一般线性回归分析研究案例

合集下载

相关和回归的有趣案例

相关和回归的有趣案例

相关和回归的有趣案例
相关和回归是统计学中的重要概念,用于探索变量之间的关系。

以下是一些有趣的相关和回归案例:
1. 身高和体重:这是一个常见的相关和回归的例子。

一般来说,身高和体重之间存在正相关关系,即身高越高的人通常体重也越重。

通过回归分析,我们可以更精确地预测一个人的体重,给定其身高。

2. 考试分数和努力学习:这是一个典型的线性回归的例子。

一般来说,考试分数和努力学习之间存在正相关关系,即努力学习的人通常考试分数也更高。

通过回归分析,我们可以预测一个人在考试中的表现,给定其努力学习的程度。

3. 股票价格和通货膨胀:股票价格和通货膨胀之间可能存在一定的关系。

当通货膨胀率上升时,股票价格可能会下跌,因为通货膨胀可能导致消费者购买力下降,从而降低对商品和服务的消费需求,进而影响公司的盈利和股票价格。

4. 气候变化和冰川融化:气候变化和冰川融化之间存在相关性。

全球气候变暖可能导致冰川融化,因为温度升高会导致冰川融化。

通过分析气候变化和冰川融化的数据,我们可以更好地了解全球气候变化的趋势和影响。

5. 广告投入和销售额:广告投入和销售额之间可能存在一定的关系。

一般来说,广告投入越多,销售额也可能越高。

通过回归分析,我们可以预测销售额,给定广告投入的金额。

这些案例表明,相关和回归分析可以帮助我们更好地理解数据之间的关系,并为预测、决策提供有用的信息。

线性回归分析实验报告

线性回归分析实验报告

线性回归分析实验报告实验报告:线性回归分析一、引言线性回归是一种基本的统计分析方法,用于研究自变量与因变量之间的线性关系。

此实验旨在通过一个实际案例对线性回归进行分析,并解释如何使用该方法进行预测和解释。

二、实验方法1.数据收集:从电商网站收集了一份销售量与广告费用的数据集,其中包括了十个月的数据。

该数据集包括两个变量:广告费用(自变量)和销售量(因变量)。

2.数据处理:首先对数据进行清洗,包括处理缺失值和异常值等。

然后进行数据转换,对广告费用进行对数转换,以适应线性回归的假设。

3.构建模型:使用线性回归模型,将广告费用作为自变量,销售量作为因变量,构建一个简单的线性回归模型。

模型的公式为:销售量=β0+β1*广告费用+ε,其中β0和β1是回归系数,ε是误差项。

4.模型评估:通过计算回归系数的置信区间和检验假设以评估模型的拟合程度和相关性。

此外,还使用残差分析来检验模型的合理性和独立性。

5.模型预测:根据模型的回归系数和新的广告费用数据,预测销售量。

三、实验结果1.数据描述:首先对数据进行描述性统计。

数据集的平均广告费用为1000元,标准差为200元。

平均销售量为1000件,标准差为150件。

广告费用和销售量之间的相关系数为0.8,说明两者存在一定的正相关关系。

2. 模型拟合:通过拟合线性回归模型,得到回归系数的估计值。

估计值的标准误差很小,R-square值为0.64,说明模型可以解释63%的销售量变异。

3.置信区间和假设检验:通过计算回归系数的置信区间,发现β1的置信区间不包含零,说明广告费用对销售量有显著影响。

假设检验结果也支持这一结论。

4.残差分析:通过残差分析,发现残差的分布基本符合正态性假设,没有明显的模式或趋势。

这表明模型的合理性和独立性。

四、结论与讨论通过线性回归分析,我们得出以下结论:1.广告费用对销售量有显著影响,且为正相关关系。

随着广告费用的增加,销售量也呈现增加的趋势。

2.线性回归模型可以解释63%的销售量变异,说明模型的拟合程度较好。

回归经典案例

回归经典案例

回归经典案例
回归分析是一种统计学方法,用于研究变量之间的关系。

以下是一个经典的回归分析案例:
假设我们有一个数据集,其中包含一个人的身高(height)和体重(weight)信息。

我们想要研究身高和体重之间的关系,以便预测一个人
的体重。

1. 首先,我们使用散点图来可视化身高和体重之间的关系。

从散点图中可以看出,身高和体重之间存在一定的正相关关系,即随着身高的增加,体重也会增加。

2. 接下来,我们使用线性回归模型来拟合数据。

线性回归模型假设身高和体重之间的关系可以用一条直线来表示,即 y = ax + b。

其中,y 是体重,x 是身高,a 和 b 是模型参数。

3. 我们使用最小二乘法来估计模型参数 a 和 b。

最小二乘法是一种优化方法,它通过最小化预测值与实际值之间的平方误差来估计模型参数。

4. 拟合模型后,我们可以使用回归方程来预测一个人的体重。

例如,如果我们知道一个人的身高为米,我们可以使用回归方程来计算他的体重。

5. 最后,我们可以使用残差图来检查模型的拟合效果。

残差图显示了实际值与预测值之间的差异。

如果模型拟合得好,那么残差应该随机分布在零周围。

这个案例是一个简单的线性回归分析案例。

在实际应用中,回归分析可以应用于更复杂的问题,例如预测股票价格、预测疾病发病率等。

一般线性回归分析案例

一般线性回归分析案例

一般线性回归分析案例1、案例为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。

这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。

