盛昭瀚ppt(管理学部,new)

合集下载

随机过程课件打印版

随机过程课件打印版
当An An 1 , n 1
当An An 1 , n 1
9
A1 A2
连续性定理
A1 A2

则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
An Ai 新事件:lim n i 1
lim An Ai
n i 1
3 对于R n中的任意区域, a1 , b1; a2 , b2 ;;a n , bn ,其中 ai bi , i 1,, n
F b1 , b2 ,, bn F b1 ,, bi 1 , ai , bi 1 ,bn F b1 ,, bi 1 , ai , bi 1 ,, b j 1 , a j , b j 1 ,, bn ,
d P({e : g( X ) y, e X }) dy
如果上式右端概率的导数对于y处处存在,那么这 个导数就给出了随机变量Y的概率密度
fY ( y)
19
20
n维联合分布函数F x1 , x 2 , x n 具有下列性质 :
三、边缘分布
若二维联合分布函数中有一个变元趋于无 穷,则其极限函数便是一维分布函数,对于这 种特殊性质,我们称其为边缘分布。 对于任意两个随机变量X,Y,其联合分布函数为: F ( x, y ) 则: FX ( x ) P ( X x ) P ( X x , Y ) F ( x , )
P( X x,Y y) P((X x) (Y y)) P( X x)P(Y y)kFra biblioteknpkq
nk
, k 0 ,1 , 2 n
p
P(X k)

k
k!

管理流程设计培训课件shevcheko

管理流程设计培训课件shevcheko

1. 初步确定流程
• 理顺工作过程,并找 出过程中的各个环 节,以及它们之间的 相互关系.
PPT文档演模板
管理流程设计培训课件shevcheko
2 . 界定流程范围和参与的部门
• 界定流程范围,确定 参与该工作过程的 各个部门(或各个岗 位),以及它们的职能 及作用
PPT文档演模板
管理流程设计培训课件shevcheko
流程
PPT文档演模板
管理流程设计培训课件shevcheko
管理流程设计图的绘制
PPT文档演模板
管理流程设计培训课件shevcheko
业务流程流程图的结构
部门(岗位) 时间顺序
部门/岗位1 部门/岗位2 部门/岗位3 。。。。 要求或说明
PPT文档演模板
管理流程设计培训课件shevcheko
1 . 管理流程设计的标准符号
编制管理流程图中应注意的 事项
PPT文档演模板
管理流程设计培训课件shevcheko
PPT文档演模板
业务流程改进对象
• 目的 (Why) • 内容 (What) • 时间 (When) • 地点 (Where) • 人员 (Who) • 方法 (How)
管理流程设计培训课件shevcheko
2. 对管理流程的充分消化和理解
PPT文档演模板
2020/11/29
管理流程设计培训课件shevcheko
管理流程设计培训课件shevcheko
业务流程改进的ECRSAI原则
PPT文档演模板
• 取消 (Eliminate) • 合并 (Combine) • 调序 (Rearrange) • 简化 (Simplify) • 自动化 (Automate) • 一体化 (Integrate)

(盛高培训之二)绩效考核与操作流程资料(PPT 22页)

(盛高培训之二)绩效考核与操作流程资料(PPT 22页)

D
E
生活中的辛苦阻挠不了我对生活的热 爱。21. 2.2121. 2.21Sun day , February 21, 2021 人生得意须尽欢,莫使金樽空对月。0 7:22:17 07:22:1 707:22 2/21/20 21 7:22:17 AM 做一枚螺丝钉,那里需要那里上。21. 2.2107:22:1707 :22Feb -2121-Feb-21 日复一日的努力只为成就美好的明天 。07:22:1707:2 2:1707:22Sund ay , February 21, 2021 安全放在第一位,防微杜渐。21.2.212 1.2.210 7:22:17 07:22:1 7Febru ary 21, 2021 加强自身建设,增强个人的休养。202 1年2月 21日上 午7时2 2分21. 2.2121. 2.21 精益求精,追求卓越,因为相信而伟 大。202 1年2月 21日星 期日上 午7时2 2分17 秒07:22:1721.2. 21 让自己更加强大,更加专业,这才能 让自己 更好。2 021年2 月上午 7时22 分21.2.2 107:22 February 21, 2021 这些年的努力就为了得到相应的回报 。2021 年2月21 日星期 日7时2 2分17 秒07:22:1721 February 2021 科学,你是国力的灵魂;同时又是社 会发展 的标志 。上午7 时22分 17秒上 午7时2 2分07:22:1721 .2.21 每天都是美好的一天,新的一天开启 。21.2.2 121.2.2 107:22 07:22:1 707:22:17Feb- 21 相信命运,让自己成长,慢慢的长大 。2021 年2月21 日星期 日7时2 2分17 秒Sunday , February 21, 2021 爱情,亲情,友情,让人无法割舍。2 1.2.212 021年2 月21日 星期日 7时22 分17秒2 1.2.21

【职业经理人】自然科学基金(管理学部盛昭翰)

【职业经理人】自然科学基金(管理学部盛昭翰)

Nanjing University
例:
为……丰富了新的思路并提供了理论依据;
为……问题的解决构建了新的方法;
对我国……具有进一步的推动意义。
Nanjing University
研究现状论述:
清晰地介绍和论述国内外同行相关工作的历 史、现状、不足并做出恰当的评价。主要包括:
目前在做什么?谁在做?谁做的好?不 足之处在哪里?你如何考虑做得更好?
Nanjing University
理论导向型项目:切忌理论脉络不清,缺乏逻 辑性;
问题导向型项目:切忌就事论事,缺乏理论升 华。
Nanjing University
研究目标与内容
Nanjing University
• 研究目标:选题的适当具体化;又是研究内容
的概括;研究所要达到的目的,是总体性的表述 。
–车次排序研究 整数规划及排序优化研究(凝练)
–已有方法研究(深化)
例:供应链的一个项目
——科学问题的凝练
Nanjing University
供应链企业微观机理与供应链宏观层面结构与 绩效综合研究;
动态环境,特别是非连续变化环境对供应链宏 观结构和微观行为演化的影响;
Nanjing University
• 撰写方式:
(1). 紧扣选题,迅速切入方向与热点问题; (2). 展开相关方向上的国内外研究现状(纵、横、
新); (3). 阐明存在的不足; (4). 你的选题与解决(完善、改进)不足之逻辑关
系与合理性。
• 参考文献:
(1). 以论文为主,国际刊物为主; (2). 文献除经典文献外,要新; (3). 列出重要的代表性文献; (4). 文献要与选题有关联度。

盛昭瀚(管理学部,new)

