热统8

合集下载

《热统》简答题

《热统》简答题

1.写出热力学第一定律的数学表达式,简述其意义及本质。

2.热力学第二定律开尔文的表述,热力学第二定律的本质。

3. 热力学第二定律克劳修斯的表述,热力学第二定律的本质。

4.写出克劳修斯等式和不等式的表达式,并说明等式、不等式的条件5.运用热力学第一定律和热力学第二定律推导热力学基本微分方程6.写出热力学中熵的定义式及微分式,说明熵为何是态函数 答:7.简述熵增加原理,并举例其应用8.根据熵的定义式 说明熵为何是态函数,对于不可逆过程如何计算熵差,请举例说明。

答:因为此式初态和终态给定后,积分与可逆过程的路径无关,其中A 和B 是两个平衡态,所以积分可沿着由A 到B 的任意可逆过程进行,所以熵是态函数。

(3分)如果系统有平衡态A 经一个不可逆过程到达平衡态B ,可假设一个从A 到B 的可逆过程积分,从理论上说,平衡态A 和B 之间总是存在可逆过程的。

(2分)9.证明理想气体自由膨胀过程为不可逆过程(整个系统绝热)。

答:由热一律有U Q W ∆=+(1分),因绝热0Q =(1分),因自由膨胀0W =(1分),得0U ∆=又理想气体内能只与温度有关,即理想气体的温度不变,自由膨胀前后12T T =,理想气体222111ln ln ln 0V T V V S C R R T V V ∆=+=>(2分) 10. 写出热力学第二定律的数学表述,简述其物理意义。

(1.14.3)B B A A dQ S S T-=⎰dQ ds T =(1.14.3)B B A A dQS S T -=⎰11. 何为开系,闭系,孤立系?12.写出热力学函数U 、H 、F 和G 的全微分方程13. 根据热力学第二定律,说明两条绝热线不能相交。

14.写出麦克斯韦关系。

15.由=0说明气体经绝热膨胀过程可获得低温的原因答:当把气体的绝热膨胀看作准静态绝热过程时,气体的熵S 不变其中(3分)此式右方恒为正,所以随体积的增加压强下降,气体温度必然下降,从能量的角度看,气体在绝热过程中,减少内能而对外作功,膨胀后的气体分子间距增大,相互作用能增加,气体温度下降。

热统试题

热统试题

陕西科技大学试题纸课程热力学统计物理试题班级物理08-学号姓名一、选择题(每小题3分,共30分)。

1、封闭系统指 ( B ) (A)、与外界无物质和能量交换的系统(B)、与外界有能量交换但无物质交换的系统(C)、能量守衡的系统(D)、恒温系统2、绝对零度时,费米子不能完全“沉积”在基态是由于 ( A ) (A)、泡利不相容原理;(B)、全同性原理(C)、粒子间没有相互作用(D)、费米气体是简并气体3、下列说法正确的是( A )(A)、一切和热现象有关的实际过程都是不可逆的(B)、热力学第二定律的表述只有克氏和开氏两种说法(C)、只要不违背能量守恒定律可以无限制地从海水中提取能量,制成永动机(D)、第二类永动机不违背热力学第二定律4、开放系统的热力学基本方程是( B )(A)、d U T d S p d V d nμ=-++=++(B)、d G S d T V d P d nμ(C)、d H T d S V d P d nμ=-+-=+-(D)、d F S d T V d P d nμ5、近独立子系统组成的复合系统的配分函数 ( D ) (A)、是子系统配分函数的和;(B)、是子系统配分函数的差(C)、是子系统配分函数的积;(D)、不能确定6、由热力学基本方程dG=-SdT+Vdp可得麦克斯韦关系 ( B )(A )、 (B )、 (C )、 (D )、 7、一级相变和二级相变的特点 ( B ) (A )、所有物理性质都发生突变(B )、化学势一阶偏导数发生突变为一级相变,二阶偏导数发生突变为二级相变 (C )、只有比容发生突变的为一级相变,比热发生突变为二级相变 (D )、只有比热发生突变的为一级相变,比容发生突变为二级相变8、根据热力学第二定律判断下列哪种说法是正确的 ( C ) (A)、热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。

(B)、功可以全部变为热,但热不能全部变为功。

大学热统期末公式总结

大学热统期末公式总结

大学热统期末公式总结1. 热力学第一定律:ΔU = Q - W热力学第一定律是能量守恒定律在热力学中的体现,其中ΔU表示系统内能的增量,Q表示热量的增量,W表示外界对系统做功。

2. 热力学第二定律:ΔS = ΔS_hot + ΔS_cold ≥ 0热力学第二定律描述了自然界不可逆现象的基本规律,其中ΔS表示系统和环境总熵的增量,ΔS_hot表示热源(高温热源)的熵增量,ΔS_cold表示冷源(低温热源)的熵增量。

3. 熵的变化:ΔS = Q/T熵是描述系统无序程度的物理量,熵的增加代表系统的混乱度增加。

熵的变化与热量的变化和温度的关系。

4. 热力学温度:1/T = (∂S/∂U)V热力学温度是系统内部能量U对于熵S的变化率的倒数。

5. 热容:C = (∂Q/∂T)V热容是单位质量物质的温度对热量的响应程度,热容的计算需要知道系统的物质量。

6. 工作热力学:W = -∫PdV工作热力学研究外界对系统做功的过程,P是压力,V是体积,W是外界对系统做的机械功。

7. 理想气体状态方程:PV = nRT理想气体状态方程描述了理想气体的压力P、体积V、温度T之间的关系,其中n为气体的物质量,R为气体常数。

8. 绝热过程:PV^γ = 常数绝热过程指没有热量交换的过程,其中γ为气体的绝热指数,对于单原子分子气体,绝热指数γ为5/3,对于双原子分子气体,γ为7/5。

9. 卡诺循环效率:η = 1 - (T_cold/T_hot)卡诺循环是一个完全可逆的循环过程,其效率由冷热源的温度决定,其中T_cold和T_hot分别为冷热源的温度。

10. 热力学势函数:(a) 内能U:体积熵描述的函数。

(b) 焓H:压力熵描述的函数。

(c) 焓:H = U + PV(d) 自由能F:温度熵描述的函数。

(e) Gibbs自由能G:T、P、S的函数。

以上这些公式是热统课程中非常重要且常见的公式,同学们在复习和学习的时候可以结合具体的实例进行理解和应用。

热统课件

热统课件

Jq A B Je
珀尔贴系数:取决于两种金属的性质,并 与温度有关
3、汤姆孙效应(1854年发现)
当电流通过具有温度梯度的均匀导体时,除了 放出焦耳热外,导体还要放出另外的热量,称为汤 姆孙热.
在单位时间内,单位体积的导体放出的汤姆孙热 为:
q J T e
汤姆孙系数:与导体性质和温 度有关
热流与温度梯 度成正比
Jq T
2、扩散过程的菲克定律
粒子流与浓度 梯度成正比
Jn D n
3、导电过程的欧姆定律
J E V e
电流与电势梯度 成正比
4、动量输运的牛顿粘滞定律
动量流与流速梯 度成正比
dv Jpxy P xy dx
5、线性唯象律
y
是单位时间内流过单位截 面的熵,称为熵流密度 是单位时间内单位体积中产 生的熵,称为局域熵产生率
整个系统熵的增加率为:
dS d s sd d dt dt t
J d S
利用高斯定理将右边第一项化为面积分,得:
dS J d d S dt

