(2018·福建中考真题)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD的长为10米.(2)见解析.【解析】【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【详解】(1)设AD=x米,则AB=1002x-米依题意得,(100)2x x-=450解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意 得: S=2(100)1(50)125022x x x ---+=,0<x <a ∵0<a <50∴x <a <50时,S 随x 的增大而增大 当x=a 时,S 最大=50a-12a 2②如按图2方案围成矩形菜园,依题意得S=22(1002)[(25)](25)244x a x a ax =+---+++,a≤x <50+2a当a <25+4a <50时,即0<a <1003时,则x=25+4a 时,S 最大=(25+4a )2=21000020016a a ++,当25+4a ≤a ,即1003≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=(1002)2a a a +-=21502a a -,综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2(3100)16a ->021000020016a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米当1003≤a <50时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <1003时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为21000020016a a ++平当1003≤a<50时,围成长为a米,宽为(50-2a)米的矩形菜园面积最大,最大面积为(21502a a-)平方米.【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.【变式2-1】(2019·湖南中考真题)如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)△P AB的面积的最大值为278,此时点P的坐标(32-,154).【解析】【分析】(1)因为对称轴是直线x=-1,所以得到点A(-3,0)的对称点是(1,0),因此利用交点式y=a(x-x1)(x-x2),求出解析式.(2)根据面积的和差,可得二次函数,根据二次函数的性质,可得最大值,根据自变量与函数值的对应关系,可得答案.【详解】(1)∵抛物线对称轴是直线x=﹣1且经过点A(﹣3,0)由抛物线的对称性可知:抛物线还经过点(1,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x+3)把B(0,3)代入得:3=﹣3a∴抛物线的解析式为:y =﹣x 2﹣2x +3. (2)设直线AB 的解析式为y =kx +b , ∵A (﹣3,0),B (0,3), ∴303k b b -+=⎧⎨=⎩,∴直线AB 为y =x +3,作PQ ⊥x 轴于Q ,交直线AB 于M , 设P (x ,﹣x 2﹣2x +3),则M (x ,x +3), ∴PM =﹣x 2﹣2x +3﹣(x +3)=﹣x 2﹣3x ,∴()2213327S x 3x 3x 2228⎛⎫=--⨯=-++ ⎪⎝⎭,当3x 2=-时,27S 8=最大,23315y 23224⎛⎫⎛⎫=---⨯-+= ⎪ ⎪⎝⎭⎝⎭, ∴△PAB 的面积的最大值为278,此时点P 的坐标为(32-,154). 【点睛】本题考查了用待定系数法求函数解析式的方法,利用面积的和得出二次函数是解题关键,又利用了二次函数的性质.【变式2-2】(2018·吉林中考真题)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=4,动点P 从点A出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A 、B 重合),作∠DPQ=60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒. (1)用含t 的代数式表示线段DC 的长; (2)当点Q 与点C 重合时,求t 的值;(3)设△PDQ 与△ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式; (4)当线段PQ 的垂直平分线经过△ABC 一边中点时,直接写出t 的值.【答案】(1)33(0<t<2);(2)1;(3)见解析;(4)t的值为12秒或34秒或54秒.【解析】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)在Rt△ABC中,∠A=30°,AB=4,∴3,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×323,∴CD=AC﹣33t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×33∴t=1;(3)当0<t≤1时,S=S△PDQ=12DQ×DP=12×332,当1<t<2时,如图2,CQ=AQ﹣AC=2AD﹣3﹣33t﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠3(t ﹣1)×3(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =12×3t×t ﹣12×3t ﹣1)×2(t ﹣1)=﹣332t 23﹣3 ∴S=())223t 0133t 432302t t t ⎧≤⎪⎪⎨⎪+-⎪⎩<<<;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=12PQ=12AP=t ,AF=12AB=2, ∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP+PF=2t+2t=2,∴t=12; 当PQ 的垂直平分线过AC 的中点M 时,如图4, ∴∠QMN=90°,AN=123,QM=12PQ=12AP=t , 在Rt △NMQ 中,NQ=23cos30MQ =︒, ∵AN+NQ=AQ , 3233, ∴t=34, 当PQ 的垂直平分线过BC 的中点时,如图5,∴BF=12BC=1,PE=12PQ=t ,∠H=30°, ∵∠ABC=60°,∴∠BFH=30°=∠H ,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=54,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为12秒或34秒或54秒.【点睛】本题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,根据题意准确作出图形、熟练掌握和运用相关知识是解题的关键.【考点3】二次函数与抛物线形问题【例3】(2019·山东省青岛第二十六中学中考模拟)如图,斜坡AB长10米,按图中的直角坐标系可用y=3-x+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=13-x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?【答案】(1)y=-13x2+433x+5;(2)当x=532时,水柱离坡面的距离最大,最大距离为254;(3)水柱能越过树,理由见解析【解析】【分析】(1)根据题意先求出A,B 的坐标,再把其代入解析式即可(2)由(1)即可解答(3)过点C 作CD ⊥OA 于点D ,求出OD 3OD 代入解析式即可【详解】(1)∵AB =10、∠OAB =30°,∴OB =12AB =5、OA =10×33 则A (30)、B (0,5),将A 、B 坐标代入y =-13x 2+bx +c ,得:17553035b c c ⎧-⨯++=⎪⎨⎪=⎩, 解得:435b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y =-13x 243+5; (2)水柱离坡面的距离d =-13x 243x +5-(-33x +5) =-13x 253x =-13(x 23) =-13(x 53)2+254, ∴当x 53时,水柱离坡面的距离最大,最大距离为254; (3)如图,过点C 作CD ⊥OA 于点D ,∵AC =2、∠OAB =30°,∴CD =1、AD =3, 则OD =43,当x =43时,y =-13×(43)2+43×43+5=5>1+3.5, 所以水柱能越过树.【点睛】此题考查二次函数的应用,解题关键在于求出A,B 的坐标【变式3-1】(2019·河北中考模拟)如图,一座拱桥的轮廓是抛物线型,拱高6m ,在长度为8m 的两支柱OC 和AB 之间,还安装着三根支柱,相邻两支柱间的距离为5m .(1)建立如图所示的直角坐标系,求拱桥抛物线的函数表达式;(2)求支柱EF 的长度.(3)拱桥下面拟铺设行车道,要保证高3m 的汽车能够通过(车顶与拱桥的距离不小于0.3m ),行车道最宽可以铺设多少米?【答案】(1)236505y x x =-+;(2)EF=3.5m ;(3)行车道最宽可以铺设13.4米. 【解析】【分析】 (1)根据题目可知抛物线经过的两点的坐标,设出抛物线的解析式代入可求解;(2)设N 点的坐标为(15,y )可求出支柱EF 的长度;(3)令y=3.3,求得x 的值即可求解.【详解】(1)根据题意,设拱桥抛物线的函数表达式为:2y ax bx =+,∵相邻两支柱间的距离均为5m ,∴OA=4×5m=20m ,∴(20,0),(10,6)两点都在抛物线上, ∴400200,10010 6.a b a b +=⎧⎨+=⎩,解得3,506.5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴236505y x x =-+. (2)设点F 的坐标为(15,y ), ∴236915155052y =-⨯+⨯=. ∴EF=8m 92-m=72m=3.5m . (3)当y=3+0.3=3.3(m )时,有236 3.3505x x -+=, 化简,得220550x x -+=, 解得1035x =±1 3.292x =,216.708x =,∴2116.708 3.29213.41613.4x x -=-=≈.答:行车道最宽可以铺设13.4米.【点睛】本题考查二次函数的实际应用,借助二次函数解决实际问题是解题根本,求出二次函数关系式是关键. 【变式3-2】(2019·辽宁中考模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B 点坐标是 ,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度.【答案】(1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m. 【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x =3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 【达标训练】1.(2019·江苏中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是( )A .18m 2B .183m 2C .243m 2D .453m 2 【答案】C【解析】【分析】 过点C 作CE ⊥AB 于E ,则四边形ADCE 为矩形,CD=AE=x ,∠DCE=∠CEB=90°,则∠BCE=∠BCD-∠DCE=30°,BC=12-x ,由直角三角形的,性质得出11BE BC 6x 22==-得出311AD CE 3BE 63x,AB AE BE x 6x x 6222===-=+=+-=+,又梯形面积公式求出梯形ABCD 的面积S 与x 之间的函数关系式,根据二次函数的性质求解.【详解】解:如图,过点C 作CE ⊥AB 于E ,则四边形ADCE 为矩形,CD=AE=x ,∠DCE=∠CEB=90°, 则∠BCE=∠BCD-∠DCE=30°,BC=12-x , 在Rt △CBE 中,∵∠CEB=90°,11BE BC 6x 22∴==- 311AD CE 3BE 63x,AB AE BE x 6x x 6222∴===-=+=+-=+ ∴梯形ABCD 面积211133333S (CD AB)CE x x 66333x 183222⎛⎫⎛⎫=+⋅=++⋅=++= ⎪ ⎪⎝⎭⎝⎭2(4)3x -+∴当x=4时,S 最大3.即CD 长为4 m 时,使梯形储料场ABCD 的面积最大为243m 2;故选C .【点睛】此题考查了梯性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键2.(2019·台湾中考真题)如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A .90,2⎛⎫ ⎪⎝⎭B .270,2⎛⎫ ⎪⎝⎭C .()0,9D .()0,19【答案】B【解析】【分析】 设()3,2B m --,()3,2C m -+,()0m >,可知2BC m =,再由等边三角形的性质可知233,23C ⎛⎫- ⎪⎝⎭,设抛物线解析式()23y a x =+,将点C 代入解析式即可求a ,进而求解.【详解】解:设()3,2B m --,()3,2C m -+,()0m > A Q 点坐标为()3,0-,2BC m ∴=,ABC ∆Q 为正三角形,2AC m ∴=,C 60AO ∠=︒ ,33m ∴= 233,23C ⎛⎫∴-+ ⎪⎝⎭设抛物线解析式()23y a x =+, 2233323a ⎛⎫-++= ⎪ ⎪⎝⎭, 32a ∴=, ()2332y x ∴=+, 当0x =时,272y =; 故选:B .【点睛】 本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.3.(2019·山西中考真题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =- 【答案】B【解析】【分析】设抛物线解析式为y=ax 2,由已知可得点B 坐标为(45,-78),利用待定系数法进行求解即可.【详解】∵拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,∴设抛物线解析式为y=ax 2,点B(45,-78),∴-78=452a ,解得:a=26675-, ∴此抛物线钢拱的函数表达式为226675y x =-, 故选B.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.4.(2019·山西中考模拟)如图所示的是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2m ,则水面宽度增加( )A .()424mB .2mC .()424mD .4m【答案】C【解析】【分析】 根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-2代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:以AB 所在的直线为x 轴,向右为正方向,线段AB 的垂直平分线为y 轴,向上为正方向,建立如图所示的平面直角坐标系,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),设顶点式y=ax 2+2,代入A 点坐标(-2,0),得出:a=-0.5,所以抛物线解析式为y=-0.5x 2+2,把y=-2代入抛物线解析式得出:-2=-0.5x 2+2,解得:x=±22, 所以水面宽度增加到42米,比原先的宽度当然是增加了(42-4)米,故选:C .【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键. 5.(2019·江苏中考真题)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分.下列说法不正确的是( )A .25min~50min ,王阿姨步行的路程为800mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5min~20min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23201200520s t t =--+≤≤()()【答案】C【解析】【分析】直接观察图象可判断A 、C ,利用待定系数法可判断B 、D ,由此即可得答案.【详解】观察图象可知5min~20min ,王阿姨步行速度由快到慢,25min~50min ,王阿姨步行的路程为2000-1200=800m ,故A 选项正确,C 选项错误;设线段CD 的解析式为s=mt+n ,将点(25,1200)、(50,2000)分别代入得120025200050m n m n =+⎧⎨=+⎩,解得:32400m n =⎧⎨=⎩, 所以线段CD 的函数解析式为324002550s t t =+≤≤(),故B 选项正确; 由曲线段AB 是以B 为顶点的抛物线一部分,所以设抛物线的解析式为y=a(x-20)2+1200,把(5,525)代入得:525=a(5-20)2+1200,解得:a=-3,所以曲线段AB 的函数解析式为23201200520s t t =--+≤≤()(),故D 选项正确, 故选C.本题考查了函数图象的应用问题,C 项的图象由陡变平,说明速度是变慢的,所以C 是错误的.【点睛】本题考查了函数图象问题,涉及了待定系数法求一次函数解析式,求二次函数解析式,读懂图象,正确把握相关知识是解题的关键.6.(2018·北京中考真题)跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】 分析: 根据抛物线的对称性即可判断出对称轴的范围.详解:设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .点睛:考查抛物线的对称性,熟练运用抛物线的对称性质是解题的关键.7.(2018·四川中考真题)如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.【答案】2-4【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离, 可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±, 所以水面宽度增加到4242 4.故答案是: 42 4.【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.8.(2019·河北中考模拟)如图是抛物线形拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处双测P 处,仰角分别为α、β,且tanα=12,tanβ=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系. P 点坐标为_____;若水面上升1m ,水面宽为_____m .【答案】33,2⎛⎫⎪⎝⎭;2【解析】【分析】(1)过点P作PH⊥OA于H,通过解Rt△OHP、Rt△AHP求得点P的横纵坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x 的值,就可解决问题.【详解】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα=PH1 OH2=,∴OH=6x.在Rt△AHP中,∵tanβ=32 PHAH=,∴AH=2x,∴OA=OH+AH=8x=4,∴x=12,∴OH=3,PH=32,∴点P的坐标为(3,32);故答案是:(3,32);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,32)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=32,解得a=﹣12,∴抛物线的解析式为y=﹣12x(x﹣4).当y=1时,﹣12x(x﹣4)=1,解得x1=2+2,x2=2﹣2,∴BC=(2+2)﹣(2﹣2)=22.故答案是:22.【点睛】本题主要二次函数的应用、锐角三角函数、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.9.(2019·吉林中考模拟)如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)【答案】9.1【解析】【分析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-+,则C (0,647) 所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键10.(2019·湖南中考真题)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店,A B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3元可多卖1盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【答案】(1)该店平均每天销售A 礼盒10盒,B 种礼盒为20盒;(2)当A 种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【解析】【分析】(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,列二元一次方程组即可解题(2)根据题意,可设A 种礼盒降价m 元/盒,则A 种礼盒的销售量为:(103m +)盒,再列出关系式即可. 【详解】解:(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,则有(12072)(8040)1280120802800x y x y -+-=⎧⎨+=⎩,解得1020x y =⎧⎨=⎩ 故该店平均每天销售A 礼盒10盒,B 种礼盒为20盒.(2)设A 种湘莲礼盒降价m 元/盒,利润为W 元,依题意 总利润(12072)108003m W m ⎛⎫=--++ ⎪⎝⎭化简得221161280(9)130733W m m m =-++=--+ ∵103a =-< ∴当9m =时,取得最大值为1307,故当A 种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.11.(2019·内蒙古中考真题)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+剟;(2)2a =.【解析】【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2.。