盛昭瀚(管理学部,new)
• 理论依据: 对为什么要开展本选题研究做出清晰、
明确、充分、有说服力的论证。
• 研究意义表述:
Nanjing University
(1). 科学意义与学术价值的基本表述; (2). 经济、社会、管理的应用前景的表述。 (3). 其他,如学科发展等意义。
Nanjing University
• 注意点:
Nanjing University
• 特色与创新论述:
项目申请之灵魂:关键在于提炼与概括。
不同于他人(工作)的新思想、新思路、新 方法等,包括理论性、技术性,问题新,但不要 重复阐述研究内容,而是要抽象概括学术思想与 学术原理。
Nanjing University
• 例:本研究首次将……应用于……;
但必须解决几个重要的运营决策问题。
Nanjing University
题目要有新意、切忌重复 、雷同,要能吸引眼球、使人 关注、引起好奇心。
Nanjing University
• 选题基本要求:
不要与自己已有工作基础脱节,盲 目跟从和赶潮流。
国外的前沿不都是我国的前沿。
• 选题不要成为: 1.开发性项目,如:
(1).不要变为对领域、方向的意义与重要性;
(2).不要夸大,不要泛指“前沿”、“热点”、 “领先”。。。。
从该问题研究完成后,对相关领域与方向的 科学贡献与应用价值等方面写。
Nanjing University
例:
为……丰富了新的思路并提供了新的理论依据; 为……问题的解决构建了新的方法; 对我国企业……具有进一步的推动意义; 有助于揭示……对……的影响.
证明最优策略的存在性,然后在修正性策略情况下,建立 组件生产与库存分配联合决策模型模型,证明最有策略的 存在性及性质,讨论设备可靠性与制造设备维修策略对组 件最优生产与库存分配策略的影响 再开发设备易故障ATO供应链组件生产与制造设备维修联合 决策模型 接着开发设备易故障ATO供应链组件生产与成品价格调整联 合模型

office_ppt培训课件共58页PPT资料

office_ppt培训课件共58页PPT资料
CHANGED: Improved
the minimization process to achieve a better image quality.
CHANGED: Improved
the minimization process to achieve a smaller file size.
ADDED : Optimization
• 细化市场,根据不同商圈(或者相同商圈不同店铺)建设性指导货 品的调整和协调的店铺陈列,从而拉动店铺销售。
• 建立我司日常与商场沟通的相关文件,指导日常工作。
• 组织店铺员工阶段性的店铺实习。
通过文字陈述内容
最基本,最传统的呈现方式 体现形式:项目符号与列表 应用范畴:标题,内容(列表),次要信息
• 完善店中店的结算管理,同时建立店中店店铺的工作对口人的档案
• 根据不同网点的实际情况,制定适合店铺的SKU数量和货品的库存 数量,从而起到用货品指导销售的功效。并且减小部分网点的仓库压 力。制定相关数据后,在店铺中找专人负责,跟进店铺的货品情况, 并且在实践中修正相关数据。
• 定期阶段性的工作计划、明确的任务分解、及时的工作总结,修正 日常工作的错误,指导今后工作。
低,为76.46。
其他商业过程 长治市其他商业过程中,话费信息服务满意度得分最高,为89.70;积分计划得分最低,
为62.65。
集团客户商业过程 本期集团客户商业过程满意度为85.29,其中集团行业解决方案满意度最高,为85.40;
整体费用满意度最低,为63.33。
7
期现货管理分析综述
2019年1-6月期货合同金额:245702千元, 实际发货:226737千元,每月发货占比如图示:

综合集成管理_方法论与范式_苏通大桥工程管理理论的探索_盛昭瀚

综合集成管理_方法论与范式_苏通大桥工程管理理论的探索_盛昭瀚

第4卷第2期 复杂系统与复杂性科学 V o l .4N o .22007年6月 C O M P L E XS Y S T E M S A N DC O M P L E X I T YS C I E N C EJ u n .2007文章编号:1672-3813(2007)02-0001-09综合集成管理:方法论与范式———苏通大桥工程管理理论的探索盛昭瀚1,游庆仲2(1.南京大学工程管理学院,南京210093;2.江苏苏通大桥指挥部,江苏南通226010)摘要:在具有4项世界第一的苏通大桥的工程管理基础上,通过中国系统科学家提出的综合集成方法论与工程管理的融合,提出了关于大型复杂工程建设管理的综合集成管理概念,探索了它的基本原理与范式,并介绍了在苏通大桥工程管理中的实际应用。

关键词:复杂系统;复杂性;综合集成;工程管理中图分类号:N 94文献标识码:AM e t a -S y n t h e s i s M a n a g e m e n t :M e t h o d o l o g y a n d P a r a d i g m s———t h e E x p l o r a t i o no f E n g i n e e r i n g Ma n a g e m e n t T h e o r y i n S u t o n g B r i d g eS H E N GZ h a o -h a n 1,Y O UQ i n g -z h o n g2(1.S c h o o l o f E n g i n e e r i n g a n dM a n a g e m e n t o f N a n j i n g U n i v e r s i t y ,N a n j i n g 210093,C h i n a ;2.J i a n g s u P r o v i n c i a l S u t o n g B r i d g e C o n s t r u c t i o nC o m m a n d i n g D e p a r t m e n t ,N a n t o n g 226010,C h i n a )A b s t r a c t :B a s e d o n t h e p r o j e c t m a n a g e m e n t i n S u t o n g b r i d g e w h i c h h a s c r e a t e d f o u r w o r l d 's f i r s t ,w e i n -t e g r a t e t h e m e t a -s y n t h e s i s m e t h o d o l o g y i n t o t h e e n g i n e e r i n g m a n a g e m e n t a n d p u t f o r w a r d t h e c o n c e p t o f t h e m e t a -s y n t h e s i s m a n a g e m e n t f o r t h el a r g e -c o m p l e xe n g i n e e r i n gm a n a g e m e n t .I t s p r i n c i p l e a n dp a r a -d i g m s a re e x p l o r e d a n d t h e a p p l i c a t i o n i n S u t o n g b r i d g e p r o j e c t i s i n t r o d u c e d .K e y w o r d s :c o m p l e x s y s t e m ;c o m p l e x i t y ;m e t a -s y n t h e s i s ;e n g i n e e r i n g m a n a g e m e n t收稿日期:2007-06-20基金项目:“十一五”国家科技支撑计划项目(2006B A G 04B 06);国家自然科学基金项目(70571034)作者简介:盛昭瀚(1944-),男,江苏人,教授,博士生导师,主要研究方向为社会经济系统复杂性分析。