表一血红蛋白与钙、铁、铜必需元素含量(血红蛋白单位为g;钙、铁、铜元素单位为ug)case y(g)ca fe cu17.0076.90295.300.84027.2573.99313.00 1.15437.7566.50350.400.70048.0055.99284.00 1.40058.2565.49313.00 1.03468.2550.40293.00 1.04478.5053.76293.10 1.32288.7560.99260.00 1.19798.7550.00331.210.900109.2552.34388.60 1.023119.5052.30326.400.823129.7549.15343.000.9261310.0063.43384.480.8691410.2570.16410.00 1.1901510.5055.33446.00 1.1921610.7572.46440.01 1.2101711.0069.76420.06 1.3611811.2560.34383.310.9151911.5061.45449.01 1.3802011.7555.10406.02 1.3002112.0061.42395.68 1.1422212.2587.35454.26 1.7712312.5055.08450.06 1.0122412.7545.02410.630.8992513.0073.52470.12 1.6522613.2563.43446.58 1.2302713.5055.21451.02 1.0182813.7554.16453.00 1.2202914.0065.00471.12 1.2183014.2565.00458.00 1.000 2、回归分析表2 变量说明表输入/移去的变量a模型输入的变量移去的变量方法1cu, fe,ca b.输入a. 因变量: yb. 已输入所有请求的变量。

回归分析实验案例数据

回归分析实验案例数据

回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。

在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。

本文将介绍一个回归分析实验案例,并分析其中的数据。

案例背景:一家汽车制造公司对汽车的油耗进行研究。

他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。

数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。

2. 汽车价格:每辆汽车的价格,单位为美元。

3. 汽车速度:以每小时英里的速度来衡量。

4. 引擎大小:汽车引擎的容量大小,以升为单位。

5. 油耗:每加仑汽油行驶的英里数。

数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。

即引擎越大,汽车价格越高。

2. 汽车速度与油耗之间呈现负相关。

即速度越高,油耗越大。

3. 汽车引擎大小与油耗之间存在正相关关系。

即引擎越大,油耗越大。

结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。

这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。

2. 汽车速度与油耗之间呈现负相关。

这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。

3. 汽车引擎大小与油耗之间存在正相关关系。

这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。

总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。

通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。

这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。

线性回归案例

线性回归案例

线性回归案例线性回归是统计学中一种常见的建模方法,用于研究自变量和因变量之间的关系。

在本文中,我们将通过一个实际的案例来介绍线性回归的应用和分析过程。

假设我们是一家房地产公司的数据分析师,公司希望了解房屋的售价与其面积之间的关系,以便更好地定价和销售房屋。

我们收集了一些房屋的数据,包括房屋的面积和售价,现在我们将利用线性回归模型来分析这些数据。

首先,我们需要对数据进行可视化分析,以便更直观地了解变量之间的关系。

我们可以绘制散点图来展现房屋面积与售价之间的关系,通过观察散点图,我们可以大致判断出是否存在线性关系,并初步了解数据的分布情况。

接下来,我们可以利用线性回归模型来拟合数据,建立房屋面积与售价之间的数学模型。

线性回归模型的数学表达式为,Y = β0 + β1X + ε,其中Y表示因变量(售价),X表示自变量(面积),β0和β1分别表示截距和斜率,ε表示误差。

通过拟合线性回归模型,我们可以得到最优的截距和斜率的估计值,从而建立起房屋面积与售价之间的线性关系。

同时,我们还可以利用拟合的模型对房屋售价进行预测,从而帮助公司更好地制定定价策略。

除了建立模型和进行预测,我们还需要对模型的拟合效果进行评估。

常用的评估指标包括均方误差(MSE)、决定系数(R-squared)等,这些指标可以帮助我们判断模型的拟合程度和预测精度,从而更好地理解房屋面积与售价之间的关系。

最后,我们需要对线性回归模型的结果进行解释和分析,从统计学的角度来解释房屋面积对售价的影响程度。

通过对模型结果的解释,我们可以为公司提供更深入的市场分析和房屋定价建议,从而更好地满足客户的需求。

通过以上实例,我们可以看到线性回归在实际数据分析中的应用和重要性。

通过建立数学模型、进行预测和评估,线性回归可以帮助我们更好地理解变量之间的关系,为决策提供更有力的支持。

希望本文的案例分析能够帮助读者更好地理解线性回归的应用和分析过程,为实际工作中的数据分析提供一些启发和帮助。

数据分析线性回归报告(3篇)

数据分析线性回归报告(3篇)