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》1.如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=﹣x2+bx+c 的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M 的坐标.2.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.3.如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P 点坐标;若不存在,请说明理由.4.如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E 的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.5.如图,已知抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),与y轴交于点C,点P是直线AC上方抛物线上的一个动点;(1)求抛物线对应的函数解析式;(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.①求点P和点F的坐标;②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与△BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.6.如图(1),二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (3,0),C (0,3).把过A ,C 两点的直线绕点A 旋转,旋转过程中记作直线l ,l 与抛物线的交于点P .(1)①求这个二次函数的解析式;②若直线l 始终与线段BC 有交点,点B ,C 到直线l 的距离分别为d 1,d 2,求d 1+d 2的最大值,并说明理由;(2)如图(2),当点P 是抛物线的顶点时,过P 作PH ⊥AB 于H .若点Q 在对称轴右侧的抛物线上,过点Q 作QM ⊥AP 于M ,△PQM 与△APH 相似,求点Q 的坐标.(3)直线l 与AC 的夹角为α(α为锐角),若tan α=,直接写出点P 的坐标.7.如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C 不重合).连接CB,CP.(1)直接写出点A、B、C的坐标(用含m的代数式表示);(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)当0<m<1过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在x轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.8.如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD=OC,连接BD,(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S最大时,连接△PBD AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N 位于M点下方,连接DN,求DN+MN+AM的最小值(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.9.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.10.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式.(2)点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;(3)如图2所示,设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.参考答案1.解:(1)令y==0,解得x=4,则A(4,0).令x=0,得y=﹣2,则B(0,﹣2);∵二次函数y=的图象经过A、B两点,∴,解得∴二次函数的关系式为y=﹣x2+x﹣2;当y=0时,﹣x2+x﹣2=0,解得x1=1,x2=4,则C(1,0);(2)如图2,∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA.∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,﹣m2+m﹣2),则E(m,m﹣2).∴PD+PE=3PE=3×[﹣m2+m﹣2﹣(m﹣2)]=﹣m2+6m=﹣(m﹣2)2+6;∵0<m<4,∴当m=2时,PD+PE有最大值6;(3)当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,).综上所述,点M的坐标为(,)或(,).2.解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,解得,∴抛物线的表达式为y=x2﹣4x﹣5,(2)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,=CE•HF=﹣2(t﹣)2+,∴S四边形CHEF∴H(,﹣);(3)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).3.(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B (﹣2,0),C (1,3);(2)证明:∵A (﹣1,﹣1),B (﹣2,0),C (1,3),∴AB ==, BC ==3, AC ==2, ∴AB 2+BC 2=AC 2,==, ∴∠ABC =90°,∵OD =1,CD =3, ∴=, ∴,∠ABC =∠ODC =90°,∴△ODC ∽△ABC ;(3)存在这样的P 点,设M (x ,0),则P (x ,x 2+2x ),∴OM =|x |,PM =|x 2+2x |,当以O ,P ,M 为顶点的三角形与△ABC 相似时, 有=或=,由(2)知:AB =,CB =3, ①当=时,则=, 当P 在第二象限时,x <0,x 2+2x >0, ∴,解得:x 1=0(舍),x 2=﹣,当P 在第三象限时,x <0,x 2+2x <0, ∴=,解得:x 1=0(舍),x 2=﹣, ②当=时,则=3,同理代入可得:x =﹣5或x =1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).4.解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∴S△BEC∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣)或(,﹣)或(﹣,).5.解:(1)∵抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),∴,解得,∴抛物线对应的函数表达式为y=﹣x2+2x﹣1;(2)由抛物线可得,C(0,﹣1),B(9,﹣10),∴直线BC为:y=﹣x﹣1,设点P的坐标为(m,﹣m2+2m﹣1),则E(m,﹣m﹣1),∴PE=﹣m2+2m﹣1﹣(﹣m﹣1)=﹣m2+3m,∴四边形AECP的面积=△APE面积+△CPE面积=×(﹣m2+3m)×m+×(﹣m2+3m)×(5﹣m)=(﹣m2+3m)=﹣m2+m,=﹣(m﹣)2+,∴当m=时,﹣m2+2m﹣1=,∴点P坐标为(,);(3)①过点B 作BH ⊥y 轴于H ,∵C (0,﹣1),B (9,﹣10),∴CH =BH =9,∴∠BCH =45°,∵∠PCB =90°,CF 平分∠PCB ,∴∠BCF =45°,∴∠FCH =90°,即CF ∥x 轴,当y =﹣1时,﹣1=﹣x 2+2x ﹣1,解得x 1=0,x 2=6,∴F (6,﹣1),∵CP ⊥CB ,C (0,﹣1),∴直线CP 为:y =x ﹣1,当x ﹣1=﹣x 2+2x ﹣1时,解得x 1=0,x 2=3,当x =3时,y =2,∴P (3,2);②∵直线CB :y =﹣x ﹣1,直线PF :y =﹣x +5,∴CB ∥PF ,∴∠BCF =∠PFC =45°,∴在直线CF 上存在满足条件的点Q ,设Q (t ,﹣1),由题可得CF =6,CB =9,PF =3,(ⅰ)如图所示,当△PFQ 1∽△BCF 时, =,即=,解得t =4,∴Q 1(4,﹣1);(ⅱ)如图所示,当△PFQ ∽△FCB 时, =,即=,解得t=﹣3,∴Q2(﹣3,﹣1).综上所述,点Q的坐标为(4,﹣1)或(﹣3,﹣1).6.解:(1)①把点A(﹣1,0),B(3,0),C(0,3)代入二次函数y=ax2+bx+c得到,解得,∴二次函数的解析式为y=﹣x2+2x+3.②如图1中,作BM⊥直线l于M,CN⊥直线l于N.则d1=BM≤BD,d2=CN≤CD,∴d1+d2≤CD+BD,∴d1+d2≤BC,∵OC=OB=3,∴BC=3,∴d1+d2的最大值为3.(2)如图2中,延长PQ交X轴于N.由题意P(1,4).∵△PQM与△APH相似,观察图象可知,只有∠QPM=∠PAH,∴NA=PN,设NA=PN=m,在Rt△PNH中,∵PH2+NH2=PN2,∴m2=42+(m﹣2)2,解得m=5,∴ON=4,∴N(4,0),∴直线PN的解析式为y=﹣x+,由,解得或,∴Q(,).(3)如图3中,设直线PA交y轴与D,作DE⊥AC于E.设DE=k.∵tan∠EAD=,tan∠DCE=,∴AE=2k,EC=3k,∴AC=5k,∵AC==,∴k=,∴DE=,EC=,∴CD==2,∴D(0,1),∴直线AP的解析式为y=x+1,由,解得或,∴P(2,3).作点D关于直线AC的对称点D′,∵E(﹣,),∴D′(﹣,),∴直线AD′的解析式为y=﹣7x﹣7,由解得或,∴P(10,﹣77),综上所述,满足条件的点P坐标为(2,3)或(10,﹣77).7.解:(1)∵当y =0时,﹣x 2+2mx =0,解得:x 1=0,x 2=2m∴A (2m ,0)∵BP ⊥x 轴,P (1,m )∴x B =x P =1∴y B =﹣1+2m∴B (1,2m ﹣1)∵抛物线对称轴为直线:x =﹣=m ∴x C ﹣m =m ﹣x B∴x C =2m ﹣x B =2m ﹣1∴C (2m ﹣1,2m ﹣1)(2)∵P (1,m ),A (2m ,0),C (2m ﹣1,2m ﹣1)∴PA 2=(2m ﹣1)2+m 2,PC 2=(2m ﹣1﹣1)2+(2m ﹣1﹣m )2=(2m ﹣2)2+(m ﹣1)2,AC 2=(2m ﹣1﹣2m )2+(2m ﹣1)2=1+(2m ﹣1)2∵CA ⊥CP ,即∠ACP =90°∴PC 2+AC 2=PA 2∴(2m ﹣2)2+(m ﹣1)2+1+(2m ﹣1)2=(2m ﹣1)2+m 2解得:m 1=1(m >1,舍去),m 2=∴m =时,CA ⊥CP(3)存在m ,使得点E 落在x 轴上∵0<m <1∴m ﹣1<0,点B 在对称轴右侧∴2m ﹣1<m∴y B <y P ,即点B 在点P 下方,如图若点E 在x 轴上,则∠PME =∠CBP =90°∵PE ⊥PC ,即∠CPE =90°∴∠CPB +∠MPE =∠CPB +∠BCP =90°∴∠MPE =∠BCP在△MPE与△BCP中∴△MPE≌△BCP(AAS)∴MP=BC,ME=BP∴m=1﹣(2m﹣1)解得:m=,符合0<m<1∴y P=,y B=2×﹣1=∴ME=BP=∴OE=OM+ME=1+∴E(,0)8.解:(1)如图1,过点D作DD'∥MN,且DD'=MN=2,连接D'M;过点D'作D'J⊥y轴于点J;作直线AP,过点M作MH⊥AP于点H,过点D'作D'K⊥AP于点K∵y==0解得:x1=﹣3,x2=1∴A(﹣3,0),B(1,0)∵x=0时,y==﹣∴C(0,﹣),OC=∴OD=OC=,D(0,)设P(t,t2+t﹣)(﹣3<t<1)设直线PB解析式为y=kx+b,与y轴交于点G∴解得:∴直线PB:y=(t+)x﹣t﹣,G(0,﹣t﹣)∴DG=﹣(﹣t﹣)=t+∴S△BPD =S△BDG+S△PDG=DG•x B+DG•|x P|=DG•(x B﹣x P)=(t+)(1﹣t)=﹣(t2+4t﹣5)∴t=﹣=﹣2时,S△BPD最大∴P(﹣2,﹣),直线PB解析式为y=x﹣,直线AP解析式为y=﹣x﹣3∴tan∠ABP==∴∠ABP=30°∵△BPQ为等边三角形∴∠PBQ=60°,BP=PQ=BQ∴BA平分∠PBQ∴PQ⊥x轴,PQ与x轴交点I为PQ中点∴Q(﹣2,)∴Rt△AQI中,tan∠QAI=∴∠QAI=∠PAI=60°∴∠MAH=180°﹣∠PAI﹣∠QAI=60°∵MH⊥AP于点H∴Rt△AHM=90°,sin∠MAH=∴MH=AM∵DD'∥MN,DD'=MN=2∴四边形MNDD'是平行四边形∴D'M=DN∴DN+MN+AM=2+D'M+MH∵D'K⊥AP于点K∴当点D'、M、H在同一直线上时,DN+MN+AM=2+D'M+MH=2+D'K最短∵DD'∥MN,D(0,)∴∠D'DJ=30°∴D'J=DD'=1,DJ=DD'=∴D'(1,)∵∠PAI=60°,∠ABP=30°∴∠APB=180°﹣∠PAI﹣∠ABP=90°∴PB∥D'K设直线D'K解析式为y=x+d,把点D'代入得:+d=解得:d=∴直线D'K:y=x+把直线AP与直线D'K解析式联立得:解得:∴K(﹣,)∴D'K=∴DN+MN+AM的最小值为(2)连接B'A、BB'、EA、E'A、EE',如图2∵点C(0,﹣)关于x轴的对称点为E∴E(0,)∴tan ∠EAB =∴∠EAB =30° ∵抛物线C '由抛物线C 平移得到,且经过点E∴设抛物线C '解析式为:y =x 2+mx +, ∵A (﹣3,0),P (﹣2,﹣),E (0,),B (1,0), ∴BE ∥PA ,BE =PA ,∴抛物线C '经过点A (﹣3,0), ∴×9﹣3m +=0解得:m =∴抛物线C '解析式为:y =x 2+x + ∵x 2+x +=0,解得:x 1=﹣3,x 2=﹣1∴F (﹣1,0)∵将△BOE 绕着点A 逆时针旋转60°得到△B ′O ′E ′∴∠BAB '=∠EAE '=60°,AB '=AB =1﹣(﹣3)=4,AE '=AE =∴△ABB '、△AEE '是等边三角形∴∠E 'AB =∠E 'AE +∠EAB =90°,点B '在AB 的垂直平分线上∴E '(﹣3,2),B '(﹣1,2)∴B 'E '=2,∠FB 'E '=90°,E 'F =∴∠B 'FE '=30°,∠B 'E 'F =60°①如图3,点T 在E 'F 上,∠B 'TR =90°过点S 作SW ⊥B 'E '于点W ,设翻折后点E '的对应点为E ''∴∠E 'B 'T =30°,B 'T =B 'E '=∵△B ′E ′R 翻折得△B 'E ''R∴∠B 'E ''R =∠B 'E 'R =60°,B 'E ''=B 'E '=2∴E ''T =B 'E ''﹣B 'T =2﹣∴Rt △RTE ''中,RT =E ''T =2﹣3∵四边形RTB'S是矩形∴∠SB'T=90°,SB'=RT=2﹣3∴∠SB'W=∠SB'T﹣∠E'B'T=60°∴B'W=SB'=﹣,SW=SB'=3﹣∴x S=x B'﹣B'W=,y S=y B'+SW=3+∴S(,3+)②如图4,点T在E'F上,∠B'RT=90°过点S作SX⊥B'F于点X∴E'R=B'E'=1,点E'翻折后落在E'F上即为点T∴B'S=RT=E'R=1∵∠SB'X=90°﹣∠RB'F=30°∴XS=B'S=,B'X=B'S=∴x S=x B'+XS=﹣,y S=y B'﹣B'X=∴S(﹣,)③如图5,点T在B'F上,∠B'TR=90°∴RE''∥E'B',∠E''=∠B'E'R=60°∴∠E'BE''=∠E'RE''=120°∴四边形B'E'RE''是平行四边形∵E'R=E''R∴▱B'E'RE''是菱形∴B'E'=E'R∴△B'E'R是等边三角形∵∠B'SR=90°,即RS⊥B'E'∴点S为B'E'中点∴S(﹣2,2)综上所述,使得以B′、R、T、S为顶点的四边形为矩形的点S坐标为(,3+)或(﹣,)或(﹣2,2).9.解:(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值为:,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).10.解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);(3)存在这样的点Q,使得四边形OFQC的面积最大.如图,过点Q作QP⊥x轴于点P,设Q(n,﹣n2+4n+5)(n>0),则PO=n,PQ=﹣n2+4n+5,CP=5﹣n,四边形OFQC的面积=S四边形PQFO +S△PQC=×(﹣n2+4n+5+5)•n+×(5﹣n)×(﹣n2+4n+5)=﹣n2+n+=﹣(n﹣)2+,当n =时,四边形OFQC 的面积取得最大值,最大值为,此时点Q 的坐标为(,).1、最困难的事就是认识自己。
2020年中考数学微复习 二次函数综合题总结 (PDF版)
变式题:求围成的三角形面积最大时:以动点所在的线段为底,高为定值, 根据三角形面积公式列出代数式,问题可解决;
求围成的四边形面积最大时:用分割法,把四边形分割成几个三角形的面积 和(差)进行求解。
例 2:如图,直线 y=x+2 与抛物线 y=2x2﹣8x+6 相交于 A( , )和 B(4,m),点 P 是 线段 AB 上异于 A、B 的动点,过点 P 作 PC⊥x 轴于点 D,交抛物线于点 C. 问:是否存在这样的 P 点,使线段 PC 的长 有最大值?若存在,求出这个最大值;若不存在, 请说明理由; .
题型四:形成相似三角形:相似三角形存在的形式一般有:A 字型和旋转型两种。 解题思路是:一般是利用两角对应相等,两三角形相似。判断角相等一般找
公共角或线平行;特殊情况要依据:对应边成比例且夹角相等进行判定。
例 6:如图,已知抛物线 y= x2+2x+1 经过△ABC 的三个顶点,其中点 A(0,1), 点 B(﹣9,10),AC∥x 轴,点 P 时直线 AC 下方抛物线上的动点.
微复习:二次函数综合题目总结(一):
二次函数综合题目历来被出题者青睐,现对基础题型及解法总结如下: 题型一:线段和最小:
我个人把它叫做一动(点)两定(点)问题。一般动点所在的位置有两种: 一种是动点在对称轴上;一种是动点在坐标轴上。
这类题的解题思路是:找一定点关于动点所在直线的对称点,连接另一定点 和对称点的线段就是所求线段。
问:当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q,使得以 C、P、Q 为顶点的 三角形与△ABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.
例 7:如图,抛物线 y=x2−2x+3 与 x 轴交于点 A(−1,0),点 B(3,0),与 y 轴交于点 C,且过点 D(2,−3)。点 P、Q 是抛物线上 y=x2−2x于点 E,当△OBE 与△ABC 相似时,求点 Q 的坐 标。 (2)当点 P 在直线 OD 下方时,求△POD 面积的最大值。
热点专题9二次函数综合专题(1)-2020年《三步冲刺中考·数学》之热点专题冲刺(广东专用)(解析版)
热点专题9 二次函数综合题型(1)二次函数的综合探究题一直是中考的必考题。
通常考查与动点、存在性、相似有关的二次函数综合题,解答与动点有关的函数探究问题,通常需要把问题拆开,分清动点在不同位置运动,或不同时间段运动时对应的函数关系式,进而确定函数图象这类问题往往与函数知识、特殊三角形、特殊四边形的性质,以及分类讨论思想、方程思想、数形结合思想相联系。
解题时要特别注意把握题目中的“动中有变(图形的变化)、变中有静(特殊三角形或四边形的性质及其数学思想)”的内在规律并注意挖掘隐含条件,综合运用数学知识解决问题。
此类问题的考查形式通常为解答题,解答此类问题时要注意分析问题存在的多种情况。
二次函数综合题型有以下三种常见题型: 题型一:二次函数与线段最值问题; 题型二:二次函数与图形面积问题;题型三:二次函数与特殊三角形的存在性问题; 题型四:二次函数与特殊四边形的存在性问题。
考向1 二次函数与线段最值问题例:(2019 •深圳福田区校级模拟)如图,抛物线215222y x x与x 轴相交于A ,B 两点,点B 在点A 的右侧,与y 轴相交于点C . (1)求点A ,B ,C 的坐标;(2)在抛物线的对称轴上有一点P ,使PA PC 的值最小,求点P 的坐标;【解析】(1)当0x 时,则52y,5(0,)2C ,当0y时,2152022x x,化简,得2450x x ,解得,1x 或5x ,(1,0)A ,(5,0)B ;(2)如图,连接BC ,交对称轴于点P ,连接AP .点A 和点B 关于抛物线的对称轴对称,APPB ,要使PA PC 的值最小,则应使PB PC 的值最小,BC 与对称轴的交点,使得PA PC 的值最小.设BC 的解析式为ykxb . 将(5,0)B ,5(0,)2C 代入ykxb ,得5250bk b, 1252k b,直线BC 的解析式为1522y x 抛物线的对称轴为直线22122x,当2x 时,1532222y,3(2,)2P ;练习:1. (2019 •南海区模拟二)如图,已知:直线2(y xm m 为常数),抛物线223y ax ax 的最大值为4,抛物线的顶点为A .(1)当直线经过A 点时,求m 的值;(2)当直线和抛物线在x 轴上方的部分只有一个公共点时,求m 的取值范围.(3)当直线与抛物线只有一个公共点D 时,设点P 是y 轴上一动点,求||PA PD 的最大值,并求取得最大值时P 点的坐标.【解析】(1)抛物线223y ax ax的最大值为4,函数的对称轴为:1x,此时234ya a ,解得:1a ,故抛物线的表达式为:223y x x;顶点A 的坐标为:(1,4);将点A 的坐标代入直线表达式并解得:6m ;(2)抛物线于x 轴的交点坐标为:(1,0)和(3,0); ①当直线过(1,0)时,则02m ,解得:2m ;②当直线过(3,0)时,即06m ,解得:6m;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:2430x xm ,△2(4)4(3)0m ,解得:7m,此时交点坐标为:(2,3),当直线过(3,0)时,直线和抛物线在x 轴上方的部分有两个公共点, 故26m 或67m ;(3)由(2)知,点(2,3)D ,连接D 、A 交y 轴于点P ,则此时||PA PD 有最大值,即点P 为所求点, 由点A 、D 的坐标得,直线AD 的表达式为:5y x ,故点(0,5)P .2. (2019•徐闻县期末)如图,点(4,0)M ,以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216yx bxc 过点A 和点B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象. (2)点(8,)Q m 在抛物线216yx bxc 上,点P 为此抛物线对称轴上一个动点,求PQPB 的最小值.【解析】(1)(4,0)M ,M 的半径为2,4AB,(2,0)A ,(6,0)B , 将A ,B 的坐标代入216yx bxc 中,得2203660b cb c,解得432b c,214263yx x ,当0x 时,2y ,(0,2)C ,抛物线的大致图象如图1;(2)点(8,)Q m 在214263yx x 图象上,2m ,(8,2)Q ,如图2,由于点A 与点B 关于抛物线的对称轴4x 对称,连接AQ ,交对称轴于点P ,连接PB ,由两点之间线段最短可知,此时PQPB 的值最小,即PQ PB AQ ,22(82)2210AQ,PQPB的最小值为3. (2018•金平区模拟)如图,抛物线2y ax bxc 与x 轴相交于(3,0)A 、B 两点,与y 轴交于点(0,3)C ,点B 在x 轴的负半轴上,且3OAOB .(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标; (3)在线段OC 上是否存在一点M ,使2BM CM 的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由. 【解析】(1)33OAOB,则点(1,0)B ,抛物线的表达式为:2(1)(3)(23)y a x x a x x ,即33a,解得:1a,故抛物线的表达式为:223yx x;(2)过点P 作y 轴的平行线交CA 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:3yxACP 的面积221133(233)(3)222PH OA x xxx x ,当32x时,ACP 的面积的最大,最大值为:278,此时点3(2P ,15)4;(3)过点M 作MN AC ,则2MNCM ,故当B 、M 、N 三点共线时,2BM CM BN 最小,直线CA 的倾斜角为45,BN AC ,则45NBA,即222BNAB AN ,则点(1,2)N .4.