1. 局域平衡,熵流密度与局域熵产生率。 2. 线性与非线性过程,昂萨格关系 。 3* .温差电现象
教学要求:

了解局域熵产生率,昂萨格关系和用不可逆过程热力 学处理问题的一般程序。
5.1 局域平衡、熵流密度与域局熵产生率
一、热力学第二定律的推广 热力学第二定律不等式 : 推广为:
dS dQ dT
N ni d
(5.1.5)
三、熵流密度和局域熵产生率
讨论熵的变化快慢问题。 1、不可逆过程热力学的建立
d dS d eS iS dt dt dt

热统——精选推荐

热统——精选推荐

1、热力学第一定律的数学表达式:Q W U U B A +=-意义:1、系统终态B 和初态A 的内能之差B A U U -等于在过程中外界对系统所做的功与系统对外界所吸收的热量之和。

2、在过程中通过做功和传热两种方式所传递的能量,都转化为系统的内能2、什么是卡诺循环:由两个等温过程和两个绝热过程组成的3、热力学第二定律的数学表达式:T Q d ds T Q d S S BA B A ≥≥-⎰, 意义:热力学第二定律对过程是限制的,违反上述不等式的过程是不可能实现的4、熵增加原理的数学表达式:0≥-B A S S意义:经绝热过程后,系统的熵永不减少5、(简答)热量Q 从高温热源1T 低温热源2T 求熵变?总的熵变等于两个热源的熵变之和,热量Q 从热源1T 传到热源2T 是一个不可逆过程,是设想一个可逆过程,它是引起两个热源的变化与原来的不可逆过程所引起的变化相同,设想低温热源2T 从另一温度为2T 的热源吸取了热量Q 传给另一个温度为1T 的热源高温热源的熵变为11T Q S -=∆,设想低温热源2T 从另一温度为1T 的热源吸取了热量Q 则低温热源的熵变为22T Q S =∆,在所设想的可逆过程前后两热源总熵变为⎪⎪⎭⎫ ⎝⎛-=∆-∆=∆122111T T Q S S S ,由于在原来的直接传递过程与所设想的可逆过程前后,两个热源的变化是相同的,所以上式所给的也就是在原来直接传递过程中两个热源的熵变。

6、如果围绕某一状态发生的各种可能的虚变动引起的熵变0<∆S ,该状态的熵变就是具有极大值,是稳定的平衡态。

如果围绕某一状态发生的某些可能的虚变动引起系统的熵变0=∆S ,该状态是中性平衡态。

7、(简答)熵判据:S S S 221δδ+=∆,平衡态必要条件0=S δ,02<S δ ,0<∆S 。

熵变具有最大极值时是稳定平衡态,较小极值时是亚稳平衡态,0=S δ时,是中性平衡态。

8、(填空)开系的热力学基本方程是Udn Pdv Tds du +-=9、(简答)单元多相系达到平衡时所满足的平衡条件βαT T =(热平衡条件)βαP P =(力学平衡条件)βαU U =(相变平衡条件)10、(简答)单元三相平衡方程:T T T T ===γβαP P P P ===γβα()),(),(,P T U P T U P T U γβα==16、(填空)克拉佰龙方程是:)(αβm m V V T L dT dP -= 17、(简答)以盐的水溶液为例讨论二元系的自由度数对于二元系,k=2所以ϕ-=4f①盐的水溶液单相存在时,3,1==f ϕ②当溶液与水蒸气平衡时,2,2==f ϕ③溶液、水蒸气和水三相平衡共存时,1,3==f ϕ④溶液水蒸气、冰和盐四相共存时,0,4==f ϕ18、(填空)单相化学反应的化学平衡条件是0=∑i i iU V19、(填空)热力学第三定律的两种表述:能氏定理和绝对零度不能达到原理20、一维自由粒子u 空间是2维;三维自由粒子的u 空间是6维的,一维线性谐振子的u 空间是2维的,转子的u 空间是4维的21、(简答)系统的分类(各系统之间的异同点)1、费米系统:由费米子组成的系统,遵从泡利不相容原理,全同粒子2、玻色系统:由玻色子组成的系统,不要泡利不相容原理的约束,全同粒子3、波耳兹曼系统:由可分辨的全同近独粒子组成,且处在一个个体量子态上的粒子数不受限制的系统,不遵从泡利不相容原理。

完整版热统知识点总结

完整版热统知识点总结

第一类知识点1.大量微观粒子的无规则运动称作物质的热运动.2.宏观物理量是微观物理量的统计平均值.3.熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变.系统经不可逆绝热过程后熵增加.孤立系中所发生的不可逆过程总是朝着熵增加的方向进行.4.在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和.5.在等温等容条件下,系统的自由能永不增加.在等温等压条件下,系统的吉布斯函数永不增加.6.理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 8.户[/回(3 V ) T {d T ) V9.彦1 1(s P) I。