Summary

Summary

NASA Technical Memorandum4435 Hypersonic Lateral and Directional Stability Characteristics of Aeroassist Flight Experiment Configuration in Air and CF4John R.Micol and William L.WellsMAY1993NASA Technical Memorandum4435 Hypersonic Lateral and Directional Stability Characteristics of Aeroassist Flight Experiment Configuration in Air and CF4John R.Micol and William L.WellsLangley Research CenterHampton,VirginiaSummaryThe proposed Aeroassist Flight Experiment (AFE)utilized a14-ft-diameter raked and blunted elliptical cone to demonstrate the ight character-istics of space transfer vehicles(STV's).The AFE was to be carried to orbit by and launched from the Space Shuttle orbiter,where instrumentation for 10on-board experiments would have obtained aero-dynamic and aerothermodynamic data for velocities near32000ft/sec at altitudes above245000ft.A pre ight ground-based test program was initiated to assess the aerodynamic and aerothermodynamic characteristics of the baseline concept and to pro-vide benchmark data for calibration of computational uid dynamics codes to be used in ight predictions. The data reported herein are results from one phase of this ground-based study.Static lateral and di-rectional stability characteristics were obtained for the AFE con guration at angles of attack from010 to10 .Tests were conducted in air at Mach num-bers of6and10and in tetra uoromethane(CF4) at Mach6to examine the e ects of Mach number, Reynolds number,and normal-shock density ratio.Changes in Mach number from6to10in air or in Reynolds number by a factor of4at Mach6had a negligible e ect on the lateral and directional sta-bility characteristics of the baseline AFE con gura-tion.Variations in density ratio across the normal portion of the bow shock from approximately5(air) to12(CF4)had a measurable e ect on lateral and di-rectional aerodynamic coe cients,but no signi cant e ect on lateral and directional stability character-istics.The tests in air and CF4indicated that the con guration was laterally and directionally stable through the test range of angle of attack.Unfortunately,the AFE program was cancelled in late1991.The realization of an AFE ight in the future is possible but uncertain.Thus,this paper documents the lateral and directional aerodynamic characteristics of the baseline AFE vehicle for use in the design of future aeroassist space transfer vehicles. IntroductionAmong the space transportation systems pro-posed for the future are space transfer vehicles (STV's),which are designed to ferry cargo between higher Earth orbits(for example,geosynchronous and lunar orbits)and lower Earth orbit where the Space Shuttle and Space Station Freedom will op-erate.(This class of vehicle was formerly referred to as orbital transfer vehicles or OTV's.)Upon re-turn of the vehicle from high Earth orbit,its velocity must be greatly reduced to attain a nearly circular low Earth orbit.This decrease in velocity can be achieved either by using retrorockets or by guiding the vehicle through a portion of the atmosphere and allowing aerodynamic drag forces to slow the vehi-cle.Studies have shown that lower propellant loads would be required for the aeroassist method(ref.1); thus,payloads could be increased.Future STV's that will be designed to use Earth atmosphere for deceleration are generally referred to as aeroassisted space transfer vehicles or ASTV's (formerly AOTV's).These vehicles will have high drag and a relatively low lift-to-drag ratio and will y at very high altitudes and velocities throughout the atmospheric portion of the trajectory.Before the actual ight vehicle can be designed with optimal aerodynamic and aerothermodynamic characteris-tics,additional information about very high-altitude, high-velocity ight is required.To obtain such in-formation,a subscale ight was proposed whereby a14-ft-diameter ASTV con guration with10on-board experiments would be launched from the Space Shuttle and accelerated back into the atmosphere with a rocket.This Aeroassist Flight Experiment (AFE)would make a sweep through the atmosphere to an altitude of about245000ft with a velocity of nearly32000ft/sec to gain aerodynamic and aero-thermal information and return to low Earth orbit for retrieval by the Space Shuttle.The on-board in-strumentation would measure and record the aero-dynamic characteristics and aerothermodynamic en-vironment of this entry trajectory,and the data would be used to validate computational uid dy-namics(CFD)computer codes and ground-to- ight extrapolation of experimental data for use in future ASTV designs.This ight experiment was proposed because the high-velocity,low-density ow environ-ment cannot be duplicated or simulated in present test facilities,nor can it be predicted with certainty by existing techniques.Naturally,the AFE would require an extensive aerodynamic and aerothermodynamic experimental and computational data base for its design and suc-cessful ight.Present test facilities,in conjunction with the best CFD codes,would provide this infor-mation.For this reason,a pre ight test program in ground-based hypersonic facilities(ref.2)was initiated to develop the required aerodynamic and aerothermodynamic data base.This data base will be used to perform the rst phase of CFD computer code calibration.The experimental results presented herein are part of an extensive ground-based test program performed at the Langley Research Center. Previous results are presented in references3{6.The details of the rationale for the ight experiment areoutlined in reference7,and the set of experiments to be performed is described in reference8.A primary concern for the AFE vehicle is the aerothermal heating on the fore-and aftbody thermal protection system(TPS).Because of these aerother-mal concerns,low values of sideslip angles are desir-able to minimize heating to the aftbody or payload and to prevent large thermal uctuations on the heat shield.Thus,an accurate knowledge of the lateral and directional stability characteristics of the AFE is required.(Lateral and directional stability require-ments for a low lift-to-drag aeromaneuvering vehicle are discussed in ref.9.)CFD codes are not generally used to provide aero-dynamic information for vehicles at sideslip angles. Computed lateral and directional stability charac-teristics for the AFE would require calculations of the entire body at various sideslip angles,thus in-creasing computational time,complexity,and cost. Hence,determination of these stability characteris-tics for the ight vehicle must rely on experimental data obtained in ground-based facilities.This paper addresses the e ects of Mach number, Reynolds number,and normal-shock density ratio(a \real gas"simulation parameter)on lateral and direc-tional aerodynamic characteristics measured on the baseline AFE con guration.Tests were conducted at Mach6and10in air and at Mach6in tetra- uoromethane(CF4)through a range of angle of at-tack and sideslip.During the continuum- ow portion of the ight, the AFE vehicle is expected to undergo normal-shock density ratios of about18,whereas conventional hy-personic wind tunnels that use air or nitrogen as the test gas only produce ratios of5to7.In ight,this large density ratio results from dissociation of air as it passes into the high-temperature shock layer.This real-gas e ect may have a signi cant impact on shock detachment distance,distributions of heating and pressure,and aerodynamic characteristics(ref.10).For blunt bodies at hypersonic speeds,the pri-mary factor that governs the shock stand-o distance and inviscid forebody ow is the normal-shock den-sity ratio.(See ref.10.)Certain aspects of a real gas can be simulated by the selection of a test gas that has a low ratio of speci c heats and provides large values of density ratio.These conditions can be obtained in the Langley Hypersonic CF4Tun-nel,which provides a simulation of this phenomenon by producing a density ratio of about12across the shock.This tunnel,in conjunction with the Lang-ley20-Inch Mach6Tunnel,provides the capability to test a given model at the same free-stream Mach number and Reynolds number,but at two values of density ratio(5.25in air and12.0in CF4).Thus, data for code calibration are provided that include the e ects of normal-shock density ratio.Tests were performed in air at Mach10and through a range of Reynolds numbers at Mach6to verify that aerody-namic characteristics were independent of signi cant changes in Mach numbers and Reynolds numbers for the blunt AFE con guration in hypersonic contin-uum ow.However,the AFE program cancellation ended the research e orts on this con guration.Thus, this paper documents the lateral and directional characteristics of the baseline AFE vehicle for use in the design of future aeroassist space transfer vehicles. SymbolsC l rolling-moment coe cient,Rolling momentq1dSC l=1C l=1 ;per degC n yawing-moment coe cient,Yawing momentq1dSC n =1C n=1 ,per degC y side-force coe cient,Side forceq1SC y=1C y=1 ,per degd model length in symmetry plane,in.M Mach numberp pressure,psiaq dynamic pressure,psiaRe1unit free-stream Reynoldsnumber,ft01Re2;d postshock Reynolds numberbased on dS reference area,model base area,in2(10.604in2when d=3.67in.and4.936in2when d=2.50in.)T temperature, RU velocity,ft/secX moment transfer distance in axialdirection( g.4),in.