人猫鸡米渡河问题的数学模型
人、猫、鸡、米过河的方案
数学建模作业1.招出安全可行的人、猫、鸡、米过河的方案。
2.探究鱼体重与身长、胸围的关系。
3.速度为V 的风吹在迎风面积为S 的风车上,空气密度为ρ。
用量纲分析方法确定风车获得的功率P 与V 、S 、ρ的关系。
1 解:(1)问题分析。
人不在时,猫和鸡、鸡和米任意一对都不能同时存在河的同岸。
(2)符号说明。
设人、猫、鸡、米分别对应1、2、3、4, Xi=1 为在河岸。
Xi=0 为在河对岸。
S=(X1,X2,X3,X4) 为河岸情况。
s=(1-X1.1-X2,1-X3,1-X4) 为河对岸情况。
Ai=1 为在船上。
Ai=0 为不在船上。
D=(A1,A2,A3,A4) 为渡河方式。
Sn 第n 次渡河后河岸情况。
Dn 第n 次渡河方式。
(3)建立模型。
由问题分析、符号说明知:两岸允许的状态为:河岸 河对岸 (1,1,1,1) (0,0,0,0) (1,1,1,0) (0,0,0,1) (1,1,0,1) (0,0,1,0) (1,0,1,1) (0,1,0,0) 可选择的渡河方式有:D={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)} 由状态转移律可得:DS S nnn n )1(1-+=+所以,安全的渡河方式即为在允许的渡河方案和河岸情况下,使得Sn 由初状态S1=(1,1,1,1)经过n 次得到Sn 1+=(0,0,0,0)(4)模型求解。
得到最优可行方案为:(1,1,1,1)-(1,0,1,0)+(1,0,0,0)-(1,1,0,0)+(1,0,1,0)-(1,0,0,1)+(1,0,0,0)-(1,0,1,0)=(0,0,0,0)最优方案需要7次渡河。
因此,解决问题的最优方案是:人先带鸡过河,然后回来带米过河,把鸡带回来,再把猫带到河对岸,最后回来把鸡带到河对岸。
2.解:(1)问题分析。
鱼的体重不能单独由身长或胸围决定,应由两者综合影响,故应在三者之间建立模型关系。
人猫鸡米过河问题[3]
安全过河问题摘要:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
做出怎样的决策才能安全渡河且渡河次数最少。
问题的重述:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
模型假设:不考虑外界其他影响,只考虑问题所述的条件。
符号说明:i=1,2,3,4分别代表人,猫,鸡,米。
1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()4321'1,1,1,1x x x x s ----=对岸状态,()4321,,,u u u u d =乘船方案,1=i u 代表 i 在船上时,0=i u 代表i 不在船上问题分析:安全过河问题可以视为是一个多步决策过程。
每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。
否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。
因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘车方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。
模型建立与求解: 一. 模型的建立:人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为 ()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记0=i u ,允许决策集合为()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D (2)因为k 为奇数时船从此案驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态ks随决策k d 变化的规律为()kd kk s k s11-+=+, (3) 设计安全过河方案归结为求决策,,,,21D d d d n ∈ ,使状态S s k ∈按转移律由初始状态()1,1,1,11=s 经有限步n 到达状态()0,0,0,01=+n s 。
安全过河问题
安全过河
一、问题提出
人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽可能少。
二、模型假设
不考虑外界其他影响,只考虑问题所述的条件。
符号说明:
三、模型的建立
人、猫、鸡、米分别记为i=1,2,3,4,当i在此岸时记为x i=1,否则记x i=0,则此岸的状态可用S=(x,1x2,x3,x4)表示。