S JS p10.户1 二—巨1(s P J T (s T J11. dU = TdS—pdV12. dH = TdS + Vdp13. dF = - SdT—pdV14. dG = - SdT + Vdp15.由dU = TdS - pdV可得,T =(吆'(s S JV16.由dH = TdS + Vdp可得,V =[里, (s P )S17.单元复相系达到平衡所要满足的热平衡条件为各相温度相等.18.单元复相系达到平衡所要满足的力学平衡条件为各相压强相等.19.单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等.20.对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等.21.对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.22.汽化线有一终止点c,称为临界点.汽化线、熔解线、升华线交于一点,名为三相点.23.根据能氏定理:lim]生]=0. lim]更]=0.T-0(S p ) T,S V )T T24.盐的水溶液单相存在时,其自由度数为3.25.盐的水溶液与水蒸气平衡时,该系统的自由度数为(2 ).5.盐的水溶液、水蒸气和冰三相平衡共存时,该系统的自由度数为1.26. k元甲相系的自由度数为(k—①+ 2).27.凝聚系的熵在等温过程中的改变随绝对温度趋于0.28.热力学第三定律可以表述为:不可能通过有限的步骤使一个物体冷却到绝对温度的零度.29.当两相用固定的半透膜隔开时,达到平衡时两相的温度必须相等.达到平衡时两相的压强不必相等.30.如果某一能级的量子状态不止一个,该能级就是简并的.一个能级的量子态数称为该能级的简并度.31.线性谐振子的能级是等间距的,相邻两能级的能量差取决于振子的圆频率.32.由玻色子组成的复合粒子是玻色子.33.由偶数个费米子组成的复合粒子是玻色子.34.由奇数个费米子组成的复合粒子是费米子.35.自然界中的〃基本”微观粒子可分为两类,称为玻色子和费米子.36.平衡态统计物理的基本假设是等概率原理.37.等概率原理认为,对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.38.对于处在平衡状态的孤立系统,微观状态数最多的分布,出现的概率最大,称为最概然分布.39. 一般情形下气体满足经典极限条件,遵从玻耳兹曼分布.40.定域系统遵从玻耳兹曼分布.41.固体中原子的热运动可以看成3N个振子的振动.42.对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1 kT.243.由能量均分定理可知:温度为T的N个单原子分子组成的理想气体的内能是3— NkT.244.由能量均分定理可知:温度为T的N个刚性双原子分子组成的理想气体的内能是5 NkT.245.根据能量均分定理,温度为T时,单原子分子的平均能量为3kT .246.根据能量均分定理,温度为T时,刚性双原子分子的平均能量为5 kT .247.在无穷小的准静态过程中系统从外界吸收的热量等于粒子在各能级重新分布所增加的内能.48.顺磁性固体可以看作是由定域近独立的磁性离子组成的系统,遵从玻耳兹曼分布.49.光子气体遵从玻色分布.50.金属中的自由电子遵从费米分布.51.满足经典极限条件的玻色系统遵从玻耳兹曼分布.52.空腔内的电磁辐射可看作光子气体.53.玻耳兹曼关系表明,某个宏观状态对应的微观状态数愈多,它的混乱度就愈大,熵也愈大.54.满足经典极限条件的费米系统遵从玻耳兹曼分布.55.光子的能量动量关系为£= cp.56.光子的自旋量子数为1.57.平衡辐射的内能密度与绝对温度的四次方成正比.58.普朗克在推导普朗克公式时,第一次引入了能量量子化的概念,这是物理概念的革命性飞跃.普朗克公式的建立是量子物理学的起点.59.描写N个单原子分子组成的理想气体状态的4空间是6维的.60.描写N个单原子分子组成的理想气体状态的「空间是6 N维的.61.由N个单原子分子组成的理想气体,该系统任一微观状态在4空间由N个点表示.62.由N个单原子分子组成的理想气体,该系统任一微观状态在「空间由1个点表示.63.粒子在某一时刻的力学运动状态可以用R空间中的1个点表示.64.在统计物理学中,应用系综理论可以研究互作用粒子组成的系统.65.设想有大量结构完全相同的系统,处在相同的宏观条件下,我们把这大量系统的集合称为统计系综.66.具有确定的N,匕T值的系统的分布函数,这个分布称为正则分布.67.具有确定的匕T, R值的系统的分布函数,这个分布称为巨正则分布.68.具有确定的N,匕E值的系统的分布函数,这个分布称为微正则分布.第二类知识点1.体胀系数a为:L[空]V(S T)p2.压强系数p为:1 f^P]P(3T)V3.等温压缩系数上为—▲(空,T V(S p )T4.在只有体积变化功的条件下,当系统在准静态过程中有体积变化”时,外界对系统所作的功为-pdV5.热力学第二定律的数学表述为dS > dQ T6.焦耳系数为f空](3 V)U7.焦耳定律可用式子表示为f3U} = 0(3 V )T8. n摩尔理想气体的物态方程为pV = nRT9.n摩尔范氏气体的物态方程为(V _nb)= nRT10.摄氏温度/与热力学温度T之间的数值关系为t = T - 273.1511.可逆绝热过程中,系统温度随压强的变化,可用偏导数表示为[9[ s12.气体经节流过程H不变.13.节流过程的重要特点是焓不变.14.平衡辐射的辐射压强p与辐射能量密度u之间的关系为p = 1 u 315.均匀系统热动平衡的稳定性条件为C > 0 [2]< 0V(3 V )T16.对于均匀系统,有如下方程:dU = TdS—pdVdF =—SdT—pdVdH = TdS + VdpdG =—SdT + Vdp17.焦-汤系数为(空'13P人H18.熵判据的适用条件是:孤立系统19.自由能判据的适用条件是:温度和体积不变20.吉布斯函数判据的适用条件是:温度和压强不变21.对于单元系相图,其中OS段曲线为升华曲线,OC段曲线为汽化曲线,OL 段曲线为熔解曲线.卜p22.对于范氏气体的理论等温线,其中BN段为过饱和蒸气.AJ段为过热液体. OB段为气态.AR段为液态.23.不考虑粒子的自旋,在x f x + dx,y T y + dy,z - z + dz,p - p + dp,p y T p y+dp y,p z T p z+ dp z内,自由粒子可能的量子态数为dxdydzdp dp dph 324.不考虑粒子的自旋,在体积v内,动量在p T p + dp,p T p+dp,p z T p^ + dp z内,自由粒子可能的量子态数为VdPx;3y dp25.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp,动量方向在0T O+d6中一①+d①的范围内,自由粒子可能的量子态数为v2sin0即d0的h 3 26.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp的范围内(动量方向为任意),自由粒子可能的量子态数为4n Vp 2即h 327 .不考虑粒子的自旋,在体积V 内,在£ -£ + d £的能量范围内,自由粒子可能的量子态数为需(2m )2 £ 2d28 .经典极限条件为e a >> 1玻色分布为aI费米分布为30 .对于玻耳兹曼系统,与分布a }相应的系统的微观状态数为YN-! n w^iI31 . Maxwe 〃速度分布律为-n (—m —)32e - 2kT 32+v2+ v2)dv dv dv2 冗 kTxy32 . Maxwell 速率分布律为(B ) f (v )dv - 4兀n (—m — )32e -2K kT33 .根据能量均分定理,在温度为T 时,刚性双原子分子的平均能量为5 3e - 5 kT ,单原子分子的平均能量为e - 3 kT ,非刚性双原子分子的平均能量2 2 为 £-7 kT2 34.由能量均分定理求得1摩尔单原子分子理想气体的内能为U - 3RT ,单原m 2子分子理想气体的定容摩尔热容为C - 3R .V , m 229.玻耳兹曼分布为 a =① e -a-Pe Im . 2kT Vv 2dv35.在量子统计理论中,理想气体熵函数的统计表达式为( S S )S = Nk In Z -P--In Z -k In N!I 1 S P 1J36.设爱因斯坦固体由N个原子组成,在高温极限情况下,该系统的热容量为37.对于玻色系统,与分布%}相应的系统的微观状态数为n皆" l l l38.对于费米系统,与分布蒋}相应的系统的微观状态数为n「Ji i a !(攻-a )!39.费米系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为1e a+俄s +140.玻色系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为e a+Ps s -141.玻耳兹曼系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为s42 .在低频极限的情况下,辐射场的内能按频率的分布为V ,U (T ,3)d 3 = kT3 2 d 3兀 2 C 343.在高频极限的情况下,辐射场的内能按频率的分布为V 岫U (T, 3)d 3 = ------- 方 3 3 e一kT d 344.对于玻色系统,内能的表达式为:U = --ln己印兀 2 C 345.对于玻色系统,平均总粒子数N可通过ln己表示为N = --ln己S a46.对于玻色系统,广义力丫的表达式为y =—101口三P办47.含有氧气、一氧化碳和二氧化碳的混合气体是三元系.48.糖的水溶液和水蒸气共存是二元二相系.49.当温度趋于绝对零度时,物质的体膨胀系数a f 050.当温度趋于绝对零度时,物质的压强系数P t 051.根据多兀复相系的热力学方程dU - TdS - pdV + 2L \x dn可得:i i_( du\1 s ,V ,n j52.粒子数为N的玻耳兹曼系统,当外参量y改变时,外界对系统的广义作用力丫的表达式为Y = - —^-InZP dy i53.粒子数为N的玻耳兹曼系统,内能的表达式为U=-N — \nZ Sp 154.玻耳兹曼关系为S = —nQ55.对于费米系统,内能的表达式为° = —&1口己56.对于费米系统,燧的表达式为S = k InH - oi - p -^-InESa SBio。

