2019-2020年(人教版)七年级上章末复习学案(4)几何图形初步(有答案)-精编试题
(人教版)七年级上册数学期末复习:第4章《几何图形初步》解答题专练(含答案)
第4章《几何图形初步》解答题专题训练1.(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.2.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).3.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.4.(2019秋•肇庆期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图∠,若∠AOC=30°,求∠DOE的度数.(2)在图∠中,若∠AOC=a,求∠DOE的度数(用含a的代数式表示).(3)将图∠中的∠DOC绕顶点O顺时针旋转至图∠的位置,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.5.(2019秋•封开县期末)如图,∠AOB=90°,OE、OF分别平分∠BOC、∠AOB,如果∠EOF=60°.(1)求∠BOE的度数;(2)求∠AOC的度数.6.(2019秋•黄埔区期末)如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON=80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).7.(2019秋•斗门区期末)如图,O为直线AB上的一点,∠AOC=48°24′,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?8.(2019秋•白云区期末)如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD =∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.9.(2019秋•光明区期末)填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,∠AOC所以∠COD=12因为OE是∠BOC的平分线,所以∠COE=12所以∠DOE=∠COD+=12(∠AOC+∠BOC)=12∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+=°10.(2019秋•潮阳区期末)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的体积.11.(2019秋•海珠区期末)如图,有一个长方形纸条ABCD,点P,Q是线段CD上的两个动点,且点P始终在点Q左侧,在AB上有一点O,连结PO、QO,以PO,QO为折痕翻折纸条,使点A、点B、点C、点D分别落在点A′、点B′、点C′、点D′上.(1)当∠POA=20°时,∠A'OA=°.(2)当A′O与B′O重合时,∠POQ=°.(3)当∠B′OA′=30°时,求∠POQ的度数.12.(2019秋•番禺区期末)如图,点D是线段AB上的任意一点(不与点A和B重合),C是线段AD的中点,AB=4cm.(1)若D是线段AB的中点,求线段CD的长度.(2)在图中作线段DB的中点E,当点D在线段AB上从左向右移动时,试探究线段CE长度的变化情况.13.(2019秋•潮阳区期末)已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ 平分∠AOF,求∠POQ的度数.14.(2019秋•云浮期末)如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.15.(2019秋•顺德区期末)已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.16.(2019秋•顺德区期末)如图,Rt∠ABC中,∠C=90°,AC=15,面积为150.(1)尺规作图:作∠C的平分线交AB于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D到两条直角边的距离.17.(2019秋•惠城区期末)如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.18.(2019秋•东莞市期末)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)若∠AOC=50°,求∠COE和∠BOE的度数;(2)猜想:OE是否平分∠BOC?请直接写出你猜想的结论;(3)与∠COD互余的角有:.19.(2019秋•南海区期末)两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?20.(2019秋•揭西县期末)如图,OC是∠AOB的平分线,∠COD=3∠BOD,∠BOD=20°,求∠COD、∠BOC、∠AOD 的度数.21.(2019秋•南海区期末)已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD (1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.22.(2019秋•罗湖区期末)如图,一渔船在海上点E开始绕点O航行,开始时E点在O点的北偏东43°40′,然后∠COB.绕O点航行到C,测得∠COE=2∠AOE继续绕行,最后到达D点且OD=3海里,∠COD=12(1)求∠BOC的度数;(2)说明渔船最后到达的D点在什么位置.23.(2019秋•怀集县期末)如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.则(1)∠AOC的补角是;(2)∠AOC的余角是;(3)∠COF的补角是;(4)∠EOF的余角是.24.(2019秋•香洲区期末)如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=;(2)先化简,再求值:(2a2﹣5b)﹣3(a2﹣b).25.(2019秋•中山市期末)直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.26.(2019秋•香洲区期末)已知点O为直线AB上一点,将一个直角三角板COD的直角顶点放在点O处,并使OC边始终在直线AB的上方,OE平分∠BOC.(1)如图1,若∠DOE=70°,则∠AOC=°;(2)如图1,若∠DOE=α,求∠AOC的度数;(用含α的式子表示)(3)如图2,在(2)的条件下,若在∠AOC的内部有一条射线OF,(∠AOF﹣∠DOE),试确定∠AOF与∠DOE之间的数量关系,并说明理由.满足∠BOE=1227.(2019秋•福田区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?28.(2019秋•惠城区校级期末)如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)∠∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.∠三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?29.(2019秋•南山区期末)如图所示,已知线段AB,点P是线段AB外一点.(1)按要求画图,保留作图痕迹;∠作射线P A,作直线PB;∠延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.(2)若(1)中的线段AB=2cm,求出线段BD的长度.30.(2019秋•盘龙区期末)如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;BC,求AE的长.(2)若在线段AB上有一点E,CE=1431.(2019秋•普宁市期末)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.32.(2019秋•福田区校级期末)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.参考答案与试题解析一.解答题(共32小题)1.【解答】解:(1)如图,AC =9,BC =6,则AB =AC =BC =9+6=15, ∠AM =2MC ,BN =2NC .∠MC =13AC =3,NC =13BC =2, ∠MN =MC +NC =3+2=5,答:MN 的长为5;(2)由(1)得,MN ═MC +NC =13AC +13BC =13AB , 若MN =5时,AB =3MN =15,答:AB 的长为15.2.【解答】解:(1)∠OM 平分∠AOB ,ON 平分∠COD∠∠AOB =2∠MOB =30°,∠COD =2∠NOD =20°∠∠AOD =∠AOB +∠BOC +∠COD =30°+25°+20°=75°(2)∠∠AOD =75°,∠MON =55°,∠∠AOM +∠DON =∠AOD ﹣∠MON =20°,∠∠BOM +∠CON =∠AOM +∠DON =20°,∠∠BOC =∠MON ﹣(∠BOM +∠CON )=55°﹣20°=35°,(3)∠OM 平分∠AOB ,ON 平分∠COD ,∠∠AOM =∠BOM =12∠AOB ,∠CON =∠DON =12∠COD , ∠∠BOC =∠MON ﹣∠BOM ﹣∠CON=∠MON −12∠AOB −12∠COD =∠MON −12(∠AOB +∠COD ) =∠MON −12(∠AOD ﹣∠BOC )=β−12(α﹣∠BOC ) =β−12α+12∠BOC , ∠∠BOC =2β﹣α.3.【解答】解:(1)如图1,∠∠ACB =90°,∠BCE =40°, ∠∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =70°,∠∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°;故答案为:20°;(2)如图1,∠∠ACB =90°,∠BCE =α°,∠∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α,又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =90°−12α,∠∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∠∠BCE =150°,∠∠BCD =30°,∠CF 平分∠BCD ,∠∠BCF =12∠BCD =15°, ∠∠ACF =90°﹣∠BCF =75°,∠ACD =90°﹣∠BCD =60°,∠∠ACE =180°﹣∠ACD =120°.4.【解答】解:(1)由已知得∠BOC =180°﹣∠AOC =150°,又∠∠COD 是直角,OE 平分∠BOC ,∠∠DOE =∠COD −12∠BOC =90°−12×150°=15°; (2)由(1)知∠DOE =∠COD −12∠BOC , ∠∠DOE =90°−12(180°﹣∠AOC )=12∠AOC =12α;(3)设∠AOC =α,则∠BOC =180°﹣α,∠OE 平分∠BOC ,∠∠COE =12×(180°﹣α)=90°−12α, ∠BOD =90°﹣(180°﹣α)=α﹣90°,∠∠COE =2∠DOB ,∠90°−1α=2(α﹣90°),2解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.5.【解答】解:(1)∠∠AOB=90°,OF平分∠AOB,∠AOB=45°∠∠BOF=12又∠∠EOF=60°,∠∠BOE=60°﹣45°=15°;(2)∠OE平分∠BOC,∠∠BOC=2∠BOE=30°.∠∠AOC=∠AOB+∠BOC=120°.6.【解答】解:(1)∠∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∠∠BOM+∠CON=80°﹣40°=40°,∠OM平分∠AOB,ON平分∠COD,∠∠AOM=∠BOM,∠DON=∠CON,∠∠AOM+∠DON=40°,∠∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∠∠AOD=x°,∠MON=80°,∠∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∠∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∠∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.7.【解答】解:(1)∠∠AOC=48°24′,OD平分AOC,∠AOC=24°12′,∠∠1=∠2=12∠∠BOD=180°﹣∠1=180°﹣24°12′=155°48′;(2)OE是∠BOC的平分线.理由如下:∠∠DOE=∠2+∠3=90°,∠2=24°12′,∠∠3=90°﹣24°12′=65°48′,∠∠BOD=∠DOE+∠4=155°48′,∠∠4=155°48′﹣90°=65°48′,∠∠3=∠4=65°48′,∠OE是∠BOC的平分线.8.【解答】解:(1)∠∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∠∠AOC=∠BOD,∠∠AOD=120°,∠AOB=75°,∠∠AOC=∠BOD=120°﹣75°=45°,∠∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为:30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为:50;(3)不变;∠∠COD=∠AOB=75°,∠AOC=∠BOD,∠∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.9.【解答】解:故答案为:∠BOC,∠COE,90,∠AOD,∠DOE,155.10.【解答】解:(1)∠AB=x,若AD=4x,AN=3x,∠长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意得8x﹣6x=8,解得:x=4,原长方体的容积为x•2x•3x=6x3,将x=4代入,可得体积6x3=384.故原长方体的体积是384.11.【解答】解:(1)根据折叠可知:OP平分∠A′OA∠∠A′OA=2∠POA=40°;故答案为40°;(2)当A′O与B′O重合时,∠AOA′+∠BOB′=180°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′=1(∠AOA′+∠BOB′)2=90°,故答案为90°;(3)当∠B′OA′=30°时,∠AOA′+∠BOB′=180°﹣∠B′OA′=150°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′+∠B′OA′=1(∠AOA′+∠BOB′)+∠B′OA′2=75°+30°=105°.当B'在A'左侧时,∠AOP+∠A′OP+∠BOQ+∠B′OQ﹣∠B′OA′=180°,即2∠A ′OP +2∠B ′OQ ﹣30°=180°,解得∠A ′OP +∠B ′OQ =105°,∠∠POQ =∠POA ′+∠QOB ′﹣∠B ′OA ′=105°﹣30°=75°.答:∠POQ 的度数为105°或75°.12.【解答】解:(1)∠AB =4,点D 在线段AB 上,点D 是线段AB 的中点, ∠AD =12AB =12×4=2, ∠点C 是线段AD 的中点, ∠CD =12AD =12×2=1;(2)因为点D 在线段AB 上,点C 是线段AD 的中点,点E 是线段BD 的中点, ∠CD =12AD ,DE =12BD ,∠CE =CD +DE =12AD +12BD =12(AD +BD )=12AB ,∠AB =4,∠CE =2,∠线段CE 长度不变.13.【解答】解:(1)当OB 、OC 运动到如图1的位置时,∠∠AOC +∠BOD =100°,∠∠AOC +∠COD +∠BOC =100°∠AOD +∠BOC =100°∠∠∠AOB +∠COD =40°,∠∠AOD ﹣∠BOC =40°∠∠+∠得2∠AOD =140°∠∠AOD =70°.∠∠BOC =30°答:∠AOD 的度数为70°.(2)在(1)的条件下(图2),∠射线OM 、ON 分别为∠AOB 、∠COD 的平分线,∠∠CON =12∠COD ,∠BOM =12∠AOB ∠∠MON =∠CON +∠BOM +∠BOC=12(∠AOB +∠COD )+∠BOC=12×40°+30°=50°.答:∠MON 的度数为50°.(3)在(1)的条件下(图3),OE 、OF 是∠AOD 外部的两条射线,∠EOB=∠COF=90°,∠OP平分∠EOD,OQ平分∠AOF,∠EOD∠∠POD=12∠AOF∠AOQ=12∠∠POQ=∠AOD+∠POD+∠AOQ(∠EOD+∠AOF)=70°+12=70°+1(∠EOB﹣∠BOD+∠COF﹣∠AOC)2[(90°+90°﹣(∠BOD+∠AOC)]=70°+12×100°=70°+90°−12=110°.答:∠POQ的度数为110°.14.