(1.673in.when d=3.67in.and1.559in.when d=2.50in.)x;y;z axial,lateral,and vertical coordi-nates for AFE( g.4)2Z moment transfer distance innormal direction( g.4),in.(0.129in.when d=3.67in.and0.0979in.when d=2.50in.)angle of attack,degangle of sideslip,degratio of speci c heats of the testgasdensity of the test gas,lbm/in3 Subscripts:t total conditions1free-stream conditions2conditions behind the normalshockAFE Con gurationThe AFE ight vehicle would consist of a14-ft-diameter drag brake,an instrument carrier at the base,a solid-rocket propulsion motor,and small control motors.A sketch of the vehicle is shown in gure1.The drag brake( g.2),which is the forebody con guration,is derived from a blunted 60 half-angle elliptical cone that is raked at73 to the cone centerline to produce a circular raked plane.A skirt with an arc radius equal to one-tenth the rake-plane diameter and with an arc length corresponding to60 has been attached to the rake plane to reduce aerodynamic heating around the base periphery.The blunt nose is an ellipsoid with an ellipticity equal to2.0in the symmetry plane.The ellipsoid nose and the skirt are at a tangent at their respective intersections to the elliptical cone surface.A detailed description of the forebody analytical shape is presented in reference11.Apparatus and TestsFacilitiesLangley31-Inch Mach10Tunnel.The Langley31-Inch Mach10Tunnel(formerly the Lang-ley Continuous Flow Hypersonic Tunnel)expands dry air through a three-dimensional contoured nozzle to a31-in-square test section to achieve a nominal Mach number of10.The air is heated to approxi-mately1850 R by an electrical resistance heater,and the maximum reservoir pressure is approximately 1500psia.The tunnel operates in the blowdown mode with run times of approximately60sec.Force and moment data can be obtained through a range of angle of attack or sideslip during one run by uti-lization of the pitch-pause capability of the model support system.This tunnel is described in more detail in reference12.Langley20-Inch Mach6Tunnel.The20-Inch Mach6Tunnel is a blowdown wind tunnel that uses dry air as the test gas.The air may be heated to a maximum temperature of approximately1100 R by an electrical resistance heater;the maximum reser-voir pressure is525psia.A xed-geometry,two-dimensional,contoured nozzle with parallel side walls expands the ow to a Mach number of6at the20-in-square test section.The model injection mechanism allows changes in angle of attack and sideslip during a run.Run durations are usually60to120sec,al-though longer times can be attained by connection to auxiliary vacuum storage.A description of this facility and the calibration results are presented in reference13.Langley20-Inch Mach6CF4Tunnel.The 20-Inch Mach6CF4Tunnel is a blowdown wind tunnel that uses CF4as the test gas.The CF4 can be heated to a maximum temperature of1530 R by two molten lead bath heat exchangers connected in parallel.The maximum pressure in the tunnel reservoir is2600psia.Flow is expanded through an axisymmetric,contoured nozzle designed to generate a Mach number of6at the20-in-diameter exit.This facility has an open-jet test section.Run duration can be as long as30sec,but10sec is su cient for most tests because the model injection system is not presently capable of changing angle of attack or sideslip during a run.A detailed description of the20-Inch Mach6CF4tunnel is presented in reference14.Just before the present test series,the tunnel was modi ed extensively.Included in those modi cations were a new nozzle,a new test section and model in-jection system,a new di user,and improvements in wiring of the controls and of the data acquisition system.The new nozzle was designed to improve ow quality along the centerline and to more closely match the Mach number in the Mach6air tunnel that is often used to produce data for comparison with the CF4data.Calibration results(ref.15)that were obtained after the new nozzle was installed indi-cate greatly improved ow uniformity near the nozzle centerline.For the present test series,the model was tested on the tunnel centerline.Previously,models were tested o centerline to avoid ow disturbances. (See ref.14.)3ModelsTwo aerodynamic models were fabricated and tested.The models were identical except for size;the base heights(d in g.2)at the symmetry plane were 3.67in.(2.2percent scale)as shown in gure3(a)and 2.50in.(1.5percent scale)as shown in gure3(b). The3.67-in-diameter model is made in three parts| a stainless steel forebody(aerobrake),an aluminum aftbody(instrument carrier and propulsion motor), and a stainless steel balance holder.The2.50-in-diameter model,shown mounted in the Langley 20-Inch Mach6CF4Tunnel in gure3(c),is fabri-cated of aluminum and does not include the circu-lar or hexagonally shaped aftbody and the simulated propulsion motor of previous models that were tested (ref.16).A cylinder protrudes from the base to ac-cept the balance.The acute angle between the bal-ance and cylinder axis and the base in the symmetry plane is73 .The2.50-in-diameter model was fabri-cated to provide an air gap between the end of the balance and the end of the cavity in the forebody; its purpose was to reduce conductive heating.For both models,shrouds were built to shield the bal-ance from base- ow closure.The shrouds attach to the sting,and clearance was provided to avoid in-terference with the balance during model movement when forces and moments were applied.The fore-bodies were machined to the design size and shape within a tolerance of60.003in.Angle of attack(see g.2)and sideslip(see g.4)in this paper are refer-enced to the axis of the original elliptical cone.InstrumentationAerodynamic force and moment data were mea-sured with sting-supported,six-component,water-cooled,internal strain gauge balances.Two ther-mocouples were installed in the water jacket that surrounds the measuring elements to monitor inter-nal balance temperatures.The load rating for each component of the two balances(one for each model size)is presented in table I.The calibration accuracy is0.5percent of the maximum load rating for each component.Test ConditionsThe tests were conducted at nominal free-stream Mach numbers of6and10in air and at Mach6 in CF4.(Nominal test conditions are presented in table II.)The angles of attack for Mach6in air were 0 and65 with nominal sideslip angles of0 ,02 , and04 .Tests at Mach6in CF4were at angles of attack of0 ,65 ,and610 with nominal sideslip angles of0 ,62.5 ,and65 ;at Mach10(except for =02:5 ,where only a negative sweep was performed),the angles of attack were0 ,62.5 ,65 , and610 with nominal sideslip angles of0 ,62 ,and 64 .Test ProceduresBlunt models are conducive to heat conduction through the forebody face during a run,which gener-ally produces a gradual increase in temperature gra-dients along the balance even though the balance is water cooled.Because temperature gradients were not accounted for in the laboratory calibration of the balance,e orts were made to minimize these gradi-ents by limiting the test times.In the20-Inch Mach6 CF4Tunnel,the model was mounted at the desired angle of attack and sideslip before the run.After the test-stream ow was established,the model was in-jected to the test-stream centerline.Data were gath-ered for approximately5sec,then the model was re-tracted.In the air tunnels,the model was mounted at = =0 before the run.After test-stream ow was established,the model was injected to the stream centerline,then pitched to the next angle of attack(or sideslip angle)by the pitch-pause mech-anism.Data were taken while the model was sta-tionary at each position.The balance thermocouples were monitored during each run to assure that the temperature gradient within the balance remained within an acceptable limit.Typical run times for a set of and sweeps in the air facilities were about 15sec.Data Reduction and UncertaintyEach of the three test facilities has a dedicated stand-alone data system.Output signals from the balances were sampled and digitized by an analog-to-digital converter,then stored and processed by a computer.The analog signals were sampled at a rate of50per second in the Mach6CF4and Mach10air tunnels and at20per second in the Mach6air tunnel.A single value of data reported herein represents an average of values measured for 2sec in the Mach6CF4and Mach6air tunnels and for0.5sec in the Mach10air tunnel.Corrections were made for model tare weights at each angle of attack and for interactions between di erent elements of the balances.Corrections were not made for base pressures.Balance-related calculated uncertainties in the measured static aerodynamic coe cients are given in table III.These uncertainties are based on balance output signals related to forces and moments by a laboratory calibration that is accurate to60.5per-cent of the rated load for each component.(See ta-ble I.)For the AFE,the moment reference center is4located at the center of the rake plane.