热统各章重点

热统各章重点

各章重点符号:T:热力学温度t:摄氏温度S:熵α:体胀系数β:压强系数W:功U:内能H:焓F:自由能G:吉布斯函数第一章1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、与外界没有物质交换,但有能量交换的系统称为闭系;3、与外界既有物质交换,又有能量交换的系统称为开系;4、平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。

5、参量分类:几何参量、力学参量、化学参量、电磁参量6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、t=T-273.59、体胀系数、压强系数、等温压缩系数、三者关系10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。

12、广义功13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。

14、等容过程的热容量;等压过程的热容量;状态函数H;P2115、焦耳定律:气体的内能只是温度的函数,与体积无关。

P2316、理想气体准静态绝热过程的微分方程P2417、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程18、热功转化效率19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程22、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高23、卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等24、克劳修斯等式和不等式25、热力学基本微分方程:26、理想气体的熵P4027、自由能:F=U-FS28、吉布斯函数:G=F+pV=U-TS+pV29、熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少30、等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。

热统考试大纲09及6-8习题讲解

热统考试大纲09及6-8习题讲解

《热力学与统计物理》考试大纲2015版第一章热力学的基本定律一、考核知识点(一)基本概念:平衡态、状态参量、状态方程、准静态过程、可逆过程、不可逆过程、功、热量、内能、熵。

(二)基本规律:理想气体状态方程、范德瓦耳斯方程。

热力学第零定律、热力学第一定律、热力学第二定律、熵增加原理。

二、考核要求(一)识记:平衡态、状态方程。

定压膨胀系数、等容压缩系数、等温压缩系数。

准静态过程、可逆过程、不可逆过程。

理想气体状态方程、范德瓦耳斯方程、热力学第一定律、热力学第二定律、熵增加原理。

(二)重点掌握:分别能应用功、热量、内能、熵等概念及理想气体状态方程、范德瓦耳斯方程、热力学第一定律、热力学第二定律、熵增加原理等解决有关问题。

第二章均匀系的热力学关系及其应用一、考核知识点(一)基本概念:焓、自由能、吉布斯函数、特性函数。

(二)基本规律:热力学基本方程组、麦克斯韦关系。

二、考核要求(一)识记:焓、自由能、吉布斯函数、特性函数、热力学基本方程组、麦克斯韦关系。

(二)重点应用:能够熟练确定研究体系的基本热力学函数、确定给定系统的特性函数。

能够熟练应用热力学基本方程组、麦克斯韦关系式及雅克比行列式进行热力学函数变换,寻求不同物理效应之间的关系。

第三章单元复相系的平衡和化学平衡一、考核知识点(一)基本概念:热动平衡判据、相、单元系的复相平衡条件、相变、相平衡、巨热力学势。

(二)基本规律:单元开放系的热力学基本方程组、热动平衡条件、平衡的稳定性条件,相变方向的判定、克拉珀龙方程、表面相影响下的平衡条件、爱伦菲斯特方程。

二、考核要求(一)识记:热平衡判据、单元系的复相平衡条件、单元开放系的热力学基本方程组、平衡稳定性条件、克拉珀龙方程。

(二)重点应用:能够应用热动平衡判据导出系统的平衡条件以及平衡的稳定性条件,能够熟练地应用克拉珀龙方程求证单元系的有关平衡性质。

能够利用热动平衡判据判定不同热力学过程的方向。

第四章多元系的复相平衡和化学平衡一、考核知识点(一)基本概念:偏摩尔量、多元复相系的平衡条件。

热统知识梳理

热统知识梳理

知 识 梳 理1.基本概念和基本知识(识记和领会) (1) 热力学系统,热力学平衡态和状态参量 热力学系统必须由是大量微观粒子组成的。

热力学平衡态;孤立系的宏观性质不随时间变化的状态。

四类状态参量:力学参量,几何参量,电磁参量和化学参量。

广延量:与物质的量有关的物理量称为广延量,如质量、体积、内能、熵 等。

强度量:与物质的量无关的物理量称为强度量,如温度,压强,密度,电 阻率等。

(2) 热力学第零定律与温度热力学第零定律:相互绝热的两物体A 和B 同时与第三个物体C 达成热平衡,则A 、B 、C 三物体彼此达成热平衡。

热力学第零定律的意义:① 定义了温度。

温度是达成热平衡的诸热力学系统的共同宏观性质。

② 为制造温度计提供了依据。

(3) 准静态过程准静态过程:过程进行得非常缓慢,使得过程进行的每一步都可以视为平衡态。

(4) 循环过程的定义及分类;循环效率循环过程:系统从任意状态出发,经过任意一系列的过程又返回原状态, 称完成了一个循环过程。

正循环与逆循环:正循环沿顺时针方向,与热机对应;逆循环沿反时针方向,与制冷机对应; 热机效率公式: 211Q Q η=-。

(5) 卡诺循环及其效率;卡诺定理 卡诺效率公式: 211T T η=-卡诺定理对提高实际热机效率的指导意义:提高高温热源温度,降低低温热源温度;尽量减少摩擦,减少漏热。

卡诺定理:定理1、在相同的高温热源和相同的低温热源之间工作的一切可逆机其工作效率都相等,与工作物质无关。

定理2、在相同的高温热源和相同的低温热源之间工作的一切不可逆机其工作效率都小于可逆机的效率。

(6)热力学第二定律的两种表述,第二定律的实质热力学第二定律的两种表述:①开尔文表述:不可能从单一热源吸取热量使之完全转变为功而不产生任何其他影响。

或,第二类永动机不可能造成。

②克劳修斯表述:不可能把热量从低温物体传给高温物体而不产生任何其他影响。

或,热量不能自发的从低温物体传给高温物体。

热统知识梳理

热统知识梳理

知 识 梳 理1.基本概念和基本知识(识记和领会) (1) 热力学系统,热力学平衡态和状态参量 热力学系统必须由是大量微观粒子组成的。

热力学平衡态;孤立系的宏观性质不随时间变化的状态。

四类状态参量:力学参量,几何参量,电磁参量和化学参量。

广延量:与物质的量有关的物理量称为广延量,如质量、体积、内能、熵 等。

强度量:与物质的量无关的物理量称为强度量,如温度,压强,密度,电 阻率等。

(2) 热力学第零定律与温度热力学第零定律:相互绝热的两物体A 和B 同时与第三个物体C 达成热平衡,则A 、B 、C 三物体彼此达成热平衡。

热力学第零定律的意义:① 定义了温度。

温度是达成热平衡的诸热力学系统的共同宏观性质。

② 为制造温度计提供了依据。

(3) 准静态过程准静态过程:过程进行得非常缓慢,使得过程进行的每一步都可以视为平衡态。

(4) 循环过程的定义及分类;循环效率循环过程:系统从任意状态出发,经过任意一系列的过程又返回原状态, 称完成了一个循环过程。

正循环与逆循环:正循环沿顺时针方向,与热机对应;逆循环沿反时针方向,与制冷机对应; 热机效率公式: 211Q Q η=-。

(5) 卡诺循环及其效率;卡诺定理 卡诺效率公式: 211T T η=-卡诺定理对提高实际热机效率的指导意义:提高高温热源温度,降低低温热源温度;尽量减少摩擦,减少漏热。