第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。

本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。

二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。

2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。

(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。

(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。

三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。

2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。

(2)计算回归系数:使用最小二乘法计算回归系数。

(3)检验模型:对模型进行显著性检验、方差分析等。

四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。

(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。

2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。

(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。

3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。

(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。

(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。

线性回归分析范文

线性回归分析范文

线性回归分析范文线性回归是一种常用的统计分析方法,用于研究变量之间的线性关系。

它可以揭示自变量和因变量之间的数量关系,通过建立一个最佳拟合的线性模型来预测因变量的值。

线性回归广泛应用于经济、金融、社会科学和自然科学等领域。

线性回归模型的基本形式如下:Y=β0+β1X1+β2X2+…+βnXn+ε其中,Y是因变量,X1、X2、…、Xn是自变量,β0、β1、β2、…、βn是回归系数,ε是随机误差项。

线性回归的前提假设包括:1.线性关系假设:自变量和因变量之间是线性关系;2.同方差性假设:随机误差项ε在所有自变量取值下具有相同的方差;3.独立性假设:随机误差项ε之间是独立的;4.正态性假设:随机误差项ε服从正态分布。

线性回归的核心任务是通过最小化残差平方和来求解最佳的回归系数。

残差是预测值与实际观测值之间的差异。

最小二乘法是线性回归中常用的方法,它的目标是使残差平方和最小化,通过求解偏导数来得到最佳回归系数的估计。

线性回归模型的拟合程度可以通过判定系数R²来评估,其取值范围在0到1之间。

R²的值越接近1,说明模型越能解释因变量的变异性;反之,R²的值越接近0,说明模型的解释能力越弱。

线性回归模型的应用包括:1.预测与预测:根据自变量的取值,可以使用线性回归模型来预测因变量的值。

例如,在经济学中,可以根据经济指标,如GDP和失业率,来预测未来的经济增长率。

2.因果推断:线性回归模型可以用于研究自变量对因变量的影响程度。

通过估计回归系数,可以分析自变量的影响方向和强度。

例如,在医学研究中,可以通过线性回归分析来确定吸烟对呼吸道疾病的影响。

3.变量选择:线性回归可以用于识别对因变量影响最大的自变量。

通过分析回归系数的显著性,可以确定哪些自变量对因变量具有重要的解释能力。

这对于解释和理解研究问题非常有价值。

然而,线性回归也存在一些限制:1.假设限制:线性回归模型对回归系数的假设比较严格,要求线性关系、同方差性和独立性。

线性回归案例分析

线性回归案例分析

线性回归案例分析【篇一:线性回归案例分析】散布图—练习总评估价某建筑公司想了解位于某街区的住宅地产的销房产 79,760售价格y与总评估价x之 98,480间的相关程度到底有多 110,655大?于是从该街区去年 96,859售出的住宅中随机抽10 94,798的总评估价和销售资料 139,850如右表 170,34110 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 相关分析案例justin tao 销售价格y美元 95,000 116,500 156,900 111,000 110,110 100,000 130,000 170,400 211,500 185,000 绘制散布图,观察其相关关系输入数据点击graph scatterplot 弹出对话框,依次对应x、y输入变量列点击ok 散布图及关系分析从散布图可以看出:总评估价值x与销售价格y存在线性正相关,相关程度较大;随x增大,y有增长趋corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 计算相关系数输入数据点击stat basic statistics correlation… 弹出对话框,输入x、y变量列点击ok 散布图(相关分析)案例下面是表示某公司广告费用和销售额之间关系的资试求这家公司的广告费和销售额的相关系数广告费 (10万) 销售额 (100万) 2022 15 17 23 18 25 10 20 得出相关系数及检验p值corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 0.002 0.05 (留意水准) ,广告费和销售额的相关关系是有影响的 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 回归分析案例通过下例观察回归分析和决定系数。

线性回归分析与统计案例

线性回归分析与统计案例

A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于 20%
B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于 20%
C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于 20%
D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于 20%
【解析】 观察图形,可知人体脂肪含量与年龄正相关,且 脂肪含量的中位数小于 20%,故选 B.
独立性检验 (1)分类变量:变量的不同“值”表示个体所属的不同类别, 像这样的变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称为列联表.假设 有两个分类变量 X 和 Y,它们的可能取值分别为{x1,x2}和{y1, y2},其样本频数列联表(称为 2×2 列联表)为
2×2 列联表
y1
请注意 1.以考查线性回归系数为主,同时可考查利用散点图判断 两个变量间的相关关系. 2.以实际生活为背景,重在考查回归方程的求法.
课前自助餐
两个变量的线性相关 (1)正相关. 在散点图中,点散布在从左下角到右上角的区域.对于两 个变量的这种相关关系,我们将它们称为正相关. (2)负相关. 在散点图中,点散布在从左上角到右下角的区域,两个变 量的这种相关关系称为负相关.
【答案】 B
(2)对四组数据进行统计,获得以下关于其相关系数的比较, 正确的是( )
A.r2<r4<0<r3<r1 C.r4<r2<0<r3<r1
B.r4<r2<0<r1<r3 D.r2<r4<0<r1<r3
【解析】 由相关系数的定义及散点图所表达的含义,可知 r2<r4<0<r3<r1,故选 A.
5.在一项打鼾与患心脏病的调查中,共调查了 1 671 人,经 过计算得 K2=27.63,根据这一数据分析,我们有理由认为打鼾 与患心脏病是____________的(有关,无关).