(2019 •信宜市二模)如图,已知抛物线2(0)y ax bxc a的对称轴为直线1x,且抛物线经过(1,0)B ,(0,3)C 两点,与x 轴交于点A .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线1x 上找一点M ,使点M 到点B 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)如图2,点Q 为直线AC 上方抛物线上一点,若45CBQ,请求出点Q 坐标.【解析】(1)点(3,0)A , 则抛物线的表达式为:2(3)(1)(23)y a xx a x x ,即33a,解得:1a,故抛物线的表达式为:223y x x①;(2)点B 关于函数对称轴的对称点为点A ,则AC 交函数对称轴于点M ,则点M 为所求, 由点A 、C 的坐标得,直线AC 的表达式为:3y x ,当1x 时,2y ,故点(1,2)M ;(3)如图,设直线BQ 交y 轴于点H ,作HGBC 于点G ,1tan 3OCB,45CBQ ,则设:BG HGx ,则3CGx ,则49110BCBGCGx,5102CHx,则点1(0,)2H , 由点B 、H 的坐标可得,直线BQ 的表达式为:1122y x ②,联立①②并解得:1x(舍去)或52,故点5(2Q ,7)4.考向2 二次函数与图形面积问题例:(2019 •电白县期末)如图,在平面直角坐标系中,二次函数2y x bxc 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,抛物线的对称轴1x ,与y 轴交于(0,3)C 点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的解析式及A 、B 点的坐标.(2)连接PO 、PC ,并把POC 沿CO 翻折,得到四边形POP C ,那么是否存在点P ,使四边形POP C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.【解析】(1)函数的对称轴为:12bx ,解得:2b ,故抛物线的表达式为:223y x x ,令0y,则1x或3,故点A 、B 的坐标分别为:(1,0)、(3,0);(2)存在,理由:如图1,四边形POP C 为菱形,则1322yPOC ,即23232y x x ,解得:101x (舍去负值),故点10(1P ,3)2; (3)过点P 作//PH y 轴交BC 于点P , 由点B 、C 的坐标得,BC 的表达式为:3y x ,设点2(,23)P x x x ,则点(,3)H x x ,ABPC 的面积ABCBCPSSS1122AB OCPH OB 211433(323)22x x x239622x x ,302,故S 有最大值为758,此时点3(2P ,15)4. 练习:1.(2019 •源城区校级模拟)如图,抛物线2y x bxc 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点(0,3)C ,对称轴为1x,点D 与C 关于抛物线的对称轴对称.(1)求抛物线的解析式及点D 的坐标;(2)点P 是抛物线上的一点,当ABP 的面积是8时,求出点P 的坐标;(3)点M 为直线AD 下方抛物线上一动点,设点M 的横坐标为m ,当m 为何值时,ADM 的面积最大?并求出这个最大值.【解析】(1)抛物线2yx bxc 的对称轴为1x,12b,2b , 抛物线与y 轴交于点(0,3)C ,3c ,抛物线的解析式为223yx x ,抛物线的对称轴为直线1x ,点D 与C 关于抛物线的对称轴对称,点D 的坐标为(2,3); (2)当0y时,2230x x ,解得,11x ,23x , 点A 的坐标为(1,0),点B 的坐标为(3,0),3(1)4AB,设点P 的坐标为(,)s t ,ABP 的面积是8,1||82P AB y , 即14||82t ,4t , 当4t 时,2234s s ,解得,1122s ,2122s ,点P 的坐标为(122,4)或(122,4);当4t时,2234s s ,解得,121s s ,点P 的坐标为(1,4);当ABP 的面积是8时,点P 的坐标为(122,4)或(122,4)或(1,4);(3)设直线AD 的解析式为1y kxb ,将(1,0)A ,(2,3)D 代入1y kx b ,得,11023k b kb ,解得,111k b ,直线AD 的解析式为1yx ,过点M 作//MN y 轴,交AD 于点N , 点M 的横坐标是m ,(12)m,点M 的坐标为2(,23)m m m ,点N 的坐标为(,1)m m ,221(23)2MNm m m m m,AMDAMNDMNSSS11(1)(2)22MN m MN m32MN 23(2)2m m3127()2228m ,30 2,1122,当12m时,278AMDS,当12m时,AMD的最大值为278.2. (2020•清城区模拟)如图,在平面直角坐标系中,抛物线2y ax bx c的图象与x轴交于(4,0)A,B两点,与y轴交于点(0,2)C,对称轴32x与x轴交于点H.(1)求抛物线的函数表达式;(2)直线1(0)y kx k与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若CPQ P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.【解析】(1)对称轴32x,则点(1,0)B,则抛物线的表达式为:2(1)(4)(34)y a x x a x x,即42a,解得:12 a,故抛物线的表达式为:213222y x x ;(2)设直线PQ 交y 轴于点(0,1)E ,点P 、Q 横坐标分别为m ,n ,CPQ 的面积117()2CE n m , 即17n m ,联立抛物线于直线PQ 的表达式并整理得:213()122x k x ①,32m n k ,2mn ,2217()4(32)8nmmn mnk ,解得:0k (舍去)或3;将3k代入①式并解得:317x,故点P 、Q 的坐标分别为:317(,217)、317(,217);(3)设点3(2K ,)m ,联立PQ 和AC 的表达式并解得:27x,故点2(7G ,13)7过点G 作x 轴的平行线交函数对称轴于点N ,交过点R 与y 轴的平行线于点M ,则()KNG GMR AAS , 32172714GNMR ,137NKm , 故点R 的纵坐标为:914,则点11(7R m ,9)14将该坐标代入抛物线表达式解得:21153314x , 故43153314m, 故点3(2K 431533). 3. (2019 •阳春市模拟二)如图,在平面直角坐标系中,直线5y x 与x 轴交于点B ,与y 轴交于点C .抛物线2yx bxc 经过点B 和点C ,与x 轴交于另一点A ,连接AC .(1)求点A 的坐标;(2)若点Q 在直线BC 上方的抛物线上,连接QC ,QB ,当ABC 与QBC 的面积比等于2:3时,直接写出点Q 的坐标:(3)在(2)的条件下,点H 在x 轴的负半轴,连接AQ ,QH ,当AQH ACB 时,直接写出点H 的坐标.【解析】(1)直线5y x 与x 轴交于点B ,与y 轴交于点C ,则点B 、C 的坐标分别为:(5,0)、(0,5),则5c,将点B 的坐标代入抛物线表达式并解得:6b,故抛物线的表达式为:265y x x ;(2)过点A 作直线BC 的平行线n 交y 轴于点M ,则点(0,1)M ,则514CM ,在点C 上方取362CNCM ,过点N 作直线m 交抛物线于点()Q Q ,则点Q 为所求,则点(0,11)N ,则直线m 的表达式为:11y x ②,联立①②并解得:1x 或6,故点(1,12)Q 或(6,5); (3)过点A 作AKBC 于点K ,4AB,则22AKBK,26AC,则224sin sin1326ABC,则2tan3; ①当点(6,5)Q 时, 过点H 作HRAQ 交QA 的延长线于点R ,由点A 、Q 的坐标知,tan 1tan QAB ,故45,52AQ ,则HR ARx ,2tan tan352HR HQRAR AQx , 解得:102x,220AH x,故点(19,0)H ;②当点(1,12)Q 时, 同理可得:点32(5H ,0); 综上,点H 的坐标为:(19,0)或32(5,0).。
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(一)
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(一)1.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC 于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.2.如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D 是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.。
2020中考数学考点09 二次函数考点总动员(解析版)
考点09 二次函数考点总动员【考纲要求】 (2)一、聚焦考点 (2)知识点1 二次函数的定义 (2)知识点2 二次函数图像的性质 (2)知识点3 二次函数的平移 (3)知识点4 求解析式方法 (3)知识点5 二次函数的应用 (3)知识点6 二次函数与一元二次方程的关系 (3)二、名师点睛 (4)题型1 二次函数图像及其性质 (4)一、顶点 (4)二、最值 (4)三、比较大小 (8)四、二次函数图像与抛物线系数关系 (9)题型2 二次函数的平移 (11)题型3 求函数解析式 (12)一、已知解析式,求点坐标 (12)二、已知点,求解析式 (13)三、挖掘条件求解析式 (15)题型4 二次函数的应用 (16)一、利润问题 (16)二、面积问题 (19)三、二次函数模型问题 (21)题型5 二次函数与一元二次方程的根 (23)一、已知根的条件,求系数值或取值范围 (23)二、求根或近似根 (24)题型6 综合应用 (25)三、能力提升 (32)【考纲要求】要求1.根据条件确定二次函数表达式—掌握要求2.二次函数的图像及其性质—掌握要求3.运用二次函数及其图像解决简单的实际问题—灵活运用要求4.利用二次函数的图像求一元二次方程的近似解—掌握一、聚焦考点知识点1 二次函数的定义二次函数的定义:一般地,形如(a,b,c是常数,a≠0 )的函数,叫做二次函数。
知识点2 二次函数图像的性质①图形形状:抛物线②开口方向:a>0,开口向上;a<0,开口向下③开口大小:越大,开口越小表达式y=y=a④顶点(0,0)(h,k)()⑤最值(顶点纵坐标)⑥对称轴(x=顶点横坐标)y轴(x=0)x=hh=⑦增减性:根据图像性质和判断,具体步骤为:(1)根据a判断开口方向;(2)根据顶点横坐标求出对称轴,判断增减性的分界点;(3)画图判断增减性i.a>0,x=n ii.a<0,x=n即:i.a>0,对称轴为x=n,则ii.a<0,对称轴为x=n,则⑧对称性点性质:()是抛物线上的点,且关于对称轴x=n对称。
2020-2021备战中考数学二次函数的综合热点考点难点含详细答案
2020-2021备战中考数学二次函数的综合热点考点难点含详细答案一、二次函数1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题2.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。
2020-2021中考数学二次函数的综合热点考点难点附答案
2020-2021中考数学二次函数的综合热点考点难点附答案一、二次函数1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图,抛物线y=12x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(32,﹣54). 【解析】 【分析】(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32=交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】(1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (32528,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)∵顶点D 的坐标为 (32528,-),∴抛物线的对称轴为x 32=. ∵抛物线y 12=x 2+bx ﹣2与x 轴交于A ,B 两点,∴点A 与点B 关于对称轴x 32=对称.∵A (﹣1,0),∴点B 的坐标为(4,0),当x =0时,y 21322x =-x ﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC 与直线x 32=交点即为M 点,如图,根据轴对称性,可得:MA =MB ,两点之间线段最短可知,MC +MB 的值最小.设直线BC 的解析式为y =kx +b ,把C (0,﹣2),B (4,0)代入,可得:240b k b =-⎧⎨+=⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴y 12=x ﹣2.当x 32=时,y 1352224=⨯-=-,∴点M 的坐标为(3524-,). 【点睛】本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.4.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210+. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).5.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.【答案】(1)抛物线的解析式为y=x 2﹣4x ,自变量x 的取值范图是0≤x≤4;(2)△PAB 的面积=15. 【解析】 【分析】(1)将函数图象经过的点B 坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a 和b ;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ),证明△PFA ∽△AEB,求出点P 的坐标,将△PAB 的面积构造成长方形去掉三个三角形的面积. 【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.6.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.7.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值. (2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【答案】(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得 6,0100.c a c =⎧⎨=+⎩解得3,650a c =-=. ∴抛物线的表达式是23650y x =-+. (2) 可设N (5,N y ), 于是2356 4.550N y =-⨯+=. 从而支柱MN 的长度是10-4.5=5.5米.(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和, 则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.8.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;(2)当t=时,△PEF 的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题9.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.10.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣110)或P(﹣110P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2);(4)63 8,315,24E⎛⎫-⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x ,由此可得出P 的坐标.②当CM =MP 时,根据CM 的长即可求出P 的纵坐标,也就得出了P 的坐标(要注意分上下两点).③当CM =C P 时,因为C 的坐标为(0,3),那么直线y =3必垂直平分PM ,因此P 的纵坐标是6,由此可得出P 的坐标; (3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE 不是规则的四边形,因此可将四边形BOCE 分割成规则的图形进行计算,过E 作EF ⊥x 轴于F ,S 四边形BOCE =S △BFE +S 梯形FOCE .直角梯形FOCE 中,FO 为E 的横坐标的绝对值,EF 为E 的纵坐标,已知C 的纵坐标,就知道了OC 的长.在△BFE 中,BF =BO ﹣OF ,因此可用E 的横坐标表示出BF 的长.如果根据抛物线设出E 的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E 的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE 的最大值及对应的E 的横坐标的值.即可求出此时E 的坐标. 【详解】(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩,解得:12a b =-⎧⎨=-⎩.∴所求抛物线解析式为:y =﹣x 2﹣2x+3; (2)如答图1,∵抛物线解析式为:y =﹣x 2﹣2x+3, ∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3, ∴C (0,3),M (﹣1,0)∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10, ∴P 点坐标为:P 2(﹣110)或P 3(﹣110);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6,∴P点坐标为:P4(﹣1,6).综上所述存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2),理由如下:如答图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.11.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣3≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE 的长与a 值无关. (3)当β=45°时,OC=OE=3, ∴﹣3a=3, ∴a=﹣1,当β=60°时,在Rt △OCE 中,OC=3OE=33, ∴﹣3a=33, ∴a=﹣3,∴45°≤β≤60°,a 的取值范围为﹣3≤a≤﹣1. (4)如图,作PM ⊥对称轴于M ,PN ⊥AB 于N .∵PD=PE ,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°, ∴∠DPM=∠EPN , ∴△DPM ≌△EPN , ∴PM=PN ,PM=EN , ∵D(﹣1,﹣4a),E(3,0), ∴EN=4+n=3﹣m , ∴n=﹣m ﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1, ∵抛物线的顶点在第二象限, ∴m <1.∴n=﹣m ﹣1(m <1).故答案为:(1)(﹣1,4),3;(2)OE 的长与a 值无关;(3)3﹣1;(4)n=﹣m ﹣1(m <1). 【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。
2020年九年级数学中考三轮压轴专题《二次函数动点综合》