(See g.4.) Thus,moments reduced about the model rake-plane center and reported herein have greater uncertainties than those measured at the balance moment center. The yawing and rolling moments at the balance have an uncertainty of only60.5percent of the rated load, whereas the moment at the rake-plane center also in-cludes uncertainties associated with the forces in the transfer equation.The transfer equation isYawing moment RP=Yawing moment B0(X)(Side force)andRolling moment RP=Rolling moment B0(Z)(Side force)where the subscripts RP and B denote the rake-plane center and the balance moment center,respectively. The transfer distances X and Z are de ned in g-ure4.In coe cient form,the uncertainty1related to the balance calibration for the side force is1C y=6(0:005)(Force rating)q1SThe uncertainty for the yawing moment is1C n;B=6(0:005)(Moment rating)q1dSand an identical equation applies for the rolling mo-ment.These balance uncertainties are su cient for measurements at the balance moment center.How-ever,at the rake-plane center,the yawing-moment uncertainty is1C n;RP=62401C n;B12+1C y X!2350:5and the rolling-moment uncertainty is1C l;RP=62401C l;B12+1C y Zd!2350:5Note that all the terms include the free-stream dy-namic pressure in the denominator so that the un-certainties are less at test conditions where q1is large|that is,at a higher Reynolds number rather than at a lower Reynolds number.The uncertainty in dynamic pressure is63percent.The ow condi-tions for which the present uncertainties have been calculated are presented in table II.Results and DiscussionsThe aerodynamic data from the Mach10air tests are tabulated in table IV.The Mach6results are presented in tables V and VI for air and in table VII for CF4.The test Reynolds number and model diameter are indicated in each table title.The aerodynamic coe cients C y,C n,and C l are plotted for an angle-of-sideslip range at various an-gles of attack in each facility and presented in g-ures5{7for Mach10in air,Mach6in air,and Mach6 in CF4,respectively.Data obtained at Mach6in air( g.6)indicated no e ect of Reynolds number on measured lateral and directional coe cients for a factor-of-4increase in postshock Reynolds num-ber.(Similar trends with respect to Reynolds num-ber were also observed for AFE longitudinal aero-dynamic characteristics presented in ref.16in which a negligible e ect of Reynolds number was noted for Mach6and10in air and at Mach6in CF4.) Therefore,the assumption is made that the e ect of Reynolds number on measured lateral and direc-tional data at Mach10in air and Mach6in CF4 is also negligible.The data are amenable to linear curve ts as shown in gures5{7,for which the ordi-nate scale is quite sensitive.These curves would be expected to go through the origin because the model was symmetrical about the pitch plane.However,as observed in gures5{7,an o set exists.This o set may be attributed to model misalignment or to any small stray signal in the data system that could cause a constant data o set because of the very small val-ues being measured relative to the load range of the balance.For example,if a slight misalignment of the model in the roll direction were introduced during model setup or if the balance location within the model were slightly misaligned,thereby producing a small o set in the center of gravity location(that is,within a few thousandths of an inch)in the side plane(y di-rection in g.4),then the e ect of the large axial-force component on this small moment arm may pro-duce a continuous bias in the measured quantities. For instance,from reference16at = =0 , Re1=0:462106/ft,and Mach6in CF4,the axial-force coe cient is1.382.The yawing-moment coe -cient,from table VII for similar conditions,is0.004. In much the same way as the change in the cen-ter of pressure in longitudinal aerodynamics is lo-cated,forming the ratio of yawing-moment coe -cient to axial-force coe cient yields the moment arm in the y direction,which for this case is approxi-mately0.003in.and thus within acceptable fabri-cation tolerances.A second linear curve,parallel to the data-faired curve,is drawn through the origin in5each part of gures 5{7.Values from measurements and the curve through the origin of gures 5{7are presented in tables IV{e of the slopes of these parallel curves through the origin to represent the lateral and directional stability derivatives should be valid because the data curves are linear through the test sideslip range.The lateral and directional stability derivatives are presented in gure 8and table VIII through the range of angle of attack for which tests were per-formed in each facility.For all test conditions,the con guration was laterally and directionally stable,as indicated by the positive values of C n and nega-tive values of C l .A comparison of lateral and direc-tional stability derivatives obtained at Mach num-bers of 6and 10in air illustrates no signi cant e ect of Mach number on stability characteristics ;a comparison of these stability derivatives with those obtained at Mach 6in CF 4indicates a small but measurable e ect of normal-shock density ratio on lateral and directional stability characteristics.Al-though the numerical values for air and CF 4are not greatly di erent,the data trends in air and CF 4ap-pear to be opposite.(Similar trends were observed in the longitudinal aerodynamic characteristics dis-cussed in ref.16.)This trend is most obvious for C l ,wherein the small numerical values require an expanded scale on the graph.The wind tunnel re-sults in CF 4are believed to be a better simulation of ight data than those in air because the shock de-tachment distance for CF 4is closer to the distance predicted for the actual ight case.(For example,see refs.6and 16.)Concluding RemarksStatic lateral and directional stability character-istics were obtained for the Aeroassist Flight Exper-iment (AFE)con guration through a range of angle of attack from 010 to 10 .Tests were conducted on two di erent-sized models at Mach numbers of 6and 10in air and at a Mach number of 6in tetra- uoromethane (CF 4).The e ects of Mach number,Reynolds number,and normal-shock density ratio on lateral and directional stability characteristics were examined.Changes in Mach number from 6to 10in air or in Reynolds number by a factor of 4at Mach 6had a negligible e ect on the lateral and directional sta-bility characteristics of the baseline AFE con gura-tion.Variations in density ratio across the normal portion of the bow shock from approximately 5(air)to 12(CF 4)had a measurable e ect on lateral and directional aerodynamic coe cients,but no signi -cant e ect on lateral and directional stability char-acteristics.The tests in air and CF 4indicated that the con guration is laterally and directionally stable through the test range of angle of attack as indicated by the positive values of C n and negative values of C l (positive e ective dihedral).In late 1991,the AFE program was cancelled and thus ended research e orts on this con guration.The realization of an AFE ight in the future is possible but uncertain.Hence,this paper documents the lateral and directional aerodynamic characteristics of the baseline AFE vehicle for use in the design of future aeroassist space transfer vehicles.NASA Langley Research Center Hampton,VA 23681-0001March 25,1993References1.Walberg,Gerald D.:A Review of Aeroassisted Orbit Transfer.AIAA-82-1378,Aug.1982.2.Wells,William L.:Wind-Tunnel Pre ight Test Program for Aeroassist Flight Experiment.Technical Papers|AIAA Atmospheric Flight Mechanics Conference ,Aug.1987,pp.151{163.(Available as AIAA-87-2367.)3.Wells,William L.:Free-Shear-Layer Turning Angle in Wake of Aeroassist Flight Experiment (AFE)Vehicle at Incidence in M =10Air and M =6CF4.NASA TM-100479,1988.4.Micol,John R.:Experimentaland Predicted Pressure and Heating Distributions for Aeroassist Flight Experiment Vehicle.J.Thermophys.&Heat Transf.,July{Sept.1991,pp.301{307.5.Wells,WilliamL.:SurfaceFlow and HeatingDistributions on a Cylinder in Near Wake of Aeroassist Flight Experi-ment (AFE)Con guration at Incidence in Mach 10Air.NASA TP-2954,1990.6.Micol,John R.:Simulation of Real-Gas E ects on Pres-sure Distributions for Aeroassist Flight Experiment Vehi-cle and Comparison With Prediction.NASA TP-3157,1992.7.Jones,Jim J.:The Rationale for an Aeroassist Flight Experiment.AIAA-87-1508,June 1987.8.Walberg,G.D.;Siemers,P.M.,III;Calloway,R.L.;and Jones,J.J.:The Aeroassist Flight Experiment.IAF Paper 87-197,Oct.1987.9.Gamble,Joe D.;Spratlin,Kenneth M.;and Skalecki,Lisa M.:Lateral Directional Requirements for a Low L/D Aeromaneuvering Orbital Transfer Vehicle.A Collection of Technical Papers|AIAA Atmospheric Flight Mechan-ics Conference,Aug.1984,pp.402{413.(Available as AIAA-84-2123.)610.Jones,Robert A.;and Hunt,James L.(appendix Aby James L.Hunt,Kathryn A.Smith,and Robert B.Reynolds and appendix B by James L.Hunt and Lillian R.Boney):Use of Tetra uoromethane To Simulate Real-Gas E ects on the Hypersonic Aero dynamics of Blunt Vehicles.NASA TR R-312,1969.11.Cheatwood,F.McNeil;DeJarnette,Fred R.;and Hamil-ton,H.Harris,II:Geometrical Description for a Pro-posed AeroassistedFlight ExperimentVehicle.NASA TM-87714,1986.ler, C.G.:Langley Hypersonic Aerodynamic/Aerothermodynamic Testing Capabilities|Present and Future.AIAA-90-1376,ler,Charles G.,III;and Gno o,Peter A.:PressureDistributions and Shock Shapes for12.84 /7 On-Axis and Bent-Nose Biconics in Air at Mach6.NASA TM-83222,1981.14.Midden,Raymond E.;and Miller,Charles G.,III:De-scription and Calibration of the Langley Hypersonic CF4 Tunnel|A Facility for Simulating Low Flow as Occurs for a Real Gas.NASA TP-2384,1985.15.Micol,John R.;Midden,Raymond E.;and Miller,CharlesG.,III:Langley20-Inch Hypersonic CF4Tunnel:A Facil-ity for Simulating Real-Gas E ects.AIAA-92-3939,July 1992.16.Wells,William L.:Measured and Predicted AerodynamicCoe cients and Shock Shapes for AeroassistFlight Exper-iment(AFE)Con guration.NASA TP-2956,1990.7。