一般线性回归分析案例

一般线性回归分析案例

一般线性回归分析案例
案例背景:
在本案例中,我们要研究一个公司的运营数据,并探究它们之间的关
联性。

这家公司的运营数据包括:它的营业额(单位:万元)、产品质量
指数(QI)、客户满意度(CSI)和客户数量。

我们的目标是建立营业额
与其他变量之间的关联性模型,来预测公司未来的营业额。

资料收集:
首先,我们需要收集有关营业额、QI、CSI和客户数量的数据,以进
行分析。

从历史记录上可以收集到过去六个月的数据。

数据预处理:
接下来,我们需要对数据进行预处理,可以使用Excel进行格式整理,将数据归类分组,并计算总营业额。

建立模型:
接下来,我们就可以利用SPSS软件来建立一般线性回归模型,模型
表示为:Y=β0+β1X1+β2X2+…+βnXn。

其中,Y代表营业额,X1、
X2…Xn代表QI、CSI和客户数量等因素。

模型检验:
接下,我们要对模型进行检验,确定哪些因素与营业额有关联性,检
验使用R方和显著性检验确定系数的有效性。

统计学案例——相关回归分析报告

统计学案例——相关回归分析报告

《统计学》案例 -- 相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。

经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。

2、数据的收集序号回流温度(C)液化气收率(%序号回流温度(C)液化气收率(%13613.1164212.3 23912.8174311.9 34311.3184610.9 44311.4194410.4 53912.3204211.5 63812.5214112.5 74311.1224511.1 84410.8234011.1 93713.1244611.1 104011.9254710.8 113413.6264510.5 123912.2273812.1 134012.2283912.5 144111.8294411.5 154411.1304510.9目标值确定之后,我们收集了某年某季度的回流温度与液化气收率的30组数据(如上表),进行简单直线回归分析。

3. 方法的确立设线性回归模型为y = * [x * ;,估计回归方程为? = b Q biX将数据输入计算机,输出散点图可见,液化气收率y具有随着回流温度x的提高而降低的趋势。

因此,建立描述y 与x 之间关系的模型时,首选直线型是 合理的。

从线性回归的计算结果,可以知道回归系数的最小二乘估计值b °=21.263和b i =-0.229,于是最小二乘直线为$ =21.263 -0.229X这就表明,回流温度每增加1C,估计液化气收率将减少0.229%。

线性回归案例ppt课件

线性回归案例ppt课件

2003-1 -1.151 -0.331 0.299 4.085 0.188 11.919 0.004 0.078 21.492 -0.403
2003-2 0.338 -0.611 0.3 1.402 5.369 18.418 -0.669 0.167 20.456 0.211
2003-3 0.722 0.794 0.016 -2.929 0.749 -20.886 -0.733 0.327 21.532 1.085
.
回归分析的根本目的
探寻因变量同自变量之是的数量关系,为此需假设它们之间 的数量关系满足某种函数形式,而最简单最常用的函数形式 就是线性函数。
y i0 1 x i1 2 x i2 p x ip i i1,2,...n,
➢ 其中 0为常 ,j数 (j1,项 2, ,p)为第 j 个解释性变量 xij











2002-498 0.3 0.5 0.255 3.167 2.5 16.795 -1.419 -0.071 19.701 -0.25
2002-499 0.484 0.127 0.287 -2.593 2.473 -4.511 0.4 0.184 20.199 0.884
2002-500 0.063 -0.416 0 -1.739 2.482 -4.809 1.793 -0.009 19.747 1.017
.
预测
.
令R
2 i
为辅助回归的判定系数
则方差膨胀因子为:
VIFi
1 1 Ri2
它反映了在多大程度上第i个自变量所包含的信息
被其他自变量覆盖
• 当VIF≥10时,说明存在多重共线性。