记s的反状态为s'=(1-x,11-x2,1-x3,1-x4),允许状态集合为D={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)} (1)
以及他们的5个反状态决策为乘船方案,记作d=(u,1u2,u3,u4),当i在船上时记作u i=1,否则记为u i=0,允许决策集合为D={(1,1,0,0),(1,01,0),(1,0,0,1),(1,0,0,0)} (2)
记第k次渡河前的此岸的状态为s k,第k次渡河的决策为d k,则状态转移律为s k1+=s k+()1-k d k,(3)
设计安全过河方案归结为求决策序列d1,d2,···,d k∈D,使状态s k∈S按状态转移律由初始状态s1=(1,1,1,1)经n步达到s n1+=(0,0,0,0)。
四、模型的求解
从而我们得到一个可行的方案如下:
因此,该问题的最优方案是:1、人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。
数学模型课后答案姜启源
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
人猫鸡米渡河问题的数学模型
人猫鸡米渡河问题的数学模型摘要:人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外(船除了要载人外),只能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
本文将设计一个安全过河方案,使渡河次数尽量地少。
模仿“商人过河”的模型设计出新的数学模型。
关键字:穷举法,Matlab运算求解。
一、问题的提出课本P19.T5:模仿“商人过河”模型,做下面游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
设计一个过河方案,建立数学模型,并使渡河次数尽量地少。
二、问题的分析因为这是个简单问题,研究对象少,所以可以用穷举法,简单运算即可解题。
此问题是从状态向量A(1,1,1,1)经过奇数次运算向量B变为状态向量A(0,0,0,0)的状态。
转移过程为什么是奇数次?我们注意到过河有两种,奇数次的为从左岸到右岸,而偶数的为右岸回到左岸,因此得到下述转移过程,所以最后应该是过河完成时状态转移数为奇数次。
三、问题的假设1.1:假设船除了载人之外,至多只能载猫、鸡、米三者之一。
1.2:当人不在场时,猫一定会吃鸡、鸡一定会吃米。
四、定义符号说明:我们将人,猫,鸡,米依次用四维向量中的分量表示,当一物在左岸时,相应的分量记为1,在右岸时记为0.如向量(1,0,1,0)表示人和鸡在左岸,猫和米在右岸,并将这些向量称为状态向量。
例如(1,1,1,1)表示它们都在左岸,(0,1,1,0)表示猫,鸡在左岸,人,米在右岸;由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。
凡问题可以允许存在的状态称为可取状态。
A 向量定义为状态变量。
比如()11,0,1,0A 是一个可取状态向量,但()20,0,1,1A 是一个不可取状态向量。
此外,B 向量定义为运载变量。
把每运载一次也用一个四维向量来表示。
如()11,1,0,0B 表示人和猫在船上,而鸡和米不在船上,这自然是可取的运载,因为船可载两物,而()21,0,1,1B 则是不可取运载,依此规律类推。
人猫鸡米渡河问题的matlab求解法
摘要:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,试通过数学建模,运用计算机给出一个安全渡河方案,并使渡河次数尽量少。
一、问题分析:此问题是从状态向量A (1,1,1,1)经过奇数次运算向量B 变为状态向量A (0,0,0,0)的状态。
转移过程为什么是奇数次?我们注意到过河有两种,奇数次的为从左岸到右岸,而偶数的为右岸回到左岸,因此得到下述转移过程,所以最后应该是过河完成时状态转移数为奇数次。
二、模型假设:1.假设船除了载人之外,至多只能载猫、鸡、米三者之一。
2.当人不在场时,猫一定会吃鸡、鸡一定会吃米。
我们将人,猫,鸡,米依次用四维向量中的分量表示,当一物在左岸时,相应的分量记为1,在右岸时记为0.如向量(1,0,1,0)表示人和鸡在左岸,猫和米在右岸,并将这些向量称为状态向量。
例如(1,1,1,1)表示它们都在左岸,(0,1,1,0)表示猫,鸡在左岸,人,米在右岸;由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。
凡问题可以允许存在的状态称为可取状态。
A 向量定义为状态变量。
比如()11,0,1,0A 是一个可取状态向量,但()20,0,1,1A 是一个不可取状态向量。
此外,B 向量定义为运载变量。
把每运载一次也用一个四维向量来表示。