三轮压轴专题:《二次函数动点综合》1.如图1,矩形OBCD的边OD,OB分别在x轴和y轴上,且B(0,8),D(10,0).点E是DC边上一点,将矩形OBCD沿过点O的射线OE折叠,使点D恰好落在BC边上的点A处.(1)若抛物线y=ax2+bx经过点A,D,求此抛物线的解析式;(2)若点M是(2)中抛物线对称轴上的一点,是否存在点M,使△AMN为等腰三角形?若存在,直接写出点M的坐标;若不存在,说明理由;(3)如图2,动点P从点O出发沿x轴正方向以每秒1个单位的速度向终点D运动,动点Q从点D出发沿折线D﹣C﹣A以同样的速度运动,两点同时出发,当一点运动到终点时,另一点也随之停止,过动点P作直线1⊥x轴,依次交射线OA,OE于点F,G,设运动时间为t(秒),△QFG的面积为S,求S与t 的函数关系式,并直接写出t的取值范围.(t的取值应保证△QFG的存在)2.如图,在平面直角坐标系中,⊙A的半径为5,点A的坐标为(3,0),⊙A与x轴相交于点B,C,交y轴正半轴于点D.(1)求点B,D的坐标;(2)过点B作⊙A的切线,与过点A,C的抛物线交于点P.抛物线交y轴正半轴于点Q.若P的纵坐标为t,四边形PQAC的面积为y.①求y与t的函数关系式;②若△PBO与△DOA相似,求m2﹣12tm+y取最小值时m的值.3.在平面直角坐标系中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行或重合,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形,点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图①中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3CD 3,都是点A ,B ,C 的外延矩形,矩形A 3B 3CD 3是点A,B,C的最佳外延矩形.(1)如图②,已知A(﹣1,0),B(3,2),点C在直线y =x﹣1上,设点C的横坐标为t.①若t=,则点A,B,C的最佳外延矩形的面积为.②若点A,B,C的最佳外延矩形的面积为9,求t的值.(2)如图③,已知点M(4,0),n(0,),P(x,y)是抛物线y=﹣x2+2x+3上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标x的取值范围;(3)已知D(1,0).若Q是抛物线y=﹣x2﹣2mx﹣m2+2m+1的图象在﹣2≤x≤1之间的最高点,点E的坐标为(0,4m),设点D,E,Q的最佳外延矩形的面积为S,当4≤S≤6时,直接写出m的取值范围.4.在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM∥x轴,OM∥y轴,则称△PQM为点P,Q的“云三角形”.(1)若B点的坐标为(4,0),m=2,则点P,B的“云三角形”的面积为.(2)当点P,Q的“云三角形”是等腰三角形时,求点B的坐标.(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c,①若点M为抛物线上一点,△POM是点P,O的“云三角形”,求△POM的面积S与m之间的函数关系式,并写出m的取值范围;②当点P,Q的“云三角形”的面积为3,且抛物线y=ax2+bx+c 与点P,Q的“云三角形”恰有两个交点时,直接写出m的取值范围.5.对于平面中给定的一个图形及一点P,若图形上存在两个点A、B,使得△PAB是边长为2的等边三角形,则称点P是该图形的一个“美好点”.(1)若将x轴记作直线l,下列函数的图象上存在直线l的“美好点”的是(只填选项).A.正比例函数y=xB.反比例函数y=C.二次函数y=x2+2(2)在平面直角坐标系xOy中,若点M(n,0),N(0,n),其中n>0,⊙O的半径为r.①若r=2,⊙O上恰好存在2个直线MN的“美好点”,求n 的取值范围;②若n=4,线段MN上存在⊙O的“美好点”,直接写出r的取值范围.6.定义:在平面直角坐标系中,点(m,n)是某函数图象上的一点,作该函数图象中自变量大于m的部分关于直线x=m的轴对称图形,与原函数图象中自变量大于或等于m的部分共同构成一个新函数的图象,则这个新函数叫做原函数关于点(m,n)的“孪生函数”.例如:图①是函数y=x+1的图象,则它关于点(0,1)的“孪生函数”的图象如图②所示,且它的“孪生函数”的解析式为y=.(1)直接写出函数y=x+1关于点(1,2)的“孪生函数”的解析式.(2)请在图③的平面坐标系(单位长度为1)中画出函数y=关于点(﹣1,﹣3)的“孪生函数”的图象,并求出图象上到x轴距离为6的所有点的坐标.(3)点M是函数G:y=﹣x2+4x﹣3的图象上的一点,设点M 的横坐标为m,G′是函数G关于点M的“孪生函数”.①当m=1时,若函数值y的范围是﹣1≤y<1,求此时自变量x的取值范围;②直接写出以点A(1,1)、B(﹣1,1)、C(﹣1,﹣1)、D (1,﹣1)为顶点的正方形ABCD与函数G′的图象只有两个公共点时,m的取值范围.7.已知抛物线C1:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛物线C2:y=x2.(1)直接写出抛物线C1的解析式;(2)如图1,已知抛物线C1与x轴交于A,B两点,点A在点B的左侧,点P(,t)在抛物线C上,QB⊥PB交抛物线于点1Q.求点Q的坐标;(3)已知点E,M在抛物线C2上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛物线C2只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.8.在平面直角坐标系中,直线y=﹣x+3交y轴于点C,抛物线y=﹣x2+bx+c过点C,交x轴于A、B两点(点A在点B的左侧),OB=OC.(1)求b,c的值;(2)在线段BC上有一点H,直线AH交y轴于D,在射线AH 上有一点G,过点G的直线交y轴正半轴于点F,交x轴于点E,∠CAG=∠OCB,∠FEO+∠CHA=90°,点E的横坐标为t,EG 的长为d,求d与t的函数关系式;(3)在(2)的条件下,设直线EF交BC于点M,过点E作y 轴平行线交直线AD于点N,点P在抛物线上,连接DP、DM、DE、EN、PE、PN,若=(点E在AB延长线上),S=4S△PNE,求点P的坐标.△DME9.如图1:抛物线y=ax2+bx+3交x轴于点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC=3.(1)求抛物线的解析式;(2)如图2,点P在第一象限的抛物线上,连接PC、PA,若点P横坐标为t,△PAC的面积为S,求S与t的函数关系式;(3)在(2)的条件下,当S=3时,点G为第二象限抛物线上一点,连接PG,CH⊥PG于点H,连接OH,若tan∠OHG=,求GH的长.10.如图,已知直线y=kx与抛物线y=mx2+n交于点A、C.(1)若m=﹣1,且点A坐标为A(1,2),求抛物线解析式与点C坐标;(2)如图1,若k=1,将直线y=x沿着x轴翻折,在第四象限交抛物线于点P,若,求mn的值;(3)如图2,已知抛物线与直线解析式分别为y=与y =x,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(t,0)是x轴正半轴上的动点,记S△AEB=S1,S△EOD=S2,OE=s,OD=t,当满足∠BAE=∠BED=∠AOD的E点有两个时,求S1•S2﹣(S1+)+的最小值,并求出此时E的坐标.11.已知,抛物线C1:y=ax2+bx﹣4经过点L(﹣1,0)、(2,﹣6)(1)求抛物线的解析式;(2)如图1,平移抛物线C1使其顶点为M(0,2)得到抛物线C,点A为抛物线C2第一象限内异于点M的任意一点,直线AM 2交x轴于点C,过点C作x轴的垂线交抛物线C2于点B,直线AB与y轴交于点N,求点N的坐标;(3)如图2,点P是抛物线C1第一象限内的点,过点P的直线y=mx+n(n<0)与抛物线C1交于另一点Q,连接LP交y轴于点S,连接LQ交y轴于点T.若OS•OT=2,探究m与n之间的数量关系,并说明理由.12.如图,在平面直角坐标系中,直线y=x+2与抛物线y=+bx+c交于A、B两点,点A在x轴上,点B的横坐标为4.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),点P的横坐标为m.①如图1,连接PO,以点P为旋转中心,把线段PO逆时针旋转90°,得到线段PC.当m为何值时,点C在直线AB上;②如图2,一动圆以点P为圆心,并与直线AB相切,设圆的半径为r,求r关于m的函数关系式,并求出r的取值范围.13.如图,已知抛物线y=ax2+c过点,过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B 在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)设点D(a,0)在x轴上运动,连接FD,作FD的垂直平分线与过点D作x轴的垂线交于点I,判断点I是否在抛物线y=ax2+c,并证明你的判断;(3)若k=1,设AB的中点为M,抛物线上是否存在点P,使得△PMF周长最小,若存在求出周长的最小值,若不存在说明理由;(4)若,在抛物线上是否存在点Q,使得△QAB 的面积为,若存在求出点Q的坐标,若不存在说明理由.14.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)求抛物线的顶点坐标(用含a的式子表示);(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.15.有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t 的值;(3)如图3,抛物线y=ax2+bx+c与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①a<0,ab≠0,c=2;②顶点D在以AB为直径的圆上.点P(x0,y0)是抛物线y=ax2+bx+c上任意一点,且t=y﹣.若t≤m+恒成立,求m的最小值.参考答案1.(1)解:∵四边形OBCD是矩形,B(0,8),D(10,0)∴BC=OD=10,DC=OB=8,∠OBC=∠C=90°,由折叠可得:OA=OD=10,AE=DE∵∠OBC=90°,OB=8,OA=10,∴AB=6,∴AC=4,设AE=DE=x,则CE=8﹣x,∵∠C=90°,∴x2=42+(8﹣x)2解得:x=5,∴AE=DE=5,∴点A的坐标为(6,8),点E的坐标为(10,5),∵抛物线y=ax2+bx经过点A(6,8),D(10,0),∴角解得:此抛物线的解析式为(2)存在M、N,使以A、M、N、E为顶点的四边形为菱形,设抛物线的对称轴与BC交于点H,过点E作ET⊥AH,垂足为T,连接AM、ME,如图1,设点M的坐标为(m,n),则,∴AH=6﹣5=1,HM=﹣8﹣nET=10﹣5=5,TM=﹣5﹣n因为AH⊥HM,∴AM2=AH2+MH2=1+(8﹣n)2∵ET⊥MH∴ME2=ET2+MT2=25+(5﹣n)2①若AM与AE是菱形的一组邻边,则AM=AE∴AM2=AE2∴1+(8﹣n)2=25∴(8﹣n)2=24解得:②若EM与EA是菱形的一组邻边,则EM=EA∴EM2=EA2∴25+(5﹣n)2=25∴(5﹣n)2=0∴n3=5③若MA与ME是菱形的一组邻边,则MA=ME∴MA2=ME2∴1+(8﹣n)2=25+(5﹣n)2解得:n4=2.5综上所述:满足要求的点M的坐标为,(5,5),(5,2.5)(3)设直线OA的解析式y=k1z,∵点A的坐标为(6,8),∴6k1x=8,∴,直线OA的解析式,同理可得:直线OE的表达式为y=,∵OP=1×t=t∴P(t,0)∵直线⊥x轴于点P,点F,G是直线l与OA,OE的交点∴,故,当0<t<8时,点Q在线段DC上过点Q作QS⊥直线l,垂足为S,如图2,则QS=PD=10﹣t∴==,②当8≤t<9时,点Q在线段CA上,且在直线l的右侧,设FG交AC于点N,如图3,则QN=CN﹣CQ=PD﹣CQ=(10t)﹣(t﹣8)=18﹣2t∴==③当t=9时,QN=18﹣2t=0,点Q与点N重合,此时△QFG 不存在,故舍去,④当9<t≤10时,点Q在线段CA上,且在直线l的左侧,设FG交AC于点N,如图4.则QN=CQ﹣CN=CQ﹣PD=(10﹣t)=2t﹣18∴=(2t﹣18)=综上所述:2.解:(1)如图,连接OD,则AD=AB=5,∵点A(3,0),∴OA=3,∴OB=AB﹣OA=2,∴B(﹣2,0),在Rt△AOB中,根据勾股定理得,OD==4,∴D(0,4);(2)①∵⊙A的半径为5,点A(3,0),∴C(8,0),∴设过点A,C的抛物线的解析式为y=a(x﹣3)(x﹣8),由(1)知,B(﹣2,0),∵BP是⊙A的切线,∴BP⊥OB,∴P(﹣2,t),∵点P在抛物线上,∴t=a(﹣2﹣3)(﹣2﹣8),∴a=,∴抛物线的解析式为y=(x﹣3)(x﹣8)=x2﹣x+,∴Q(0,),∴OQ=,∴y=S四边形PQAC=S△PBC﹣S梯形PBOQ﹣S△OAQ=×10t﹣×2×(t+)﹣×3×=t;②设w=m2﹣12tm+y当△PBO∽△DOA时,,∴,∴t=,此时,y=,∴m2﹣12tm+y=m2﹣12×m+=m2﹣32m+=(m﹣16)2﹣248,当m=16时,m2﹣12tm+y有最小值﹣248;当△PBO∽△AOD时,,∴,∴t=,此时,y=,∴m2﹣12tm+y=m2﹣12×m+=m2﹣18m+=(m﹣9)2﹣76,当m=9时,m2﹣12tm+y有最小值﹣76,而﹣248<﹣76,∴m2﹣12tm+y取最小值时,m的值为16.3.解:(1)①如图②,作矩形ANBM,∵t=,∴C(,),∵A(﹣1,0),B(3,2),∴C在矩形ANBM内部,此时,矩形ANBM是点A,B,C的最佳外延矩形.S=AM•BM=(3+1)(2﹣0)=8.矩形ANBM故答案为8.②若C在x轴下方,则:4[2﹣(t﹣1)]=9,解得t=.若C在B点右上方,则:(t+1)(t﹣1)=9,解得t1=﹣(舍),t2=.综上所述,t的值为或.(2)令y=﹣x2+2x+3=,解得x1=1+,x2=1﹣,令y=﹣x2+2x+3=0,解得x1=﹣1,x2=3,点M,N,P的最佳外延矩形面积的最小值为4×=14,此时P点横坐标x的取值范围为:0≤x≤1﹣或1+≤x≤3.(3)∵y=﹣x2﹣2mx﹣m2+2m+1=﹣(x+m)2+2m+1,∴抛物线的顶点坐标为(﹣m,2m+1).当1≤﹣m即m≤﹣1时,Q点坐标为(1,﹣m2)若﹣m2<4m,则m>0(舍)或m<﹣4,此时S=m2,∵4≤S≤6,∴﹣≤m≤﹣2(舍).若﹣m2≥4m,则﹣4≤m≤0,此时S=﹣4m,∴4≤﹣4m≤6,解得:﹣≤m≤﹣1,当﹣2<﹣m<1即﹣1<m<2时,Q点的坐标就是抛物线顶点,S=4m(m+1),∴4≤4m(m+1)≤6,解得≤m≤,当﹣m≤﹣2即m≥2时,4m≥8,不合题意,舍去.综上所述,m的取值范围为:≤m≤或﹣≤m≤﹣1.4.解:(1)如图1,∵A(0,6),B(4,0),∴直线AB解析式为,∵m=2,∴P(2,3)∵PM∥x轴,QM∥y轴,∴M(4,3),∠PMB=90°∴PM=2,BM=3,∴点P,B的“云三角形”△PBM的面积=;故答案为:3(2)如图2,根据题意,得MP=MQ,∠PMQ=90°,∴∠MPQ=45°,∵PM∥x轴,∴∠ABO=45°,∴OB=OA=6,点B的坐标为(6,0);(3)如图3,①首先,确定自变量取值范围为0<m<3,由(2)易得,线段AB的表达式为y=6﹣x,∴点P的坐标为(m,6﹣m),∵抛物线y=ax2+bx+c经过O,B两点,∴抛物线的对称轴为直线x=3,∴点M的坐标为(6﹣m,6﹣m),∴PM=(6﹣m)﹣m=6﹣2m,∴;②当点P在对称轴左侧,即m<3时,∵点P,Q的“云三角形”面积为3,由①得:2m2﹣12m+18=3,解得:或(舍去).当点P在对称轴上或对称轴右侧,即m≥3时,,∴,,,∵抛物线=ax2+bx+c与点P,Q的“云三角形”恰有两个交点,∴,解得:.综上所述,m的取值范围为:或.5.解:(1)∵x轴是图形l,△PAB是边长为2的等边三角形,∴P点纵坐标为±,y =x上存在点(,)或(﹣,﹣)是x轴的“美好点”,y =上存在点(,)或(﹣,﹣)是x轴的“美好点”,y=x2+2中y的最小是2,∴y=x2+2上不存在x轴的“美好点”,故选A、B;(2)①∵M(n,0),N(0,n),n>0,∴∠MNO=60°,MN=2n,△ABC与△ABD是边长为2的等边三角形,∴AC∥BD∥y轴,设直线NM的解析式为y=kx+b,则有,∴k=﹣,设过C点与MN平行的直线为y=﹣+c,过D点与MN平行的直线为y=﹣+d,当直线y=﹣+c与圆O相切时,c=4,∴n=4+2=6,此时⊙O上恰好存在1个直线MN的“美好点”,当y=﹣+d与圆O相切时,d=4,此时y=﹣+c经过点O,即c=0,此时⊙O上恰好存在3个直线MN的“美好点”,∴0<n<4时,⊙O上恰好存在2个直线MN的“美好点”;②如图:∵△ABC与△ABD是边长为2的等边三角形,∴C点在以O为圆心OC为半径的圆上,D点在以O为圆心OD 为半径的圆上,∵n=4,∴M(4,0),N(0,4),∴∠ONM=60°,当MN与D点所在圆相切时,OD=r=2,此时线段MN上存在⊙O的“美好点”,当OC=OM时,OC=r=4,此时线段MN上存在⊙O的“美好点”,∴2≤r≤4时,线段MN上存在⊙O的“美好点”.6.解:(1)函数y=x+1在x>1部分任意取一点(2,3)关于x=1的对称点为(0,3),设函数y=x+1图象关于x=1对称的部分的图象解析式为y=kx+b,将点(0,3),(1,2)代入解析式,得,解得,∴“孪生函数”的解析式为y=;(2)令y=6,则x=,∴点的坐标为(,6),∵点(,6)关于x=﹣1的对称点为(﹣,6),令y=﹣6,则=6,解得x=﹣,∴点的坐标为(﹣,﹣6),点(﹣,﹣6)关于x=﹣1的对称点的坐标为(﹣,﹣6),综上所述:到x轴距离为6的点的坐标为(,6)或(﹣,﹣6)或(﹣,6)或(﹣,﹣6);(3)①当m=1时,G'的解析式为y=,令y=﹣1,﹣x2+4x﹣3=﹣1,解得x=2﹣或x=2+,令y=﹣1,﹣x2+1=﹣1,解得x=﹣或x=,当﹣≤x<0或0<x<2或2<x<2+时,﹣1≤y<1;②函数y=﹣x2+4x﹣3的顶点为(2,1),点(2,1)关于x=m对称的点的坐标为(2m﹣2,1),∴函数y=﹣x2+4x﹣3关于x=m对称的函数解析式为y=﹣(x ﹣2m+2)2+1,当2m﹣2>1时,即m>,当x=1时,﹣(3﹣2m)2+1>﹣1,即<m<,∴<m<时G'与正方形ABCD有两个交点;当x=﹣1时,﹣(1﹣2m)2+1<﹣1,即m<或m>,∴m<;综上所述:<m<或m<时G'与正方形ABCD有两个交点.7.解:(1)由已知可知,抛物线C2:y=x2向右平移1个单位长度,再向下平移4个单位长度得到抛物线C1:y=ax2+bx+c,∴抛物线C1:y=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),∵点P(,t)在抛物线C1上,∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.8.解:(1)直线y=﹣x+3交y轴于点C,则点C(0,3),OB =OC=3,则点B(3,0),故c=3,将点B的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,故b=2,c=3;(2)抛物线的表达式为:y=﹣x2+2x+3,∵OB=OC,∴∠OBC=∠OCB=45°,∴∠CAG=∠OCB=45,过点E作ET⊥AH于点T,过点C作CK⊥AC交AH于点K,过点C作PQ∥x轴,过点K作KQ⊥PQ于点Q,∵CK⊥AC,∴∠ACK=90°,∴∠CKA=45°,∴∠CAK=∠CKA,∴AC=CK,∵∠PAC=∠QCK,∠APC=∠CQK=90°,∴△APC≌△CQK(AAS),∴PC=KQ,PA=CQ=3,∵点A(﹣1,0),故OA=1,∴PC=KQ=1,故点K(3,2);由点A、K的坐标得,直线AK的表达式为:y=x+,故点D(0,),则tan∠ADO==,∵∠FEO+∠CHA=90°,∠FEO+∠OFE=90°,∴∠OFE=∠CHA,∵∠OFE+∠CFB=180°,∴∠CHA+∠CFB=180°,∴∠FGH+∠FCH=180°,∵∠FCH=45°,∴∠FGH=135°,∴∠HGE=45°,∴∠HGE=∠TEG=45°,∴TG=TE=CE,∵EA=t+1,tan∠TAE==,∴AT=2TE,在Rt△ATE中,TE2+AT2=AE2,TE2+(2TE)2=(t+1)2,解得:TE=(t+1),d =EG=TE=(t+1);(3)如图,过点P作PZ⊥EN角BN的延长线于点Z,直线PZ 交y轴于点C′(C),延长DM交EN于点W,∵=,则设BE=3k,则FC=5k,则OF=3﹣5k,OE=3+3k,由(2)知,∠HGE=45°,∴∠GEA+∠GAE=45°,∵∠ACO+∠DAO=180°﹣∠AOD﹣∠CAK=45°,∴∠ACO=∠GEA,∴tan∠ACO=tan∠GEA,∵tan∠==,∴tan∠=,∴=,即=,解得:k=,故OF=,OE=4,故点E(4,0),点F(0,),由点E、F的坐标得,直线EF的表达式为:y=﹣x+,而BC 的表达式为:y=﹣x+3,联立上述两个表达式并解得:x=,故点M(,),∵点D(0,),故DM∥x轴,则DM=,∵点N在直线y=x+上,且横坐标为4,∴点N(4,),则EN=,∴DM=EN,∵S△PNE=4S△DME,则NE•PZ=4××DM•y M,故PZ=4WE=4×=2,四边形C′ZEO为矩形,则C′Z=OE=4,故C′P=2,当x=2时,y=﹣x2+2x+3=3,故点P(2,3).9.解:(1)c=3,故OC=3,tan∠ABC=1,则OA=3,tan∠BAC=3,则OA=1,故点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),则抛物线的表达式为:y=a(x+1)(x﹣3),将点C坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)点P(t,﹣t2+2t+3),点A(﹣1,0),将点P、A坐标代入一次函数表达式y=kx+b并解得:直线PA的表达式为:y=(3﹣t)(x+1),设直线AP交y轴于点R,则R(0,3﹣t),S=CR×(x﹣x A)=(3﹣3+t)(t+1)=t2+t;P(3)S=t2+t=3,解得:t=﹣3(舍去)或2,故点P(2,3),而点C(0,3),连接CP,则CP∥x轴,CH⊥GP,则∠CPH=∠OCH=α,HM⊥CP,则∠CHM=∠HCO=α,过点O作ON⊥CH交CH的延长线于点N,作HM⊥CP于点M,CP=2,OC=3,CH=CP sinα=2sinα,ON=OC sinα=3sinα,CN=OC cosα=3cosα,∵ON⊥CN,GH⊥CH,∴∠HON=∠OHG,故tan∠HON====tan∠OHG=,解得:tan,则sinα=,cosα=,MH=CH cosα=2sinα•cosα=,CM=CH sinα=,故点H (,);设点G(m,﹣m2+2m+3),而点P(2,3),由点G、P的坐标得,直线PG表达式中的k值为:﹣m=﹣tanα=,故点G(﹣,),由点G、H的坐标得,GH=.10.解:(1)∵点A(1,2)在直线y=kx上∴k=2,即直线为y=2x∵点A(1,2)在抛物线y=mx2+n上,m=﹣1∴﹣1+n=2,解得:n=3∴抛物线解析式为y=﹣x2+3解得:(即点A)∴点C坐标为(﹣3,﹣6);(2)过点A作AM⊥x轴于点M,过点P作PN⊥x轴于点N∴∠OMA=∠ONP=90°∵点A在直线y=x上,设A(a,a)(a>0)∴OM=AM=a,∠AOM=45°∵点A关于x轴对称点A'(a,﹣a)∴直线y=x沿着x轴翻折得到直线OA'解析式为y=﹣x,∠PON=∠AOM=45°∴△AOM、△PON都是等腰直角三角形∵∴∴ON=PN=2a∴P(2a,﹣2a)∵点A、P都在抛物线y=mx2+n∴①﹣②消去n后整理得:ma=﹣1,即a=﹣①×4﹣②消去ma2后整理得:n=2a∴n=﹣∴mn=﹣2;(3)过点E作EH⊥x轴于点H解得:,,∵点A在第一象限∴A(1,),OA=,tan∠AOD=∴∠AOD=60°∴∠BAE=∠BED=∠AOD=60°设直线AB与x轴交点为F,则△AOF为等边三角形∴OF=OA=2,F(2,0)设直线AB解析式为:y=kx+b解得:∴直线AB:y=﹣x+2解得:(即点A)∴点B与点F重合,点B在x轴上∴OB=AB=OA=2∵∠BAE=∠BED,∠BEO=∠BAE+∠ABE=∠BED+∠OED ∴∠ABE=∠OED∵∠BAE=∠AOD∴△ABE∽△OED∴即∴t==﹣(s﹣1)2+,故0<t<;∵OE=s,sin∠EOH==∴EH=OE=s∴S2=S△EOD=OD•EH=st==∵∴S1==∴S1•S2﹣(S1+)+=﹣[+]+=,令s(2﹣s)=u,则原式=u2﹣u+=,∵>0,∴当u=时,S1•S2﹣(S1+)+的最小值为,此时,s(2﹣s)=,解得:s1=,s2=,当s=或时,均满足0<t<;∴当OE=s1=时,OH=cos60°=,EH=sin60°=,∴E1(,)当OE=s2=时,OH=cos60°=,EH=sin60°=,∴E2(,),综上所述,E的坐标为:E1(,),E2(,).11.解:(1)将点(﹣1,0)、(2,﹣6)的坐标代入抛物线表达式并解得:b=﹣3,c=﹣4,故抛物线的表达式为:y=x2﹣3x﹣4;(2)设AC等解析式为y=k1x+2,联立得:x2﹣k1x=0,∴x A=k1,设直线AB的解析式为y=k2x+b2,联立得:x2﹣k2x+2﹣b2=0,∴x A x B=2﹣b2,∵x B=x C=,∴b2=4,即点N坐标为(0,4);(3)设直线LP的解析式为y=a1x+a1,联立得:x2﹣(3+a1)x﹣4﹣a1=0,∴a1=x P﹣4,设直线LQ的解析式为y=a2x+a2,同理得:a2=x Q﹣4,∵OS•OT=2,∴(x P﹣4)(x Q﹣4)=2,∴x P x Q﹣4(x P+x Q)+16=2,联立得:x2﹣(3+m)x﹣4﹣n=0,∴x P x Q=﹣4﹣n,x P+x Q=3+m,∴n=﹣4m﹣2.12.解:(1)由题意得A(﹣2,0),B(4,6),,解得:,则所求函数解析式为:y=﹣+2x+6;(2)①过P作PG⊥y轴于G点,过C点作CH⊥PG交PG的延长线于H点,设P(m,﹣1/2m2+2m+6),∵∠PGO=∠CHP=90°,∠CPH=∠POG(同角的余角相等),PO=PC,∴△POG≌△CPH(AAS),∴CH=PG=﹣m,OG=PH=﹣m2+2m+6,则C(﹣m2+3m+6,﹣m2+m+6)又∵C点在直线AB上,∴﹣m2+m+6=﹣m2+3m+6+2,解得:m=﹣1;②过P点作PE⊥x轴于E点,交AB于F点,设⊙P与直线AB相切于Q点,连PQ,则PQ⊥AB,∴△PQF和△AEF均是等腰直角三角形,∴PF=PQ=r,AE=EF=m+2,又∵PF+EF=﹣m2+2m+6,即r+m+2=﹣m2+2m+6,解得r=﹣m2+m+2=﹣(m﹣1)2+,当m=1时,r的最大值为,∵﹣2<m<4,∴0<r≤.13.解:(1)由题意得:,解得:;∴抛物线解析式为;(2)设I(a,y),过I作IH⊥y轴于点H,则IH=a,FH=y ﹣2,IF=ID=y,在Rt△IHF中∴IF2=IH2+FH2,∴y2=a2+(y﹣2)2,,故点I在抛物线y=x2+c;(3)若k=1,设AB的中点为M,则,解得中点M的坐标为:(2,4),由(2)可知,抛物线上的点到点F的距离等于它到x轴的距离.设抛物线上存在点P,使得△PMF周长最小,过点P作PP'⊥x 轴于点P′,∵FM+PM+PF=FM+PM+PP′,∵FM是定值,PM+PP'≥MP'.故当MP⊥x轴时,PM+PP′=MP′,此时P、M、P′共线,△PMF 周长最小,故点P(2,2),∴MP′=4,MF=2,故△PMF周长最小的最小值为:4+2;(4)设R(x R,y R)、Q(x Q,y Q),A(x A,y A),B(x B,y B),把点B的坐标代入y=kx+2并解得:k=2,故点A(2﹣2,4﹣2),故x B﹣x A=4,S=S△AQR+S△BQR=QR•(x R﹣x A)+(x B﹣x R)=(x B﹣x A)△QAB=4×QR=4,解得:QR=2,QR=|y﹣y Q|=|x+2﹣(x2+1)|=|﹣(x﹣2)2+2|=2,R当﹣(x﹣2)2+2=2时,解得:x=2,故点Q(2,2);﹣(x﹣2)2+2=﹣2时,解得:x=﹣2或6,故点Q(﹣2,2)或(6,10);综上,点Q(2,2)或(﹣2,2)或(6,10).14.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),函数的对称轴为:x=﹣1,故点D(﹣1,﹣4a);(2)无关,理由:由抛物线的表达式得,点C(0,﹣3a),将点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线CD的表达式为:y=ax﹣3a,令y=0,则x=3,故点E(3,0),即OE=3,OE的长与a值无关;(3)tanβ===﹣a,故﹣≤a≤﹣1;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE,则PD=PE,∠DPE=90°,而点D(﹣1,﹣4a),点E(3,0),过点P作y轴的平行线交过点D与x轴的平行线于点M,交x 轴于点N,∵∠PDM+∠MPD=90°,∠MPD+∠EPN=90°,∴∠MPD=∠EPN,∠PMD=∠ENP=90°,PD=PE,∴△PMD≌△ENP(AAS),∴MD=PN,MP=NE,即n=﹣1﹣m,﹣4a﹣n=3﹣m,解得:n=﹣1﹣m,m=2a+1,∵a<0,故m=2a+1<1,故n=﹣m﹣1(m<1).15.(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD为“和睦四边形”;(2)解:在直线y=﹣x+6中,当x=0时,y=6;当y=0时,x=8,∴B(0,6),A(8,0),∴OB=6,OA=8,∴AB==10,由题意得:AQ=5t,AP=4t,BQ=10﹣5t,OP=8﹣4t,连接PQ,∵==,==,∴=,又∵∠BAO=∠QAP,∴△AQP∽△ABO,∴∠APQ=∠AOB=90°,∴QP==3t,∵四边形BOPQ为“和睦四边形”,∴①当OB=OP时,6=8﹣4t,∴t=;②当OB=BQ时,6=10﹣5t,∴t=;③当OP=PQ时,8﹣4t=3t,∴t=;④当BQ=PQ时,10﹣5t=3t,∴t=,综上所述,t的值为或或或;(3)解:在抛物线y=ax2+bx+2中,顶点D的坐标为(,),C(0,2),∵CD=OC,∴CD2=OC2,∴①,∵D在以AB为直径的圆上,且在抛物线对称轴上,∴△ADB为等腰直角三角形,∴,∴②,。