【解答】解:(1)∠∠AOC=90°,∠BOD=90°,∠BOC=60°,∠∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;(2)设∠COD=x°,则∠BOC=100°﹣x°,∠∠AOC=110°,∠∠AOB=110°﹣(100°﹣x°)=x°+10°,∠∠AOD=∠BOC+70°,∠100°+10°+x°=100°﹣x°+70°,解得:x=30即,∠COD=30°;(3)当α=45°时,∠AOD与∠BOC互余;理由是:要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,∠∠AOB+∠BOC+∠COD+∠BOC=90°,即∠AOC+∠BOD=90°,∠∠AOC=∠BOD=α,∠∠AOC=∠BOD=45°,即α=45°,∠当α=45°时,∠AOD与∠BOC互余.15.【解答】解:(1)如图所示,线段AB即为所求;(2)如图,∠点O 是AB 的中点,∠AO =12AB =12(m +n ), 又∠AC =m ,∠OC =AC ﹣AO =m −12(m +n )=12m −12n , ∠当m =5,n =3时,OC =52−32=1.16.【解答】解:如图所示,(1)CD 即为所求作的∠C 的平分线交AB 于点D ;(2)在(1)的条件下,作DE ∠BC ,DF ∠AC 于点E 和F ,∠DE =DF ,∠∠C =90°,AC =15,面积为150,∠BC =20,∠S ∠ADC +S ∠BDC =S ∠ABC12AC •DF +12BC •DE =150 15DF +20DE =300DE =DF∠DE =607点D 到两条直角边的距离为607.17.【解答】解:(1)∠OE 平分∠BOC ,∠∠COE =∠BOE ,∠∠COD +∠COE =∠DOE =90°,∠∠COD +∠BOE =90°,与∠COD 互余的角有∠BOE 、∠COE ;故答案为:∠BOE 、∠COE ;(2)∠OE 平分∠BOC ,∠∠COE=∠BOE=30°,∠∠AOE=180°﹣30°=150°;(3)证明:∠OE是∠BOC的平分线,∠∠COE=∠BOE,∠∠DOE=90°,∠∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∠∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.18.【解答】解:(1)∠OD平分∠AOC,∠AOC=50°,∠∠COD=∠AOD=12∠AOC=12×50°=25°,∠∠DOE=90°.∠∠COE=∠DOE﹣∠COD=90°﹣25°=65°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣25°﹣90°=65°;(2)结论:OE平分∠BOC.理由:设∠AOC=2α,∠OD平分∠AOC,∠AOC=2α,∠∠AOD=∠COD=12∠AOC=α,又∠∠DOE=90°,∠∠COE=∠DOE﹣∠COD=90°﹣α,又∠∠BOE=180°﹣∠DOE﹣∠AOD=180°﹣90°﹣α=90°﹣α,∠∠COE=∠BOE,即OE平分∠BOC;(3)与∠COD互余的角有:∠COE、∠BOE.故答案为:∠COE、∠BOE.19.【解答】解:设倒完以后,第一个容器中的水面离容器口有xcm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.20.【解答】解:∠∠BOD=20°,∠COD=3∠BOD,∠∠COD=60°,∠BOC=23∠COD,∠∠BOC=60°×23=40°,又∠OC是∠AOB的平分线,∠∠AOB=2∠BOC=2×40°=80°,∠∠AOD=∠AOB+∠BOD=80°+20°=100°.21.【解答】解:(1)如图1,∠∠AOB =90°,∠COD =20°,OM 平分∠AOC ,ON 平分∠BOD ∠∠DON +∠COM =12(∠BOD +∠AOC )=12(90°﹣20°)=35°, ∠∠MON =∠DON +∠COM +∠COD =35°+20°=55°,故答案为:55°.(2)能,如图1,∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD ,∠∠MON =∠NOD +∠DOC +∠MOC ,=12∠BOD +12∠AOC +20°,=12(∠BOD +∠AOC )+20°, =12(90°﹣20°)+20°,=55°.故答案为:55°,(3)∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD , ∠∠MON =∠NOD +∠DOC ﹣∠MOC ,=12∠BOD +20°−12∠AOC , =12(90°+∠AOD )+20°−12(∠AOD +20°), =45°+12∠AOD +20°−12∠AOD ﹣10° =55°.22.【解答】解:(1)E点在O点的北偏东43°40′,即∠BOE=43°40′,∠AOE=90°﹣43°40′=46°20′∠∠COE=2∠AOE=2×46°20′=92°40′,∠∠BOC=∠COE﹣∠BOE=92°40′﹣43°40′=49°,∠COB.(2)∠∠COD=12×49°=24°30′,∠∠COD=12∠∠BOD=∠BOC+∠COD=49°+24°30′=73°30′,∠OD=3海里,即:D点在O点的北偏西73°30′且距离O点3海里的位置.23.【解答】解:根据题意和图示可知:(1)∠AOC+∠BOC=180°,故答案为:∠COB;(2)∠3=∠4,∠AOC+∠3=90°,故答案为:∠3、∠4;(3)∠∠3=∠4,∠∠COF的补角是∠AOE,故答案为:∠AOE;(4)∠∠EOF+∠4=90°,∠∠4是∠EOF的余角,∠∠3=∠4,∠∠3也是∠EOF的余角,∠∠EOF的余角是∠3、∠4,故答案为:∠3、∠4.24.【解答】解:(1))∠纸盒中相对两个面上的数互为相反数,∠观察图形可知,a=﹣1,b=3.故答案为:a=﹣1,b=3;(2)原式=2a2﹣5b﹣3a2+3b=﹣a2﹣2b当a=﹣1,b=3时原式=﹣(﹣1)2﹣2×3=﹣7.25.【解答】解:(1)∠OC平分∠BOF,OE平分∠COB.∠∠BOE=∠EOC=1∠BOC,∠BOC=∠COF,2∠∠COF=2∠BOE,∠∠EOF=3∠BOE=90°,∠∠BOE=30°,(2)∠∠BOE+∠AOE=180°∠∠BOE的补角为∠AOE;∠∠EOC+∠DOE=180°,∠BOE=∠EOC,∠∠BOE+∠DOE=180°,因此∠∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;26.【解答】解:(1)∠∠DOE=70°,∠COD=90°∠∠COE=90°﹣70°=20°,∠OE平分∠BOC.∠∠COE=∠BOE=20°∠∠AOC=180°﹣2∠COE=140°,故答案为:140.(2)解:∠DOE=α,∠COD=90°∠∠COE=90°﹣α,∠OE平分∠BOC∠∠BOC=2∠COE=180°﹣2α,∠∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(3)∠AOF+∠DOE=180°,∠∠BOE=1(∠AOF﹣∠DOE),2∠2∠BOE=∠AOF﹣∠DOE,∠∠BOC=∠AOF﹣∠DOE,∠180°﹣∠AOC=∠AOF﹣∠DOE,∠∠DOE=α,∠AOC=2α,∠∠AOC=2∠DOE,∠180°﹣2∠DOE=∠AOF﹣∠DOE,∠∠AOF+∠DOE=180°,即∠AOF与∠DOE互补.27.【解答】解:(1)OB是∠AOC的平分线,∠∠BOC=∠AOB=50°;∠OD是∠COE的平分线,∠∠COD=∠DOE=30°,∠∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∠∠AOC=2∠AOB=100°,∠∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∠OD是∠COE的平分线,∠COE=30°.∠∠COD=1228.【解答】解:(1)∠∠ACD=∠ECB=90°,∠DCE=35°,∠∠ACB=180°﹣35°=145°.∠∠ACD=∠ECB=90°,∠ACB=140°,∠∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∠∠ACE+∠ECD+∠DCB+∠ECD=180.∠∠ACE+∠ECD+∠DCB=∠ACB,∠∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)∠当∠ACB是∠DCE的4倍,∠设∠ACB=4x,∠DCE=x,∠∠ACB+∠DCE=180°,∠4x+x=180°解得:x=36°,∠α=90°﹣36°=54°;∠设当∠DCE=21°时,转动了t秒,∠∠BCD+∠DCE=90°,∠3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.29.【解答】解:(1)射线P A,直线PB、线段AC、AD为所作;(2)∠AC=2AB=2×2=4cm,∠AD=AC=4cm,∠BD=AD+AB=4+2=6(cm).30.【解答】解:(1)∠AB=8,C是AB的中点,∠AC=BC=4,∠D是BC的中点,∠CD=12BC=2,∠AD=AC+CD=6;(2)∠BC=4,CE=14BC,∠CE=14×4=1,当E在C的左边时,AE=AC﹣CE=4﹣1=3;当E在C的右边时,AE=AC+CE=4+1=5.∠AE的长为3或5.31.【解答】解:(1)若∠COE=40°,∠∠COD=90°,∠∠EOD=90°﹣40°=50°,∠OE平分∠AOD,∠∠AOD=2∠EOD=100°,∠∠BOD=180°﹣100°=80°;(2)∠∠COE=α,∠∠EOD=90﹣α,∠OE平分∠AOD,∠∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∠∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∠OE平分∠AOD,∠∠EOD=12∠AOD=180°−β2=90°−12β,∠∠COD=90°,∠∠COE =90°+(90°−12β)=180°−12β, 即∠BOD +2∠COE =360°.故答案为:80°.32.【解答】解:(1)∠∠ABC =54°, ∠∠A ′BC =∠ABC =54°,∠∠A ′BD =180°﹣∠ABC ﹣∠A ′BC =180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD ′=72°, ∠∠2=12∠DBD ′=12×72°=36°,∠ABD ′=108°, ∠∠1=12∠ABD ′=12×108°=54°, ∠∠CBE =∠1+∠2=90°.。
完整版人教版七年级上册数学第四章 几何图形初步含答案
人教版七年级上册数学第四章几何图形初步含答案一、单选题(共15题,共计45分)1、如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱2、把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥3、笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对4、如图,是一个正方体纸盒的外表面展开图,则这个正方体纸盒是()A. B. C. D.5、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A.90°B.110°C.108°D.100°6、下列叙述:①最小的正整数是0;② 的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.57、如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B8、如图,马聪同学用剪刀沿虚线将一片平整的银杏叶剪掉一部分,发现剩下的叶片的周长比原叶片的周长要小,能正确解释这一现象的数学知识是()A.两点确定一条直线B.经过一点有无数条直线C.两点之间线段最短D.两直线相交只有一个交点9、下列说法正确的有()①一个数的相反数不是正数就是负数;②海拔表示比海平面低;③负分数不是有理数;④由两条射线组成的图形叫做角;⑤把一个角放到一个放大5倍的放大镜下观看,角的度数也扩大5倍.A.0个B.1个C.2个D.3个10、如图,点C是线段AB的中点,点D是线段BC的中点,下列等式不正确的是()A.CD=AC﹣DBB.CD=AD﹣BCC.CD=AB﹣ADD.CD=AB﹣BD11、下列图形中,经过折叠不能围成一个正方体的是()A. B. C. D.12、“笔尖在纸上快速滑动写出数字6”,运用数学知识解释这一现象()A.点动成线B.线动成面C.面动成体D.面面相交得线13、若一个角的补角等于它的余角的3倍,则这个角为()A.75°B.60°C.45°D.30°14、如果一个角的补角为144°,那么这个角的余角为( )A.36°B.44°C.54°D.64°15、如图,下列说法中错误的是( )A.OD方向是东南方向B.OB方向是北偏西l5。
七年级数学上册第四章几何图形初步章末复习导学案人教版.doc
章末复习一、复习导入1.导入课题:同学们,通过对本章的学习后,你对本章的知识结构和知识要点、知识应用等方面是否有个清醒的认识呢?为了加强同学们对本章的知识的理解和应用,下面我们一起来对本章进行小结复习.2.三维目标:(1)知识与技能①认识一些简单的几何体的平面展开图及会画从不同方向看立体图形的平面图形.②掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法,会进行线段、角的基本运算.(2)过程与方法①通过引导学生共同回顾本章知识点,建立知识间联系.②结合图形,指导学生进行线段与角的计算,形成识图和解题能力.(3)情感态度逐步培养学生读图能力,体会数形结合的数学思想.3.学习重、难点:重点:知识要点及简单应用.难点:运用几何知识进行简单推理和计算.二、分层复习1.复习指导:(1)复习内容:教材第146页至第147页第二行.(2)复习时间:5~8分钟.(3)复习方法:边看书、边回顾、边交流总结归纳,将知识结构和概念性质、解题方法技巧、简单的几何应用,整理记录笔记并相互展示交流.(4)复习参考提纲:①②点、线、面之间有什么联系?直线、线段、射线之间有什么联系和区别?点动成线,线动成面.联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.③线段、角的大小如何度量?角度单位间如何换算?线段的长度用刻度尺来度量,角的大小用量角器度量.1°=60′,1′=60″.④如果∠α与∠β互余,那么∠α+∠β=90°,反过来成立吗?成立⑤如果∠α与∠β互补,那么∠α+∠β=180°,反过来成立吗?成立⑥如图,点M、N分别是AC、BC的中点,AB=10 cm,求MN的长.由题意,MC=12AC,CN=12CB,所以MN=MC+CN=12AC+12CB=12AB=5 cm⑦如图,∠AOB=90°,∠BOC=30°,OM、ON分别平分∠AOB和∠BOC,求∠MON的度数.由题意:∠MOB=12∠AOB,∠BON=12∠BOC,所以∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=60°⑧在本章知识中,直线、线段和角有哪些重要结论?相互交流一下.2.自主复习:学生可参照复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视,了解学生对本章知识的掌握情况,倾听交流学习中的问题以及学生们反馈的疑难信息.②差异指导:教师对学习中的共性问题或突出的个性问题适时点拨引导.(2)生助生:学生进行小组内的交流,疑点在生与生之间交流互助解决.4.强化复习:(1)知识结构.(2)知识要点.(3)重要结论.(4)研究问题的方法.(5)知识运用.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引领,积极思考,并予以解答.(4)复习参考提纲:例1:如图,是一个建筑材料从三个不同方向看的图形,根据图中提供的数据(单位:cm),请你求出这个几何体的体积.分析:根据三个不同方向看的图形想象出几何体的形状,再依据它的体积计算方法和图中数据进行计算.这个几何体的体积为2×1×1=2 (cm 3).例2:①如图,已知点C 在线段AB 上,且AC=6 cm ,BC=14 cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度.②在①中,如果AC=a cm ,BC=b cm ,你能猜测出MN 的长度吗?请用一个代数式表述你发现的结果,并说明理由.③如果第①题叙述改为:“已知线段AC=6 cm ,BC=14 cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求MN 的长度.结果会有变化吗?如果有,求出结果.分析:①根据中点的概念易求出MN 的长;②按①中的思路写出含a 、b 的代数式;③分析“点C 在直线AB 上”和“点C 在线段AB 上”的区别,想一想,点C 与点A 、B 的位置关系确定吗?若不确定,该如何考虑解决?③ MN=10 cm ;②2a b +; ③Ⅰ.C 在AB 中间,此时MN=AC+BC2=10 cm;Ⅱ.C 在A 左边,此时MN=2BC AC +=4 cm. 2.