中考数学反比例函数综合题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学反比例函数综合题附答案
一、反比例函数
1.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,
y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).
(1)求反比例函数y= 的解析式;
(2)求点P2和点P3的坐标;
(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).
【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,
则B1与P1关于y轴对称,
∵B1(﹣1,1),
∴P1(1,1).
则k=1×1=1,即反比例函数解析式为y=
(2)解:连接P2B2、P3B3,分别交y轴于点E、F,
又点P1的坐标为(1,1),
∴OA1=2,
设点P2的坐标为(a,a+2),
代入y=得a=-1,
故点P2的坐标为(-1,+1),
则A1E=A2E=2-2,OA2=OA1+A1A2=2,
设点P3的坐标为(b,b+2),
代入y=(>0)可得b=-,
故点P3的坐标为(-,+)
(3)1;(-,+)
【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…
∴△P n B n O的面积为1,
由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),
故答案为:1、(﹣, +).
【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;
(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;
(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.
2.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。对于任意正实数a、b,可作如下变形a+b= = - + =
+ ,
又∵≥0,∴ + ≥0+ ,即≥ .
(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
【答案】(1)a=b
(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .
当D与O重合时或a=b时,等式成立.
(3)解: ,
当DE最小时S四边形ADFE最小.
过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,
所以DE最小值为8,此时S四边形ADFE= (4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。
(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。
(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。
3.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.
(1)求m的值;
(2)求过A、B、D三点的抛物线的解析式;
(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边
形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵反比例函数的图象都经过点A(3,3),
∴经过点A的反比例函数解析式为:y= ,
而直线OA向下平移后,与反比例函数的图象交于点B(6,m),
∴m=
(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),
与x轴、y轴分别交于C、D两点,
而这些OA的解析式为y=x,
设直线CD的解析式为y=x+b
代入B的坐标得: =6+b,
∴b=﹣4.5,
∴直线OC的解析式为y=x﹣4.5,
∴C、D的坐标分别为(4.5,0),(0,﹣4.5),
设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,
分别把A、B、D的坐标代入其中得:
解之得:a=﹣0.5,b=4,c=﹣4.5
∴y=﹣0.5x2+4x﹣4.5
(3)解:如图,
设E的横坐标为x,
∴其纵坐标为﹣0.5x2+4x﹣4.5,
∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,
= (﹣0.5x2+4x﹣4.5+4.5)×4.5,
= (﹣0.5x2+4x)×4.5,
而S= (3+OD)×OC= (3+4.5)×4.5= ,
∴(﹣0.5x2+4x)×4.5= ,
解之得x=4± ,
∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).
【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.
4.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.