(盛高培训之一)目标管理与操作流程资料16页PPT

(盛高培训之一)目标管理与操作流程资料16页PPT


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
16
(盛高培训之一)目标管理与操作流程 资料
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是Βιβλιοθήκη 头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

总体的方案1盛颖逾PPT文档20页

总体的方案1盛颖逾PPT文档20页
预算考核评价——预算考评的主体













中海油全面预算管理的内容——预算的考评
预算考核评价——预算考评指标的构建
预算指标体系
考评指标体系












30%
70%


100%
根据参考 指标对绩 效考评结 果进行正 负10%的修

预算考核评价——预算考评指标的构建
预算考评指标
的预算模型
全面预 算模型
二级预算责任单元的预算指标体系与预算编制
编制方法
体现积极预算的特点,海油向下游的渗透,全面预算 的参与,积极性与创造性的发挥,适当加入零基预算。
尤其是在业务品种的初步发展阶段。(富岛)
二级预算责任单元的预算指标体系与预算编制
二级预算责任单元的预算指标体系与预算编制
No
预算组织方案
是否平衡
Yes
汇总部门年度预算,编 制公司整体预算草案
预算年度预算草案
制定预算组织方案(包括 预算目标分解方案和预算
编N制 o进度等)
No
确定预算年度预算方案 并下发各部门
审批预算年度预算草案
是否同意
Yes
审批预算年度预算草案
Yes
是否同意
流程结束
中海油全面预算管理的内容——预算的考评
总体的方案1盛颖逾
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯

大型工程决策的适应性思维及其决策管理模式

大型工程决策的适应性思维及其决策管理模式

工程 是人类 为 了实 现某 一 特定 目的 , 依据 一定 的 科学技 术 原理 与 自然规 律 ,通 过有 序地 整合 资 源 , 以 造物 ( 或 改变 事物 性状 )为核 心 的活动 ( 盛 昭瀚 等 ,
估、 学习等主要环节 , 并指 出公众参与 、 信息管理及柔
性架 构 是其 关键 要 素 。P r i e m u s ( 2 0 1 0 ) 通 过 大 量案 例
虑 。C i c m i l ( 2 0 0 6 ) 认 为主体认 知 能力 有 限以及 所获信
体与客体( 客观世界 ) 相互作用 的结果 ( 张茉楠 、 李汉 铃, 2 0 0 3 ) 。 S i m o n ( 1 9 5 9 ) 认为 , 决策是具有决断能力的
主体 , 在不确定 、 复杂 、 动态情景下 , 当决策超越 了行 为 主体 认知 主体 加工 能力 范 围时 , 对 行动 目标 与方 案
定 性之 间 的矛盾 。盛 昭瀚 等 ( 2 0 0 9 ) 针对 工 程 决 策 问
环境产生持续影响等特征使得决策主体在进行重大 方案决策时需要综合考虑社会 、 政治 、 经济 、 文化等因 素。 在不确定 的状态空间中对未来进行认知预测。面 对这种不确定情景下的工程决策 。 其决策质量的高低 是决策主体认知水平和管理能力的重要体现 。因此 , 对 大型 工程决 策 不确 定性 研究 需要 哲 学思 维指 导 , 并 站在主体角度来考察情景 的不确定性。 针对不确定性情景下的决策 , 国内外学者开展了
可能 带着 最 良好 的愿 望 . 却 可 能导 致全 局 的混沌 。张 茉楠和李汉铃( 2 0 0 3 ) 构 建 了不 确定 性 情 景 下 决策 主
维及其决策管理体 系等方面的系统研究 。本文基于