自主复习:同学们在复习指导下进行复习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题,尤其关注例2的第③小题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,互帮互学.4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:①一个角的补角与这个角的余角的和比平角少10°,求这个角的度数.②已知∠AOC=86°,∠BOC=42°,射线OD、OE分别是∠AOC、∠BOC的平分线,求∠DOE 的度数.解:①50°;②第一种情况:,∠DOE=64°;第二种情况:,∠DOE=22°三、评价1.学生的自我评价:让各组学生代表交流自己在本节课中如何复习,如何交流探讨,有哪些新收获、新发现和悬而未决的问题.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度,方法和成效进行归纳点评.(2)纸笔评价:课堂检测题.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识,灵活地分析和解决问题的能力.本章关键是要抓住基本概念,并通过图形将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)下列图形不是立体图形的是(C)A.圆柱体B.球C.圆D.三棱锥2.(10分)若∠1=35°12′,∠2=35.1°,∠3=35.2°,则下列结论正确的是(B)A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1=∠2=∠33.(10分)下列用几何语言叙述图形的含义正确的有(D)点A在直线l外直线l经过点O 直线a、b交于点O 点A,B,C在直线l上A.1个B.2个C.3个D.4个4.(10分)如图所示,点C是线段AB上的一点,且AC=2BC,下列说法中正确的是(C)A.BC=12AB B.AC=12ABC.BC=13AB D.BC=13AC5.(10分)如图是一个立体图形从下列不同方向看到的平面图形,则这个立体图形是圆锥.A.从正面看B.从左面看C.从上向下看6.(10分)时钟显示为7:30时,时针与分针所夹的角是45°.7.(10分)如图所示,已知点O是直线AB上一点,∠AOC=90°,∠EOD=90°,那么图中互余的角的对数有4对.二、综合应用8.(10分)设∠α,∠β度数分别为(2n-1)°和(68-n)°,且∠α,∠β都是∠ν的补角.(1)试求n的值;(2)∠α与∠β能否互为余角,为什么?解:(1)n=23;(2)能,当n=23时,∠α=∠β=45°,此时∠α+∠β=90°,所以∠α与∠β互余.9.(10分)计算:(1)133°15′16″×4(2)31°42′÷5(精确到1″)解:133°15′16″×4=532°60′64″=533°1′4″解:31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′24″三、拓展延伸10.(10分)如图,∠AOB=90°,在∠AOB外部作锐角∠AOC,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.从(1)、(2)、(3)中的结果,你能得出什么规律?解:(1)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°.(2)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=2α.(3)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°得出规律:∠MON的度数与∠AOC的度数无关,与∠BOA的度数有关,且等于∠BOA度数的一半.。
人教版数学七年级上册第四章几何图形初步专题复习 学案
几何图形初步专题复习【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
一.本章知识体系请写出框中数字处的内容:①_________________;②_________________;③___________________________________________________;④___________________________________________________;⑤_____________________;⑥_________________________________________________;⑦_____________________.二.归纳核心考点:考点1 立体图形与平面图形1.区别:立体图形各部分不都在同一平面内;平面图形各部分都在同一平面内.2.联系:立体图形可以展开成平面图形,平面图形可以旋转成立体图形.3.考点:(1)从不同方向看立体图形.(2)立体图形的平面展开图.【例1】如图所示的几何体是由4个相同的小正方体组成的.从正面看到的是( )【中考题体验】1.如图所示的几何体从正面看到的是( )2.用4个小立方块搭成如图所示的几何体,从左面看到的是( )3.一个几何体的展开图如下左图所示,这个几何体是( )A.三棱柱B.三棱锥C.四棱柱D.四棱锥4.如上右图给定的是纸盒的外表面,下面能由它折叠而成的是( )5.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )6.李强同学用棱长为1的正方体在桌面上堆成如下左图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )A.37B.33C.24D.217.)5个棱长为1的正方体组成如上右图所示的几何体.(1)该几何体的体积是_______(立方单位),表面积是_____(平方单位).(2)画出该几何体从正面和左面看到的平面图形.考点2 直线、射线、线段1.直线、射线、线段的区别和联系:区别:(1)端点个数不同:直线没有端点,射线一个端点,线段两个端点.(2)延伸方向不同,直线向两方延伸,射线向一个方向延伸,线段无延伸.联系:(1)都可以用两个点的大写字母表示,直线是用任意两点字母,没有先后顺序;射线是用一个端点字母和任一点字母,端点字母在前;线段只能用两端点字母,没有先后顺序.(2)线段可以度量,直线和射线不可度量.2.两个性质、一个中点:(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.(3)线段的中点:把一条线段平均分成两条相等线段的点.线段的中点是线段在有关计算题中的重要条件.【例2】如图,线段AB=28 cm,点O是线段AB的中点,点P将线段AB分为两部分AP∶PB=5∶2,求线段OP的长.【中考集训】1.点C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,BC=2 cm,则MC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm2.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线,则n的值为( )A.5B.6C.7D.83.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是________.4.已知线段AB=6,若C为AB的中点,则AC=________.5.已知线段AB=8 cm,在直线AB上画线段BC使BC=3 cm,则线段AC=_______.考点3 角的比较与运算【知识点睛】1.比较角大小的方法:度量法、叠合法.2.互余、互补反映两角的特殊数量关系.3.方位角中经常涉及两角的互余.4.计算两角的和、差时要分清两角的位置关系.【例3】如下左图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于( )A.38°B.104°C.142°D.144°【中考题体验】1.如上右图所示,已知点O是直线AB上一点,∠1=70°,则∠2的度数是( )A.20°B.70°C.110°D.130°2. 4点10分,时针与分针所夹的小于平角的角为( )A.55°B.65°C.70°D.以上结论都不对3.如下左图,∠1+∠2=( )A.60°B.90°C.110°D.180°4.如上右图,∠EOD=90°,AB 平分∠EOD ,则∠BOD 的度数为( )A.120°B.130°C.135°D.140°5.已知∠A =40°,则∠A 的余角的度数是___________.6.已知∠ABC=30°,BD 是∠ABC 的平分线,则∠ABD=_______.。
2019—2020年最新人教版七年级数学上册第四章《图形认识初步》单元复习检测题及答案(同步试卷).doc
第4章 图形认识初步 复习练习题一、选择题1.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是 ( )A .①②B .②③C .②④D .③④2.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是()3. 如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是 ( ) A. 冷 B. 静 C. 应 D. 考4.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D .5.如左图的几何体的俯视图是( )静 沉 着 应冷考(第8题图)正面5623 1 4第12题AB D(1)CA. B. C. D.6.右图是由几个相同的小正方体搭成的一个几何体,从左边看得到的平面图形是( )(A ) (B ) (C ) (D )7. 图中几何体的左视图是 ( )8.如上图,小芳的桌上放着一摞书和一个茶杯(见上方右图),那么小芳从正面看到的图形是( )9.如图,从正上方看下列各几何体,得到图形(1)的几何体是( )11.一个无盖的正方体盒子的平面展开图可以是下列图形中的( ).A .B .C .D .AB CDA.图①、图②B.图①、图③C.图②、图③D.只有图①12.如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是( ).A.4 B.6 C.7 D.813.下列图形中,不是正方体展开图形的是( )14. 下面哪个图形不是正方体的展开图()15.下列各图形经过折叠不能围成一个正方体的是()A B C D16.下面的平面图形中,是正方体的平面展开图的是()A B C D17.如右图,是一个不完整的正方体平面展开图,下面是四位同学补画的情况(图中阴影部分),其中补画正确....的是( )18.如左图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )19.如右图是某一立方体的侧面展开图 ,则该立方体是( )20.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体。
人教版七年级上册数学(人教版)期末考试复习:第4章《几何图形初步》填空题精选(含答案)
第4章《几何图形初步》填空题精选1.(2019秋•东莞市期末)将三角形AOB绕顶点O旋转到如图所示的位置,若∠AOD=100°,∠AOC=20°,则∠BOA=.2.(2019秋•越秀区期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是.3.(2019秋•罗湖区校级期末)如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图①,若图①中∠AED=n°,则∠DEC的度数为度.4.(2019秋•潮州期末)如图,点A在点B的北偏西30°方向,点C在点B的南偏东60°方向.则∠ABC 的度数是.5.(2019秋•肇庆期末)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.6.(2019秋•封开县期末)如图:已知∠AOB=55°,射线OC是∠AOB的平分线,则∠AOC=度.7.(2019秋•黄埔区期末)如图,点C是线段AB的中点,点E在线段AB上,点D是线段AE的中点,若线段AB=a,CE=b,则线段CD的长为.8.(2019秋•斗门区期末)如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为.9.(2019秋•白云区期末)如图,已知点O是直线AB上一点,∠AOC=63°,射线OD、OE将∠BOC三等分,则∠AOD=.10.(2019秋•光明区期末)如图,将三个同样的正方形的一个顶点重合放置,如果∠1=50°,∠3=30°,那么∠2的度数是.11.(2019秋•光明区期末)如图,是一个正方体纸盒的展开图,正方体的各面上标有“知识就是力量”六个字,则原正方体中与“知”字相对的字是.12.(2019秋•番禺区期末)笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.13.(2019秋•南沙区期末)如图,BD在∠ABC的内部,∠ABD=13∠CBD,如果∠ABC=80°,则∠ABD =.14.(2019秋•南沙区期末)如图,把一根绳子AB以中点O对折,点A和点B重合,折成一条线段OB,在线段OB取一点P,使OP:BP=1:3,从P处把绳子剪断,得到三段绳子.若剪断后的三段绳子中最短的一段为16cm,则绳子的原长为cm.15.(2019秋•南沙区期末)2019年是中华人民共和国成立70周年,国庆当天在天安门广场举办70周年阅兵,小花通过电视直播看完阅兵仪式后,为祖国的强大而自豪,打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“七十周年阅兵”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是.16.(2019秋•罗湖区期末)一副三角板AOB与COD如图摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.17.(2019秋•荔湾区期末)如图,射线OA的方向是北偏西65°,射线OB的方向是南偏东20°,则∠AOB 的度数为.18.(2019秋•揭西县期末)如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.19.(2019秋•龙华区期末)已知图1是图2所示的小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是.20.(2019秋•龙华区期末)将两个形状、大小完全相同的含有30°、60°的三角板P AB与PCD如图1放置,A、P、C三点在同一直线上,现将三角板P AB绕点P沿顺时针方向旋转一定角度,如图2,若PE 平分∠APD,PF平分∠BPD,则∠EPF的度数是°.21.(2019秋•龙岗区期末)如图,∠BOC=2∠AOC,OD平分∠AOB,OE平分∠AOC,则∠DOE与∠AOB 的数量关系为:.22.(2019秋•罗湖区期末)如图,铁路上依次有A、B、C、D四个火车站,相邻两站之间的距离各不相同,则从A到B售票员应准备种不同的车票.23.(2019秋•怀集县期末)如图,OC平分∠AOD,OE是∠BOD的平分线,如果∠AOB=130°,那么∠COE=.24.(2019秋•福田区期末)如图,点O是直线AB上一点,OC平分∠AOD,∠BOD=60°,则∠AOC =°.25.(2019秋•盐田区期末)(多选)借助一副三角板(分别含30°,60°,90°与45°,45°,90°的角)的拼摆,能画出.A.50°的角B.75°的角C.105°的角D.130°的角26.(2019秋•盐田区期末)如图,∠AOC与∠BOD都是直角.若∠AOB=100°,则∠COD=°.27.(2019秋•南海区期末)如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.28.(2019秋•普宁市期末)如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东63°49′8″的方向上,观测小岛B在南偏东38°35′42″的方向上,则∠AOB的度数是.29.(2019秋•惠城区期末)如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东62°的方向上,观测到小岛B在它南偏东38°12′的方向上,则∠AOB的补角的度数是.30.(2019秋•云浮期末)如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.31.(2019秋•中山市期末)如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=cm.32.(2019秋•揭阳期末)12点30分时,钟表的时针和分针所成夹角是度.33.(2019秋•惠来县期末)如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD=°.34.(2019秋•怀集县期末)如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.35.(2019秋•荔湾区期末)延长线段AB到C,使BC=12AA,反向延长AC到D,使AD=12AA,若AB=8cm,则CD=cm.36.(2018秋•坪山区期末)如图是正方体的展开图,若将其折叠成正方体,则与b相对的数是.第4章《几何图形初步》填空题精选参考答案与试题解析一.填空题(共36小题)1.【解答】解:根据旋转的性质可得∠BOD =∠AOC =20°, 所以∠BOA =∠AOD ﹣∠BOD =100°﹣20°=80°.故答案为:80°.2.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴“守”字一面的相对面上的字是“善”.故答案为:善.3.【解答】解:折叠后的图形如下:∵∠ABE =30°,∴∠BEA '=∠BAE =60°,又∵∠CED '=∠CED ,∴∠DEC =12∠DED ',∴∠DEC =12(180°﹣∠A 'EA +∠AED ) =12(180°﹣120°+n °)=(30+12n )° 故答案为:(30+12n ). 4.【解答】解:如图:由题意,得∠ABD =30°,∠EBC =60°.∴∠FBC =90°﹣∠EBC =90°﹣60°=30°.∵∠DBF =90°,∴∠ABC =∠ABD +∠DBF +∠FBC =30°+90°+30°=150°, 故答案为:150°.5.【解答】解:∵DA =6,DB =3,∴AB =DB +DA =3+6=9,∵C 为线段AB 的中点,∴BC =12AB =12×9=4.5,∴CD =BC ﹣DB =4.5﹣3=1.5.故答案为:1.5.6.【解答】解:∵∠AOB =55°,射线OC 是∠AOB 的平分线, ∴∠AOC =∠BOC =12∠AOB =27.5°,故答案为:27.5.7.【解答】解:∵点C 为线段AB 的中点,AB =a ,CE =b ,。