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(四)
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(四)1.已知抛物线的解析式y=ax2+bx+3与x轴交于A、B两点,点B的坐标为(﹣1,0)抛物线与y轴正半轴交于点C,△ABC面积为6.(1)如图1,求此抛物线的解析式;(2)P为第一象限抛物线上一动点,过P作PG⊥AC,垂足为点G,设点P的横坐标为t,线段PG的长为d,求d与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图2,在(2)的条件下,过点B作CP的平行线交y轴上一点F,连接AF,在BF 的延长线上取点E,连接PE,若PE=AF,∠AFE+∠BEP=180°,求点P的坐标.:y=ax2﹣x+2(a>0)与x轴交于A、B(点A在点B左侧),与y轴交于点2.抛物线C1C.(1)如图1,若A(2,0),连AC、BC.的解析式及△ABC的面积;①直接写出C1②将△AOC绕某一点逆时针旋转90°至△A′O′C′(其中A、O、C的对应点分别为A′、O′、C′).若旋转后的△A′O′C′恰有一边的两个端点落在抛物线C的图象上,求点1 A′的坐标;(2)如图2,平移抛物线C1使平移后的新抛物线C2顶点在原点,P(,0)是x轴正半轴上一点,过P作直线交C2的图象于A、B,过A的直线y=x+b交C2于点C,过P作x轴的垂线交BC于点M,设点M的纵坐标为n,试判断an是否为定值?若是,求这个定值,若不是,说明理由.3.如图1,抛物线y=ax2+bx经过原点O和点A(12,0),在B在抛物线上,已知OB⊥BA,且∠A=30°.(1)求此抛物线的解析式.(2)如图2,点P为OB延长线上一点,若连接AP交抛物线于点M,设点P的横坐标为t,点M的横坐标为m,试用含有t的代数式表示m,不要求写取值范围.(3)在(2)的条件下,过点O作OW⊥AP于W,并交线段AB于点G,过点W的直线交OP 延长线于点N,交x轴于点K,若∠WKA=2∠OAP,且NK=11,求点M的横坐标及WG的长.4.如图1,已知抛物线y=﹣x+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C.(1)求出直线BC的解析式.(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQ⊥BC于Q,求出△MHQ周长最大值并求出此时M的坐标;当△MHQ的周长最大时在对称轴上找一点R,使|AR﹣MR|最大,求出此时R的坐标.(3)T为线段BC上一动点,将△OCT沿边OT翻折得到△OC′T,是否存在点T使△OC′T与△OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由.5.抛物线y=﹣x2﹣x+5与x轴交于A、B两点(点A在点B右侧)与y轴交于点C,顶点为D(1)如图1,G为y轴上一点,且OG=OC,连接AG并延长,P为直线AG上方抛物线上的一点,当△PAG面积最大时,将线段AG沿射线AG平移得到A'G',连接PA',一动点E从P点出发,以每秒1个单位的速度沿适当的路径运动到A',再以每秒个单位的速度沿AG方向运动到G',最后以每秒2个单位的速度沿适当的路径运动回A点停止,求动点E运动时间的最小值.(2)如图2,过顶点D作DH⊥AB于点H,交BC于点E,将△BHE绕H点顺时针旋转得到△B'HE',且点B'落在线段BC上,将线段AC沿直线AC平移得到A'C',连接E'C',E'A',当△E'A'C'为直角三角形时,请求出C'的坐标.6.如图,抛物线y=与x轴交于A、B两点,与y轴交于C点.(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP ∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(x M<x N).当DE长度最大时,求PM+MN﹣BN的最小值.(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.7.如图1,抛物线y =﹣x 2+bx +c 与x 轴交于点A (4,0),与y 轴交于点B (0,4),在x 轴上有一动点D (m ,0)(0<m <4),过点D 作x 轴的垂线交直线AB 于点C ,交抛物线于点E ,(1)直接写出抛物线和直线AB 的函数表达式.(2)当点C 是DE 的中点时,求出m 的值,并判定四边形ODEB 的形状(不要求证明).(3)在(2)的条件下,将线段OD 绕点O 逆时针旋转得到OD ′,旋转角为α(0°<a <90°),连接D ′A 、D ′B ,求D ′A +D ′B 的最小值.8.如图,已知:抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 为顶点,连接BD ,CD ,抛物线的对称轴与x 轴交与点 E .(1)求抛物线解析式及点D 的坐标;(2)G 是抛物线上B ,D 之间的一点,且S 四边形CDGB =4S △DGB ,求出G 点坐标;(3)在抛物线上B ,D 之间是否存在一点M ,过点M 作MN ⊥CD ,交直线CD 于点N ,使以C ,M ,N 为顶点的三角形与△BDE 相似?若存在,求出满足条件的点M 的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴负半轴于点A,交x轴正半轴=24.于点B(4,0),交y轴正半轴于点C,OC=4OA,S△ABC(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过点P作PD⊥AB于点D,连接AP交y轴于点E,过点E作EG⊥PD于点G,设点P的横坐标为t(t≤1),PG的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作BF⊥EG交EG的延长线于点F,点Q在线段GF上,连接DQ、PQ,将△DGQ沿DQ折叠后,点G的对称点为点H,DH交BF于点M,连接MQ并延长交DP的延长线于点N,当∠DQM=45°,tan∠PQN=时,求直线PQ的解析式.10.如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(﹣1,0),B(m,0),与y 轴交于点C(0,﹣2),且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D 和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.解:(1)当x=0时,y=3,C(0,3),∴OC=3,∵B(﹣1,0),∴OB=1,∴,∴AB=4,∴OA=AB﹣OB=3,∴A(3,0),将A,B的坐标代入抛物线的解析式y=ax2+bx+3得,,解得,∴y=﹣x2+2x+3,即抛物线的解析式为y=﹣x2+2x+3;(2)作PD⊥x轴交AC于点E,如图1,∵OA=OC,∴∠A=45°,∵∠A+∠EDA=∠PEA,∠P+∠PGE=∠PEA,∠EDA=∠PGE=90°,∴∠A=∠P=45°,∴,∴,设直线AC的解析式为y=kx+b,∵A(3,0),C(0,3),∴,解得,∴直线AC为y=﹣x+3,设P(t,﹣t2+2t+3),∵PD⊥x轴,∴E(t,﹣t+3),∴PE=﹣t2+2t+3+t﹣3=﹣t2+3t,∴PG=,∵P为第一象限抛物线上一动点,∴0<t<3.(3)如图2.过点P作PN⊥BE交BE于点N,过点C作CH⊥BE于点H,过点A作AG⊥BE 于点G,设BE与AC交于点M,∵∠BEP+∠PEN=180°,∠AFE+∠BEP=180°,∴∠PEN=∠AFG,∵∠PNE=∠AGF=90°,PE=AF,∴△PEN≌△AFG(AAS),∴PN=AG,∵CP∥BE,∴四边形CPNH是矩形,∴PN=CH=AG,∵∠CMH=∠AMG,∠CHM=∠AGM,∴△CMH≌△AGM(AAS),∴CM=AM,∴M(),求得直线BM的解析式为y=,∵CP∥BM,∴直线CP的解析式为y=,∴,解得或,∴P().2.解:(1)①将A(2,0)代入y=ax2﹣x+2(a>0),得:0=4a﹣3+2,解得:a=,∴抛物线C1的解析式为:y=x2﹣x+2(a>0)令x=0,得y=2,∴C(0,2),OC=2令y=0,得x2﹣x+2=0,解得:x1=2,x2=4,∴B(4,0),∴AB=4﹣2=2∴S△ABC=AB•OC=×2×2=2;②若C'、Q'在抛物线C1上,∵C'O'=CO=2,∴当x=3时,y=﹣,∴O'(3,﹣),∴A'(3,);若C'、A'在抛物线C1上,设C'(t,﹣t+2),则A'(t+2,﹣t+4),将A'代入C1得:(t+2)2﹣(t+2)+2=﹣t+4,解得t=4,∴A′(6,2);(2)∵平移后的新抛物线C2顶点在原点,∴平移后的新抛物线C2的解析式为:y=ax2,设AP的直线解析式为y=k(x﹣),联立,ax2﹣kx+=0,∴x A+x B=,x A x B=,∴x A x B=(x A+x B),联立,ax2﹣x﹣b=0,∴x A+x C=,x C=﹣x A,设直线BC的解析式为y=px+q,联立,ax2﹣px﹣q=0,∴x B+x C=,x B x C=﹣,∴x B+(﹣x A)=,∴x B﹣x A=①,x B(﹣x A)=﹣,x B﹣x A=﹣2q②,由①②可得q=,将M代入y=px+q,∴n=q•+=,∴an=.3.解:(1)过点B作BD⊥OA于点D,设OD=x,则OB=2a,OA=4a,∵A(12,0),∴4a=12,∴a=3,∴,∴B(3,3),∵抛物线y=ax2+bx经过点B(3,3)和点A(12,0),∴,解得,∴y=﹣.(2)过点P作PH⊥OA于点H,过点M作MQ⊥OA于点Q,P(t,t),M(m,﹣),∵PH∥MQ,∴△APH∽△AMQ,∴,∴,∴,∴,即m=.(3)取OA的中点R,连结WR,∵OW⊥AP,∴WR=RA=OR,∴∠OAP=∠RWA,∴∠ORW=2∠OAP,∵∠WKA=2∠OAP,∴∠ORW=∠WKA,∴∠WRK=∠WKO,∴WR=WK,∴,∴NW=NK﹣WK=11﹣6=5,∵∠POW=∠BAW=∠OAP﹣∠OAB=α﹣30°,∠N=∠AKW﹣∠AOB=2α﹣60°,∴∠N=2∠POW,取OP的中点,连结TW,∴∠N=∠NTW,∴,∴OP=10,∴t2+3t2=100,∴t=5,∴=.即M点的横坐标为.∴点P到x轴的距离是5,∴tan,∴OW:AW:OA=5:7:2,∴OW=12×,又∵,,OA=12,∴=,∴WG=.4.解:(1)由已知可求A(﹣2,0),B(4,0),C(0,3),设BC的解析式为y=kx+b,则有,∴,∴BC的解析式为y=﹣x+3;(2)∵MQ⊥BC,M作x轴,∴∠QMH=∠CBO,∴tan∠QMH=tan∠CBO=,∴QH=QM,MH=MQ,∴△MHQ周长=MQ+QH+MH=QM+QM+MQ=3QM,则求△MHQ周长的最大值,即为求QM的最大值;设M(m,﹣m2+m+3),过点M与BC直线垂直的直线解析式为y=x﹣m2﹣m+3,直线BC与其垂线相交的交点Q(+m,﹣m2﹣m+3),∴MQ=(﹣m2+4m),∴当m=2时,MQ有最大值,∴△MHQ周长的最大值为,此时M(2,3),函数的对称轴为x=1,作点M关于对称轴的对称点M'(0,3),连接AM'与对称轴交于点R,此时|AR﹣MR|=|AR﹣M'R|=AM',∴|AR﹣MR|的最大值为AM';∵AM'的直线解析式为y=x+3,∴R(1,);(3)①当TC'∥OC时,GO⊥TC',∵△OCT≌△OTC'(SSS),∴OG==,∴T(,),∴BT=2;②当OT⊥BC时,过点T作TH⊥x轴,OT=,∵∠BOT=∠BCO,∴cos∠BOT==,∴OH=,∴T(,),∴BT=;③当OC'⊥BC时,OF=,在Rt△OCF中,CF=,∵CO=C'O=3,∴C'F=,在Rt△C'TF中,TC2=(﹣CT)2+()2,∴CT=1,∴BT=4;综上所述:BT=2或BT=或BT=4.5.解:(1)由已知可求A(3,0),B(﹣5,0),C(0,5),D(﹣1,),∵OG=OC,∴OG=,∴G(0,),∴AG的解析式为y=﹣x+,设P(m,﹣m2﹣m+5),过点P与AG垂直的直线解析式为y=x﹣m2﹣m+5,直线AG与其垂线的交点为Q(m2+m﹣3,﹣m2﹣m+2),∴PQ=(﹣m2﹣m+12),当m=﹣时,△PAG面积最大,∴P(﹣,),将点P沿着AG的方向平移,得到P'纵坐标为,过点P'作P'H⊥x轴于点M,∴PA'++=PA'+AG'+2=P'M+2=+2;(2)由旋转易得E(﹣1,4),E'(5,2),C'(,),分三种情况:①当∠E'C'A'为直角时,设点A'(3+n,﹣n),C'(n,5﹣n),由勾股定理可得,C'(﹣,);②当∠C'E'A'为直角时,设点A'(3﹣n,n),C'(﹣n,5+n),由勾股定理可得,C'(,);③当∠C'A'E'为直角时,设点A'(3﹣n,n),C'(﹣n,5+n),由勾股定理可得,C'(,);综上所述:C'(﹣,)或C'(,)或C'(,).6.解:(1)y==(x﹣4)(x+1),故点A、B、C的坐标分别为:(﹣1,0)、(4,0)、(0,﹣);则直线BC的表达式为:y=(x﹣4);设点P(x,),则点E(x,x﹣),DE=PE sin∠EPD=(x﹣﹣x2﹣x+),当x=2时,DE最大,此时点P(2,﹣);MN=AO=1,将△BCO沿BC翻折得到BCO′,将点P沿CB的方向平移1个单位得到点P′(,﹣),作P′H⊥BO′交BO′于点H,交BC于点N,将点N沿C方向平移1个单位得到点M,则点M、N为所求;P′P∥MN,且PP′=MN,则四边形P′PNM为平行四边形,则P′N=PM,∠CBO′=∠OBC=30°,则HN=NB sin30BN,PM+MN﹣BN=MN+P′N﹣BN=MN+P′H为最小;直线BO′的倾斜角为60°,则其表达式为:y=(x﹣4)…①,则直线P′N表达式中的k为:﹣,其表达式为:y=﹣+b,将点P′坐标代入并解得:直线P′N的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,﹣);P′H=,PM+MN﹣BN最小值=MN+P′N﹣BN=MN+P′H=;(2)直线BC的表达式为:y=(x﹣4);点G′(﹣4,0),设△GOC延直线BC向上平移m个单位,则向右平移m个单位,则点G′(m﹣4,m);BC2=,BG′2=(m﹣8)2+3m2,CG′2=(m﹣4)2+(m+)2=4m2+;①当BC=BG′时,BC2=(m﹣8)2+3m2,方程无解;②当BC=G′C时,同理可得:m=0;③当BG=CG′时,同理可得:m=;即m=0或,故点G′(﹣4,0)或(﹣,).7.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.8.解:(1)点A(﹣1,0)、B(3,0),根据两点式得:抛物线的表达式为:y=(x+1)(x﹣3)=x2﹣2x﹣3…①;函数的对称轴为x=1,当x=1时,y=x2﹣2x﹣3=﹣4,则D(1,﹣4);(2)过点G作y轴的平行线交BD于点H,设直线BC交对称轴于点F,由点B(3,0)、C(0,﹣3)的坐标可得,直线BC的表达式为:y=x﹣3,则点F(1,﹣2),则FD=2,同理可得,BD的表达式为:y=2x﹣6,设点G(x,x2﹣2x﹣3),则点H(x,2x﹣6),S四边形CDGB =4S△DGB,则S△BDG =S△BCD=×FD×OB=×2×3=1,S△BDG=HG×BE=(2x﹣6﹣x2+2x+3)×(3﹣1)=1,解得:x=2,故点G(2,﹣3);(3)存在,理由:过点B作BP⊥BC交CM的延长线于点P,∵点B(3,0)、C(0,﹣3)、则BC=3,BC、CD与y轴的夹角都是45°,故∠BDC=90°,∵MN⊥CD,∴BC∥MN,∵C,M,N为顶点的三角形与△BDE相似,∴B,C,P为顶点的三角形与△BDE相似,则,即,解得:BP=或6;过点P作PQ⊥x轴于点Q,∵∠OBC=45°,∴∠PBQ=45°;①当PB=时,PQ=BQ=PB=,OQ=OB+BQ=3+=,故点P(,﹣),由点C、P的坐标得,直线CP的表达式为:y=x﹣3…②,联立①②并解得:x=0(舍去)或,故点M(,﹣);②当BP=6时,同理可得:点P(9,﹣6),则直线CP的表达式为:y=﹣x﹣3…③,联立①③并解得:x=0(舍去)或,故点M(,﹣);综上,点M的坐标为:(,﹣)或(,﹣).9.解:(1)设OA=m,则OC=4OA=4m,∵B(4,0),所以OB=4,∴AB=OA+OB=4+m,∴S=AB•OC=2m(4+m)=24,△ABC解得m=2,∴A(﹣2,0),C(0,8),将A、C两点坐标代入y=﹣x2+bx+c解得b=2,c=8,∴抛物线的解析式为y=﹣x2+2x+8.(2)∵P为抛物线上一点,且横坐标为t,∴P(t,﹣t2+2t+8),∴PD=﹣t22t+8,OD=t,∵A(﹣2,0),∴AD=t+2,∵EG⊥PD,∴△PEG∼PAD,且EG=OD=t,∴,所以,所以d=﹣t2+4t.(3)∵PG=﹣t2+4t,PD=﹣t2+2t+8,∴GD=PD﹣PG=8﹣2t,∴OE=BF=GD=8﹣2t,设∠QMF=α,则∠MQF=90°﹣α,∵∠DQM=45°,∴∠GQD=180°﹣∠DQM﹣∠MQF=45°+α,∴∠DQH=∠GQD=45°+α,∴∠HQM=∠DQH﹣∠DQM=α,∴△QFM≌△MHQ,∴QH=MF,MH=QF,如图,作MK⊥QM交DQ于K,过点K作SR⊥FB于R交GD于S,则∠KRM=∠KMQ=∠QFM=90°,∵∠DQM=45°,∴∠MKQ=45°=∠MQK,∴QM=KM,∵∠QMF+∠KMR=∠KMR+∠MKR=90°,∴∠QMF=∠MKR,∴△QFM≌△MRK,∴KR=MF,MR=QF,设QF=m,则MR=QF=m,∴GQ=QH=FM=EF﹣EG﹣QF=4﹣t﹣m,∴FR=FM+MR=4﹣t﹣m+m=4﹣t=BF,∴R为BF中点,∴SK=GQ,∵SK=SR﹣KR=GF﹣GQ=QF,∴QF=FM,∴tan∠QMF=tanα=,作PT⊥NQ于T,则tan∠N==tanα=,∴NT=2PT,∵tan∠PQN==,∴QT=8PT,设PT=n,则NT=2n,QT=8n,QN=10n,PN=n,∵=tan∠N=,∴GQ==2n,NG=2GQ=4n,∴PG=NG﹣PN=3n,∴=,∵GQ=2SK=2QF=2m,∴,∴PG=GF=4﹣t,又∵PG=﹣t2+4t,∴﹣t2+4t=4﹣t,∴t2﹣5t+4=0,解得t=1或t=5(舍),∴P(1,9),Q(3,6),∴PQ的解析式为y=﹣x+.10.解:(1)在直角△ABC中,∵CO⊥AB∴OC2=OA.OB∴22=1×m即m=4∴B(4,0).把A(﹣1,0)B(4,0)分别代入y=ax2+bx﹣2,并解方程组得a=,b=﹣,∴y=x2﹣x﹣2;(2)把D(1,n)代入y=x2﹣x﹣2得n=﹣3,∴D(1,﹣3)解方程组,得,∴E(6,7).(3)作EH⊥x轴于点H,则EH=AH=7,∴∠EAB=45°由勾股定理得:BE=,AE=7,作DM⊥x轴于点M,则DM=BM=3,∴∠DBM=45°由勾股定理得BD=3.假设在x轴上存在点P满足条件,∵∠EAB=∠DBP=45°,∴或,即或,∴PB=或PB=,OP=4﹣=或OP=4﹣=﹣.∴在x轴上存在点P(,0),(﹣,0)满足条件.。
2020年九年级数学中考三轮压轴专题:《二次函数动点与等腰、直角三角形综合》