卡诺定理:定理1、在相同的高温热源和相同的低温热源之间工作的一切可逆机其工作效率都相等,与工作物质无关。

定理2、在相同的高温热源和相同的低温热源之间工作的一切不可逆机其工作效率都小于可逆机的效率。

(6)热力学第二定律的两种表述,第二定律的实质热力学第二定律的两种表述:①开尔文表述:不可能从单一热源吸取热量使之完全转变为功而不产生任何其他影响。

或,第二类永动机不可能造成。

②克劳修斯表述:不可能把热量从低温物体传给高温物体而不产生任何其他影响。

或,热量不能自发的从低温物体传给高温物体。

热统答案第一章 热力学的基本规律

热统答案第一章 热力学的基本规律
ln
V = α (T − T0 ) − κ T ( p − p0 ) , V0
(2)

V (T , p ) = V (T0 , p0 ) e
α (T −T0 ) −κ T ( p − p0 )
.
(3)
考虑到 α 和 κ T 的数值很小,将指数函数展开,准确到 α 和 κ T 的线性项,有
V (T , p ) = V (T0 , p0 ) ⎡ ⎣1 + α ( T − T0 ) − κ T ( p − p0 ) ⎤ ⎦.
(4)
如果取 p0 = 0 ,即有
V (T , p ) = V (T0 , 0 ) ⎡ ⎣1 + α ( T − T0 ) − κ T p ⎤ ⎦.
(5)
1.5 描述金属丝的几何参量是长度 L ,力学参量是张力 J,物态方程是
f ( J , L, T ) = 0
实验通常在 1 p n 下进行,其体积变化可以忽略。 线胀系数定义为
全式除以 V ,有
dV 1 ⎛ ∂V ⎞ 1 ⎛ ∂V ⎞ = ⎜ dT + ⎜ ⎟ dp. ⎟ V V ⎝ ∂T ⎠ p V ⎝ ∂p ⎠T
根据体胀系数 α 和等温压缩系数 κ T 的定义,可将上式改写为
1
dV = α dT − κT dp. V
(2)
上式是以 T , p 为自变量的完整微分,沿一任意的积分路线积分,有
积由 V0 最终变到 V ,有
ln
V T p =ln − ln , V0 T0 p0

pV p0V0 , = = C (常量) T T0

pV = CT .
1 T 1 p
(5)
式(5)就是由所给 α = , κ T = 求得的物态方程。 确定常量 C 需要进一步的 实验数据。

热统习题解答(全)

热统习题解答(全)

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。

解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。

证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。

1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。

热统

热统

M

C T
H;
M
m /V
S H
T

V
0

m T

H

V
0


C T2

H
Q T S V 0C H HdH CV 0H 2
T0
T2
21
例题

, 例2. 一弹簧在恒温下的恢复力 与其伸长 成正比即X=-Ax ; 忽略弹簧的热膨胀,试证明弹簧的自由能F 、熵S和内 能U的表达式分别为:
闽江学院 电子系
热力学 ·统计物理
Thermodynamics and Statistical Physics
教材:《热力学与统计物理》第四版 汪志诚 编著
内容提要
1. 内能、焓、自由能和吉布斯函数的全微分 2. 麦氏关系的简单应用 3. 气体的节流过程和绝热膨胀过程 4. 基本热力学函数的确定 5. 特性函数 6. 热辐射的热力学理论 7. 磁介质的热力学 8. 获得低温的方法
2
麦氏关系的简单应用
麦克斯韦关系
S p V T T V
F
S

S p
T

V T
p
G
p
V
U

T V
S



p S
V
T
H

T p
S

V S
p
③ 吉布斯函数 G G 0
④ 辐射通量密度Ju
Ju

c 4
aT 4
T 4
基尔霍夫定律
e

1
cu(,T )

热统经典极限条件

热统经典极限条件

热统经典极限条件
热统经典极限条件是指在热力学统计理论中,对于满足一定条件的系统,在极限情况下可以应用经典统计力学进行描述和分析。

热统经典极限条件包括以下几个方面:
1. 大系统:系统中包含的粒子数非常大,通常大于Avogadro 常数6.022×10^23,这样可以忽略量子效应的影响。

2. 稀薄气体:系统中粒子之间的平均距离远大于它们的大小,粒子之间的相互作用可以近似为无相互作用。

3. 高温:系统的温度远高于粒子之间的相互作用能量,可以忽略粒子间的量子行为,将粒子视为经典粒子。

在满足以上条件的情况下,可以采用经典统计力学中的Boltzmann分布、Maxwell-Boltzmann速度分布和Boltzmann平均等经典推理方法,来描述系统的热力学性质和统计行为。

这些方法通常对于固体和液体系统适用,而对于低温和高密度的系统则需要考虑量子效应和相互作用的影响,需要用到量子统计力学。

热统试题库

热统试题库

1、 定容压强系数的表达式是 ( B )(A )0lim ()V T p T β∆→∆=∆ (B )01lim ()V T p V T β∆→∆=∆ (C ) 1()V p p T β∂=∂ (D )()V p Tβ∂=∂ 2、 体胀系数α、压强系数β、等温压缩系数T κ三者关系正确的是 ( A )(A )T P αβκ= (B )T P βακ= (C )T P καβ= (D )T P βακ=-1()P V V T α∂=∂ 1()T T V V P κ∂=-∂ 1()V P P Tβ∂=∂ 3、根据热力学第二定律,判断下列哪种说法是正确的 ( A )(A)、热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。

(B)、功可以全部变为热,但热不能全部变为功。

(C)、气体能够自由膨胀,但不能自动收缩。

(D)、有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量。

4、热力学第二定律的微分表达式为(dQ dS T≥) 5、热力学第一定律的数学表达式(微分)为:dUdW dQ =+ 4、关于熵的理解正确的是(?)A 系统从初态到末态,经不同的过程所得到的熵增不一样B 系统经绝热过程从初态到末态的熵增一定为0C A 和B 分别对应系统的两个不同的状态,则BB A A đQ S S T-≥⎰ D A 和B 分别对应系统的两个不同的状态,则B B A A đQ S S T -=⎰ 5、关于自由能、吉布斯函数、熵的认识不正确的是(D )A 在等温等容过程中,系统的自由能永不增加B 孤立系统的熵永不减少C 等温等压过程后,系统的吉布斯函数永不增加D 等温等压过程后,系统的自由能永不增加3.理想气体的物态方程是?4.外界简单热力学系统做功的表达式 ;对于液体表面薄膜来说,外界做功的表达式 ;对于电介质,外界做功是用来 ;对于磁介质,外界做功用来5.温度( )宏观物理参量吗?(是/不是)1、麦氏关系给出了S 、T 、P 、V 这四个变量的偏导数之间的关系,下面麦氏关系四个等式不正确的是 ( )(A )、()()S V T P V S ∂∂=-∂∂ (B )、 ()()S P T V P S∂∂=∂∂ (C )、()()T V S T V P ∂∂=∂∂ (D )、()()T P S V P T∂∂=-∂∂ 2、热力学函数U 、H 、F 、G 全微分形式不正确的是 ( )A dU TdS PdV =-B dH TdS VdP =+C dF SdT PdV =--D dF SdT VdP =--E dG SdT VdP =-+3、下述微分关系不正确的是 ( ) A ()()V T U S T T V∂∂=∂∂ B ()()T V U P T P V T ∂∂=-∂∂ C ()()P P H S T T T ∂∂=∂∂ D ()()T P H V V T P T ∂∂=-∂∂ 4、关于节流过程和绝热过程说法不恰当的是 ( )A 节流过程前后气体的自由能不变B 节流过程和绝热过程都是获得低温的常用方法C 节流过程前后气体温度随压强的变化率为[()]P P V V T V C T∂-∂ D 绝热过程中气体温度随压强的变化率为()P P T V C T∂∂ 1.写出内能、焓、自由能、吉布斯函数的全微分 、 、 、 。