人教版初中七年级数学上册第四章《几何图形初步》(含答案解析)(1)
人教版初中七年级数学上册第四章《几何图形初步》(含答案解析)(1) 一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.5D 解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是()A.A B.B C.C D.D C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C,有四个直角三角形构成的特殊四边形.故选C.3.下面四个图形中,能判断∠1>∠2的是()A.B.C.D. D解析:D【分析】根据图象,利用排除法求解.【详解】A.∠1与∠2是对顶角,相等,故本选项错误;B.根据图象,∠1<∠2,故本选项错误;C .∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D .∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D .【点睛】本题考查了学生识图能力和三角形的外角性质.4.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.5.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个C 解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.6.“枪挑一条线,棍扫一大片”,从数学的角度解释为().A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.7.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 8.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D. C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.9.若射线OA与射线OB是同一条射线,下列画图正确的是()A.B.C.D. B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.10.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D. A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题11.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+ 40×30°=110°60分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.12.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.13.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.135°【解析】【分析】先根据垂直的定义求得∠AOC ∠BOC 的度数是90°然后由角平分线的定义可知∠COE=∠BOC 最后根据∠AOE=∠COE+∠AOC 从而可求得∠AOE 【详解】因为于点O 所以∠AO 解析:135°【解析】【分析】先根据垂直的定义求得∠AOC 、∠BOC 的度数是90°,然后由角平分线的定义可知∠COE =12∠BOC ,最后根据∠AOE =∠COE +∠AOC 从而可求得∠AOE. 【详解】 因为OC AB ⊥于点O,所以∠AOC=∠BOC=90°,因为OE 为COB ∠的平分线,所以∠COE =12∠BOC =45°, 又因为∠AOE =∠COE +∠AOC,所以∠AOE =90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体,四棱锥,三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n)个图有________个相同的小正方形.n(n+1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n+1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.16.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用 解析:32 【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=,P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=,N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.17.一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14)16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m 后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m 后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.18.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数解析:53°【解析】由∠BOE与∠AOF是对顶角,可得∠BOE=∠AOF,又因为∠COD是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF的度数,即∠BOE的度数.19.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×1=15°.2故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.如图,点O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE平分∠BOC.(1)分别写出图中∠AOD和∠AOC的补角(2)求∠DOE的度数.解析:(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.24.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
部编本人教版2019-2020学年度七年级数学上册第四章《几何图形初步》测试题及答案
人教版2019—2020学年度七年级数学上册第四章《几何图形初步》测试题及答案(满分:100分 答题时间:60分钟)温馨提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!―、选择题(每题3分,共30分)1. 根据下列线段的长度,能判断,,C A B 三点不在同一条直线上的是( )A.8AB =,8BC =,8AC =B.10AB =,8BC =, 18.9AC =C.8,11,10AB BC AC ===D.7.5,14, 6.5AB BC AC === 2. 下列说法中正确的是( ) A.两点之间,直线最短B.线段MN 就是,M N 两点间的距离C.在连接两点的所有线中,最短的连线的长度就是这两点间的距离D.从武汉到北京,火车行驶的路程就是武汉到北京的距离 3. 下列图形中,与其他三个不同类的是( )4. 如图,下列说法正确的是( ) A.图中共有5条线段B.直线AB 与直线AC 是同一条直线C.射线与射线是同一条射线D.点O 在直线上5. 平面内四条直线最少有a 个交点,最多有b 个交点,则a b +=( ) A.6 B.4 C.2 D.O6. 已知α∠的余角是2317'38''︒,β∠的补角是11317'38''︒,那么α∠和β∠的大小关系是( )A. αβ∠>∠B.αβ∠=∠C. αβ∠<∠D.不能确定7. 如图,点C 是线段AB 上一点,点M 是AC 的中点,点N 是BC 的中点,如果MC 比NC 长2cm,那么AC 比BC 长( )A.1cmB.2cmC.4cmD.6cm8. 能由如图所示的平面图形折叠而成的立体图形是( )9. 如图,某工厂有三个住宅区,各区分别住有职工30人,15人,10人,且这三点在一条大道上(,,A B C 三点在同一直线上),已知AB =300米,BC =600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点AB.点BC.AB 之间D.BC 之间 10. 下列时刻,时针与分针的夹角为直角的是( ) A.3时30分 B.9时30分 C.8时55分 D.3时36011分 二、填空题(每题3分,共18分)11.如图,从甲村到乙村共有三条路线,小明选择路线②最近,请用数学知识解释原因:_______.12.如图,O 为直线AB 上一点,已知140,OD ∠=︒平分B O C ∠,则AOD ∠=_______13. 一个角的补角等于它的余角的6倍,则这个角的度数为________.14. 如图,点,,A O B 在同一条直线上,射线OD 平分BOC ∠,射线OE 在AOC ∠的内部,且90DOE ∠=︒,写出图中所有互为余角的角______________:15.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为 10 cm,若12AP PB =,则这条绳子的原长为_______cm.16.如图,平面内90,,AOB COD COE BOE OF ∠=∠=︒∠=∠平分AOD ∠给出以下结论:①AOE DOE ∠=∠; ②180AOD COB ∠+∠=︒;③90COB AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确的是_______.(填序号)三、解答题(共52分)17. (8分)如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°, AOB AOC ∠=∠,射线OD 是OB 的反向延长线.(1)试确定射线OC 的方向; (2)求COD ∠度数;(3)若射线平分COD ∠,求AOE ∠的度数.18. (8分)如图,,,OB OC OD 是三条射线,OB 平分AOC ∠,且AOE ∠是平角,由这些条件能否得到结论90BOD ∠=︒?若能,请说明理由;若不能,请你补充一个条件,并说明你的理由.19. (8)如图,线段AB 上有一点D ,点C 为线段DB 的中点,点D 分线段AC 为1:3的两部分,若9CD =cm,则AB 的长为多少?20. (8分)已知110EOC ∠=︒,将角的一边OE 绕点O 旋转,使终止位置9OD =cm 和起始位置OE 成一条直线,以点O 为中心将OC 顺时针方向旋转到OA ,使COA DOC ∠=∠,过点O 作COA ∠的平分线OB . (1)借助量角器、直尺补全图形; (2)求BOE ∠的度数.21. (10)以直线上一点O 为端点作射线OC ,使60BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处.(90DOE ∠=︒)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠=_______︒;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 五恰好平分AOC ∠,请说明OD 所在射线是BOC ∠的平分线;(3)如图3,当三角板DOE 绕点O 逆时针旋转到某个位置时,若恰好15COD AOE ∠=∠,求BOD ∠的度数.22. (10分)如图,M 是线段AB 上一定点,点C 从点M 出发以1cm/s 的速度沿线段MA 向左运动,同时点D 从点B 出发,以3cm/s 的速度沿线段BA 似向左运动.(点C 在线段AM 上,点D 在线段BM 上) (1)若AB =10cm,点,C D 运动了2s,则AC MD +=_______; (2)若点,C D 运动时,总有3MD AC =,则AM =_______AB ; (3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.第四章综合能力检测卷1. B2. C3. C4. B5. A6. B7. C8. D9. A 10. D 11.两点之间,线段最短12.110︒【解析】因为140∠=︒,所以180118040140BOC ∠=︒-∠=︒-︒=︒,因为OD 平分B O∠,所以1702COD BOC ∠=∠=︒,所以1704AO D C O D∠=∠+∠=︒+︒=︒. 13. 72°【解析】设这个角的度数为x ︒,则它的补角为180x ︒-︒,余角为90x ︒-︒,由题意,得()180690x x -=-,解得72x =故这个角的度数为72°.14. 1∠与3∠,1∠与4∠,2∠与3∠,2∠与4∠【解析】因为90DOE ∠=︒,所以2∠+3∠=90︒,1∠+4∠=90︒.因为OD 平分BOC ∠,所以1∠=2∠,所以乙1+3∠=90︒. 2∠+4∠=90︒.故题图中所有互为余角的角为1∠与3∠,1∠与4∠,2∠与3∠,2∠与4∠.15.15或30【解析】当PB 的2倍最长时,得PB=5cm,AP=12PB=2.5cm,AB=AP+PB=7.5cm,所以这条绳子的原长为2AB=15cm;当AP 的2倍最长时,得AP=5cm,因为AP=12PB,所以PB=2AP=10cm,所以PB=2AP=10cm,所以AB=AP+PB=15cm,所以这条绳子的原长为2AB=30cm.综上,这条绳子的原长为15cm 或30cm.16.①②④【解析】因为90AOB COD ∠=∠=︒,所以A O C B O D ∠=∠,又COE BOE∠=∠所以A O E∠=∠,故①正确;9090180AOD COB AOD AOC AOB ∠+∠=∠+∠+∠=︒+︒=︒,故②正确;90COB AOD AOC AOD ∠-∠=∠+︒-∠,因为AOC ∠与AOD ∠的数量关系不确定,所以COB AOD ∠-∠不一定等于90︒,故③不正确;因为OF 平分AOD∠,所以A O F ∠=∠,又AOE DOE∠=,所以180AOF AOE DOF DOE ∠+∠=∠+∠=︒,即点,,F O E 共线,因为COE BOE ∠=∠,所以180COE BOF ∠+∠=︒,故④正确.故正确的结论是①②④.17. 【解析】(1)因为射线0B 的方向是北偏西40︒,射线的方向是北偏东15︒,所以40NOB ∠=︒,15NOA ∠=︒,所以55AOB NOB NOA ∠=∠+=︒.因为A OB A O ∠=∠,所以55AOC ∠=︒,所以70NOC NOA AOC ∠=∠+∠=︒,所以射线OC 的方向是北偏东70︒.(2)因为55AOB ∠=︒,AOC AOB ∠=∠,所以ABOC=110BOC ∠=︒.因为射线OD 是OB的反向延长线,所以180BOD ∠=︒.所以18011CO D BO D B O C ∠=∠-∠=︒-︒=︒. (3)因为70COD ∠=︒,OE 平分COD ∠,所以35COE ∠=︒.55AOC ∠=︒,所以553590AOE AOC COE ∠=∠+∠=︒+︒=︒. 18【解析】不能,需要添加条件: OD 平分COE ∠.理由如下:因为OD 平分COE ∠,OB 平分AOC ∠, 所以11,22BOC AOC COD COE ∠=∠∠=∠,因为AOE ∠是平角,所以180AOC COE AOE ∠+∠=∠=︒, 所以90BOC COD ∠+∠=︒, 又BOC BOC COD ∠=∠+∠, 所以90BOD ∠=︒.19. 【解析】因为点C 为线段DB 的中点,CD=9cm,所以BD=2CD=18cm.因为点D 分线段AC 为1:3的两部分,所以AD=13CD=3cm,所以AB=AD+BD=18+3=21(cm).20. 【解析】(1)补全图形如图所示.(2)因为110EOC ∠=︒,所以70DOC ∠=︒.因为C O A D O C ∠=∠,所以70COA ∠=︒,因为OB 是COA ∠的平分线,所以35COB ∠=︒,所以75BOE EOC COB ∠=∠-∠=︒.21. 【解析】(1)30因为,90,60BOE COE BOC BOE BOC ∠=∠+∠∠=︒∠=︒,所以30COE ∠=︒.(2)因为OE 平分AOC ∠,所以12COE AOE AOC ∠=∠=∠.因为90EOD ∠=︒,所以90AOE DOB ∠+∠=︒,所以COD DOB ∠=∠,所以OD 所在射线是BOC ∠的平分线. (3)设COD x ∠=︒,则5AOE x ∠=︒,①当三角形OED 抑在如图1的位置时,有61806090x =--,解得5x =,则60565BOD ∠=︒+︒=︒;②当三角形OED 在如图2的位置时,有590120x x +-=,解得7.5x =.则607.552.5BOD ∠=︒-︒=︒.综上,65BOD ∠=︒或52.5︒. 22. 【解析】(1)2cm (2)14(3)当点N 在线段AB 上时,如图1,因为,AN BN MN AN AM MN -=-=,所以14BN AM AB ==,所以12MN AB =,所以MN AB =,所以1MN AB =. 综上,12MN AB =或1.。