一般线性回归分析研究案例

一般线性回归分析研究案例

一般线性回归分析案例1、案例为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康地影响,随机抽取了30个观测数据,基于多员线性回归分析地理论方法,对儿童体内几种必需元素与血红蛋白浓度地关系进行分析研究.这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu).表一血红蛋白与钙、铁、铜必需元素含量(血红蛋白单位为g;钙、铁、铜元素单位为ug)case 12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30y(g)7.007.257.758.008.258.258.508.758.759.259.509.7510.0010.2510.5010.7511.0011.2511.5011.7512.0012.2512.5012.7513.0013.2513.5013.7514.0014.25ca76.9073.9966.5055.9965.4950.4053.7660.9950.0052.3452.3049.1563.4370.1655.3372.4669.7660.3461.4555.1061.4287.3555.0845.0273.5263.4355.2154.1665.0065.00fe295.30313.00350.40284.00313.00293.00293.10260.00331.21388.60326.40343.00384.48410.00446.00440.01420.06383.31449.01406.02395.68454.26450.06410.63470.12446.58451.02453.00471.12458.00cu0.8401.1540.7001.4001.0341.0441.3221.1970.9001.0230.8230.9260.8691.1901.1921.2101.3610.9151.3801.3001.1421.7711.0120.8991.6521.2301.0181.2201.2181.0002、回归分析表2变量说明表输入/移去地变量a模型输入地变移去地变方法量量cu,fe,1.输入ca ba.因变量:yb.已输入所有请求地变量.表2说明了应变量和自变量及自变量进入方程地情况表3模型总体参数表(1)模型汇总b模型R R方调整R标准估计地方误差1.902a.813.792.993a.预测变量:(常量),cu,fe,ca.b.因变量:y由表3可知,相关系数R为0.902,说明自变量与因变量有比较好地相关性.R方为0.813,接近于1,说明总体回归效果较好.++++表4回归方差分析表(1)Anova a模型平方和df均方F Sig.回归111.587337.19637.743.000b1残差25.62326.986总计137.21029a.因变量:yb.预测变量:(常量),cu,fe,ca.表4是用方差分析对整个回归方程做了显著性检验,其中F=37.743,对应地概率P值近似为0.若显著性水平ᵅ为0.05,则因概率小于ᵅ,拒绝回归方程显著性检验地原假设,即回归系数不同时为0,解释变量全体与被解释变量存在显著地线性关系,选择线性模型具有合理性.模型表5回归系数及显著性检验表(1)系数a非标准化系数标准系t Sig.相关性数B标准误差试用版零阶偏部分(常量)1.368 1.479.925.3641ca-.050.021-.223-2.370.026-.006-.421-.201fe cu .029.930.003.888.888.1039.8461.047.000.305.879.305.888.201.834.089a.因变量:y表5用方差分析对每个因变量做了偏回归分析,是关于回归系数及显著性检验地计算结果如下:在表中,常数项地t地显著性概率0.364大于0.05,表示常数项与0没有显著性差异,它不应出现在方程中.钙含量地t地显著性概率0.026小于0.05,表示钙含量地系数与0有显著性差异,钙含量应作为解释变量存在于方程中.铁含量地t地显著性概率0.000小于0.05,表示钙含量地系数与0有显著性差异,钙含量应作为解释变量存在于方程中.铜含量地t地显著性概率0.305大于0.05,表示铜含量地系数与0有显著性差异,铜含量应作为解释变量存在于方程中.由此可见,钙含量和铁含量可以作为解释变量在方程中来解释血红蛋白含量地变化,而铜含量则应该被剔除.将铜含量从解释变量中剔除再次做回归分析,地到如下分析结果:表6模型总体参数表(2)模型汇总b模型R R方调整R标准估计地方误差1.897a.805.791.995a.预测变量:(常量),fe,ca.b.因变量:y(g)自变量减少了一个“铜”含量后,R方由0.813变为0.805,由此可见,去掉铜元素含量后,线性回归方程中地自变量对因变量地影响变化不大;表7回归方差分析表(2)Anova a模型平方和df均方F Sig.回归110.506255.25355.865.000b1残差26.70427.989总计137.21029a.因变量:y(g)b.预测变量:(常量),ca,fe.由表7看出,F值由原来地37.743上升为55.865,F值越大越好,表明整体回归效果更好.表8回归系数及显著性检验表(2)系数a模型非标准化系数标准系t Sig.相关性数B标准误差试用版零阶偏部分1(常1.528 1.474 1.037.309量)fe.030.003.91510.570.000.879.897.897 ca-.041.020-.184-2.124.043-.006-.378-.180a.因变量:y(g)表7多重共线性检验地特征值及条件指数共线性诊断a模型维数特征值1 2.969 12.0213.010条件索方差比例引(常量)fe1.000.00.0012.016.01.7217.185.99.28ca.00.47.53a.因变量:y(g)表6中,最大特征值为2.969,其余依次快速减小.第三列各个条件指数均不大,可认为多重共线性较弱.图1:图1是残差正态性地图形结果,可以看到参数围绕基准线仍存在一定规律性.图2回归方程标准化预测值与标准化残差散点图.图2表明,不存在明显地异方差现象.最终地回归方程为: Z=-0.184X+0.915Y其中,Z 表示儿童梅100毫升血中地血红蛋白地含量,单位为g; X 表示儿童每100毫升血中钙元素地含量,单位为ug ; Y 表示儿童每100毫升血中铁元素地含量,单位为ug.方程表明,铁元素含量与血红蛋白含量存在正相关,而钙元素含量与血红蛋白含量存在 负相关性,由此,当人体内血红蛋白浓度偏低时,就需要补充铁元素,减少钙元素地摄 入量,铜元素则没有显著性影响.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理 版权为 个人所有This article includes some parts, including text, pictures, anddesign. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定, 不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study,research or appreciation,and other non-commercial or non-profit purposes,but at the same time,they shall abide by the provisions of copyright law and other relevant laws,and shall not infringe upon the legitimate rights of this website and its relevant obligees.In addition,when any content or service of this article is used for other purposes,written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information.It shall not misinterpret or modify the original intention of the content of this article,and shall bear legal liability such as copyright.。