《热统》计算题汇总

《热统》计算题汇总

三、证明、推算题:(9分)1、满足C PV n =的过程为多方过程,其中常熟n 称为多方指数。

试证明:理想气体在多方过程中的热容n C 为V n C n n C 1--=γ2、(8分)设有1 mol 的理想气体,其状态参量由P 1、V 1、T 1变化到P 2、V 2、T 2,假设:(1)此过程为一等温膨胀过程,求理想气体内能的改变ΔU ,外界对理想气体所作的功W ,理想气体从外界吸收的热量Q ,以及理想气体的熵变ΔS ; (2)此过程为一绝热膨胀过程,求理想气体内能的改变ΔU ,外界对理想气体所作的功W ,理想气体从外界吸收的热量Q ,以及理想气体的熵变ΔS 。

解:(1)等温膨胀过程:由于温度T1=T2=T 不变,理想气体内能仅是温度的函数,所以0=∆U ,12ln 21V V RT V dVRT pdV W V VBA -=-=-=⎰⎰ 根据热力学第一定律,12ln V V RT W Q =-=等温膨胀过程引起的系统的熵变:12ln V V R T QS ==∆(2)绝热膨胀过程:210,()v Q W U C T T ==∆=-2211lnln V T VS C R T V ∆=+3、(9分)试根据热动平衡的熵判据,通过简单推导给出由一个单元两相系(α,β)构成的孤立系统,当系统达到平衡时所要满足的平衡条件。

解:由一个单元两相系构成的孤立系统,其总内能、总体积和总物质的量恒定,即U U U =+βα;VV V =+βα;n n n=+βα;设想系统发生一个虚变动,在变动中α相和β相的内能、总体积和总物质的量分别发生虚变动,由于整个系统是孤立的,所以有0=+βαδδU U ;0=+βαδδV V ;0=+βαδδn n ;在稳定的平衡条件下,整个孤立系统的熵应取极大值,即0=+=βαδδδS S S根据热力学基本方程,ααααααδμδδδT n dV P U S -+=,ββββββδμδδT n pdV U S -+=代入整个孤立系统的熵变,得)()()11(=---+-=+=ββαααββαααβααβαμμδδδδδδTT n T P T P V T T U S S S在虚变动中,U δ、V δ、n δ可以独立地改变,0=S δ则要求βαT T =(热平衡条件), βαP P =(力学平衡条件),βαμμ=(相变平衡条件)4. (7分)用热力学理论证明气体节流的焦耳——汤姆逊系数μ=HP T)(∂∂=P C V (T α-1)证明:根据焦汤系数定义H P T ⎪⎭⎫⎝⎛∂∂=μ(1分)又1-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂PT H T H H P P T (2分)则()PP P PT HC T V C V T V T T H P H P T 1--=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂α(4分) 5、(8分)实验发现,一气体的压强P 与体积V 的乘积以及内能U 都只是温度的函数,即()()T U U T f PV ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式6、(7分)根据热力学理论证明:理想气体的内能只是温度的函数,与体积无关。

热统每章知识点总结

热统每章知识点总结

热统(thermodynamics)是研究热现象和能量转换的一门物理学科,关注物质与能量之间的相互作用和转换规律。

热统的研究对象包括热力学系统、热力学过程、热力平衡等概念,以及通过热力学定律和方程式来描述和解释这些现象。

热统是现代物理学的重要组成部分,应用广泛,涉及到能源利用、工程设计、环境保护等领域。

第二章:热力学系统热力学系统是指被研究的物体或物质,它可以是一个孤立系统(与外界无能量和物质交换)、封闭系统(与外界只有能量交换)或开放系统(与外界有能量和物质交换)。

热力学系统的研究包括系统的状态和性质、系统的宏观描述、系统的微观结构等内容。

第三章:热平衡和热力学过程热平衡是指一个系统内各部分之间没有温度梯度和热能的交换,系统内各部分达到了热力学平衡。

热力学过程是指系统从一个状态转变到另一个状态的过程,包括等温过程、绝热过程、等容过程和等压过程等。

热力学过程的研究可以通过热力学定律和方程式来描述和计算。

第四章:热力学定律热力学定律是热统的基本原则,包括热力学第一定律(能量守恒定律)、热力学第二定律(热力学不可逆定律)和热力学第三定律(绝对零度不可实现定律)。

这些定律是热力学研究的基础,对于解释和预测热力学现象有着重要的意义。

第五章:热力学方程式热力学方程式是研究热力学系统和过程的数学工具,包括理想气体状态方程、克拉珀龙方程和范德瓦尔斯方程等。

这些方程式可以用来描述系统的状态、性质和变化规律,对于工程设计和能源利用有着重要的应用价值。

第六章:热力学循环热力学循环是指一系列热力学过程组成的闭合系统,它可以是热机循环、冷冻循环和吸热循环等。

热力学循环的研究可以用来改善能源利用效率、优化工程设计和提高能源设备的性能。

第七章:热力学平衡和热力学势热力学平衡是指在均匀系统中,各部分的宏观性质保持恒定的状态,它可以用来描述系统的稳定性和性质。

热力学势是用来描述系统平衡状态和稳定性的参量,包括熵、焓、自由能和吉布斯函数等。

格林函数-热统

格林函数-热统

比较(9.5.3)和(9.5.7)可知,当1()k J g ε=时自旋极化获得的交换能与能带能量损失相等,而当1()k J g ε> (9.5.8)时获得的交换能超过能带能损失。

(9.5.8)称作stoner 判据。

以上处理适用于零温情况,对于有限温度,除了(9.5.1)中的态密度以外还要Fermi 占据数。

满足Stoner 条件时系统会自发磁化,假定自发磁化绝热发生并建立起磁场B 时,而B 的变化正比于磁化强度的变化1B d B xd Mμ-=(9.5.9) 式中以Bohr 磁子为单位,比例常数是磁化率的倒数。

由前面的讨论可知,自发磁化引起总能量的变化是21()4()H x F F Jg E E E M g εδδδε-=+= (9.5.10)1()F J g ε>时总能量变化为负值。