人教版七年级上第四章《几何图形初步》复习学案
环湖中学七年级第四章《几何图形初步》复习学案 2013/12/23本次期末考试涉及第四章内容(这一章非常重要,在期末考试中占50分左右)选择1:考查余角和补角的概念(涉及到度分的运算,不涉及“秒”的运算) 选择4:考查从正面、上面、左面看立体图形(三视图) 选择5:度、分换算(例如15.51530'=,2112'21.2=)选择6:考查对直线、射线、线段三个概念的理解,会涉及分类讨论(例如:过ABCD 四个点中的两个点的直线可能有几条:可能有1、4、6三种可能) 选择8:对平面图形的理解,考查动手能力,题目可能涉及课题学习的叠纸盒 选择10:与线段长度有关的计算——涉及分类讨论填空12:考察两点距离的概念(什么叫两点间距离以及两点间线段最短) 填空13:根据几何图形计算角(涉及角分线和余角补角)填空15:钟表时针分针夹角的计算(如上午7:30,时针和分针的夹角是多少度?) 填空16:对正方体11种展开图的考察 填空17:涉及线段中点和比例的线段运算 解答19:对立体图形的认知,区分柱、锥、球 解答23:三角板拼接的角的计算解答25:考察线段长度的计算,涉及分类讨论和画图,比较综合 知识点一:余角和补角的概念(思考什么叫互为余角,什么叫互为补角)的余角和补角各是 4 ★★ 已知∠1=30°21’,则∠1的余角的补角的度数是( )知识点二 从正面、上面、左面看立体图形1 ★ 画出从正面、上面、左面三个方向看到的立体图的形状2 ★ 从正面、上面、左面看圆锥得到的平面图形是( ) A .从正面、上面看得到的是三角形,从左面看得到的是圆 B .从正面、左面看得到的是三角形,从上面看得到的是圆 C .从正面、左面看得到的是三角形,从上面看得到的是圆和圆心 D .从正面、上面看得到的是三角形,从左面看得到的是圆和圆心3★★下列四个几何体中,从正面、上面、左面看都是圆的几何体是()A 圆锥B圆柱C球D正方体4★★一个几何体从正面、上面、左面看到的平面图形如右图所示,这个几何体是()A 圆锥B圆柱C球D正方体5★★观察下列几何体,,从正面、上面、左面看都是长方形的是()6★★从正面、左面、上面看四棱锥,得到的3个图形是()ABC7★★★如下图,是一个几何体正面、左面、上面看得到的平面图形,下列说法错误的是()A.这是一个棱锥B.这个几何体有4个面C.这个几何体有5个顶点D.这个几何体有8条棱8★★★如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则从正面看该几何体的图形是()知识点三:度分换算1度分38.2°= 度分22.55°= °′18.65°= °′2分度12★★过ABC三点中两点的直线有多少条(画图表示)3★★过ABCD四点中两点的直线有多少条(画图表示)A.1或4 B.1或6 C.4或6 D.1或4或64 ★★同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四点的位置关系是()A.任意三点不在同一直线上B.四点都不在同一直线上C.四点在同一直线上D.三点在同一直线上,第四点在直线外5 ★★已知A,B,C,D四点都在直线L上,以其中任意两点为端点的线段共有()条;已知A,B,C,D四点都在直线L上,以其中任意一点为端点的射线共有()条6 ★★下列说法中正确的个数为()个(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.知识点五线段计算——涉及分类讨论(线段双解问题,画图很重要!!!)引例★:线段AB=15cm,BC=5cm,则线段AC等于()1 ★线段AB=7cm, 点C在直线AB上,BC=3cm, 求线段AC长2 ★★直线AB上一点C,且有CA=3AB,则线段CA与线段CB之比为3 ★★线段AB=10,作直线AB上有一点C,且BC=6,M为线段AC的中点,4 ★★★ A、B、C三点在同一条直线上,且线段AB=7cm,点M为线段AB的中点,线段BC=3cm,点N为线段BC的中点,求线段MN的长.5 ★★★线段AB=8,在直线AB上取一点P,使AP:PB=3,点Q是PB中点,求线段AQ6 ★★★已知线段AB=20cm,C是线段AB中点,E在直线AB上,D是线段AE中点,且DE=6cm,求线段DC的长7 ★★★(较难题 湖南2011年联考)一条绳子对折..后成右图A 、B, A.B 上一点C ,有BC=2AC, 将绳子从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:知识点六 两点间距离的概念以及两点之间线段最短 引例 如图,从A 地到B 地有多条路,人们常会走第③条路,而不会走曲折的路,理由是1 (2005•襄阳)下列四个生活、生产现象: ①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线; ③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设; ④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )个 知识点七 角度计算——涉及角分线...和互余互补.... 1 ★如图,∠AOB 与∠BOD 互为余角,OC 是∠DOB 的平分线, ∠AOC=58°求∠AOB2 ★ 直线AB 、CD 被直线EF 所截交于点M 和点N ,MP 平分∠BMN ,NP 平分∠DNM ,若∠BMN+∠DNM=180°,则∠1+∠2=(河西2011)3 ★ OD 平分∠BOC ,OE 平分∠AOC ,A ,O ,B 三点在同一条直线上,则图中互余的角有多少对,互补的角有多少对.4 ★ ∠AOB 是平角,OC 是射线,OD 平分∠AOC ,OE 平分∠BOC ,∠BOE=15°,则∠AOD 的度数为( )∠DOE 的度数为( ) ∠AOE 的度数为( )5 ★★如图,∠AOB=90°,∠COD=90°,OB 平分∠DOE ,则∠3与∠4是什么关系?6 ★★ O 为AB 直线上的一点,∠COE 是直角,OD 平分∠AOE .若∠COD=20°,求∠BOE 的度数;若∠COD=30°,求∠BOE 的度数;若∠COD=n°,则∠BOE=?7 ★★O 为AB 直线上的一点,∠COE 是直角,OD 平分∠AOE .若∠COD=n°,则∠BOE=?8 ★★ 如图,O 是直线AB上一点,OD平分∠AOC . (1)若∠AOC=70°,请求出∠AOD 和∠BOC 的度数.(2)若∠AOD 和∠DOE 互余,∠AOD= 0.5∠DOE ,求∠AOD 和∠COE (3)该图中互为补角的角有几对?是哪几对?(第8题)9 ★★ 如右图,点A 、O 、B 在同一条直线上. (1)∠AOC 比∠BOC 大100°,求∠AOC 与∠BOC 的度数 (2)在(1)的条件下,若∠BOC 与∠BOD 互余,求∠BOD (3)在(2)的条件下,若OE 平分∠AOC ,求∠DOE10 ★★ 如图,在直线AB 上取点O ,射线OC 、OD 、OE 、OF 在直线AB 的同侧,且∠COE 和∠BOE 互余,射线OF 和OD 分别平分∠COE 和∠BOE .求∠AOF+∠BOD 的度数CADB E31 2 411 ★★★射线OC、OD在∠AOB的内部,∠AOC= 1/5∠AOB,OD平分∠BOC,∠BOD与∠AOC互余,求∠AOB(提示:设∠AOC=x度)12 ★★★O在直线BF上,∠BOD-∠BOC=90°,∠AOC=∠BOD,射线OM 平分∠AOF.求∠DOM的度数?知识点八钟表的时针分针夹角的计算此类题考查钟面角:钟面被分成12大格,每格30°;时针每分钟转0.5°,分针每分钟转6°.1 下午3:30的时候,时针与分针的夹角是2 晚上6:30的时候,时针与分针的夹角是3 晚上11:30的时候,时针与分针的夹角是4 中午12:30的时候,时针与分针的夹角是知识点九对正方体11种展开图的考察1★课本148页第四题2★如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是3 ★★下列图形是正方体的展开图,还原成正方体后,其中完全一样的是A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(3)和(4)知识点十线段计算—涉及线段的中点..(此次不考三等分、四等分点)..和比例1★如图,AB=18,点M是AB的中点,点N将MB分成MN:NB=2:1,则AN的长度是()2 ★已知线段AB=5cm,延长线段AB到C,使BC=4AB,D是BC的中点,求AD的长度.3 ★如图,C是线段AB的中点,D是线段AC上一点,且DC=14AC,若BC=4,则DC等于()4 ★★延长线段AB到C,使BC=13AB,D为AC中点,DC=2cm,则线段AB的长度是()5 ★★已知点C在线段AB上,点M是AC的中点,点N在BC上,且CN:NB=1:2若AB=11cm,AC=5cm,求MN的值6 ★★线段AB=8cm,点E在AB上,且AE=14AB,延长线段AB到点C,使BC= 12AB,点D是BC的中点,求线段DE的长.7 ★★如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.8 ★★如图,C、D将线段AB分成2:3:4三部分,E、F、G分别是AC、CD、DB的中点,且EG=12cm,则AB的长是?AF的长是?9 ★★点C为线段AB上一点,若线段CB=8cm,AC:CB=3:2,D、E两点分别为AC、AB的中点,则DE的长为()10 ★★已知线段AB=12cm,点C在射线AB上,点M、N分别是AC、CB 的中点.(1)若点C在线段AB上,且AC:CB=2:3,求线段MN的长;(2)若点C在线段AB延长线上任一点,求线段MN的长.11.★★★线段AC:CD:DB=3:4:5,M、N分别是CD、AB的中点,且MN=2cm,求AB的长.12 ★★★点C在直线AB上,且线段AB=16,若AB:BC=8:3,E是AC 的中点,D是AB的中点,则线段DE=知识点十一对立体图形的认知,区分柱、锥、球1 请你把图中的几何图形与它们相应的名称连接起来此外还要注意立体图形的展开图2 如图,请把相应立体图形的平面展开图序号填在对应的立体图形下方.知识点十二三角板拼接的角的计算如图,将两块三角板的顶点重合.(1)请写出图中所有以O点为顶点且小于平角的角;(2)你写出的角中相等的角有;(3)若∠DOC=53°,试求∠AOB的度数;(4)当三角板AOC绕点O适当旋转(保持两三角板有重合部分)时,∠AOB 与∠DOC之间具有怎样的数量关系?2011-2012学年第一学期期末测试卷七年级 数学一、细心选一选:(每小题3分,共30分)1.2-的绝对值是( )A .2-B .2C .21 D .21- 2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .3105.8⨯亿元B .41085.0⨯亿元C .4105.8⨯亿元D .21085⨯亿元 3.下列方程中,属于一元一次方程的是 ( )A.021=+x B. 62=+y x C. 13=x D.312=-x 4.如果)1(2+x 的值与x -2的值互为相反数,那么x 等于( ) A.-4 B.0 C.1 D.-25.若单项式4122212x y x y a 与--是同类项,则a 的值是( )A. 0B. 1C. -1D. 126.若y x =,则下列式子不一定成立的是( ) A .a y a x +=+ B .a y a x -=- C .ay ax = D .ay a x = 7.下列语句错误的是 ( ) A .任何数的绝对值都是非负数B .有公共端点的两条射线组成的图形叫做角C .任何数都有倒数D .经过两点有且只有一条直线8.如图,已知AD 平分BAE ∠,若︒=∠62BAD ,则CAE ∠的度数是( ) A .56︒ B .︒55 C .︒58 D .62︒C第8题图学校 姓名 班级 学号…………密………封………线………内…………不…………准…………答…………题…………9.我校现有学生x 人,预计明年将增加15%,则我校明年的学生人数为( )A .%151+x B.%151-xC.(1-15%)xD.(1+15%)x10.如果代数式5242+-y y 的值是7,那么代数式122+-y y 的值等于 ( ) A . 2 B . 3 C .﹣2 D .4 二、耐心填一填:(每小题3分,共30分)11.若点C 是线段AB 的中点,且AB =10cm,则AC = cm . 12.'2764︒的余角是 ,"21'35108︒的补角是 .13.单项式3232zy x -的系数是 ,次数是 .14.三个连续奇数的和为69,则这三个数分别为 , , . 15.甲、乙、丙三地的海拔高度分别是20 m 、-15m 、-5m ,那么最高的地方比最低的地方高__________m.16.关于x 的方程253=+-k x 的解是1=x ,则=k .17.小刚每晚19:00都要看央视的“新闻联播”节目,这时钟面上时针与分针夹角的度数为____________18.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =︒36, 则∠AOB =__ ______.19.已知0)12(1232=++-nm ,则n m -2___________.20.根(用含有n三、细心做一做(本大题3小题,共36分) 21.计算(每小题4分,共8分):(1)3322)21(2)4(14-⨯-+-⨯- (2)"'242940"36'3123︒︒+22.解方程(每小题5分,共20分):(1)35473-=+-x x x (2)1123x x --=… n=1 n=2 n=3 n=4(3))1(3)1(8)2(2x x x -=--- (4)335252--=--x x x23.(8分)先化简,后求值:已知:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m .四.沉着冷静,周密考虑(本大题共2小题,共14分)24.(8分)甲、乙两人登一座山,甲每分登高10米,并且先出发30分钟,乙每分登高15米,两人同时登上山顶,问(1)甲用多少时间登山?(2)这座山有多高?25.(6分)如图,O 是直线AB 上的一点,OD 是AOC ∠的平分线,OE 是COB ∠的平分线,求DOE ∠的度数.A B五.充满信心,成功在望(共10分)26.请根据图中提供的信息,回答下列问题 :(1)一个暖瓶与一个水杯各是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。
2019-2020学年人教版七年级数学(上)期末单元复习几何初步
D
9. 有如下说法:①平角是一条直线;②射线是直线的一半;③射线 AB 与射线 BA 表示同一射
线;④用一个扩大 2 倍的放大镜去看一个角,这个角扩大 2 倍;⑤两点之间,线段最短;⑥
120.5 °= 120°50′,其中正确的有(
)
A .4 个 B .1 个
C .2 个 D .3 个
10. 钟表在 8: 25 时,时针与分针的夹角是 (
(考试时间: 90 分钟 试卷满分: 120 分) 注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己 的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
A. 5.4 cm
B. 6.4 cm
C. 6.8 cm
数学试题 第 1 页(共 6 页)
D. 7 cm
6.如图,在灯塔 O 处观测到轮船 A 位于北偏西 54°的方向,同时轮船 B 在南偏东 15°的方向,那么∠ AOB
的度数为 ( )
A. 69 °
B.111 °
C. 141 °
D. 159 °
7. 如图,某公司有三个住宅区, A, B, C 各区分别住有职工 10 人, 15 人, 45 人,且这三个区在一条大道
车票.