SOP与预算管理课件

SOP与预算管理课件

归还贷款计划 表格:归还贷款计划表
损益预算 表格:损益预算表
现金流量预算 表格:现金流量预算 表格:采购支出预算 表格:资本性支出预算
资产负债预算 表格:资产负债预算
融资计划 表格:融资计划表
举例:HP公司S&OP程序
1. 2. FIVE YEAR OBJECTIVES
Specific direction and achievable milestones for each process 3. 4. 5.
3、S&OP及预算的执行
集团公司S&OP及预算的总体框架
集团战略规划
年度S&OP及 预算
生产 计划
集团年度经营目标
集团财务预算
事业部经营指标及策略 事
事业部销售计划
业 部


研发 工程服务 人力资源
计划
计划
计划
投资

计划 。。。

集团年度经营目标的设立
(1)平衡记分卡 背景介绍:罗勃特S.卡普兰是哈佛商学院会计系的教授。大卫P.诺顿是麻
……
……
……
合计
按区域
区 域产
品 销售目标
华 南 ……
1 2 3 4 5 6 7 8 9 10 11 12
合计
事业部销售计划
(2)销售要货计划(发货计划)
年度产品发货计划 • 数量确定:总发货数量=订货数量*发货率+未交付数量 • 进度确定:按平均交货期后推
产品类别 产品名称 预计销售或要 1 2 3 4 5 6 7 8 9 10 11 12 货
S&OP(销售运作计划)
什么是S&OP
S&OP是公司每月一次(或更频繁地)滚动更新营运计划的动态过程。

运营管理课件10_chapt.10_综合计划及其分解

运营管理课件10_chapt.10_综合计划及其分解
预测需求量 顾客订单 POH
主生产计划 ATP
六月
固定批量=80 七月
周次
周次
12345 678
20 20 20 20 40 40 40 40
23 15 8 4 0 0 0 0
22 2 62 42 2 42 2 42
80
80
80
7
68
80
80
运营管理
-20-
朱晓宁 博士
MPS的时间围栏
时期
1
2
3
朱晓宁 博士
算例
1
需求
310
正常生产
450
生产 能力
加班生产
90
外协
200
库存 期初
260
信息 期末
正常生产
100
单位 加班生产
150
成本 外协
190
单位持有费用 30
运营管理
-10-
计划期
2
3
850
1500
450
750
90
150
200
200
4 350 450 90 200 300
朱晓宁 博士
➢ 用表
➢ 总经理:“你们想想办法,做好下一季度的产销平衡吧,别指望 上上帝来帮助我们… …”
运营管理
-2-
朱晓宁 博士
第10章 综合计划与MPS
10.1 综合计划 10.2 编制综合计划的方法 10.3 主生产计划
运营管理
-3-
朱晓宁 博士
10.1 综合计划
综合计划:企业一年左右的中期生产计 划,“综合”的含义就是把企业的主要 产品或服务归为一类,视为一种产品。
么问问题题??

大型复杂工程管理的方法论和方法_综合集成管理_以苏通大桥为例

大型复杂工程管理的方法论和方法_综合集成管理_以苏通大桥为例

1大型工程的系统复杂性工程是人类为了实现某一特定的目的,依据一定的科学技术原理与自然规律,通过有序地整合资源,以造物为核心的活动。

大型复杂工程一般是指工程规模宏大、结构关联紧密、技术要求高、施工难度大、知识涉及面广、参建单位多、建设环境复杂,对社会发展具有重大持续性影响的一类工程。

复杂工程或工程是“复杂的”除包含诸如工程规模、技术、投资等工程直观“复杂性”,更需要我们从系统与环境的视角认识大型工程的复杂性,例如:①这类工程的开放性更强、与环境的关联性更紧密;②对这类工程的规划与论证,要从更广的工程、经济与社会的关联进行综合评估;③这类工程的建设主体一般由多个群体组成;④工程目标具有多元性,即使工程直接目标,如质量、安全、成本、进度等也彼此约束和冲突;⑤工程设计和施工方案的比对和遴选,一般已不再存在“绝对最优解”,每个方案一般只能是“非劣解”;⑥工程建设主体在整合资源过程中,一般会缺乏相应的知识与经验,缺乏必要的工程控制能力和驾驭能力;⑦工程建设过程中存在着复杂的组织行为;(8)工程建设过程中存在着系统演化及路径依赖。

以上关于工程在系统层面上的复杂性给工程管理带来了一系列难题,并且呈现出问题的层次性,一般来说,越往上面临的问题越复杂,如图1所示。

图1大型复杂工程问题的层次性2复杂性管理的方法论和方法传统管理学思维和范式把管理对象看成是确定性的、有序稳定的和可预测的,它是从构成论意义上而非生成论意义上来考察现实世界[1]。