如()11,1,0,0B 表示人和猫在船上,而鸡和米不在船上,这自然是可取的运载,因为船可载两物,而()21,0,1,1B 则是不可取运载,依此规律类推。
三、模型建立:由上可知,可取状态向量A共有10个,即:()0,0,0,01,1,1,1()()0,0,0,11,1,1,0()()0,0,1,01,1,0,1()()0,1,0,01,0,1,1()()1,0,1,0()0,1,0,1可取运载B有4个:(1,1,0,0)、(1,0,1,0)、(1,0,0,1)、(1,0,0,0)。
四、算法设计:1、规定A和B的每一分量相加时按二进制法则进行,这样一次渡河就是一个可取状态和一个可取运载相加,在判断和向量是否属于可取状态即可。
渡河问题的数学模型解决方法
渡河问题的数学模型解决方法内容摘要:本文通过对1934年和2002年两次武汉抢渡长江挑战赛的资料分析,对在抢渡过程中涉及到的水流速度,人的游泳速度、方向和起终点路程的关系等因素建立了数学模型,并以此进行了几个问题的研究。
分析两次比赛路线的不同对选手到达终点成功率的影响,阐述了两次的成功人数百分比有很大差异的原因。
然后考虑诸多因素的复杂变化,包括水流速度的分段或线性变化等,对模型进一步优化,找出人的游速的大小和方向与水流的关系,并提出几种可行性方案。
最后将模型应用到实际问题中,通过对诸如空投、宇宙飞船对接等涉及到多个速度和位移关系的设想,将模型进一步验证和推广。
通过数学模型及相关数据,可算得:①2002年第一名的游泳路线为从起点到终点的直线路程,游泳速度的大小为v=1.54m/s ,方向为与平行河岸上游方向夹角︒6.62;一个游泳速度为1.5m/s 的人应选择的方向为与平行河岸上游方向夹角︒2.58,他的成绩大约为s 4.910;②如果游泳者始终以和岸边垂直的方向游,则他们无法到达终点。
由于1934年和2002年两次比赛在水平方向(即水流方向)上路程的差异,计算出1934年选手的理论成功概率为81.1%,实际概率为90.9%;2002年的理论成功概率为19.3%,实际概率为18.3%,从而说明了为何两次比赛能到达终点人数的百分比有如此大的差异。
最后得出能够成功到达终点的选手的条件为θθsin cos 0⋅≥⋅-v d v v s ③当水流速度沿离岸边距离分段变化时,游泳速度为 1.5m/s 的选手应选择的方向是与平行河岸上游方向夹角︒2.58 ,路线为从起点到终点的直线距离,预计时间为784.5s ④当水流速度沿离岸边距离呈线性变化时,人的游泳方向从垂直河岸开始逐渐向θ减小方向偏离,中间一段水流速度恒定是θ也恒定,最后一段θ逐渐增大,当到达对岸时︒90恰为 θ。
由此可最终求总共经历时间约为 810s一.基本模型建立设水速为v 0,垂直于岸边的距离为d,平行于岸边的位移为s ,人的速度为v,出发方向与河岸平行方向夹角为θ,整个运动时间为t ,起点至终点的直线距离为l ,如图所示:若人要恰好从起点到达终点,则有: θθsin cos 0⋅==⋅-v d t v v s 二.模型假设1.不考虑温度(气温、水温)及水中除水速外其他因素对选手速度的影响;2.由于在实际情况中,风力对人的影响比对水的影响要小得多,而风对水的影响在水速中已经体现,因此不考虑风力对人的直接影响;3.假设1934年和2002年两次比赛具有相同的外界条件,即具有相同的水流速度;4.开始人以某一初速度沿固定方向向对岸游,则只要满足人刚到达对岸的地点在终点的上游,就可以认为此人能够到达终点;5.θ的范围是]180,0[︒,在开始时所有选手向各个方向起跳的机率相同。
人带着猫、鸡、米过河问题
摘要:本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个过河方案,建立数学模型,并使渡河次数尽量地少?模仿“商人过河”的模型设计出新的数学模型。
问题的重述:人带着猫、鸡、米过河,船触需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
模型假设不考虑外界其他影响,只考虑问题所述的条件。
符号说明i=1人i=2猫i=3鸡i=4米Xi=1在此岸在对岸xi=0S=(x1,x2,x3,x4)此岸状态S’=(1-x1,1-x2,1-x3,1-x4)对岸状态d=(u1,u2,u3,u4)乘船方案ui=1i在船上时ui=0i不在船上Sk第k次渡河前此岸的状态dk第k次渡河的决策问题分析安全过河问题可以看着是一个多部决策的过程。
每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。
否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。
因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s表示某一岸的状况,决策变量d表示是乘车方案,我们容易得到s和d的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。