若由于存在感应磁场B '引起磁化强度,B '由零变化到终值B ,而磁化强度由零到M ,则总能量的变化是121221()2HBB B BE M dB x M dM x M δμμμ--''''=-=-=-⎰⎰ (9.5.11)其中负号表示自发磁化降低系统的总能量。

利用(9.5.9)(9.5.10)可得 22()|1()|F B Fg x Jg εμε=- (9.5.12)与相互作用电子气的Pauli 磁化率比较,能带电子的磁化率增大了一个因子1|1()|F Jg ε--,对于P d ,由测量比热可得|1()|13F Jg ε-上面的讨论基于一个特别简单的假定,即接近Fermi 能级的能带结构是对称的,当这一假定不成立时需要考虑实际能带结构。

9.5.3 Hubbard 模型对于3d 过渡金属,Hamiltonian 对磁性有贡献的3d 电子不是局域电子,它们依次在各原子轨道上游移。

Bloch 称为巡游电子(itinerant electrons ),Hubbard 提出了电子相互作用的简化形式,称作Hubbard 模型。

热统

热统

mv2
e 2kT
v2dv
f v 称为麦克斯韦速率分布函数
10
7.3 麦克斯韦速度分布律
二、最概然速率,平均速率,方均根速率 1、最概然速率:
vm
2kT m
2、平均速率:v
8kT
m
3、方均根速率: vs
3kT m
11
7.3 麦克斯韦速度分布律
三、例题:泻流泻流 用麦克斯韦速度分布率计算单位时间内碰到单位面
3、低温下氢气的性质?
二、量子统计:双原子分子理想气体的内能和热容量
t v r
配分函数: Z
el l

e t
v
r


( it

v j

r k
)
l
t ,v,r
et t ev v er r z1t z1v z1r
二、满足经典极限条件的玻色(费米)系统热力学量的统计 表达式
Z1
el l
l

U N ln Z1
N e Z1 N
Y y ln Z1
因玻色、费米系统的微观状态数: M .B.
N!
因此
S

Nk (ln
Z1




ln
Z1)

k
ln
N!
S k ln M .B. N!
F .D.


l
l! al!(l
al )!
c

N! al ! l
(
l
h0 r
) al
l
2
三种分布的关系
玻耳兹曼分布 玻色分布 费米分布

热统考试复习资料

热统考试复习资料

系统分类: 孤立系统、封闭系统、开放系统.体胀系数:P T V V )(1∂∂=α压强~~:V T P P )(1∂∂=β等温压缩~~:T T PV V K )(1∂∂-= 基本方程:PdV Tds dU -=熵增加原理:S B -S A ≥0.即经绝热过程后,系统的熵永不减少,系统经可逆绝热过程后熵不变.经不可逆绝热过程后熵增加.在绝热条件下熵减少的过程是不可能实现的. 熵~~统计意义:从统计物理学的观点看,熵是系统中微观粒子无规则运动的混乱程度的度量.其统计意义是:孤立系统中发生的不可逆过程总是朝着混乱度增加的方向进行的.自由能:F=U-TS (T 、V 不变)F B -F A ≤0.在等温等容条件下系统的自由能永不增加.在等温等容条件下,系统中发生的不可逆过程总是朝着自由能减少的方向进行的.吉布斯方程:G=F+PV=U-TS+PV . 吉布斯相律:ϕ-+=2K fG B -G A ≤0.在等温等压条件下,系统的吉布斯函数永不增加.在等温等压下系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的.全微分方程:dU=TdS-PdV 焓:dH=Tds+VdP自由能:dF=-SdT-PdV 吉布斯函数:dG=-SdT+VdP麦氏关系的应用:v s S P V T )()(∂∂-=∂∂ P T T V P S )()(∂∂-=∂∂ P s SV P T )()(∂∂=∂∂ V T T P V S )()(∂∂-=∂∂ v V V T S T T V C )()(∂∂=∂∂= P P P T S T T H C )()(∂∂=∂∂= 特性函数:如果适当选择独立变量.要知道一个热力学函数就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定. 平衡的稳定性条件: 0>V C 0)(<∂∂T VP开系热力学基本方程:dG=-SdT+VdP+Udn dU=TdS-PdV+UdndH=TdS+VdP+Udn dF=-SdT-PdV+Udn多元系的相变平衡条件:整个系统达到平衡时,两相中各组元的化学势必须分别相等.即:()k i U U i i ```2,1==βα单元复相系达到平衡的条件:整个系统达到平衡时,两相的温度、压强和化学势必分别相等.即:)(热力学平衡条件βαT T =)~~(力学βαP P =~)(相变βμμ=∂ 凝聚系的熵在等温过程中的改变随绝对温度趋于零.即:()0lim 0=∆→T T S全同粒子组成的系统由具有完全相同的内禀属性的同类粒子组成的系统近独立粒子组成的系统:系统中粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用,将整个系统的能量表达为单个粒子的能量之和E=∑=N i i1ε能量均分定理:对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于0.5KT.玻色凝聚:T<Tc 时就有宏观量级的粒子在能级ε=0凝聚,Tc 称为凝聚温度,凝聚在ε0的粒子集合称为玻色凝聚体,凝聚体不但能量、动量为零,由于凝聚体的微观状态完全确定,熵也为零,凝聚体中粒子的动量既然为零,对压强就没有贡献. 光子气体:根据粒子的观点,可以把空窖内的辐射场看作光子气体热力学系统的平衡状态需要哪四类参量:力学、几何、化学、电磁.节流过程:气体从高压的一边经多孔塞不断流到低压的一边并达到定常状态.这个过程就叫做节流过程.热力学第二定律:克氏:不可能把热量从低温物体传到高温物体而不引起其他变化.开氏:~~从单一热源吸收热量使之完全变成有用功而不引起其他变化.U 空间:为了形象的描述粒子的力学运动状态,用q1,q2……qr,p1,p2……pr 共2r 个变量为直角坐标系,构成一个2r 维空间,称为U 空间.单元复相系达到平衡的条件:两相的温度、压强和化学势必须分别相等. 一级相变:在相变点两相的化学势连续,但化学势的一级偏导数存在突变.二级相变:如果在相变点两相的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变.简并度:如果某一能级的量子状态不止一个,该能级就称为简并的,一个能及的量子态数称为该能级的简并度.费米系统:由费米子组成的系统,遵从泡利不相容原理,一个个体量子态最多能容纳一个费米子.玻色系统:有玻色子组成的系统,不受泡利不相容原理的约束等概率原理:对处于在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在一个个体量子态上的粒子数不受限制的系统.玻尔兹曼分布:1βωαω--=e a l l 玻色~~:111-=+βεαωe a l 费米~~:111+=+βεαωe a l 粒子配分函数:11βεω-∑=e Z l l。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引入巨配分函数 Z 的对数
l
l

l e
l
ln Z l ln( 1 e l )
l
其中:
N ln Z
2014-9-5
Z [1 e
l
第八章 玻色统计与费米统计
l l
]
3
二.内能
U l al l
2014-9-5
10
得: S k (ln Z N U ) 比较上式ln , 得: S k ln
七、关于巨配分函数的理解。 巨配分函数可以从巨正则系综严格地引入,在 巨正则系综中,考虑系统与大热源发生能量和粒子 的交换,因此其粒子数与能量均不是定值,只有T, V为定值。因此本节中给出的粒子数写成平均值。
l
ln [ln(l al )! ln l ! ln al !]
由斯特令公式,得: ln [ al ln(
l
l
al
1) l ln ( 1
l
l
al
) ]
al
e
l
l
1