线性回归分析案例

线性回归分析案例

问题的提出研丸学校中的教师的人均丁资和对学生的人均经费投入是否存在统计关系(所谢的统计关系足循变址存音不完全的线性义系人如果仃陡沓用米此檢型米做统计推帕二问题的处理如下表是1985年羌国50个州和哥伦比亚特区公立学枝中数师的人均工资y(美冗)和则学生的人均经费投入賈(荚尤九(数据來自应IIJMW分析第二版何曉群刘文卿著P6I习JS 2,16〉序号y X序巧y X1 19583 3346 27 22795 33662 20263 3114 28 21570 29203 20325 3554 29 22080 2980I 26800 1512 30 22250 3731L 3 29170 1669 31 209 10 28536 26610 1688 32 21800 © 25337 30678 5710 33 22934 27298 27170 5536 34 18143 23059 25853 4168 35 19538 264210 24500 354T 3G 204 CO 312411 24274 3159 37 21419 275212 27170 3621 38 25160 342913 30168 3782 39 22482 391711 26525 1217 10 20969 250915 27360 3982 41 27224 511016 21690 3568 12 25892 101217 2197 1 3155 43 22GI4 340218 20816 3059 44 24610 2«2919 18095 2967 45 22311 229720 20939 3285 46 25610 293221 22614 3914 47 26015 370522 24624 4517 48 25788 412323 27186 1349 49 29132 360821 33990 5020 50 41480 834925 23382 3591 51 258 15 37GG26 20627 2821处理过程1)作散点图井添加趋势线(用践性人yUpkxid Uy Xlky QQ2838J(M !1h yulkygUph^ic! Uy Yelky QQ2«:W3(>4IIhrt 卩丿Avvrw. 由散点图可知数据大致落在回归直线两侧•有异常值,但回归拟合优度如何有待进一步讨论•研九2)作回归(在excle中点工数据分析中的回归选项)111模?卩综述可知.相关泵数尺土0. 839128209.和关泵数的平方用=0.701639717.回归的拟合优度较好•回归标准差a»2287.1829S1,此处只逸取了50个样本副除了梵中一个〔共51个样本)•由散点图可知存在一个异常6000040000 20000由方差分析农可知.回归平方和=599043117. 5.自由度是1 •残差平方和 -251097887. 1.自由度£ 18. F 值司14.513387•仁在给定显善性水平a = 0.05 F ・ 显著性P 值=2. 6999H.由系数表可知.菽距顶=1271.0699.回归蔡数=3.29061603.回归方程为 尸1271.069943. 29061603.在显弟性水平« = 0.05T.回归乘数的压侑度为93% 的置倍X 间为也67231022. 3, 90889185]回山系数通过检翼‘ 7泗川系数显苦 不为()•3346 Line Fit Plot• 19583 ■预测195832000 4000 6000 8000 100003346上图为回归拟合巴线图.人致呈线性关系:hrSIDlA .()L1观测(fi 魚丹y 復艺i4dt 宦;«»ffL 備测r杯准找2;) 22518.0482 2255.0482 -0.9961674 26 23317 2831 -552.283 佔-0.24397122 23965.9193 -36 W. 9193 I.60837S9 27 21879.6fi87 -309. 66R7 0. 1367963 27217.0479 -417.047$ 0.18423QS 28 22077. 1(157 2.89434162 U. UO127<s4 27631.9561 1835.01386 0. 81063054 2151S. 35«3 -2298. 3583 1. QI 529975 28355. 601 -1715,601 -0.7711192 30 21659.1974 -719.19742 0.31770516 31060. 487, <W2・ 1X7 n -0.1翎9638 31 2U606 2(X)3 1193.79971 0.527360967 30487.9202 ■3317. 9202 -1.4656911 32 21251.16L 1682.83897 U. 7J33JH039 2598(?. 3$?5 -i, . •-O.O5$yiO7 33 19835.9:J9S -H12. 9?ys -0.621166.9 23912.88 49 557.115051 U. 24610555 :n 2U96I.«77I -14M. 8774 -0.63032310 22666. 1259 1607.87407 U. 71027829 35 22550. 9511 -20M. 9544 -0. 92367911 24186.3905 29S3. 605)46 1.31800934 36 21326. 8152 92.1547971 U. (H0709胡12 24716.1797 * •・、02S 2. 40834135 37 23551 3923 1605.40774 0. 7091^7913 26246.3162 27M CA2H2H0. 12310857 :•- 25259.1314 -2777. 1314 -1.226797614 25371. 3029 iy»5.6y7os U.87718159 39 2U527.2255 44L・ 774493 U. IM 1538615 21011.9879 2321. 9879 -I.025738 •1030172.0211 -2948. 0211 -I.3U22S8?16 22652.9635 678.963 36 -0.2949321 4l 25571.7399 320. 260115 U. I ll 17ISO17 22337.0613 521.0613 -0.6719301 42 23465.7456 -821.71562 -0. 363006118 22031.3276 -3938. 3276 -1.740)978 •1321580.2226 3059.77736 1. 3516茴523OSQ.7135 ■2111. 7135-0.9161151 H 19829. CH9 25L 1.38509 1. 1Q94QI24 •25150. 541 -2506.541 -1.1072644 i" 21919. 1561 3690.81391 63(11301221 27134.7825 ■251U. 7«25-1. 1U9138 46 21162. KU23 1552. 19772 U. 68.S6H327■26581 •601 LHU993 (J. 26663506 47 2583S. 27y«-50. 279781 -0. 0222111 2? 2S?«9.96 2 5200.03763 2. 29711637 48 211416125 4988.3674? 2. 2036199224 21097.5439 -715.5139 -0.3160915 49 39711. 1231 1735.57686 U 76(^9099亠|21553.8977 -926.89771 -0. 109457 5U 24665.5299 11S1.47011 U. 5219UJ83346 Residual Plot10000 枇5000望050003346山残差图可知.数据大致分布在0左右.满足G-M条件中的均值为0的条件•PROBABILITY OUTPUT分t匕排仓L y 分比井位y18036 51 242742 18443 W 245M5 1953S S5 2462120263 57 24640 ? 2Q325 5? 251&O11 20160 61 2561013 20627 2578815 20816 2584517 20939 2585319 20910 2589221 20969 26015肉21119 药52 321570 26610 Z7 21690 2680029 21800 2717031 21974 2717033 22080 2718635 22250 2722437 2234】273339 22482 2913241 22644 2947043 22644IS 22795 3067047 22934 33列0旧23382 41480Normal Probabi1i(y P1ot6000040000200000 20 40 60 80 100 120Sample Percentile【h正态杵概率检验可知.数据大致眼从iF•态分布.反过来说明残羌祸足G-M条件中的正态性位必三结论1综上所if. 1985年美国50个州和哥伦比亚特区公立学校中教师的人均工资y (黄元)与对学生的人均经费投入X (黄元)存在统计关系,回归方程为y-127L 0699-^3. 29061603,所采集的数据存在一个异常值,将Z別除再做回归便能消除其不R影响.回归系数显著不为S回归方程高度显苦.残差大致禰足GHM条件(均值为0、等方差.不相关人参孑文献哲⑴何晓鮮刘文御编著•应用回归分折•北京,中国人民大学出版补.2007o。