模型建立与求解Ⅰ. 模型的建立:人、猫、鸡、米分别记为i=(1,2,3,4),当i 在此岸时记xi=1,否则记xi=0,则此岸的状态可用S=(x1,x2,x3,x4)表示。
记s 的反状态为S’=(1-x1,1-x2,1-x3,1-x4,允许状态集合为S={(1,1,1,1,)(1,1,1,0)(1,1,0,1)(1,0,1,1)(1,0,1,0)}(1)以及他们的5个反状态。
决策为乘船方案,记作d=(u1,u2,u3,u4),当i 在船上时记ui=1,否则记ui=0,允许决策集合为D={(1,1,0,0)(1,0,1,0)(1,0,0,1)(1,0,0,0)} (2)记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为(3)设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态s1=(1,1,1,1,)经n 步达到sn+1=(0,0,0,0)。
人、猫、鸡、米过河
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):J2202所属学校(请填写完整的全名):江西环境工程职业学院参赛队员(打印并签名) :1. 章婷2. 谢小燕3. 涂艳明指导教师或指导教师组负责人(打印并签名):教练组日期: 2012 年 8月 8 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):人带着猫、鸡、米过河模型摘要本文针对的是过河问题,且对象是不同的物体,有人、猫、鸡、米,之间的关系,在条件满足的情况下,猫可以将鸡吃掉,鸡也能将米吃点,如果模型出现这种情况,模型则是失败的。
针对这些问题,我们设计了一个方案,建立数学模型,并使渡河次数尽量少。
针对这个模型,我们模仿“商人过河”的模型设计出新的方案。
关键词:人、猫、鸡、米的关系模仿“商人过河”模型一、问题的提出人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
设计一个过河方案,建立数学模型,并使渡河次数尽量地少。
二、问题的假设1)假设鸡不会飞走,鸡是会吃米的2)人在划船时,天气不阻碍船只的正常运行3)人不会无缘无故把猫或者鸡给杀掉,以及人不会把米扔掉三、模型的符号说明在建模的建立中,会用到一些符号,下面的表格将对本文所设计到的符号进行详细说明,见表3-1:表3-1 符号说明四、 模型的建立由于本文的题目是有关人、猫、鸡、米几者之间的关系,考虑到猫会只鸡,鸡会吃米的情况,我们这对这个问题进行讨论,最后得出只有当猫与米在一起的时候,双方都是安全的。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
人猫鸡米渡河问题地数学模型
人猫鸡米渡河问题的数学模型摘要:人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外(船除了要载人外),只能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
本文将设计一个安全过河方案,使渡河次数尽量地少。
模仿“商人过河”的模型设计出新的数学模型。
关键字:穷举法,Matlab运算求解。
一、问题的提出课本P19.T5:模仿“商人过河”模型,做下面游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
设计一个过河方案,建立数学模型,并使渡河次数尽量地少。
二、问题的分析因为这是个简单问题,研究对象少,所以可以用穷举法,简单运算即可解题。
此问题是从状态向量A(1,1,1,1)经过奇数次运算向量B变为状态向量A(0,0,0,0)的状态。
转移过程为什么是奇数次?我们注意到过河有两种,奇数次的为从左岸到右岸,而偶数的为右岸回到左岸,因此得到下述转移过程,所以最后应该是过河完成时状态转移数为奇数次。
三、问题的假设1.1:假设船除了载人之外,至多只能载猫、鸡、米三者之一。
1.2:当人不在场时,猫一定会吃鸡、鸡一定会吃米。
四、定义符号说明:我们将人,猫,鸡,米依次用四维向量中的分量表示,当一物在左岸时,相应的分量记为1,在右岸时记为0.如向量(1,0,1,0)表示人和鸡在左岸,猫和米在右岸,并将这些向量称为状态向量。
例如(1,1,1,1)表示它们都在左岸,(0,1,1,0)表示猫,鸡在左岸,人,米在右岸;由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。
凡问题可以允许存在的状态称为可取状态。
A 向量定义为状态变量。
比如()11,0,1,0A 是一个可取状态向量,但()20,0,1,1A 是一个不可取状态向量。