20. 观察下列各正方形图案,每条边上有 n( n ≥ ) 个圆点,每个图案中圆点的总数是 S .
23. (10 分)如图, 点在 处的北偏东 方向, 点在 处的北偏东 方向, 点在 处的西北方向,求
及
的度数.
n 2 , S 4 n 3 , S 8 n 4 , S 12 三、解答题(本题共 5 小题,共 60 分.) 21. (10 分)如图,已知 C 是 AB的中点, D是 AC的中点, E 是 BC的中点.
2019-2020年(人教版)七年级上章末复习学案(4)几何图形初步(有答案)优质版
章末复习(四) 几何图形初步分点突破知识点1 认识几何图形1.下列几何体中,属于锥体的是( )2.下列说法错误的是( )A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成知识点2 展开、折叠与从不同方向观察立体图形3.(六盘水中考)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是( )A.相对 B.相邻C.相隔 D.重合4.(荆门中考)下列四个几何体中,从上面看得到的平面图形是四边形的是( )知识点3 直线、射线、线段5.下列判断错误的有 ( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,那么点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个 B.2个C.3个 D.4个知识点4 线段的有关计算6.(宾期末)如图,已知线段AB=12,点C是AB的中点,点D是BC的中点,则线段CD=________.7.(梧州期末)如图,M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.知识点5 角度的有关计算8.(钦州中考)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1=________度.9.(铜仁期末)如图,∠BOC=2∠AOB,OD平分∠AOC,∠BOD=25°,求∠AOB的度数.知识点6 余角与补角10.(株洲中考)已知∠α=35°,那么∠α的余角等于 ( )A.35° B.55°C.65° D.145°11.(呼和浩特一模)一个锐角的余角加上90°,就等于( )A.这个锐角的两倍 B.这个锐角的余数C.这个锐角的补角 D.这个锐角加上90°综合训练12.下列判断正确的个数有( )①已知A、B、C三点,过其中两点画直线一共可画三条;②过已知任意三点的直线有1条;③三条直线两两相交,有三个交点.A.0个 B.1个C.2个 D.3个13.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的几何体是( )14.如图,可以用字母表示出的不同射线和线段分别有( )A.3条线段,3条射线 B.6条线段,6条射线C.6条线段,3条射线 D.3条线段,1条射线15.(岑溪期末)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于( )A.15° B.25°C.35° D.45°16.如图,从学校A到书店B最近的路线是________号路线,其中的道理用数学知识解释应是________________.17.(梧州期末)如图,点A,O,B在同一条直线上,∠COD=2∠COB,若∠COD=40°,则∠AOD的度数为________.18.(黔东南期末)如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.19.(腾冲期末)(1)如图,线段AC=6 cm,线段BC=15 cm,点M是AC的中点,CN∶NB=1∶2,求MN的长;(2)如图,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线.求∠BOD的度数.参考答案1.B2.C3.B4.D5.D6.37.因为AB =4 cm ,BC =2AB ,所以BC =8 cm.所以AC =AB +BC =4+8=12(cm).因为M 是线段AC 的中点,所以MC =AM =12AC =6(cm).所以BM =AM -AB =6-4=2(cm). 8.809.设∠AOB =,∠BOC =2.则∠AOC =3.又因为OD 平分∠AOC ,所以∠AOD =32.所以∠BOD =∠AOD -∠AOB =32-=25°.所以=50°,即∠AOB =50°. 10.B 11.C 12.A 13.D 14.C 15.B 16.(1) 两点之间,线段最短 17.120° 18.图略. 19.(1)因为线段AC =6 cm ,点M 是AC 的中点,所以CM =3 cm.又因为BC =15 cm ,CN ∶NB =1∶2,所以CN =5 cm.所以MN =CM +CN =3+5=8(cm). (2)因为∠AOB =35°,∠BOC =90°,所以∠AOC =∠AOB +∠BOC =35°+90°=125° .又因为OD 是∠AOC 的平分线,所以∠AOD =12∠AOC=12×125°=62.5°.所以∠BOD =62.5°-35°=27.5°.。
2019-2020学年七年级数学上册《第4章 图形初步认识》总复习学案1 新人教版.doc
2019-2020学年七年级数学上册《第4章图形初步认识》总复习学案1 新人教版(一)知识梳理和考点汇总1.多姿多彩的图形:(重点考查立体图形的展开与平面图形的关系)(1)几何图形是有______组成的,分为_______图形和___________。
(2)如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()(3)如左图所示的正方体沿某些棱展开后,能得到的图形是()2.直线、射线和线段:(考察定义、性质、公理等)(1)下列语句中表述正确的是()A.延长直线AB B.延长射线OC C.作直线AB=BC D.延长线段AB(2)已知M是线段AB的中点,那么,①AB=2AM;②BM=AB;③AM=BM;④AM+BM=AB。
上面四个式子中,正确的有()A.1个 B.2个 C.3个D.4个(3)如图2,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有__________条线段,共有___________射线.(3)不在同一直线上的四点最多能确定 条直线。
(4)平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( )A 点C 在线段AB 上 B 点B 在线段AB 的延长线上C 点C 在直线AB 外D 点C 可能在直线AB 上,也可能在直线AB 外(5)如右图所示,B ,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b ) B 2a-b C a+b D a-b(6)n 条直线两两相交,最多有__________个交点。
3. 角的度量:(1)把33.28°化成度、分、秒得_______。
108°20′42″=______度(2)在时刻8:30,时钟上的时针和分针的夹角是为_____(3)5245'3246'_________'︒︒︒-= 18.32634'_________'︒︒︒+=(4)把一个蛋糕平均分成8份,每份中的角度为_______4.角比较与运算:(1)如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上,则2∠的度数为______(2) 如果∠α=26°,那么∠α余角的补角等于___________(3)如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为 ( ) A 、互余 B 、互补 C 、相等 D 、不能确定。
【最新】人教版七年级数学上册第4章几何图形初步含答案.doc
第4章几何图形初步一、填空题(36分)1、 6000″ =′=°,12°15′36″=°。
2、锯木料时,先在木板上画出两点,再过这两点弹出一条墨线,这是利用了的原理。
3、如图,从A 地到B 地走条路线最近,它根据的是 .4、当图中的∠1和∠2满足时,能使OA ⊥OB (只需填上一个条件即可).5、在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是南偏西度.6、如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =76°,则∠BOD =°.7、小明每天下午5:30回家,这时分针与时针所成的角的度数为°;8、如图所示的4×4正方形网格中,∠l+∠2+∠3+∠4+∠5+∠6+∠7= °.9、点A 、B 、C 是数轴上的三个点,且BC=2AB 。
已知点A 表示的数是-1,点B 表示的数是3,点C 表示的数是;10、如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为;11、如图,从点O 出发的5条射线,可以组成的角的个数是;12、α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算)(151的值时,AB①②③A BCD E O第6题BC ED A O有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则 =°.二、选择题(30分)1 、下列说法中,正确的有()(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离(3)两点之间,线段最短(4)AB =BC ,则点B 是线段AC 的中点 (5)射线比直线短A .1个 B.2个 C.3个 D.4个2、下列各直线的表示法中,正确的是()A .直线ab B.直线Ab C.直线A D.直线AB3、三条互不重合的直线的交点个数可能是()A 、0、1、3 B、0、2、3 C 、0、1、2、3 D、0、1、24、钝角减去锐角的差是( ) A 、锐角 B、直角 C、钝角 D 、都有可能5、一个角的补角为158°,那么这个角的余角是()A 、22°B 、68°C 、52°D 、112°6、平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则()A .点C 在线段AB 上 B .点B 在线段AB 的延长线上C .点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外7、下列各图形中,有交点的是()8、12:45时,钟表的时针与分针所成的角是( ) A.直角 B.锐角 C.钝角 D.平角9、在图中的五个半圆,邻近的两半圆紧紧相连,两只小虫同时出发,以相同的速度从A点到B 点.甲虫沿弧ADA1、A 1EA2、A 2FA3、A 3GB 路线爬行,乙虫沿路线爬行,则下列结论正确的是( )DDC BACDCBABDCBAADCBAA .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定10、小华用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是( )三、解答题(34分)1、作图:已知∠1和∠2如下图所示,用尺规作图画出∠AOB =∠1+∠2,不写作法,但要保留作图痕迹.(5分)2、已知∠1与∠2互为补角,且∠2的2倍比∠1大30°,求∠1的度数.(5分)3、如图,AD=12DB, E 是BC 的中点,BE=15AC=2cm,线段DE 的长,求线段DE 的长.(6分)4、把一副三角尺如图所示拼在一起。
人教版七年级上数学:第四章《图形认识初步》(两课时)复习学案(附模拟试卷含答案)
数学:第四章《图形认识初步》(两课时)复习学案(人教版七年级上)【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
【导学指导】 一、知识结构二、回顾与思考1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗?立体图形 平面图形 展开图 两点间的距离 余角 补角2、与以前相比,你对直线、射线、线段和角有什么新的认识?3、直线的性质:经过两点有一条直线,并且只有一条直线。
即: __________确定一条直线。
4、线段的性质和两点间的距离(1)线段的性质:两点之间,_______________。
(2)两点间的距离:连接两点的_______________,叫做两点间的距离。
5、线段的中点及等分点的意义(1)若点C 把线段AB 分为________的两条线段AC 和BC ,则点C 叫做线段的中点。
角的概念1、角的定义和表示 平面图形从不同方向看立体图形展开立体图形 平面图形几何图形立体图形直线、射线、线段角 两点之间,线段最短线段大小的比较角的度量角的比较与运算角的平分线等角的补角相等等角的余角相等两点确定一条直线(1)有_______________的两条射线组成图形叫做角。
这是从静止的角度来定义的。
由一条射线绕着_______________旋转而成的图形叫做角。
这是从运动的角度来定义的。
(2)角的表示:①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。
2、角的度量10=60′;1′=60′′.3、角的比较比较角的方法:度量法和叠合法。
4、角的平分线从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。
表示为∠AOC= ∠COB或∠ AOC=∠COB= 1/2∠AOB或2∠ AOC=2∠COB= ∠AOB5、余角和补角(1)定义:如果两个角的和等于______,就说这两个角互为余角。
七年级数学上册 期末复习(四)几何图形初步步学案 (新版)新人教版-(新版)新人教版初中七年级上册数