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)多重共线性分析财政收入是一个国家政府部门的公共收入。

国家财政收入的规模大小往往是衡量其经济实力的重要标志。

近20年来,我国财政收入一直保持着快速增长态势,经济总体发展良好。

一个国家财政收入的规模要受到经济规模等诸多因素的影响。

因此我们以财政收入为被解释变量,建立财政收入影响因素模型,分析影响财政收入的主要因素及其影响程度。

财政收入的因素众多复杂,但是通过研究经济理论对财政收入的解释以及对实践的考察,我们选取影响财政收入的因素为工业总产值、农业总产值、建筑业总产值、社会商品零售总产值、人口总数和受灾面积。

将这六个变量作为解释变量,财政收入作为被解释变量,利用1989~2003年数据建立中国国家财政收入计量经济模型,资料如下表。

表1 影响财政收入的因素资料(资料来源:《中国统计年鉴2004》)使用上述数据建立多元线性模型,采用普通最小二乘法得到国家财政收入估计方程为:1234562(0.46)(0.44)(8.59)(0.03)(3.80)(0.65)( 1.53)6922.5880.1260.9360.0400.5720.0920.0470.998620.56Y X X X X X X R F ---=-+-+++-==由上可以看出模型的拟合优度2R 和F 值都较大,说明建立的回归方程显著。