此外,B 向量定义为运载变量。
把每运载一次也用一个四维向量来表示。
如()11,1,0,0B 表示人和猫在船上,而鸡和米不在船上,这自然是可取的运载,因为船可载两物,而()21,0,1,1B 则是不可取运载,依此规律类推。
数学模型试验
重庆交通大学学生实验报告实验课程名称数学建模B开课实验室数学实验室学院 ***** 院 10 级水利专业班 1 班学生姓名倪** 学号 ************开课时间 2011 至 2012 学年第 2 学期实验一人、猫、鸡、米安全过河问题一、摘要.本文研究的的是人带着猫、鸡、米过河问题,船除人划以外,至多可以载猫、鸡、米三者之一,但当人不在场时猫要吃鸡、鸡要吃米、需要设计一个安全过河方案,并使渡河次数尽量减少。
二、问题的重述人带着猫、鸡、米过河问题,船除人划以外,至多可以载猫、鸡、米三者之一,但当人不在场,时猫要吃鸡、鸡要吃米。
需要设计一个安全过河方案,并使渡河次数尽量减少。
三、基本假设与符号说明(一)基本假设1、人必须划船。
2、船载猫、鸡、米三者之一。
3、当人不在场,时猫要吃鸡、鸡要吃米。
(二)符号说明我们将人,狗,鸡,米依次用四维向量1234(,,,)s x x x x =中的分量表示,当一物在此岸时,相应分量记为1i x =,在彼岸时记为0i x =.如向量(1,1,1,1)表示人,猫,鸡,米四者都在此岸,彼岸什么也没有。
四、问题的分析这个问题与商人怎样安全过河一样,问题比较简单,研究对象少。
所以可以用穷举法,简单运算和图论即可解题。
五、模型的建立人、猫、鸡、米分别记为i=1、2、3、4.当在此岸是记为1i x =,在彼岸是记为0i x =,因此,在此岸的状态为1234(,,,)s x x x x =,在彼岸的状态为'1234(1,1,1,1)s x x x x =----,允许状态集合为{(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)}以及它的5个反状态。
决策为乘船方案:记为1234(,,,)d u u u u =当i 在船上是记为1i u =,否则即为0i u =,允许决策集合为{(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}。
数学建模过河
一、模型假设由题中条件可解,不需假设其他外界条件二、模型构成记人、猫、鸡、米的数量分别为1x 、2x 、3x 、4x ,第k 次渡河前此岸的人、猫、鸡、米的数量分别为k S =(1x ,2x ,3x ,4x ),则彼岸的人、猫、鸡、米的数量分别为k S ’=(1-1x 、1-2x 、1-3x 、1-4x )由题中条件得在安全渡河条件下的允许状态合集S ={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)}及其相对应的S ’。
不难验证,S 对此岸和彼岸都是安全的。
第k 次渡河时穿上的人、猫、鸡、米的数量分别为1u 、2u 、3u 、4u ,决策方案即为乘船方案k d =(1u ,2u ,3u ,4u ),允许决策合集为D ={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶回此岸,所以状态k S 随决策k d 变化的规律是()kd k k s k s 11-+=+ 求决策k d ∈D (k=1,2,...,n ),使状态k s ∈S 按照上式,由初始状态1s =(1,1,1,1)经有限步n 到达状态1+n s =(0,0,0,0)。
三、模型求解1.由于搭载对象总量较小,我们可以得出以下可行解:2.若使用MATLAB编程A向量定义为状态变量B向量定义为运载变量(1)xduhe.m文件:clear;clc;A=[1,1,1,1];B=[1,0,1,0;1,1,0,0;1,0,0,1;1,0,0,0];M=[1,1,1,0;0,0,0,1;1,1,0,1;0,0,1,0;1,0,1,1;0,1,0,0;1,0,1,0;0,1,0,1]; duhe(A,B,M,1);(2)、duhe.m文件:function duhe(L,B,M,s); [h,l]=size(L);for k=s:hfor i=1:4C=mod(L(k,:)+B(i,:),2);if C==[0,0,0,0]print(B(i,:),C,s);fprintf('渡河成功\n\n');break;else if fuhe(C,M)==1print(B(i,:),C,s);S=[L;C];if Panduan(S)==1duhe(S,B,M,s+1);elsefprintf('此渡河方案不可行\n\n'); endendendendEnd(3)、fuhe.m文件:function y=fuhe(C,M)y=0;for