1 e l al -e l al l
2 d 3 2 V 2 (2m) l N 3 0 h e kTc -1 x 2 dx 3 2 2 令x , 3 (2mkTC ) x n 0 kTc h e -1 1

1
2014-9-5
第八章 玻色统计与费米统计
17
x 2 dx 而 x = 2.612=I 0 e - 1 2 2 h2 2 3 Tc n 3 (2.612) 2 mk
六.玻尔兹曼关系式
S k ln
第八章 玻色统计与费米统计 8
玻尔兹曼关系式的证明
2014-9-5
1.对于玻色子: (l al 1)!
l
ln [ln(l al 1)! ln(l 1)! ln al !]
l
al !(l 1)!
al 1, l 1
l e
l
第八章 玻色统计与费米统计
2
§8.1 热力学量的统计表达式 一.系统的平均粒子数
al
1 1 e l l e l l N al [ ln( 1 e )] l l l l 1 e l e
T
TC
2014-9-5
第八章 玻色统计与费米统计
20
四、玻色-爱因斯坦凝结 1.现象:当T等于或小于T0时,全部或大量的粒子集中在 基态,它是动量空间的凝结,不同于气液相变。 存在宏观物质波的干涉 2.条件 a.理想或具有排斥的玻色子体系(不凝固) b.

随温度而改变,且随温度降低趋向于0
c.在温度降到0k之前,达到临界温度 五、凝聚相下的热力学量(用配分函数理解)
2014-9-5
第八章 玻色统计与费米统计
6
dU TdS pdV dn , pdV Ydy 又: ( 单 位 摩 尔 化 学 势dn ) ( 单 位 粒 子 数 化 学 势d )N
dU Ydy d N TdS 1 ln Z ln Z , S k (ln Z ) kT
系统的总分子数为
3 2 d 2V N g 3 ( 2m ) 2 0 e h 1
2014-9-5 第八章 玻色统计与费米统计 12
1
系统的内能为:
2 2 V d 2 U g 3 (2m) 0 e h 1 令:x / kT 3 x 2 dx 3 2 V N g 3 (2mkT ) 2 x 0 e h 1 x 2 d 3 2 V 2 U g 3 (2mkT ) kT x 0 e h 1 3 1 3
以及 kT
2014-9-5
第八章 玻色统计与费米统计
7
l 是y的函数, lnZ是,,y的函数 , 即, T ,V的函数
五. 巨热力学势
J U TS N ln Z ln Z ln Z ln Z kT (ln Z ) kT ln Z
5
N ln Z
ln Z ln Z (dU Ydy d N ) d (ln Z )
1 ln Z ln Z d [k (ln Z )] k
1 ln Z ln Z dU Ydy d N d [k (ln Z )] k
3 1 3 1 N h2 3 1 2 U NkT [1 ( ) ] NkT [1 n 3 ] 2 g 2 4 2 V 2 mkT 4 2g
2014-9-5
第八章 玻色统计与费米统计
14
统计关联:
从以上表达式可以看到,由于简并作用,费米气体的内 能增加,波色气体的内能减小,说明费米气体内部有等效排 斥作用,而波色气体有等效的吸引作用。相对于动力学关联 作用,这个等效作用称为统计关联作用。 另外,以上的表达式中还说明内能与气体的密度有关, 这也是统计关联的结果。
l l
l
1
1 e l
1 l ln ] l 1 e
[al ( l ) l ln(1 e l )] N U ln Z 另一方面,将:N ln Z , U ln Z ln Z ln Z 代入:S k (ln Z ) 第八章 玻色统计与费米统计
1
N 0
3 2 d 2V T 32 2 3 ( 2m) N( ) 0 h TC kT e -1
T T N0 N[1 ( ) ],即n0 n[1 ( ) ] Tc Tc
2014-9-5 第八章 玻色统计与费米统计 19
3 2
3 2
n0
n
1.0
1.0 0
l
2014-9-5
第八章 玻色统计与费米统计
4
, 的确定 四. 熵,
ln Z ln Z (dU Ydy) (d ) dy y ln Z ln Z ln Z d ( ) d dy y
l 是y的函数, ln Z是,,y的函数
ln Z ln Z ln Z d ln Z d d dy y 代入前式,得:
ln Z ln Z (dU Ydy) d ( ) d ln Z d ln Z ln Z ln Z d ( ) d第八章 ln Z玻色统计与费米统计 d ( ) d ( ) 2014-9-5
第八章 玻色统计与费米统计
当系统不满足非简并性条件,而且也不是定域系统时,需 要采取玻色统计或费米统计的方法来处理。微观粒子全同性原理 决定了二者与玻耳兹曼系统不同的宏观性质。 此时以下条件不再成立
V 2 mkT e 2 N h
2 N h 3 1; n V 2 mkT
关于交换作用
2014-9-5
第八章 玻色统计与费米统计
15
§8.3 玻色-爱因斯坦凝聚 一、理想玻色气体的性质
al
e
l
l
1
l
kT
e
l
kT
l
1
al 0, e
>1,不失一般性,假设 0=0,则 0
2014-9-5
第八章 玻色统计与费米统计
1 上面二式的被积函数中的分母中 x = x e 1 e ( 1 e--x) 1 - --x e 是一个小量,e 也是一个小量,将 展开,取前两项 --x 1 e 1 1 1 --x --x = = e ( 1 e ) x x --x e 2014-9-5 1 e ( 1 e ) 13 第八章 玻色统计与费米统计
ln l ln 1 e l ln 1 e
l


l l 0
ln 1 e
l
l
ln 1 e
2014-9-5

ln 1 e
0

1
将展开式代入N、U的表达式中求积分,得:
2 mkT 3 2 1 N g( ) Ve [1 e ] 3 2 h 2 2 3 2 mkT 3 2 1 U ( ) VkTe [1 e ] 5 2 2 h 2 2 由于e 是小量,在N表达式中可以略去,代入U的表达式,得 3 1 U NkT [1 e ] 2 4 2 3 1 N h2 利用零级近似结果e = ( ) 2 V 2 mkT g

1

T TC
时,要保证 N const
ห้องสมุดไป่ตู้
,则
0
,与前面结论
矛盾
三、矛盾的原因
2014-9-5 第八章 玻色统计与费米统计 18
关键在于当
而T


时,将 0 上的粒子数忽略了
TC
时,该能级上的粒子数是很大的数值,不可忽略
解决办法
N N 0 N 0
N 0 N 0 N N 0
2014-9-5 第八章 玻色统计与费米统计 11
§8.2 弱简并理想玻色气体和费米气体
弱简并气体:
e


n3
虽小但不可忽略的玻色和费米气体
1 2 2 ( px py p z2 ) 2m
以玻色气体为例,假设分子只有平动自由度 则:=
在体积V内,在 到+d 的范围内,可能的微观状态数: 3 1 2 V 2 D( )d g 3 (2m) 2 d h
相关文档
最新文档