随着复杂理论研究的不断深入和人们认识世界和改造世界的边界不断扩大,传统的管理方法遇到了挑战。

控制论及管理科学专家比尔说:旧世界的特点是管理事务,新世界的特点需要处理复杂性[2]。

著名管理学家威廉·哈拉尔也指出:复杂性的增加将需要做出变革,因为人们不可能通过自上而下的中心控制体制对复杂的环境加以控制[3]。

因此需要把复杂性引入管理,即“复杂性管理”,它包含2层含义,一个是被管理的对象是个复杂系统,另外一个是要运用复杂系统的相关理论来进行管理[4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑性:方法与路线要具体、步骤清楚,不 存在间断,重点阐述“能够解决”。
Nanjing University
• 存在问题:
空话、套话、虚话多。如:应用了“理论联 系实际的方法”、“定性定量相结合的方法”、 “数学模型和实证相结合方法”等,或罗列大量 的新科学名词,为方法而方法。 没有指明方法在研究中的具体作用。不知道 怎么用?用在哪儿?针对性在哪儿?合理性与有 效性在哪儿?
Nanjing University
• 特色与创新论述:
项目申请之灵魂:关键在于提炼与概括。
不同于他人(工作)的新思想、新思路、新 方法等,包括理论性、技术性,问题新,但不要 重复阐述研究内容,而是要抽象概括学术思想与 学术原理。
Nanjing University
• 例:本研究首次将„„应用于„„;
Nanjing University
关于 自然科学基金管理学部 项目申请
盛昭瀚
2010.11.30.上海
Nanjing University
2010年: 总申请数 5930项,增幅11.13% (6%初筛掉) 总经费数 29409万,增幅35.4% (服务科学重大项目1千万) 面上项目资助率 14.91% 青年项目资助率 17.44% 杰出青年基金项目\创新团队\重点项目
• 理论依据: 对为什么要开展本选题研究做出清晰、 明确、充分、有说服力的论证。
Nanjing University
• 研究意义表述:
(1). 科学意义与学术价值的基本表述; (2). 经济、社会、管理的应用前景的表述。
(3). 其他,如学科发展等意义。
Nanjing University
• 注意点:
Nanjing University
• 科学问题凝练:
–超市面向顾客的企业库存问题 多元随机条件下库存问题研究(抽象) –多个中小企业案例调查 我国中小企业发展战略研究(概括) –车次排序研究 整数规划及排序优化研究(凝练) –已有理论研究再深入 非光滑多目标Stackelberg问题算法研究(深化)
但必须解决几个重要的运营决策问题。
Nanjing University
题目要有新意、切忌重复 、雷同,要能吸引眼球、使人 关注、引起好奇心。
Nanjing University
• 选题基本要求:
不要与自己已有工作基础脱节,盲 目跟从和赶潮流。 国外的前沿不都是我国的前沿。
Nanjing University
• 选题不要成为: 1.开发性项目,如: 工程进度变更管理程序设计 移动客户管理系统 大学生就业信息数据库 中国海洋科学文献目录库系统 注:它们多为成熟技术应用、延拓,缺少创新
Nanjing University
2. 行业、部门、单位管理工作及政策研究,如: 高等学校财务审计研究 上海市人口容量及对策研究 我国新能源发展战略 城市卫生费管理改革研究
利用„„构建了„„模型,并„改进并完善 了„„。 在„„方面提出了„„ 探索了„„ 着重研究了„„
• 注意:不能把运用某项技术、方法理解为创新;
不能与研究目标、内容混为一谈。
Nanjing University
• 不能笼统地表述为: 研究视角的创新、方法的创新等抽象概念。 对“(首次)提出„„”要有理由说明其科学 性和创新性。 对”填补„„空白”更要有充分的根据。 不要自己对水平(国际先进等)下结论。
设备易故障ATO供应链价格与生产联合动态优化策 略研究
Nanjing University
• 存在问题:
(1). (2). (3). (4). (5). (6). 内容过多,层次不清; 内容“大”,形成“大题小做”; 内容“虚”,空洞无物; 内容“平”,无创新性; 内容“泛”,涉及整个领域,不集中; 内容“重”,与已有研究雷同。
Nanjing University
研究现状论述:
清晰地介绍和论述与你申请书有关的国内外 同行相关工作的历史、现状、不足并做出恰当的 评价。主要包括:
目前主要在做些什么?谁在做?谁做的 好?不足之处在哪里?你有什么看法?为你 如何考虑做得更好打下伏笔.
Nanjing University
• 撰写方式:
Nanjing University
基本程序: 指南----提交申请书---通讯评审(评价等级)----会 议评审(通讯评价等级是重要 依据).
Nanjing University
• 为什么? —— • 做什么? —— • 怎么做? —— • 凭什么? ——
项目选题与立项依据 研究内容与研究目标 研究方法与技术路线 研究基础与研究团队
综上所述,本课题的研究有着„„„意义和价值.
Nanjing University
理论导向型项目:切忌理论脉络不清,缺乏 逻辑性; 问题导向型项目:切忌就事论事,缺乏理论 升华。
Nanjing University
研究目标与内容
Nanjing University
• 研究目标:选题的适当具体化;又是研究内容
Nanjing University
• 拟解决关键问题:
什么是关键问题?研究内容(拟解决的几个 具体问题)中的关键点(核心、难点),解决了 它(们),就体现了创新,达到了目标,完成了 项目。
Nanjing University
• 要求:
(1). 找出、找准关键问题; (2). 重点阐述“如何解决”它们的基本思路。
(1). 紧扣选题,迅速切入方向与热点问题; (2). 展开相关方向上的国内外研究现状(纵、横、 新); (3). 阐明存在的不足; (4). 你的选题与解决(完善、改进)不足之逻辑关 系与合理性。
Nanjing University
• 参考文献:
(1). (2). (3). (4). 以论文为主,国际刊物为主; 文献除经典文献外,要新; 列出重要的代表性文献; 文献要与选题有关联度。
Nanjing University
• 注意点:
(1). (2). (3). (4). (5). 深入浅出,让人明白、理解、赞赏; 不要轻易否定他人工作; 不要轻率夸大自己工作的意义; 语言平和,不要绝对化; “目前这方面还是空白”不是“充分”理由
例:一个项目的描述:
Nanjing University
技术路线
Nanjing University
先开发设备易故障ATO供应链绩效评价模型体系,在简单的 ATO供应链中,放松相关假设,如将 组件库存分配的FCFS策略变为优先权分配策略; 设备维修策略由修正性策略变为预防性维修策略 对绩效评价模型体系开发计算方法 开发设备易故障ATO供应链组件生产与库存分配优化模型: 证明最优策略的存在性,然后在修正性策略情况下,建立 组件生产与库存分配联合决策模型模型,证明最有策略的 存在性及性质,讨论设备可靠性与制造设备维修策略对组 件最优生产与库存分配策略的影响 再开发设备易故障ATO供应链组件生产与制造设备维修联合 决策模型 接着开发设备易故障ATO供应链组件生产与成品价格调整联 合模型
Nanjing University
• 选题:
问题要具体、明确
• 要点:要有新意
有能力完成 要有管理“故事” 大小要恰当、聚焦
Nanjing University
• 选题基本原则
一般要有实际背景(立地),同 时要有科学意义和学术价值(顶天).
最高境界:在国际学术平台使用通用语言描述 中国情景下的原创管理科学理论。 科学问题的凝炼: 在已有理论基础上深化的理论导向型 在实际问题基础上抽象的问题导向型
现有研究取得了重要成果和进展,在„„方面为我们的 研究奠定了基础,但是,
在„„的研究中,主要处理了„„问题,而对„考虑较少. 在一定程度上,对„研究作了简化处理,如„„,这与实 际情况有一定的差距。
对供应链的„„研究相对不足。
在关于„„的计算方法上需要进一步改进。
目前,还没有考虑@@@对***的影响.
2、研究它们之间的相互关系
3、提供由它们联合形成的关于运营决策的优势
为企业制定组件库存分配策略、组件生产控制策略、组件 制造设备维修策略与成品价格控制策略提供管理建议
Nanjing University
• 研究内容:研究目标的进一步分解与细化,是
课题要做的具体问题。问题要有创新性与科学性 ,是“科学问题”的适当分解。 内容要分解适当(可完成),与目标呼应, 体现重点和关键。
例:设备易故障ATO供应链绩效分析与运营策略研究
——科学问题的凝练
Nan , 越来越多的企业在采用按单装配(Assemble-toOrder,ATO) 供应链方式为顾客提供产品。如在电子行业 中,如果采用按库存生产(Make-to-Stock,MTS)供应链方式 将造成大量的滞销品库存积压,又面临畅销品不能供应市 场;如果完全采用按单制造(Make-to-Order,MTO)供应链 方式,将会导致产成品交货期太长,因此,如果采用ATO 供应链将通用的组件按照存货生产方式提前生产为库存品 (MTS),产成品在接到顾客订单以后再进行个性化装配 (MTO)。Dell 就采用了这种供应链方式。
(1).不要变为对领域、方向的意义与重要性;
(2).不要夸大,不要泛指“前沿”、“热点”、 “领先”。。。。 从该问题研究完成后,对相关领域与方向的 科学贡献与应用价值等方面写。
Nanjing University
例:
为„„丰富了新的思路并提供了新的理论依据;
为„„问题的解决构建了新的方法; 对我国企业„„具有进一步的推动意义; 有助于揭示„„对„„的影响.
Nanjing University
研究内容是项目(名称)的基础,研究目标 是研究内容的指导。 研究目标要明确,研究内容要具体。
例:供应链的一个项目的研究内容
Nanjing University
相关文档
最新文档