i=1:8if(C==M(i,:))y=1;break;endend(4)、Panduan.m文件:function z=Panduan(S)z=1;[m,n]=size(S);for p=1:mfor q=(p+1):mif S(p,:)-S(q,:)==[0,0,0,0]z=0;break;endendend(5)、print.m文件:function print(K,C,s)fprintf('第%d次渡河:',s);if K(1)==1fprintf('人, ');endif K(2)==1fprintf('猫, ');endif K(3)==1fprintf('鸡, ');endif K(4)==1fprintf('米, ');endif C(1)==0fprintf('从左岸到达右岸\n');elsefprintf('从右岸回到左岸\n');End四、模型分析该问题的最优方案是:①人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。
人猫鸡米渡河问题地数学模型
人猫鸡米渡河问题的数学模型摘要:人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外(船除了要载人外),只能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
本文将设计一个安全过河方案,使渡河次数尽量地少。
模仿“商人过河”的模型设计出新的数学模型。
关键字:穷举法,Matlab运算求解。
一、问题的提出课本P19.T5:模仿“商人过河”模型,做下面游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
设计一个过河方案,建立数学模型,并使渡河次数尽量地少。
二、问题的分析因为这是个简单问题,研究对象少,所以可以用穷举法,简单运算即可解题。
此问题是从状态向量A(1,1,1,1)经过奇数次运算向量B变为状态向量A(0,0,0,0)的状态。
转移过程为什么是奇数次?我们注意到过河有两种,奇数次的为从左岸到右岸,而偶数的为右岸回到左岸,因此得到下述转移过程,所以最后应该是过河完成时状态转移数为奇数次。
三、问题的假设1.1:假设船除了载人之外,至多只能载猫、鸡、米三者之一。
1.2:当人不在场时,猫一定会吃鸡、鸡一定会吃米。
四、定义符号说明:我们将人,猫,鸡,米依次用四维向量中的分量表示,当一物在左岸时,相应的分量记为1,在右岸时记为0.如向量(1,0,1,0)表示人和鸡在左岸,猫和米在右岸,并将这些向量称为状态向量。
例如(1,1,1,1)表示它们都在左岸,(0,1,1,0)表示猫,鸡在左岸,人,米在右岸;由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。
凡问题可以允许存在的状态称为可取状态。
A 向量定义为状态变量。
比如()11,0,1,0A 是一个可取状态向量,但()20,0,1,1A 是一个不可取状态向量。
此外,B 向量定义为运载变量。
把每运载一次也用一个四维向量来表示。
如()11,1,0,0B 表示人和猫在船上,而鸡和米不在船上,这自然是可取的运载,因为船可载两物,而()21,0,1,1B 则是不可取运载,依此规律类推。
人猫鸡米过河模型
人猫鸡米过河模型人、鸡、米、猫过河模型摘要研究目的:本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个过河方案,建立数学模型,并使渡河次数尽量地少?模仿“商人过河”的模型设计出新的数学模型。
关键词:过河模型、模仿、商人过河一.问题的提出模仿“商人过河”模型,做下面游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
设计一个过河方案,建立数学模型,并使渡河次数尽量地少。
二.模型的假设与符号说明假设:1、假设船,划船的人外至多能载猫、鸡、米三者之一。
2、当人不在场时,猫一定会吃鸡,鸡一定会吃米。
3、不考虑外界其他影响。
符号说明三、问题分析考虑到猫不能和鸡在一起,鸡不能和米在一起这个因素人每次只能带一样过去,且还得开船。
四、模型建立与求解Ⅰ. 模型的建立:人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为:()()()()(){}0,1,0,1,1,1,0,1,1,,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态。
决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记0=i u ,允许决策集合为人鸡米猫()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D (2)记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为()kd k k s k s 11-+=+, (3) 设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态()1,1,1,11=s 经n 步达到()0,0,0,01=+n s 。