期末复习(四) 几何图形初步知识结构几何图形⎩⎪⎨⎪⎧立体图形⎩⎪⎨⎪⎧从不同方向看立体图形展开立体图形平面图形⎩⎪⎨⎪⎧直线、射线、线段角⎩⎪⎨⎪⎧角的度量角的比较与运算——角的平分线余角与补角典例精讲命题点1 图形的折叠与展开【例1】 (某某中考)下列各图中,经过折叠能围成一个立方体的是( )【方法归纳】 常见的正方体的展开图有以下11种形状:1.(某某中考)下列图形中,能通过折叠围成一个三棱柱的是( )2.(黔东南期末)如图是一个正方体的平面展开图,在这个正方体中相对的面上的数字互为相反数,那么m 所表示的数应是________. 命题点2 线段的有关计算【例2】 (某某中考)已知线段AB =8 cm ,在直线AB 上画线段BC 使BC =3 cm ,则线段AC =________. 【方法归纳】 进行线段的计算时,要先分析得出线段之间隐含的数量关系,然后利用相关的性质来解答.3.如图,若AB=2 cm,BC=5 cm,C是BD的中点,则BD=________cm,AD=________cm.4.(某某模拟)如图,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则DB的长度为( )A.4 B.6 C.8 D.105.(黔东南期末)如图,C、D两点将线段AB分成2∶3∶4三部分,E为线段AB的中点,AD=10 cm.求:(1)线段AB的长;(2)线段DE的长.命题点3 角度的有关计算【例3】(中考)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于( )A.38°B.104°C.142°D.144°【方法归纳】解答这类问题常用的方法是根据已知角度和所求角之间的联系,运用角的和差进行计算.6.(某某中考)拿一X长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°,则∠DFA=___度.7.(贵港期末)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角;(2)求出∠BOD的度数;(3)小明发现OE平分∠BOC,请你通过计算说明道理.8.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE、OF分别平分∠BOD、∠BOC,求∠EOF的度数.(写出必要的推理过程)期末复习卷一、选择题(每小题3分,共30分)1.(某某中考)如图是一个圆锥,下列平面图形既不是圆锥从三个方向看得到的平面图形,也不是它的侧面展开图的是( )2.(某某中考)下面角的图形中,能与30°角互补的是( )3.下列关系中,与图示不符合的式子是( )A.AD-CD=AB+BCB.AC-BC=AD-DBC.AC-BC=AC+BDD.AD-AC=BD-BC4.如图,从点O出发引四条射线OA、OB、OC、OD,则可组成角的个数是( )A.3 B.4 C.5 D.65.(某某期末)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是( )A.75°B.90°C.105°D.125°6.(某某中考)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.(六盘水期末)如图是由几个小立方体块所搭几何体.从上面看到的图形如图所示,小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的图形是( )8.(某某期末)下列说法正确的个数有( )①射线AB与射线BA表示同一条射线;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④连接两点的线段叫做两点之间的距离;⑤40°50′°;⑥互余且相等的两个角都是45°.A.1个 B.2个 C.3个 D.4个9.(黔南期末)如图,下列说法不正确的是( )A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°10.如图,已知A、B、C、D、E五点在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于( )A.10 B.8 C.6 D.4二、填空题(每小题3分,共18分)11.写出图中立体图形的名称:(1)________;(2)________;(3)________.12.在数轴上有两个点A、B,它们对应的数分别是-2,6,点M是线段AB的中点,则点M表示的数是________.13.普通的钟表在4点钟时,时针与分针的夹角的度数为________.14.∠α=40°,∠α的补角是∠β的2倍,则∠β=________.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB等于________.16.(某某期末)有一道题,已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M,N分别是线段AB,BC的中点,求线段MN的长.对这道题,小善同学的答案是7,小昌同学的答案是3.老师说他们的结果都没错,如图,则可得到a的值是________.三、解答题(共52分)17.(12分)计算:(1)48°39′+67°41′;(2)90°-78°19′40″;(3)11°23′26″×3; (4)176°52′÷3.18.(8分)(来宾期末)用尺规作图(只作出图形,不写作法).(1)如图1,已知直线AB,按下列语句画图:点P是直线AB外一点,过点P的直线l与直线AB相交于点M;(2)如图2,已知线段a,b,作一条线段使它等于a+b.19.(10分)如图,M是线段AB的中点,点C在线段AB上,且AC=4 cm,N是AC的中点,MN=3 cm,求线段CM和AB的长.20.(10分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是________;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.21.(12分)(1)如图1所示,已知∠AOB=120°,OC平分∠AOB,OD、OE分别平分∠AOC、∠COB,求∠DOE的度数;(2)如图2,在(1)中把“OC平分∠AOB”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图3,在(1)中把“OC平分∠AOB”改为“OC是∠AOB外的一条射线,且点C与点B在直线AO的同侧”,其他任何条件都不变,请你直接写出∠DOE的度数.参考答案【例1】 A 1.C 2.3 【例2】5 cm 或11 cm 3.10 12 4.D 5.(1)设AC =2x ,CD =3x ,BD =4x ,因为AD =10 cm ,所以5x =10.解得x =2.所以AB =(2+3+4)×2=18(cm). (2)因为E 为线段AB 的中点,所以AE =9 cm.因为AD =10 cm ,所以ED =AD -AE =10-9=1(cm). 【例3】 C 6.1107.(1)图中小于平角的角有∠AOD ,∠AOC ,∠AOE ,∠DOC ,∠DOE ,∠DOB ,∠COE ,∠COB ,∠EOB.(2)因为∠AOC =50°,OD 平分∠AOC ,所以∠DOC =12∠AOC =25°,∠BOC =180°-∠AOC =180°-50°=130°.所以∠BOD =∠DOC +∠BOC =155°. (3)因为∠DOE =90°,∠DOC =25°,所以∠COE =∠DOE -∠DOC =90°-25°=65°.又因为∠BOE =∠BOD -∠DOE =155°-90°=65°,所以∠COE =∠∠BOC. 8.(1)设∠BOD =x °,因为∠AOC 的度数比∠BOD 的度数的3倍多10度,且∠COD=90°∠BOD =20°. (2)因为OE 、OF 分别平分∠BOD 、∠BOC ,所以∠BOE =12∠BOD ,∠BOF =12∠BOC =12(∠BOD +∠COD).所以∠EOF =∠BOF -∠BOE =12(∠BOC -∠BOD)=12∠COD =45°. 期末复习卷1.D 2.D 3.C 4.D 5.B 6.B 7.B 8.B 9.D 10.C 11.圆柱 五棱柱 四棱锥 12.2 13.120°14.70°15.145°16.1017.(1)原式=116°20′. (2)原式=11°40′20″. (3)原式=34°10′18″. (4)原式=58°57′20″. 18.(1)(1)图略. (2)图略.OE =a +b.19.因为N 是AC 中点,AC =4 cm ,所以NC =12AC =12×4=2(cm).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm).所以AM =AC +CM =4+1=5(cm).因为M 是AB 的中点,所以AB =2AM =2×5=10(cm).答:线段CM 的长为1 cm ,AB 的长为10 cm.20.(1)北偏东70° (2)因为∠AOB =40°+15°=55°,∠AOB =∠AOC ,所以∠BOC =110°.又因为OD 是OB 的反向延长线,∠BOD =180°,所以∠COD =180°-110°=70°. (3)因为∠COD =70°,OE 平分∠COD ,所以∠COE =35°.又因为∠AOC =55°,所以∠AOE =55°+35°=90°.21.(1)因为∠AOB =120°,OC 平分∠AOB ,所以∠AOC =∠COB =12∠AOB =60°.因为OD 、OE 分别平分∠AOC 、∠COB ,所以∠COD =12∠AOC =30°,∠COE =12∠COB =30°. 所以∠DOE =∠COD +∠COE =30°+30°=60°. (2)因为OD 、OE 分别平分∠AOC 、∠COB ,所以∠COD =12∠AOC ,∠COE =12∠∠DOE =∠COD +∠COE =12(∠AOC +∠COB)=12∠AOB =12×120°=60°.(3)因为OD 、OE 分别平分∠AOC 、∠COB ,所以∠COD =12∠AOC ,∠COE =12∠∠DOE =∠COD -∠COE =12∠AOC -12∠COB =12(∠AOC -∠COB)=12∠AOB =12×120°=60°.。
人教版数学七年级上册学案 第4章 几何图形初步
人教版数学七年级上册学案第四章几何图形初步4.1 几何图形第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.使用要求:1.阅读课本P115-P118;2.尝试完成教材P118的两组思考的问题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察P115本章的章前图:(1)知道这是什么地方吗?你对它了解多少?(可上网查找)(2)你能从中找到我们熟悉的图形吗?找找看.2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形.3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习.二、合作探究:1.观察P116的9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2.立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②观察P117图4.1-3,你能由实物想到几何图形及其形状吗?③完成P118思考的问题(上),并与你的同学交流.【老师提示】:常见..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.②完成P118思考的问题(下)4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5.下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面.你能说出类似于这些物体的几何图形吗?三、知识应用:1.P119练习题.2.用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.机器人两盏电灯稻草人四、学习小结:五、作业:P123习题4.1第1、2、3、7、8题.(有条件的同学可准备10个正方体形状的积木,下课时备用)附:① 2008年北京奥运会即第二十九届夏季奥林匹克运动会,于2008年8月8日20时开幕,于2008年8月24日闭幕.②本届奥运会口号为“同一个世界,同一个梦想”,主办城市是中国北京.③参赛国家及地区204个,参赛运动员11438人,设302项(28种运动)比赛项目④中国51金,21银,28铜.金牌数第一,奖牌总数第二.4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)4.2 直线、射线、线段4.2.1 直线、射线、线段学习目标:1.了解直线、射线、线段的联系和区别,掌握它们的表示方法.2.了解两点确定一条直线的性质,并能初步应用.3.会用几何语句描述几何图形,能根据几何语句画出相应的几何图形.学习重点:1.直线、射线、线段的表示方法.2.建立几何语句与几何图形之间的联系.学习难点:建立几何语句与几何图形之间的联系.使用要求:1.阅读课本P128-P129;2.尝试完成教材P129练习题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级10个班,问至少需要买几颗钉子?你能帮总务处的老师算一算吗?2.P128的探究.(1)在墙上固定一根木条,至少要几个钉子?动手试一试.(2)动手作图试试:①过一点O可以作________直线.②过A、B两点________(能或不能)作直线,能作_________直线.再过下面的C、D以及E、F两点作直线试试看注意: 直线没有端点,是向两方无限延伸的,画直线时要画出向两方无限延伸的部分.3.直线公理:直线公理在生活中有广泛的应用,你能举出几个例子吗?二、合作探究:1.直线有几种表示方法?(1)如图的直线可记作直线______或记作直线_______. (2)用几何语言描述右面的图形,我们可以说: 点P 在直线AB______,点A 、B 都在直线AB_____. (3)如图,点O 既在直线m 上,又在直线n 上,我们称直线m 、n 相交,交点为O .想一想,如果两条直线相交,会有几个交点,作图试试.(4)读下面的几何语句,画出图形.① 点A 在直线a 外 ② 直线AB 、CD 相交于点B ,点E 在直线CD 上.2.在直线上取点O ,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM 或记作射线a . 注意:射线有一个端点,向一方无限延伸. 在下面的图中画射线AB 、射线EFEmPm aa3.在直线上取两个点A 、B ,把直线分成三个部分,去掉两边的部分,保留点A 、B 和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB 或记作线段a . 注意:线段有两个端点.4.能不能把一条线段变成一条射线?能不能把一条线段变成一条直线?作图试试.三、知识应用 1.P129练习.2.如图,分别有几条线段.2.已知A 、B 、C 三点,过其中的每两个点画直线,可画几条?四、学习小结:五、作业:P132习题4.2第1、2、3、4、11题.4.2.2 线段长短的比较与运算学习目标:1.会画一条线段等于已知线段,会比较两条线段的大小.2.通过实例体会两点之间线段最短的性质,并能初步应用.3.了解两点间的距离、线段的中点以及线段的三等分点的意义.