但在显著性水平为5%下, t (15)=2.131,大多数回归参数的t 检验不显著,若据此判断大部分因素对财政收入的影响不显著。

因此可以判定解释变量之间存在严重的多重共线性。

采用逐步回归法对解释变量进行筛选。

分别将Y 与各解释变量作一元线性回归方程,以拟合优度值最大的模型为基础,将其余变量依次引入方程中。

经过我们多次比较各模型的F 值和各参数的t 值,最终确定的模型为:242(1.79)(13.42)(35.57)519.6780.8120.7230.9971943.91Y X X R F -=-+==该模型的经济意义十分明显,即财政收入主要取决于农业总产值和社会商品零售总产值,各因素数量的变化引起财政收入总量变化的程度由各自的系数来反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般线性回归分析案例1、案例为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康地影响,随机抽取了30个观测数据,基于多员线性回归分析地理论方法,对儿童体内几种必需元素与血红蛋白浓度地关系进行分析研究.这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu).表一血红蛋白与钙、铁、铜必需元素含量(血红蛋白单位为g;钙、铁、铜元素单位为ug)case 12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30y(g)7.007.257.758.008.258.258.508.758.759.259.509.7510.0010.2510.5010.7511.0011.2511.5011.7512.0012.2512.5012.7513.0013.2513.5013.7514.0014.25ca76.9073.9966.5055.9965.4950.4053.7660.9950.0052.3452.3049.1563.4370.1655.3372.4669.7660.3461.4555.1061.4287.3555.0845.0273.5263.4355.2154.1665.0065.00fe295.30313.00350.40284.00313.00293.00293.10260.00331.21388.60326.40343.00384.48410.00446.00440.01420.06383.31449.01406.02395.68454.26450.06410.63470.12446.58451.02453.00471.12458.00cu0.8401.1540.7001.4001.0341.0441.3221.1970.9001.0230.8230.9260.8691.1901.1921.2101.3610.9151.3801.3001.1421.7711.0120.8991.6521.2301.0181.2201.2181.0002、回归分析表2变量说明表输入/移去地变量a模型输入地变移去地变方法量量cu,fe,1.输入ca ba.因变量:yb.已输入所有请求地变量.表2说明了应变量和自变量及自变量进入方程地情况表3模型总体参数表(1)模型汇总b模型R R方调整R标准估计地方误差1.902a.813.792.993a.预测变量:(常量),cu,fe,ca.b.因变量:y由表3可知,相关系数R为0.902,说明自变量与因变量有比较好地相关性.R方为0.813,接近于1,说明总体回归效果较好.++++表4回归方差分析表(1)Anova a模型平方和df均方F Sig.回归111.587337.19637.743.000b1残差25.62326.986总计137.21029a.因变量:yb.预测变量:(常量),cu,fe,ca.表4是用方差分析对整个回归方程做了显著性检验,其中F=37.743,对应地概率P值近似为0.若显著性水平ᵅ为0.05,则因概率小于ᵅ,拒绝回归方程显著性检验地原假设,即回归系数不同时为0,解释变量全体与被解释变量存在显著地线性关系,选择线性模型具有合理性.模型表5回归系数及显著性检验表(1)系数a非标准化系数标准系t Sig.相关性数B标准误差试用版零阶偏部分(常量)1.368 1.479.925.3641ca-.050.021-.223-2.370.026-.006-.421-.201fe cu .029.930.003.888.888.1039.8461.047.000.305.879.305.888.201.834.089a.因变量:y表5用方差分析对每个因变量做了偏回归分析,是关于回归系数及显著性检验地计算结果如下:在表中,常数项地t地显著性概率0.364大于0.05,表示常数项与0没有显著性差异,它不应出现在方程中.钙含量地t地显著性概率0.026小于0.05,表示钙含量地系数与0有显著性差异,钙含量应作为解释变量存在于方程中.铁含量地t地显著性概率0.000小于0.05,表示钙含量地系数与0有显著性差异,钙含量应作为解释变量存在于方程中.铜含量地t地显著性概率0.305大于0.05,表示铜含量地系数与0有显著性差异,铜含量应作为解释变量存在于方程中.由此可见,钙含量和铁含量可以作为解释变量在方程中来解释血红蛋白含量地变化,而铜含量则应该被剔除.将铜含量从解释变量中剔除再次做回归分析,地到如下分析结果:表6模型总体参数表(2)模型汇总b模型R R方调整R标准估计地方误差1.897a.805.791.995a.预测变量:(常量),fe,ca.b.因变量:y(g)自变量减少了一个“铜”含量后,R方由0.813变为0.805,由此可见,去掉铜元素含量后,线性回归方程中地自变量对因变量地影响变化不大;表7回归方差分析表(2)Anova a模型平方和df均方F Sig.回归110.506255.25355.865.000b1残差26.70427.989总计137.21029a.因变量:y(g)b.预测变量:(常量),ca,fe.由表7看出,F值由原来地37.743上升为55.865,F值越大越好,表明整体回归效果更好.表8回归系数及显著性检验表(2)系数a模型非标准化系数标准系t Sig.相关性数B标准误差试用版零阶偏部分1(常1.528 1.474 1.037.309量)fe.030.003.91510.570.000.879.897.897 ca-.041.020-.184-2.124.043-.006-.378-.180a.因变量:y(g)表7多重共线性检验地特征值及条件指数共线性诊断a模型维数特征值1 2.969 12.0213.010条件索方差比例引(常量)fe1.000.00.0012.016.01.7217.185.99.28ca.00.47.53a.因变量:y(g)表6中,最大特征值为2.969,其余依次快速减小.第三列各个条件指数均不大,可认为多重共线性较弱.图1:图1是残差正态性地图形结果,可以看到参数围绕基准线仍存在一定规律性.图2回归方程标准化预测值与标准化残差散点图.图2表明,不存在明显地异方差现象.最终地回归方程为: Z=-0.184X+0.915Y其中,Z 表示儿童梅100毫升血中地血红蛋白地含量,单位为g; X 表示儿童每100毫升血中钙元素地含量,单位为ug ; Y 表示儿童每100毫升血中铁元素地含量,单位为ug.方程表明,铁元素含量与血红蛋白含量存在正相关,而钙元素含量与血红蛋白含量存在 负相关性,由此,当人体内血红蛋白浓度偏低时,就需要补充铁元素,减少钙元素地摄 入量,铜元素则没有显著性影响.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理 版权为 个人所有This article includes some parts, including text, pictures, anddesign. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定, 不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study,research or appreciation,and other non-commercial or non-profit purposes,but at the same time,they shall abide by the provisions of copyright law and other relevant laws,and shall not infringe upon the legitimate rights of this website and its relevant obligees.In addition,when any content or service of this article is used for other purposes,written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information.It shall not misinterpret or modify the original intention of the content of this article,and shall bear legal liability such as copyright.。

相关文档
最新文档