习题参考解答
《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学模型答案
长方形椅子能否在不平的地面上放稳吗?【问题提出】日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释.【模型假设】为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设:(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的.【建立模型】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学本科生数学模型作业报告人猫鸡米渡河问题的数学模型
组员:唐新
赵广志
<
指导教师:黄光辉
人猫鸡米渡河问题的数学模型
一、摘要:
本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,建立数学模型,并使渡河次数尽量地少。
模仿“商人过河”的模型设计出新的数学模型。
二、问题的重述
人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
关键词:人不在场时猫要吃鸡、鸡要吃米,船需人划,穷举法
三、模型假设
不考虑外界其他影响,只考虑问题所述的条件:
1、船除需要人划之外,至多能载猫、鸡、米三者之一
2、当人不在场时猫要吃鸡、鸡要吃米
四、符号说明
五、问题分析
安全过河问题可以看着是一个多部决策的过程。
每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。
否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。
因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘车方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。
六、模型建立与求解
Ⅰ. 模型的建立:
人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记
0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为
()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态。
决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记
0=i u ,允许决策集合为
()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D (2)
记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为
()k
d k k s k s 11-+=+, (3)
设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态()1,1,1,11=s 经n 步达到()0,0,0,01=+n s 。
Ⅱ. 模型的求解:
从而我们得到一个可行的方案如下:
因此,该问题的最优方案是:
1、人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。
2、人先带鸡过河,然后人再回来,把猫带过河,然后把鸡运回河岸,人再把米带过河,最后人回来把鸡带过去。
七、模型评价与推广
(Ⅰ)优点:
1、模型简单,切合实际,易于理解;
2、建立了合理、科学的状态转移的模型。
3、结合实际情况对问题进行求解,使得模型具有很好的通用性和推广性;
(Ⅱ)缺点:
由于问题的求解没有使用LINGO或MATLAB软件,当状态和决策过多时,采用上述方法求解显得繁琐,容易出错。
(Ⅲ)推广:
正如课本上的商人们安全过河问题,当商人和随从人数增加或小船的容量加大时,靠逻辑思考就有些困难了,而适当地设置状态和决策,确定状态转移率,建立多步决策模型,仍可方便有效地求解此类型问题。
七、参考文献:
【1】姜启源,谢金星,叶俊《数学模型》,第四版。
高等教育出版社【2】赵静,但琦《数学建模与数学实验》,高等教育出版社
【3】姜启源,谢金星,邢文训,张立平《大学数学实验》,第二版,清华大学出版社
【4】杨启帆,边馥萍. 数学建模. 浙江大学出版社
[。