三轮压轴专题:《二次函数动点与等腰、直角三角形综合》1.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)如图1,若抛物线的对称轴为直线x=﹣3,AB=4.①点A的坐标为(,),点B的坐标为(,);②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标.2.如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y 轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(﹣1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.4.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.6.如图1,抛物线y=﹣x2﹣2x+3与x轴从左到右交于A、B两点,与y轴交于点C,顶点为D(1)求直线AC的解析式与点D的坐标;(2)在直线AC上方的抛物线上有一点E,作EF∥x轴,与抛物线交于点F,作EM⊥x轴于M,作FN⊥x轴于N,长度为2的线段PQ在直线AC上运动(点P在点Q右侧),当四边形EMNF的周长取最大值求四边形DPQE的周长的最小值及对应的点Q的坐标;(3)如图2,平移抛物线,使抛物线的顶点D在直线AD上移动,点D平移后的对应点为D′,点A平移后的对应点为A′,△A′D′C是否能为直角三角形?若能,请求出对应的线段DC的长;若不能,请说明理由.点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C,D(1)求点A到直线CD的距离;(2)平移抛物线,使抛物线的顶点P至直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴上,当以G,P,Q三点为原点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.8.已知抛物线y=ax2+bx+c经过点A,点B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴为直线x=.(1)求抛物线的解析式;(2)在x轴上方有一点P(m,n),连接PA后满足∠PAB=∠CAB,记△PBC面积为S,求S与m的函数关系;(3)在(2)的条件下,当点P恰好落在抛物上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C',B'两点(C'在B'的左侧),若以点C'、B'、P为顶点三角形是直角三角形,求t的值.9.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣2,且抛物线经过A(2,0),C (0,6)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设N是抛物线的顶点,在直线BC上找一点M,使点M到点A的距离与到点N的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣2上的一个动点,求点P的坐标,使△BPC是以BC 为底边的等腰三角形.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)求抛物线的顶点坐标(用含a的式子表示);(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.13.如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.14.如图①,已知抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),直线l经过B、C两点.抛物线的顶点为D.(1)求抛物线和直线l的解析式;(2)判断△BCD的形状并说明理由.(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.15.一次函数y=﹣2x﹣2分别与x轴、y轴交于点A、B.顶点为(1,4)的抛物线经过点A.(1)求抛物线的解析式;(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m 为何值时,S的值最大,并求S的最大值;(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.参考答案1.解:(1)①∵抛物线的对称轴为直线x=﹣3,AB=4,∴点A的坐标为(﹣5,0),点B的坐标为(﹣1,0),故答案为:﹣5;0﹣1;0;②∵抛物线经过(﹣5,0),(﹣1,0),∴,解得,,则抛物线的解析式为y=﹣x2﹣6x﹣5;(2)如图2,作PD⊥OC于D,∵△OCP是等腰直角三角形,∴PD=OC=OD,设点P的坐标为(a,a),设抛物线的解析式为y=﹣(x﹣a)2+a,∵抛物线经过原点,∴﹣(0﹣a)2+a=0,解得,a1=0(不合题意),a2=1,∴△OCP是等腰直角三角形时,点P的坐标为(1,1).2.解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)①对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0)、B(3m,0),C(0,﹣3am2),∵抛物线过点C,∴﹣3am2=﹣3,则am2=1,∵CD∥AB交抛物线于点D,∴∠ADC=∠BAD,∴点D与点C关于抛物线的对称轴x=m对称,∴D(2m,﹣3),∵∠EAB=∠ADC,∴∠EAB=∠BAD,∴x轴平分∠BAD,∴点D关于x轴的对称点D'(2m,3)一定在直线AE上,∴直线AD ′的解析式为:y =x +1, 联立,整理得x 2﹣3mx ﹣4m 2=0,解得x 1=4m ,x 2=﹣m (舍去),∴E 点的横坐标为4m ,∴y =.∴点E 的纵坐标为5.②存在,理由:当x =m 时,y =a (m 2﹣2m 2﹣3m 2)=﹣4am 2=﹣4,∴F (m ,﹣4),∵E (4m ,5)、A (﹣m ,0)、D (2m ,﹣3),设P (b ,0),∴PF 2=(m ﹣b )2+16,AD 2=9m 2+9,AE 2=25m 2+25,∴(m ﹣b )2+16+9m 2+9=25m 2+25,解得:b 1=﹣3m ,b 2=5m∴P (﹣3m ,0)或(5m ,0).3.解:(1)将点A 的坐标代入y =﹣x 2+bx +3得:0=﹣1﹣b +3,解得:b =2,将点A 的坐标代入y =x +c 并解得:c =1,故抛物线和直线的表达式分别为:y =﹣x 2+2x +3,y =x +1; 联立上述两式得:,解得:,故点D (2,3);(2)如图1,设直线CE 交x 轴于点H ,设点E(m,﹣m2+2m+3),而点C(0,3),将点E、C坐标代入一次函数表达式y=sx+t得:,解得:,故直线CE的表达式为:y=(2﹣m)x+3,令y=0,则x=,故点H(,0),△CBE的面积=BH×(x C﹣y E)=×(3﹣)(3+m2﹣2m﹣3)=6,解得:m=﹣1(舍弃)或4,故点E(4,﹣5);(3)点C、E的纵坐标相同,故CD∥x轴,t秒时,AP=t,则点P在x轴和y轴方向移动的距离均为t,故点P(t﹣1,t),当x=t﹣1时,y=﹣x2+2x+3=﹣t2+4t,故点Q(t﹣1,﹣t2+4t),则PQ=﹣t2+4t﹣t=﹣t2+3t,∵﹣1<0,故PQ有最大值,此时,t=,则点P(,),故直线PQ表达式为:x=;设点M(,m),点N(n,0),而点D(2,3);①当∠DMN为直角时,(Ⅰ)当点M在x轴上方时,如图2,设直线PQ交x轴于点H,交CD于点G,∵∠DMG+∠GDM=90°,∠DMG+∠HMN=90°,∴∠HMN=∠GDM,MN=MD,∠DGM=∠MHN=90°,∴△DGM≌△MHN(AAS),∴GD=MH,NH=GM,即:,解得:,故点N(2,0);(Ⅱ)当点M在x轴下方时,如图3,过点M作x轴的平行线交过点与y轴的平行线于点H,交过点N与y轴的平行线于点E,同理可得:△MEN≌△DHM(AAS),故:NE=MH,EM=DH,即,解得:,故点N(﹣4,0);②当∠DNM为直角时,(Ⅰ)当点N在x轴左侧时,如图4,过点N作y轴的平行线交过点C与x轴的平行线于点H,交过点M与x轴的平行线于点R,同理可得:△DHN≌△NRM(AAS),∴RM=NH,即3=﹣n,解得:n=﹣2.5;(Ⅱ)当点N在x轴右侧时,如图5,过点N作y轴的平行线交过点M与x轴的平行线于点H,交过点D与x轴的平行线于点G,同理可得:△MHN≌△NGD(AAS),∴MH=GN,即n﹣=3,解得:n=3.5,综上,N的坐标为:(2,0)或(﹣4,0)或(﹣2.5,0)或(3.5,0).4.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC =1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).5.解:(1)把A(4,0)、B(﹣3,0)代入y=ax2+bx﹣4中,得解得∴这条抛物线所对应的函数表达式为;(2)点C(0,﹣4),当﹣3<m<0时,;当0<m<4时,;故:S=;(3)点C(0,﹣4),AB=5,BM=CN=n,则BN=5﹣n,①当BM=BN=CN时,则点N是BC的中点,故点N(﹣,﹣2),则CN==;②当BN=MN时,如图,过点N作NR⊥x轴于点R,则MN=BN=5﹣n,则BR=n,则cos∠OCB===,解得:n=;③当BM=MN=CN时,同理可得:n=;综上,或或.6.解:(1)抛物线y=﹣x2﹣2x+3与x轴从左到右交于A、B两点,与y轴交于点C,则点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,3);由点A、C的坐标得,直线AC的表达式为:y=x+3…①;(2)设点M(m,﹣m2﹣2m+3),抛物线的对称轴为:x=﹣1,则点A、D的坐标分别为:(﹣3,0)、(﹣1,4),EF=﹣2m﹣2,EMNF的周长l=2(EF+EM)=2(﹣m2﹣2m+3﹣2m﹣2)=2(﹣m2﹣4m+1),当m=﹣2时,l最大,此时点E(﹣2,3);PQ=2,则P、Q两点横纵坐标差均为2,作点E关于直线AC的对称点E′(0,1),将点E′沿AC方向平移2个单位得到E″(2,3),连接E″D交直线AC于点P,将点P向下平移2个单位得到Q,则点Q为所求点;四边形DPQE的周长k=ED+PQ+EQ+PD=ED+PQ+E′Q+PD=ED+PQ+E″P+PD=ED+PQ+E″D为最小;由点DE″坐标得,直线DE″的表达式为:y=﹣x+…②;联立①②并解得:x=,故点P(,),将点P向左向下平移2个单位得到点Q(﹣,);(3)直线AD的表达式为:y=2x+6,则设直线AD向右平移m个单位,则向上平移2m个单位,则点A′、D′的坐标分别为:(m﹣3,2m)、(m﹣1,2m+4),而点C(0,3),DC=;①当A′D′是斜边时,如图2,分别过点A′、D′作y轴的垂线交于点N、M,则∠D′CM=∠CA′N,则tan∠D′CM=tan∠CA′N,即,解得:m=0(舍去)或;②当A′C是斜边时,如图3,过点D′作x轴的平行线交y轴于点N,交过点A′作y轴的平行线于点M,同理可得:tan∠ND′C=tan∠MA′D′,则,即,解得:m=﹣1;③当CD′是斜边时,同理可得:=,解得:m=1,故m=1或﹣1或,则CD为3或3或.7.解:(1)直线y=2x﹣1与y轴交于点C,则点C(0,﹣1),抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B(1,0),则y=a(x+1)(x﹣1)=a(x2﹣1),则﹣a=﹣1,解得:a=1,故抛物线的表达式:y=x2﹣1,直线y=2x﹣1,则tan∠AEC=2=tanα,则sinα=,点E(,0),过点A作AH⊥CD于点H,则点A到直线CD的距离=AH=AE sinα=(1+)×=;(2)点P(m,2m﹣1),将直线表达式与抛物线的表达式联立并整理得:x2﹣(2m+2)x+(m2+2m)=0,则x+m=2m+2,解得:x=m+2,即点Q(m+2,2m+3),设点G(0,n),①当∠PQG=90°时(左侧图),则PQ=GQ,过点Q作y轴的平行线分别交过点P与x轴的平行线、过点G作x轴的平行线于点M、N,∵∠NQG+∠NGQ=90°,∠NQG+∠PQM=90°,∴∠PQM=∠NGQ,∠GNQ=∠QMP=90°,PQ=GQ,∴△GNQ≌△QMP(AAS),GN=QM,NQ=PM,即m+2=2m+3﹣(2m﹣1),n﹣(2m+3)=m+2﹣m,解得:m=2,n=9,故点G(0,9),同理当点G在x轴下方时,点G(0,﹣11);②当∠GPQ=90°时,点G的坐标同①;③当∠PGQ=90°时,同理可证:△GMP≌△QNG(AAS),∴GN=QM,PM=QN,即n﹣2m+1=m+2,m=2m+3﹣n,解得:m=1,n=4,故点G(0,4),当点G在x轴下方时,同理可得:点G(0,﹣6);综上,点G的坐标为:(0,9)或(0,﹣11)或(0,4)或(0,﹣6).8.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠PAB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S=OB•PF=×3(m+6)=m+9(m>﹣2);△PBC(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P (6,12),如图2, 当∠C 'PB '=90°时,取B 'C '的中点E ,连接PE ,则B 'C '=2PE ,即:B 'C '2=4PE 2,设B '(x 1,y 1),C '(x 2,y 2),∵直线B 'C '的解析式为y =x +t ③,联立①③化简得,x 2﹣3x ﹣(2t +6)=0,∴x 1+x 2=3,x 1x 2=﹣(2t +6),∴点E (,+t ),B 'C '2=(x 1﹣x 2)2+(y 1﹣y 2)2=2(x 1﹣x 2)2=2[(x 1+x 2)2﹣4x 1x 2]=2[9+4(2t +6)]=16t +66,而PE 2=(6﹣)2+(12﹣﹣t )2=t 2﹣21t +,∴16t +66=4(t 2﹣21t +), ∴t =6(此时,恰好过点P ,舍去)或t =19,当∠PC 'B '=90°时,延长C 'P 交BC 于H ,交x 轴于G ,则∠BHC =90°,∵OB =CO ,∠BOC =90°,∴∠OBC =45°,∴∠PGO =45°,过点P 作PQ ⊥x 轴于Q ,则GQ =PQ =12,∴OG =OQ +GQ =18,∴点G (18,0),∴直线C ''G 的解析式为y =﹣x +18④, 联立①④解得或∴C ''的坐标为(﹣7,25),将点C ''坐标代入y =x +t 中,得25=﹣7+t ,∴t =32,即:满足条件的t的值为19或32.9.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,∴PH最大=.(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠CBM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).10.解:(1)由题意得:解得:∴抛物线的解析式为y=﹣x2﹣2x+6;∵A,B关于x=﹣2对称,A(2,0)∴B(﹣6,0)把B(﹣6,0),C(0,6)分别代入直线y=mx+n得:解得∴直线BC的解析式为y=x+6;(2)由(1)知N(﹣2,8),设直线NA与直线BC的交点为M,则此时MA+MN的值最小.如图所示:设NA的解析式是y=kx+d∵N(﹣2,8),A(2,0)∴解得∴NA的解析式是y=﹣2x+4与BC解析式联立得:解得∴M(﹣,)即点M的坐标为(﹣,).(3)设P(﹣2,t)又∵B(﹣6,0),C(0,6)∴PB2=(﹣2+6)2+t2=16+t2,PC2=(﹣2)2+(t﹣6)2=t2﹣12t+40由已知△BPC是以BC为底边的等腰三角形,则PB2=PC2∴16+t2=t2﹣12t+40∴t=2∴P(﹣2,2)为所求点.11.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),函数的对称轴为:x=﹣1,故点D(﹣1,﹣4a);(2)无关,理由:由抛物线的表达式得,点C(0,﹣3a),将点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线CD的表达式为:y=ax﹣3a,令y=0,则x=3,故点E(3,0),即OE=3,OE的长与a值无关;(3)tanβ===﹣a,故﹣≤a≤﹣1;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE,则PD=PE,∠DPE=90°,而点D(﹣1,﹣4a),点E(3,0),过点P作y轴的平行线交过点D与x轴的平行线于点M,交x轴于点N,∵∠PDM+∠MPD=90°,∠MPD+∠EPN=90°,∴∠MPD=∠EPN,∠PMD=∠ENP=90°,PD=PE,∴△PMD≌△ENP(AAS),∴MD=PN,MP=NE,即n=﹣1﹣m,﹣4a﹣n=3﹣m,解得:n=﹣1﹣m,m=2a+1,∵a<0,故m=2a+1<1,故n=﹣m﹣1(m<1).12.解:(1)直线y=﹣x+3故点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,﹣),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2﹣,将点(6,6)代入y=a(x﹣1)2﹣,得6=a(6﹣1)2﹣,∴a=,∴抛物线的解析式为y=(x﹣1)2﹣;(2)①在y=(x﹣1)2﹣中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∵<4,∴0≤t ≤;②当△BPQ 为直角三角形时,只存在∠BPQ =90°或∠PQB =90°两种情况,当∠BPQ =90°时,∠BPQ =∠BOC =90°,∴PQ ∥OC ,∴△BPQ ∽△BOC , ∴=,即=, ∴t =; 当∠PQB =90°时,∠PQB =∠BOC =90°,∠PBQ =∠CBO ,∴△BPQ ∽△BCO , ∴=,即=,∴t =,综上所述,t 的值为或;③如右图,过点Q 作QH ⊥x 轴于点H ,则∠BHQ =∠BOC =90°,∴HQ ∥OC ,∴△BHQ ∽△BOC , ∴=,即=, ∴HQ =, ∴S 四边形ACQP =S △ABC ﹣S △BPQ =×6×3﹣(4﹣t )×t =(t ﹣2)2+,∴当t=2时,四边形ACQP的面积有最小值,最小值是.14.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),∴y=﹣x2+bx+3,将点B(3,0)代入y=﹣x2+bx+3,得0=﹣9+3b+3,∴b=2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B(3,0),C(0,3),∴可设直线l的解析式为y=kx+3,将点B(3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△BCD是直角三角形,理由如下:如图1,过点D作DH⊥y轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∵C(0,3),B(3,0),∴HD=HC=1,OC=OB=3,∴△DHC和△OCB是等腰直角三角形,∴∠HCD=∠OCB=45°,∴∠DCB =180°﹣∠HCD ﹣∠OCB =90°,∴△BCD 是直角三角形;(3)∵EF ⊥x 轴,∠OBC =45°,∴∠FGB =90°﹣∠OBC =45°,∴∠EGC =45°,∴若△ECG 是直角三角形,只可能存在∠CEG =90°或∠ECG =90°,①如图2﹣1,当∠CEG =90°时,∵EF ⊥x 轴,∴EF ∥y 轴,∴∠ECO =∠COF =∠CEF =90°,∴四边形OFEC 为矩形,∴y E =y C =3,在y =﹣x 2+2x +3中,当y =3时,x 1=0,x 2=2,∴E (2,3);②如图2﹣2,当∠ECG =90°时,由(2)知,∠DCB =90°,∴此时点E 与点D 重合,∵D (1,4),∴E (1,4),综上所述,当△ECG 是直角三角形时,点E 的坐标为(2,3)或(1,4).15.解:(1)一次函数y=﹣2x﹣2与x轴交于点A,则A的坐标为(﹣1,0),∵抛物线的顶点为(1,4),∴设抛物线解析式为y=a(x﹣1)2+4,∵抛物线经过点A(﹣1,0),∴0=a(﹣1﹣1)2+4,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)连接OC,点C为第一象限抛物线上一动点,点C的横坐标为m,∴C(m,﹣m2+2m+3),一次函数y=﹣2x﹣2与y轴交于点B,则OB=2,∵A的坐标为(﹣1,0),∴OA=1,∴,,.∴,∴当m=2时,S的值最大,最大值为;(3)设M(0,n),∵A(﹣1,0),C(2,3),∴直线AC的解析式为y=x+1,①当AC⊥MC时,=﹣1,∴n=5,∴M(0,5);②当AC⊥AM时,n=﹣1,∴M(0,﹣1);③当AM⊥MC时,•n=﹣1,∴n=,∴M或M;综上所述:点M的坐标为(0,﹣1)、(0,5)、或.。
2020-2021中考数学二次函数的综合热点考点难点
2020-2021中考数学二次函数的综合热点考点难点一、二次函数1.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)点P(32-,154);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【解析】【分析】(1)令y=0,求出点A的坐标,根据抛物线的对称轴是x=﹣1,求出点C的坐标,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,﹣m2﹣2m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PF∥y 轴交直线AB于点F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标.【详解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴点A(1,0),∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,∴﹣1×2﹣1=﹣3,即点C(﹣3,0),∴309330a ba b++⎧⎨-+⎩==,解得:12ab-⎧⎨-⎩=,=∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵点P在直线AB上方的抛物线上运动,∴设点P(m,﹣m2﹣2m+3),∵抛物线与直线y=x﹣1交于A、B两点,∴2231y x xy x⎧--+⎨-⎩==,解得:1145xy-⎧⎨-⎩==,221xy=,=⎧⎨⎩∴点B(﹣4,﹣5),如图,过点P作PF∥y轴交直线AB于点F,则点F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=12(﹣m2﹣3m+4)(m+4)+12(﹣m2﹣3m+4)(1﹣m)=-52(m+32)2+1258,∴当m=32-时,P最大,∴点P(32-,154).(3)当x=﹣1时,y=﹣1﹣1=﹣2,∴点E(﹣1,﹣2),如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y =﹣x﹣3,∵以点B、C、E、D为顶点的四边形是平行四边形,∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,联立533y xy x+⎧⎨+⎩==得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解.2.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m 2=-或1m =-时,△BDM 为直角三角形.3.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【解析】【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案.【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OB OA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3; (2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2b a=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3). ∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式;(2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x ;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.【解析】 试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x ),利用配方法化简可求最大值.试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.5.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到△A 1O 1C 1,点A 、O 、C 的对应点分别是点A 、O 1、C 1、若△A 1O 1C 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A 1的横坐标.