学习重点:线段比较大小以及线段的性质.学习难点:线段的中点、三等分点及其应用.使用要求:1.阅读课本P129-P132;2.尝试完成教材P131的练习题;3.限时20分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.画直线AB、画射线CD、画线段EF.2.任意画线段a.你能不能再画一条线段AB正好等于你先前所画的线段a.你是怎样画的?你想到了几种方法?二、合作探究:1.如何比较两位同学的身高?①如果已知身高,我们如何比较?②如果不知身高,我们又如何比较?2.如何比较两根木条的长短?3.如何比较两条线段的大小?①任意画两条线段AB, CD.我们如何比较AB、CD的大小?动手试试.②任意两条线段比较大小,其结果有几种可能性?【老师提示】比较线段的常用方法有两种:①度量法②圆规截取法 4.试试身手:P131练习第1题.【老师提示】先估计大小关系看看我们的观察能力,再动手检验.5.①线段的中点:如图点M是线段AB上一点,并且AM=BM我们称点M是线段AB的中点.②怎样找出一条线段AB的中点M?③线段的三等分点、线段的四等分点.(观察P131图4.2-12)6.(1)P131思考.(2)有些人要过马路到对面,为什么不愿走人行横道呢?(3)从A 地架设输电线路到B地,怎样架设可以使输电线路最短?7.(1)线段的性质:(2)两点间的距离:8.画线段的和与差:a如图,已知两条线段a、b(a>b)(1)画线段a+b画法:①画射线AM;②在射线AN上顺次截取线段AB=a,BC=b.线段AC就是所要求作的线段a+b.记作AC=a+b.(2)画线段a-b三、学习小结:四、作业:1.P132练习第2题.2.P126习题3.2第5、6、7、8、9、10题.4.3 角 4.3.1 角学习目标:1.认识角,掌握角的两种定义形式及四种表示方法. 2.认识角度的单位;会初步进行角度的度、分互化运算. 学习重点:1.角的概念与角的表示方法. 2.角度的计算. 学习难点:对角的概念的理解. 使用要求:1.阅读课本P136-P137; 2.尝试完成教材P138的练习题;3.限时25分钟完成本导学案(合作或独立完成均可); 4.课前在小组内交流展示.一、自主学习:1.下面的图形,你有怎样的认识?2.角是一种基本的几何图形,画出一个角试试.3.生活中有形如“∠”这种形状的图形吗?试举出一个例子.4.角的概念.(1)有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.如图,角的顶点是O ,两边分别是射线OA 、OB .(2)角有以下的表示方法:① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.OBA如上图的角,可以记作∠AOB 或∠BOA .② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O . 注意:当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字. 如图的两个角,分别记作∠α、∠1 5.想一想P136“小贴示”中的问题.图中有几个角?(3)P136思考.(这是角的另一种定义方式) 用你的圆规为工具,体会角的这种定义方式. 二、合作探究:1.角度的单位:度、分、秒及其表示方法.把圆周角等分成360等分,每一份就是什么是1度的角,记作1°. 把1度的角等分成60等分,每一份就是什么是1分的角,记作1′. 把1分的角等分成60等分,每一份就是什么是1秒的角,记作1″. 由此我们可以得出:① 1°=60′,1′=60″ ② 1周角=360°,1平角=180°若∠α是51度26分37秒,则记作∠α=____________(用符号表示) 【老师提示】:以度、分、秒为单位的角的度量制叫做角度制. 另外还有以弧度为单位的弧度制,军事上常用密位制.1弧度=πο180=57°17′44″,1密位=ο)503(60001=周角 2.用量角器画角与角的度量(1)用量角器画50°、90°、140°的角.26【老师提示】用量角器度量角分三步:对中、重合、读数.α1(2)估计画一个70°的角,然后度量比较判断,看看你的判断能力.(2)用三角尺画特殊30°、45°、60°等特殊角.三、当堂检测:1.上午7时整,时针与分针成几度角?上午7时15分呢?2.35.40°与35°40′相等吗?为什么?3.如图,有几个角?分别表示这几个角.四、学习小结:五、作业:1.P138练习题第1、2、3题.2.P143习题4.3第1、2、14题.ABOCD4.3.2 角的比较与运算学习目标:1.通过观察与操作,体会角的大小,会比较角的大小,能估计一个角的大小.2.在图形中认识角的和、差关系,在操作中认识角的平分线. 3. 会进行度、分、秒的互化及角度的简单运算. 4.会进行角度的“加、减、乘、除”运算.. 学习难点:1. 角度的“除法”运算. 2. 度、分、秒的互化及角度的计算 使用要求:1.阅读课本P138-P140;2.尝试完成教材P140的练习第1题;3.限时20分钟完成本导学案(合作或独立完成均可); 4.课前在小组内交流展示.一、自主学习:1.已知线段AB 和线段CD (如图),你如何比较这两条线段的大小?ABCD2.如图,图中共有几个角?如何表示这些角?这些角之间有什么关系?3.什么是1°的角?什么是1′的角?什么是1″的角?还记得吗?如果不记得了,没关系,先看看书再完成下面的问题. (1)35°15′与35.15°相等吗?为什么?)4135(与35°15′相等吗?为什么?ABCO(2)32平角=________度, 51周角=_______度.(3)3.32°=______度_______分_______秒. 12°9′36″=_______度.(完成上面的问题如果有困难,不妨与同学交流)二、合作探究:1.下面的三组图形,每组中都有两个角,你能判断它们的大小吗?说说你的方法.ABCDEFBAC D EFABC DE F(1)(2)(3)【老师提示】如果你不会,可以参考我们前面对两条线段是如何比较大小的.2.P140练习第1题.3.P138思考:4.计算:(1)46°55′+23°35′ (2)46°55′-23°35′(3)68°21′-32°48′ (4)23°35′×3 (5)15°23′18″×44.想一想,你还能用三角尺可以画30°、45°、60°、90°这些特殊角吗?(1)我们能不能用三角尺画出15°的角呢?怎样画?试试看.(2)能用三角尺能画75°的角吗?(3)你还能用三角尺画哪些度数的角?试着画画看.5.角的平分线.(1)任意画一个角,取名叫∠AOB .你能否从角的顶点作出一条射线,把∠AOB 分成两个相等的角? 如果能,试说出你的方法.(2)角的平分线:如图,射线OP 是∠AOB 的角平分线,那么图这几个角有怎样的大小关系?6.我们知道线段有三等分点、四等分点,那么一个角会不会有三等分线或四等分线呢?如图,给你一个角,你能作出它的三等分线吗?试试看.POBA三、当堂检测1. 如图,已知OB、OC是∠AOB的三等分线,试说出几个你能得到的正确结论:2.P140练习第2、3题.3.计算:122°48′÷3三、学习小结:四、作业:P143习题4.3第4、6题P143习题4.3第3、5、10、11题.ABCDO第四章 几何图形初步4.3 角4.3.3 余角和补角学习目标:1.通过观察与操作,体会角的大小,会比较角的大小,能估计一个角的大小.2.在图形中认识角的和、差关系,在操作中认识角的平分线. 3. 会进行度、分、秒的互化及角度的简单运算. 4.会进行角度的“加、减、乘、除”运算.. 学习难点:1. 角度的“除法”运算. 2. 度、分、秒的互化及角度的计算 使用要求:1.阅读课本P138-P140;2.尝试完成教材P140的练习第1题;3.限时20分钟完成本导学案(合作或独立完成均可); 4.课前在小组内交流展示.一、自主学习:1.已知线段AB 和线段CD (如图),你如何比较这两条线段的大小?ABCD2.如图,图中共有几个角?如何表示这些角?这些角之间有什么关系?3.什么是1°的角?什么是1′的角?什么是1″的角?还记得吗?如果不记得了,没关系,先看看书再完成下面的问题. (1)35°15′与35.15°相等吗?为什么?ABCO)4135(与35°15′相等吗?为什么?(2)32平角=________度, 51周角=_______度.(3)3.32°=______度_______分_______秒. 12°9′36″=_______度.(完成上面的问题如果有困难,不妨与同学交流)二、合作探究:1.下面的三组图形,每组中都有两个角,你能判断它们的大小吗?说说你的方法.ABCDEFBAC D EFABC DE F(1)(2)(3)【老师提示】如果你不会,可以参考我们前面对两条线段是如何比较大小的.2.P140练习第1题.3.P138思考:4.计算:(1)46°55′+23°35′ (2)46°55′-23°35′(3)68°21′-32°48′ (4)23°35′×3 (5)15°23′18″×44.想一想,你还能用三角尺可以画30°、45°、60°、90°这些特殊角吗?(1)我们能不能用三角尺画出15°的角呢?怎样画?试试看.(2)能用三角尺能画75°的角吗?(3)你还能用三角尺画哪些度数的角?试着画画看.5.角的平分线.(1)任意画一个角,取名叫∠AOB .你能否从角的顶点作出一条射线,把∠AOB 分成两个相等的角? 如果能,试说出你的方法.(2)角的平分线:如图,射线OP 是∠AOB 的角平分线,那么图这几个角有怎样的大小关系?6.我们知道线段有三等分点、四等分点,那么一个角会不会有三等分线或四POBA等分线呢?如图,给你一个角,你能作出它的三等分线吗?试试看.三、当堂检测1. 如图,已知OB、OC是∠AOB的三等分线,试说出几个你能得到的正确结论:2.P140练习第2、3题.3.计算:122°48′÷3三、学习小结:五、作业:P143习题4.3第4、6题ABCDOP143习题4.3第3、5、10、11题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末复习(四) 几何图形初步
分点突破
知识点1 认识几何图形
1.下列几何体中,属于锥体的是( )
2.下列说法错误的是( )
A.长方体、正方体都是棱柱
B.六棱柱有18条棱、6个侧面、12个顶点
C.三棱柱的侧面是三角形
D.圆柱由两个平面和一个曲面围成
知识点2 展开、折叠与从不同方向观察立体图形
3.(六盘水中考)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是( )
A.相对 B.相邻
C.相隔 D.重合
4.(荆门中考)下列四个几何体中,从上面看得到的平面图形是四边形的是( )
知识点3 直线、射线、线段
5.下列判断错误的有 ( )
①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,那么点P是线段AB的中点;
④连接两点间的线段,叫做两点间的距离.
A.0个 B.2个
C.3个 D.4个
知识点4 线段的有关计算
6.(宾期末)如图,已知线段AB=12,点C是AB的中点,点D是BC的中点,则线段CD=________.
7.(梧州期末)如图,M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM 的长.
知识点5 角度的有关计算
8.(钦州中考)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1=________度.
9.(铜仁期末)如图,∠BOC=2∠AOB,OD平分∠AOC,∠BOD=25°,求∠AOB的度数.
知识点6 余角与补角
10.(株洲中考)已知∠α=35°,那么∠α的余角等于 ( )
A.35° B.55°
C.65° D.145°
11.(呼和浩特一模)一个锐角的余角加上90°,就等于( )
A.这个锐角的两倍 B.这个锐角的余数
C.这个锐角的补角 D.这个锐角加上90°
综合训练
12.下列判断正确的个数有( )
①已知A、B、C三点,过其中两点画直线一共可画三条;②过已知任意三点的直线有1条;③三条直线两两相交,有三个交点.
A.0个 B.1个
C.2个 D.3个
13.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的几何体是( )
14.如图,可以用字母表示出的不同射线和线段分别有( )
A.3条线段,3条射线 B.6条线段,6条射线
C.6条线段,3条射线 D.3条线段,1条射线
15.(岑溪期末)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于( )
A.15° B.25°
C.35° D.45°
16.如图,从学校A到书店B最近的路线是________号路线,其中的道理用数学知识解释应是________________.
17.(梧州期末)如图,点A,O,B在同一条直线上,∠COD=2∠COB,若∠COD=40°,则∠AOD的度数为________.
18.(黔东南期末)如图,已知A、B、C、D四点,根据下列要求画图:
(1)画直线AB、射线AD;
(2)画∠CDB;
(3)找一点P ,使点P 既在AC 上又在BD 上.
19.(腾冲期末)(1)如图,线段AC =6 cm ,线段BC =15 cm ,点M 是AC 的中点,CN ∶NB =1∶2,求MN 的长;
(2)如图,∠AOB =35°,∠BOC =90°,OD 是∠AOC 的平分线.求∠BOD 的度数.
参考答案
1.B
2.C
3.B
4.D
5.D
6.3
7.因为AB =4 cm ,BC =2AB ,所以BC =8 cm.所以AC =AB +BC =4+8=12(cm).因为M 是线段AC 的中点,所以MC =AM =1
2AC =6(cm).所以BM =AM -AB =6-4=2(cm). 8.80
9.设∠AOB =,∠BOC =2.则∠AOC =3.又因为OD 平分∠AOC ,所以∠AOD =32.所以∠BOD =∠AOD -∠AOB =3
2-
=25°.所以=50°,即∠AOB =50°. 10.B 11.C 12.A 13.D 14.C 15.B 16.(1) 两点之间,线段最短 17.120° 18.图略. 19.(1)因为线段AC =6 cm ,点M 是AC 的中点,所以CM =3 cm.又因为BC =15 cm ,CN ∶NB =1∶2,所以CN =5 cm.所以MN =CM +CN =3+5=8(cm). (2)因为∠AOB =35°,∠BOC =
90°,所以∠AOC =∠AOB +∠BOC =35°+90°=125° .又因为OD 是∠AOC 的平分线,所以∠AOD =1
2∠AOC
=1
2×125°=62.5°.所以∠BOD =62.5°-35°=27.5°.。