【答案】(1)y=-21x 2+32x+2;(2)存在,Q (3,2)或Q (-1,0);(3)两个和谐点,A 1的横坐标是1,12. 【解析】【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q点的坐标.(3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),①当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是2;【详解】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,0),C(0,2)代入解析式,∴0a b c016a4b c 2c=-+⎧⎪=++⎨⎪=⎩,∴1 a23 b2⎧=-⎪⎪⎨⎪=⎪⎩,∴y=-21x2+32x+2;(2)∵点C与点D关于x轴对称,∴D(0,-2).设直线BD的解析式为y=kx-2.∵将(4,0)代入得:4k-2=0,∴k=12.∴直线BD的解析式为y=12x-2.当P点与A点重合时,△BQM是直角三角形,此时Q(-1,0);当BQ ⊥BD 时,△BQM 是直角三角形,则直线BQ 的直线解析式为y=-2x+8,∴-2x+8=-21x 2+32x+2,可求x=3或x=4(舍) ∴x=3;∴Q (3,2)或Q (-1,0);(3)两个和谐点;AO=1,OC=2,设A 1(x ,y ),则C 1(x+2,y-1),O 1(x ,y-1),①当A 1、C 1在抛物线上时, ∴()2213y x x 22213y 1(x 2)x 2222⎧=-++⎪⎪⎨⎪-=-++++⎪⎩,∴x 1y 3=⎧⎨=⎩, ∴A 1的横坐标是1;当O 1、C 1在抛物线上时,()2213y 1x x 22213y 1(x 2)x 2222⎧-=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴1x 221y 8⎧=⎪⎪⎨⎪=⎪⎩, ∴A 1的横坐标是12;【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.6.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天)1361036…日销售量(件)9490847624…未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围.详解:(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P 1=(-2t+96)=-+(14+2a )t+480-96n , ∴对称轴为t=14+2a ,∵1≤t≤20,∴14+2a≥20得a≥3时,P 1随t 的增大而增大,又∵a <4,∴3≤a <4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.7.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根.(1)求k 的取值范围;(2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k 1+5 【解析】【分析】 (1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可.【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1∵△≥0∴4k +1≥0∴k ≥﹣14; (2)∵x 1,x 2是方程两根,∴x 1+x 2=2k +1x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ , 解得:12151522k k +==,又∵k≥﹣14,即:k=152-.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于ba-,两根之积等于ca”是解题的关键.8.如图1,在平面直角坐标系中,直线122y x=+与x轴交于点A,与y轴交于点C,抛物线212y x bx c=++经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD、BD,设BD交直线AC于点E,△CDE的面积为S1,△BCE的面积为S2.求:12SS的最大值;②如图2,是否存在点D,使得∠DCA=2∠BAC?若存在,直接写出点D的坐标,若不存在,说明理由.【答案】(1)213222y x x=--+;(2)①当2a=-时,12SS的最大值是45;②点D 的坐标是(2,3)-【解析】【分析】(1)根据题意得到A(-4,0),C(0,2)代入y=-12x2+bx+c,于是得到结论;(2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-32,0),得到PA=PC=PB=52,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论.【详解】解:(1)根据题意得A (-4,0),C (0,2),∵抛物线y=-12x 2+bx+c经过A .C 两点, ∴1016422b c c⎧-⨯-+⎪⎨⎪⎩==, ∴3b=-2c=2⎧⎪⎨⎪⎩,抛物线解析式为:213222y x x =--+ ; (2)①令0y =,∴2132022x x --+= 解得:14x =- ,21x =∴B (1,0)过点D 作DM x ⊥轴交AC 于M ,过点B 作BN x ⊥轴交AC 于点N ,∴DM ∥BN∴DME BNE ∆∆∽∴12S DE DM S BE BN== 设:213222D a a a ⎛⎫--+ ⎪⎝⎭, ∴122M a a ⎛⎫+ ⎪⎝⎭, ∵()10B , ∴51,2N ⎛⎫ ⎪⎝⎭∴()22121214225552a a S DM a S BN --===-++ ∴当2a =-时,12S S 的最大值是45; ②∵A (-4,0),B (1,0),C (0,2),∴AC=25,BC=5,AB=5, ∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P (-32,0), ∴PA=PC=PB=52, ∴∠CPO=2∠BAC , ∴tan ∠CPO=tan (2∠BAC )=43, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG ,∴∠CDG=∠BAC ,∴tan ∠CDG=tan ∠BAC=12, 即RC :DR=12, 令D (a ,-12a 2-32a+2), ∴DR=-a ,RC=-12a 2-32a , ∴(-12a 2-32a ):(-a )=1:2,∴a1=0(舍去),a2=-2,∴x D=-2,∴-12a2-32a+2=3,∴点D的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.9.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=kx(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(ca,ba)与原点O的距离OP的取值范围.【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;②2≤OPOP≠1.【解析】【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣cb,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣ba,x2x3=ca,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得ba的取值范围,令m=ba,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【详解】(1)不能,理由如下:∵1、2、3的倒数分别为1、12、13, ∴12+13≠1,1+12≠13,1+13≠12, ∴实数1,2,3不可以构成“和谐三组数”; (2)∵M(t ,y 1),N(t+1,y 2),R(t+3,y 3)三点均在函数k x (k 为常数,k≠0)的图象上, ∴y 1、y 2、y 3均不为0,且y 1=k t ,y 2=1k t +,y 3=3k t +, ∴11y =t k ,21y =1t k +,31y =3t k +, ∵y 1,y 2,y 3构成“和谐三组数”,∴有以下三种情况: 当11y =21y +31y 时,则t k =1t k ++3t k+,即t =t+1+t+3,解得t =﹣4; 当21y =11y +31y 时,则1t k +=t k +3t k+,即t+1=t+t+3,解得t =﹣2; 当31y =11y +21y 时,则3t k +=t k +1t k+,即t+3=t+t+1,解得t =2; ∴t 的值为﹣4、﹣2或2;(3)①∵a 、b 、c 均不为0,∴x 1,x 2,x 3都不为0,∵直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0),∴0=2bx 1+2c ,解得x 1=﹣c b, 联立直线与抛物线解析式,消去y 可得2bx+2c =ax 2+3bx+3c ,即ax 2+bx+c =0,∵直线与抛物线交与B(x 2,y 2),C(x 3,y 3)两点,∴x 2、x 3是方程ax 2+bx+c =0的两根,∴x 2+x 3=﹣b a ,x 2x 3=c a, ∴21x +31x =2323x x x x +=b a c a-=﹣b c =11x , ∴x 1,x 2,x 3构成“和谐三组数”;②∵x 2=1,∴a+b+c =0,∴c =﹣a ﹣b ,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得253a bb a>⎧⎨>-⎩,解得﹣35<ba<12,∵P(ca ,ba),∴OP2=(ca )2+(ba)2=(a ba--)2+(ba)2=2(ba)2+2ba+1=2(ba+12)2+12,令m=ba,则﹣35<m<12且m≠0,且OP2=2(m+12)2+12,∵2>0,∴当﹣35<m<﹣12时,OP2随m的增大而减小,当m=﹣35时,OP2有最大临界值1325,当m=﹣12时,OP2有最小临界值12,当﹣12<m<12时,OP2随m的增大而增大,当m=﹣12时,OP2有最小临界值12,当m=12时,OP2有最大临界值52,∴12≤OP2<52且OP2≠1,∵P到原点的距离为非负数,∴≤OP且OP≠1.【点睛】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.10.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF , ∴PC PB PF PE =. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.11.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(33 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =﹣3或x =33,∴点A 的坐标为(﹣3,0),B (33,0),∴抛物线的对称轴为x =3.(2)∵OA =3,OC =3,∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =3AO =1,∴点D 的坐标为(0,1). 设点P 的坐标为(3,a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 的坐标为(3,0). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 的坐标为(3,﹣4). 综上所述,点P 的坐标为(3,0)或(3,﹣4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m -+=,解得:m =3,∴直线AC 的解析式为33y x =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =13k-+=31k -.将33y x =+与y =kx +1联立解得:x =3k -,∴点M 的横坐标为3k -.过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 233k -2323k k --,∴11AM AN +323231k k --3232k -3(31)2(31)k k --3点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键.12.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.13.如图,在平面直角坐标系中,二次函数2y ax bx c=++交x轴于点()4,0A-、()2,0B,交y轴于点()0,6C,在y轴上有一点()0,2E-,连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求ADE∆面积的最大值;(3)抛物线对称轴上是否存在点P,使AEP∆为等腰三角形,若存在,请直接写出所有P点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,()1,11-±,()1,219--±. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可. 详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+,∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+)=23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA PE AE =,分三种情况讨论:当PA =PE n =1,此时P (﹣1,1);当PA =AE =n =,此时点P 坐标为(﹣1,);当PE =AE =n =﹣2P 坐标为:(﹣1,﹣2).综上所述:P 点的坐标为:(﹣1,1),(﹣1,1,﹣2). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.14.在平面直角坐标系中,二次函数y=ax 2+53x+c 的图象经过点C (0,2)和点D (4,﹣2).点E 是直线y=﹣13x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E 的坐标.(2)如图①,若点M 是二次函数图象上的点,且在直线CE 的上方,连接MC ,OE ,ME .求四边形COEM 面积的最大值及此时点M 的坐标.(3)如图②,经过A 、B 、C 三点的圆交y 轴于点F ,求点F 的坐标.【答案】(1)E(3,1);(2)S最大=214,M坐标为(32,3);(3)F坐标为(0,﹣32).【解析】【分析】1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC 与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【详解】(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:2016232a cc⎧++=-⎪⎨⎪=⎩,解得:2a32c⎧=-⎪⎨⎪=⎩,即二次函数解析式为y=﹣23x2+53x+2,联立一次函数解析式得:2225233y xy x x﹣﹣=+⎧⎪⎨=++⎪⎩,消去y得:﹣13x+2=﹣23x2+53x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣23m2+53m+2),则H(m,﹣13m+2),∴MH=(﹣23m2+53m+2)﹣(﹣13m+2)=﹣23m2+2m,S四边形COEM=S△OCE+S△CME=12×2×3+12MH•3=﹣m2+3m+3,当m=﹣ab=32时,S最大=214,此时M坐标为(32,3);(3)连接BF,如图②所示,当﹣23x2+53x+20=0时,x15+73,x25-73∴OA=73-54,5+73,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴OA OCOF OB=,即73-545+734OF=,解得:OF=32,则F坐标为(0,﹣32).【点睛】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.15.已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.。
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(三)
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(三)1.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD 的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.2.如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.3.如图,已知抛物线与x轴交于点A(﹣1,0),与y轴交于点C(0,3),且对称轴方程为x=1(1)求抛物线与x轴的另一个交点B的坐标;(2)求抛物线的解析式;(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M 的坐标.4.如图,抛物线y=﹣x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=﹣x+3.(1)求抛物线解析式;(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M 为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE.5.如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式;(2)求点D坐标;(2)连AC,将直线AC以每秒1个单位的速度向x轴的正方向运动,设运动时间为t秒,直线AC扫过梯形OCDB的面积为S,直接写出S与t的函数关系式;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.6.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;(3)当点P在线段OB上运动时,若△CMN是以MN为腰的等腰直角三角形时,求m的值;(4)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.7.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx与x轴的正半轴交于点A,抛物线的顶点为B,直线y=kx﹣6k经过点A、B两点,且tan∠BAO=3.(1)求抛物线的解析式;(2)点P在第一象限内对称轴右侧的抛物线上,其横坐标为t,连接OP,交对称轴于点C,过点C作CD∥x轴,交直线AB于点D,连接PD,设线段PD的长为d,求d与x之间的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,点E在线段BC上,连接EP,交BD于点F,点G是BE的中点,过点G作GQ∥x轴,交PE的延长线于点Q,当∠OPQ=2∠AOP,且EF=PF时,求点P、Q 的坐标,并判断此时点Q是否在(1)中的抛物线上.8.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒时,△PBQ的面积最大?最大面积是多少?(3)在运动过程中,是否存在某一时刻t,使以P,B,Q为顶点的三角形为直角三角形?若存在,求出t值;若不存在,请说明理由.10.如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线对称轴于点B,直线CP交x轴于点A.(1)求该抛物线的表达式;(2)如果点P的横坐标为m,试用m的代数式表示线段BC的长;(3)如果△ABP的面积等于△ABC的面积,求点P坐标.参考答案1.解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);三角形PCD(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).2.解:(1)∵OA=2,AB=8,点C为AB边的中点∴点C的坐标为(2,4)点,设直线的解析式为y=kx则4=2k,解得k=2∴直线的解析式为y=2x,设抛物线的解析式为y=kx2则4=4k,解得k=1∴抛物线的解析式为y=x2(2)设移动后抛物线的解析式为y=(x﹣m)2+2m当OD=BC,四边形BDOC为平行四边形,∴OD=BC=4,①则可得x=0时y=4,∴m2+2m=4,∴(m+1)2=5解得,(舍去),所以y=+2×(﹣1+)=﹣2+2,②∵BE=8﹣[(2﹣m)2+2m]=4+2m﹣m2=BE•OA∴S△BOE=(4+2m﹣m2)×2=﹣m2+2m+4=﹣(m﹣1)2+5,而0≤m≤2,所以4≤S≤5.3.解:(1)∵抛物线与x轴交于点A(﹣1,0),对称轴方程为x=1,∴抛物线与x轴的另一个交点B的坐标为(3,0).(2)∵抛物线与y轴交于点C(0,3),∴设抛物线解析式为y=ax2+bx+3(a不等于0),根据题意,得a﹣b+3=0 9a+3b+3=0 解得a=﹣1,b=2,∴抛物线的解析式为y=﹣x2+2x+3;(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y)根据勾股定理得x2+(3﹣y)2=(x ﹣1)2+(4﹣y)2即y=4﹣x又P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0 解得x=,<1 (舍去),∴x=,∴y=4﹣x=,即点P坐标为(,)②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3);(4)由B(3,0),C(0,3),D(1,4),根据勾股定理,得CB=,CD=,BD=∴CD2+CB2=BD2=20,∴∠BCD=90°,设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,∵CF=DF=1,∴∠CDF=45°,由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),∴DM∥BC,∴四边形BCDM为直角梯形由∠BCD=90°及题意可知以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在.4.解:(1)∵直线AB的解析式为y=﹣x+3,∴A(3,0),B(0,3),∵抛物线y=﹣x2+bx+c经过A点,B点,∴,解得,∴抛物线解析式为y=﹣x2+2x+3.(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.∵OA=OB,∠AOB=90°,∴∠PAN=45°,∵∠NMP=90°,∴∠PAN=∠NMP,∴N、P、A三点在以M为圆心MA为半径的⊙M上,∴MN=MP,∵∠NHM=∠PGM=∠NMP=90°,∴∠NMH+∠PMG=90°,∠PMG+∠MPG=90°,∴∠NMH=∠MPG,∴△NMH≌△MPG,∴NH=MG,HM=PG,∵P(t,0),∴Q(t,﹣t2+2t+3),M(,),∴PG=MH=﹣t=,HG=+=,∴N y=,∵点N在直线AB上,∴N y=﹣N x+3,∴N x=3﹣=(0<t<3).(3)如图2中,∵MN∥AE,QM=MA,∴EN=QN,∴=,∴t2﹣2t=0,解得t=2或0(舍弃),∴t=2时,MN∥AE.5.解:(1)将点A(﹣1,0)、B(4,0)代入y=ax2+bx+2中,,解得:,∴抛物线的解析式为y =﹣x 2+x +2.(2)当x =0时,y =2,∴C (0,2).当y =2时,﹣x 2+x +2=2,解得:x 1=0,x 2=3,∴点D 的坐标为(3,2).(3)①当0≤t ≤1时,如图1中,重叠部分是△CEC ′,s =•CC ′•EC =•t •2t =t 2.②当1<t ≤3时,如图2中,重叠部分是梯形OCC ′A ′,S =2=2t ﹣1.③当3<t ≤5时,如图3中,重叠部分是五边形OCDEA ′,∵DC ′∥A ′B , ∴==, ∴=,∴S △A ′EB =•S △A ′DB =•(5﹣t ),∴S =S 梯形COBD ﹣S △EA ′B =﹣t 2+5t ﹣.(4)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 坐标(a ,﹣a 2+a +2),①当P 在y 轴右侧时,如图4中,CQ =a ,PQ =2﹣(﹣a 2+a +2)=a 2﹣a ,∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′, ∴△COQ ′∽△Q ′FP , ∴=, ∴=,∴Q ′F ═a ﹣3, ∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′===,此时a =,∴点P 坐标(,), ②当P 在y 轴左侧时,如图5中,此时a <0,﹣a 2+a +2<0,CQ =﹣a ,PQ =2﹣(﹣a 2+a +2)=a 2﹣a ,∵∠CQ ′O +∠FQ ′P =90°,∠CQ ′O +∠OCQ ′=90°,∴∠FQ ′P =∠OCQ ′,∵∠COQ ′=∠Q ′FP =90°,∴△COQ ′∽△Q ′FP , ∴=, ∴=,∴FQ ′=3﹣a ,∴OQ ′=3,CQ =CQ ′==, 此时a =﹣,点P 坐标(﹣,), 综上所述,点P 坐标为(,)或(﹣,). 6.解:(1)∵抛物线过A 、C 两点, ∴代入抛物线解析式可得,解得,∴抛物线解析式为y =﹣x 2+2x +3,令y =0可得,﹣x 2+2x +3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B点坐标为(3,0),设直线BC解析式为y=kx+s,把B、C坐标代入可得,解得,∴直线BC解析式为y=﹣x+3;(2)∵PM⊥x轴,点P的横坐标为m,∴M(m,﹣m2+2m+3),N(m,﹣m+3),∵P在线段OB上运动,∴M点在N点上方,∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,MN有最大值,MN的最大值为;(3)∵PM⊥x轴,∴当△CMN是以MN为腰的等腰直角三角形时,则有CM⊥MN,∴M点纵坐标为3,∴﹣m2+2m+3=3,解得m=0或m=2,当m=0时,则M、C重合,不能构成三角形,不符合题意,舍去,∴m=2;(4)∵PM⊥x轴,∴MN∥OC,当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,当点P在线段OB上时,则有MN=﹣m2+3m,∴﹣m2+3m=3,此方程无实数根,当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,∴m2﹣3m=3,解得m=或m=,综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为或.7.解:(1)如图1所示:过点B作BC⊥OA垂足为C.令y=0得:kx﹣6k=0,∵k≠0,∴x=6.∴A(6,0).∵抛物线经过O(0,0)、A(6,0)且B为抛物线的顶点,∴AC=3.∵tan∠BAO=3,∴BC=9.∴B(3,9).∵将B(3,9)、A(6,0)代入抛物线的解析式得:,解得:b=6,a=﹣1,∴抛物线的解析式为y=﹣x2+6x.(2)如图2所示:设直线AB的解析式为y=kx+b.∵将点A、B的坐标代入得:,解得:b=18,k=﹣3,∴直线AB的解析式为y=﹣3x+18.设P的坐标为(t,﹣t2+6t),OP的解析式为y=kx.∵将点P的坐标代入得:tk=﹣t2+6t,解得:k=﹣t+6,∴OP的解析式为y=(﹣t+6)x.∵将x=3代入OP得解析式得:y=﹣3t+18,∴C(3,﹣3t+18).∵CD∥x轴,∴点D的纵坐标为﹣3t+18.∵将y=﹣3t+18代入直线AB的解析式得:﹣3t+18=﹣3x+18,∴x=t.∴D(t,﹣3t+18).∴d=﹣t2+6t﹣(﹣3t+18)=﹣t2+9t﹣18.如图3所示:延长PQ交y轴于点H,过点P作PM∥x轴.∵PM∥x轴,∴∠MPO=∠AOP.∵∠OPQ=2∠AOP,∴∠HPM=∠OPM.又∵PM⊥y轴,∴∠PMH=∠PMO.在△PHM和△POM中,∴△PHM≌△POM.∴HM=OM.设P(a,﹣a2+6a),则H(0,﹣2a2+12a).设PH的解析式为y=kx﹣2a2+12a.∵将点P的坐标代入得:ka﹣2a2+12a=﹣a2+6a,解得:k=a﹣6,∴直线PH的解析式为y=(a﹣6)x﹣2a2+12a.∵将x=3代入PH得解析式得y=﹣2a2+15a﹣18,∴点E的纵坐标为﹣2a2+15a﹣18.∵F是EP的中点,∴F y==﹣a2+a﹣9,F x=.∵将F x=代入AB的解析式得:F y=﹣3×+18,∴﹣a2+a﹣9=﹣3×+18,整理得:a2﹣8a+15=0,解得a=5或a=3(舍去).∵当a=5时,﹣a2+6a=﹣25+30=5,∴点P的坐标为(5,5).∵a=5,∴直线PH的解析式得y=﹣x+10.∵将a=5代入﹣2a2+15a﹣18得:﹣2a2+15a﹣18=﹣2×25+15×5﹣18=7,∴点E的坐标为(3,7).∵点G为BE的中点,∴点G的坐标为(3,8).∵QG∥x轴,∴点Q的纵坐标为8.∵将y=8代入y=﹣x+10得:﹣x+10=8,解得:x=2,∴点Q的坐标为(2,8).∵将x=2代入y=﹣x2+6x得:y=﹣4+12=8,∴Q是在(1)中的抛物线上.8.解:(1)∵OA=1.tan∠BAO=3,∴=3,解得OB=3,又由旋转可得OB=OC=3,∴A(1,0),B(0,3),C(﹣3,0),设抛物线解析式为y=ax2+bx+c,把A、B、C三点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2﹣2x+3,(2)①由(1)可知抛物线对称轴为x=﹣1,顶点坐标为(﹣1,4),∵△COD为直角三角形,∴当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,若∠FEC=90°,则PE⊥CE,∵对称轴与x轴垂直,∴此时抛物线的顶点即为满足条件的P点,此时P点坐标为(﹣1,4);若∠EFC=90°,则PE⊥CD,如图,过P作PG⊥x轴于点G,则∠GPE+∠PEG=∠DCO+∠PEG,∴∠GPE=∠OCD,且∠PGE=∠COD=90°,∴△PGE∽△COD,∴=,∵E(﹣1,0),G(t,0),且P点横坐标为t,∴GE=﹣1﹣t,PG=﹣t2﹣2t+3,∴=,解得t=﹣2或t=3,∵P点在第二象限,∴t<0,即t=﹣2,此时P点坐标为(﹣2,3),综上可知满足条件的P点坐标为(﹣1,4)或(﹣2,3);②设直线CD 解析式为y =kx +m ,把C 、D 两点坐标代入可得,解得,∴直线CD 解析式为y =x +1,如图2,过P 作PN ⊥x 轴,交x 轴于点N ,交直线CD 于点M ,∵P 点横坐标为t ,∴PN =﹣t 2﹣2t +3,MN =t +1,∵P 点在第二象限,∴P 点在M 点上方,∴PM =PN ﹣MN =﹣t 2﹣2t +3﹣(t +1)=﹣t 2﹣t +2=﹣(t +)2+,∴当t =﹣时,PM 有最大值,最大值为, ∵S △PCD =S △PCM +S △PDM =PM •CN +PM •NO =PM •OC =PM ,∴当PM 有最大值时,△PCD 的面积有最大值,∴(S △PCD )max =×=,综上可知存在点P 使△PCD 的面积最大,△PCD 的面积有最大值为. 9.解:(1)把点A (﹣2,0)、B (4,0)分别代入y =ax 2+bx ﹣3(a ≠0),得, 解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)设运动时间为t秒,则AP=3t,BQ=t.∴PB=6﹣3t.由题意得,点C的坐标为(0,﹣3).在Rt△BOC中,BC==5.如图1,过点Q作QH⊥AB于点H.∴QH∥CO,∴△BHQ∽△BOC,∴=,即=,∴HQ=t.∴S=PB•HQ=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+.△PBQ当△PBQ存在时,0<t<2∴当t=1时,S=.△PBQ最大答:运动1秒使△PBQ的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AP=3t,BQ=t.∴PB=6﹣3t.当∠PQB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BPQ=90°时,cos∠B==,化简,得19t=30,解得t=,综上所述:t=或t=时,以P,B,Q为顶点的三角形为直角三角形.10.解:(1)∵抛物线y=ax2+bx的顶点为C(1,﹣1),∴,解得:,∴抛物线的表达式为:y=x2﹣2x;(2)∵点P的横坐标为m,∴点P的纵坐标为:m2﹣2m,令BC与x轴交点为M,过点P作PN⊥x轴,垂足为点N,∵P是抛物线上位于第一象限内的一点,∴PN=m2﹣2m,ON=m,OM=1,由=,得=,∴BM=m﹣2,∵点C的坐标为(1,﹣1),∴BC=m﹣2+1=m﹣1;(3)令P(t,t2﹣2t),∵△ABP的面积等于△ABC的面积,∴AC=AP,过点P作PQ⊥BC交BC于点Q,∴CM=MQ=1,可得t2﹣2t=1,解得:t=1+(t=1﹣舍去),∴P的坐标为(1+,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点专题9 二次函数综合题型(1)二次函数的综合探究题一直是中考的必考题。
通常考查与动点、存在性、相似有关的二次函数综合题,解答与动点有关的函数探究问题,通常需要把问题拆开,分清动点在不同位置运动,或不同时间段运动时对应的函数关系式,进而确定函数图象这类问题往往与函数知识、特殊三角形、特殊四边形的性质,以及分类讨论思想、方程思想、数形结合思想相联系。
解题时要特别注意把握题目中的“动中有变(图形的变化)、变中有静(特殊三角形或四边形的性质及其数学思想)”的内在规律并注意挖掘隐含条件,综合运用数学知识解决问题。
此类问题的考查形式通常为解答题,解答此类问题时要注意分析问题存在的多种情况。
二次函数综合题型有以下三种常见题型: 题型一:二次函数与线段最值问题; 题型二:二次函数与图形面积问题;题型三:二次函数与特殊三角形的存在性问题; 题型四:二次函数与特殊四边形的存在性问题。
考向1 二次函数与线段最值问题例:(2019 •深圳福田区校级模拟)如图,抛物线215222y x x与x 轴相交于A ,B 两点,点B 在点A 的右侧,与y 轴相交于点C . (1)求点A ,B ,C 的坐标;(2)在抛物线的对称轴上有一点P ,使PA PC 的值最小,求点P 的坐标;【解析】(1)当0x 时,则52y,5(0,)2C ,当0y时,2152022x x,化简,得2450x x ,解得,1x 或5x ,(1,0)A ,(5,0)B ;(2)如图,连接BC ,交对称轴于点P ,连接AP .点A 和点B 关于抛物线的对称轴对称,APPB ,要使PA PC 的值最小,则应使PB PC 的值最小,BC 与对称轴的交点,使得PA PC 的值最小.设BC 的解析式为ykxb . 将(5,0)B ,5(0,)2C 代入ykxb ,得5250bk b, 1252k b,直线BC 的解析式为1522y x 抛物线的对称轴为直线22122x,当2x 时,1532222y,3(2,)2P ;练习:1. (2019 •南海区模拟二)如图,已知:直线2(y xm m 为常数),抛物线223y ax ax 的最大值为4,抛物线的顶点为A .(1)当直线经过A点时,求m的值;(2)当直线和抛物线在x轴上方的部分只有一个公共点时,求m的取值范围.(3)当直线与抛物线只有一个公共点D时,设点P是y轴上一动点,求||PA PD的最大值,并求取得最大值时P点的坐标.【解析】(1)抛物线223y ax ax的最大值为4,函数的对称轴为:1x,此时234a,y a a,解得:1故抛物线的表达式为:223y x x;顶点A的坐标为:(1,4);将点A的坐标代入直线表达式并解得:6m;(2)抛物线于x轴的交点坐标为:(1,0)和(3,0);①当直线过(1,0)时,则02m,解得:2m;②当直线过(3,0)时,即06m,解得:6m;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:2430x x m,△2m,此时交点坐标为:(2,3),m,解得:7(4)4(3)0当直线过(3,0)时,直线和抛物线在x轴上方的部分有两个公共点,故26m或67m;(3)由(2)知,点(2,3)D,连接D、A交y轴于点P,则此时||PA PD有最大值,即点P为所求点,由点A、D的坐标得,直线AD的表达式为:5y x,故点(0,5)P.2. (2019•徐闻县期末)如图,点(4,0)M ,以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216yx bxc 过点A 和点B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象. (2)点(8,)Q m 在抛物线216yx bxc 上,点P 为此抛物线对称轴上一个动点,求PQPB 的最小值.【解析】(1)(4,0)M ,M 的半径为2,4AB ,(2,0)A ,(6,0)B ,将A ,B 的坐标代入216yx bxc 中,得2203660b c b c , 解得432b c,214263yx x ,当0x 时,2y ,(0,2)C ,抛物线的大致图象如图1;(2)点(8,)Q m 在214263yx x 图象上,2m ,(8,2)Q ,如图2,由于点A 与点B 关于抛物线的对称轴4x 对称,连接AQ ,交对称轴于点P ,连接PB ,由两点之间线段最短可知,此时PQPB 的值最小,即PQPBAQ ,22(82)2210AQ,PQPB 的最小值为3. (2018•金平区模拟)如图,抛物线2y ax bxc 与x 轴相交于(3,0)A 、B 两点,与y 轴交于点(0,3)C ,点B 在x 轴的负半轴上,且3OAOB .(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标; (3)在线段OC 上是否存在一点M ,使2BM CM 的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由. 【解析】(1)33OAOB,则点(1,0)B ,抛物线的表达式为:2(1)(3)(23)y a x x a x x ,即33a,解得:1a,故抛物线的表达式为:223yx x;(2)过点P 作y 轴的平行线交CA 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:3y xACP 的面积221133(233)(3)222PH OA x xxx x ,当32x时,ACP 的面积的最大,最大值为:278,此时点3(2P ,15)4;(3)过点M 作MN AC ,则2MNCM ,故当B 、M 、N 三点共线时,2BM CM BN 最小,直线CA 的倾斜角为45,BN AC ,则45NBA ,即222BNAB AN ,则点(1,2)N .4.(2019 •信宜市二模)如图,已知抛物线2(0)y ax bxc a的对称轴为直线1x,且抛物线经过(1,0)B ,(0,3)C 两点,与x 轴交于点A .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线1x 上找一点M ,使点M 到点B 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)如图2,点Q 为直线AC 上方抛物线上一点,若45CBQ,请求出点Q 坐标.【解析】(1)点(3,0)A , 则抛物线的表达式为:2(3)(1)(23)y a xx a x x ,即33a,解得:1a,故抛物线的表达式为:223y x x①;(2)点B 关于函数对称轴的对称点为点A ,则AC 交函数对称轴于点M ,则点M 为所求, 由点A 、C 的坐标得,直线AC 的表达式为:3y x ,当1x 时,2y ,故点(1,2)M ;(3)如图,设直线BQ 交y 轴于点H ,作HGBC 于点G ,1tan 3OCB,45CBQ ,则设:BG HGx ,则3CGx ,则49110BCBG CGx,5102CHx,则点1(0,)2H , 由点B 、H 的坐标可得,直线BQ 的表达式为:1122y x ②,联立①②并解得:1x(舍去)或52,故点5(2Q ,7)4.考向2 二次函数与图形面积问题例:(2019 •电白县期末)如图,在平面直角坐标系中,二次函数2y x bxc 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,抛物线的对称轴1x ,与y 轴交于(0,3)C 点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的解析式及A 、B 点的坐标.(2)连接PO 、PC ,并把POC 沿CO 翻折,得到四边形POP C ,那么是否存在点P ,使四边形POP C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.【解析】(1)函数的对称轴为:12bx ,解得:2b,故抛物线的表达式为:223y x x ,令0y,则1x或3,故点A 、B 的坐标分别为:(1,0)、(3,0);(2)存在,理由:如图1,四边形POP C 为菱形,则1322yPOC ,即23232y x x ,解得:101x (舍去负值),故点10(1P ,3)2; (3)过点P 作//PH y 轴交BC 于点P , 由点B 、C 的坐标得,BC 的表达式为:3y x ,设点2(,23)P x x x ,则点(,3)H x x ,ABPC 的面积ABCBCPSSS1122AB OCPH OB 211433(323)22x x x239622x x ,302,故S 有最大值为758,此时点3(2P ,15)4. 练习:1.(2019 •源城区校级模拟)如图,抛物线2y x bxc 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点(0,3)C ,对称轴为1x,点D 与C 关于抛物线的对称轴对称.(1)求抛物线的解析式及点D 的坐标;(2)点P 是抛物线上的一点,当ABP 的面积是8时,求出点P 的坐标;(3)点M 为直线AD 下方抛物线上一动点,设点M 的横坐标为m ,当m 为何值时,ADM 的面积最大?并求出这个最大值.【解析】(1)抛物线2yx bxc 的对称轴为1x,12b,2b,抛物线与y 轴交于点(0,3)C ,3c ,抛物线的解析式为223yx x ,抛物线的对称轴为直线1x ,点D 与C 关于抛物线的对称轴对称,点D 的坐标为(2,3); (2)当0y时,2230x x ,解得,11x ,23x , 点A 的坐标为(1,0),点B 的坐标为(3,0),3(1)4AB,设点P 的坐标为(,)s t ,ABP 的面积是8,1||82P AB y , 即14||82t ,4t , 当4t 时,2234s s ,解得,1122s ,2122s ,点P 的坐标为(122,4)或(122,4);当4t时,2234s s ,解得,121s s ,点P 的坐标为(1,4);当ABP 的面积是8时,点P 的坐标为(122,4)或(122,4)或(1,4);(3)设直线AD 的解析式为1y kxb ,将(1,0)A ,(2,3)D 代入1y kx b ,得,11023k b kb ,解得,111k b ,直线AD 的解析式为1yx ,过点M 作//MN y 轴,交AD 于点N , 点M 的横坐标是m ,(12)m,点M 的坐标为2(,23)m m m ,点N 的坐标为(,1)m m ,221(23)2MNm m m m m,AMDAMNDMNSSS11(1)(2)22MN m MN m32MN 23(2)2m m3127()2228m ,30 2,1122,当12m时,278AMDS,当12m时,AMD的最大值为278.2. (2020•清城区模拟)如图,在平面直角坐标系中,抛物线2y ax bx c的图象与x轴交于(4,0)A,B两点,与y轴交于点(0,2)C,对称轴32x与x轴交于点H.(1)求抛物线的函数表达式;(2)直线1(0)y kx k与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若CPQ ,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.【解析】(1)对称轴32x,则点(1,0)B,则抛物线的表达式为:2(1)(4)(34)y a x x a x x,即42a,解得:12 a,故抛物线的表达式为:213222y x x ;(2)设直线PQ 交y 轴于点(0,1)E ,点P 、Q 横坐标分别为m ,n ,CPQ 的面积117()2CE n m , 即17n m ,联立抛物线于直线PQ 的表达式并整理得:213()122x k x ①,32m nk ,2mn,2217()4(32)8nmmn mnk ,解得:0k (舍去)或3;将3k代入①式并解得:317x ,故点P 、Q 的坐标分别为:317(,217)、317(,217);(3)设点3(2K ,)m ,联立PQ 和AC 的表达式并解得:27x,故点2(7G ,13)7过点G 作x 轴的平行线交函数对称轴于点N ,交过点R 与y 轴的平行线于点M ,则()KNG GMR AAS ,32172714GNMR ,137NKm , 故点R 的纵坐标为:914,则点11(7R m ,9)14将该坐标代入抛物线表达式解得:21153314x , 故43153314m, 故点3(2K 431533). 3. (2019 •阳春市模拟二)如图,在平面直角坐标系中,直线5y x 与x 轴交于点B ,与y 轴交于点C .抛物线2yx bxc 经过点B 和点C ,与x 轴交于另一点A ,连接AC .(1)求点A 的坐标;(2)若点Q 在直线BC 上方的抛物线上,连接QC ,QB ,当ABC 与QBC 的面积比等于2:3时,直接写出点Q 的坐标:(3)在(2)的条件下,点H 在x 轴的负半轴,连接AQ ,QH ,当AQH ACB 时,直接写出点H 的坐标.【解析】(1)直线5y x与x 轴交于点B ,与y 轴交于点C ,则点B 、C 的坐标分别为:(5,0)、(0,5),则5c,将点B 的坐标代入抛物线表达式并解得:6b ,故抛物线的表达式为:265y x x ;(2)过点A 作直线BC 的平行线n 交y 轴于点M ,则点(0,1)M ,则514CM ,在点C 上方取362CNCM ,过点N 作直线m 交抛物线于点()Q Q ,则点Q 为所求,则点(0,11)N ,则直线m 的表达式为:11y x ②,联立①②并解得:1x 或6,故点(1,12)Q 或(6,5); (3)过点A 作AKBC 于点K ,4AB,则22AKBK,26AC,则224sin sin1326ABC,则2tan3; ①当点(6,5)Q 时, 过点H 作HRAQ 交QA 的延长线于点R ,由点A 、Q 的坐标知,tan 1tan QAB ,故45,52AQ ,则HR ARx ,2tan tan352HR HQRAR AQx , 解得:102x,220AH x,故点(19,0)H ;②当点(1,12)Q 时, 同理可得:点32(5H ,0); 综上,点H 的坐标为:(19,0)或32(5,0).。