高中数学必修五导学案 解三角形答案
人教版必修五“解三角形”精选难题及其答案
人教版必修五“解三角形”精选难题及其答案一、选择题(本大题共12小题,共60.0分)1. 锐角△ABC 中,已知a =√3,A =π3,则b 2+c 2+3bc 的取值范围是( )A. (5,15]B. (7,15]C. (7,11]D. (11,15]2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60∘,b =1,S △ABC =√3,则a−2b+csinA−2sinB+sinC的值等于( )A. 2√393B.263√3C. 83√3D. 2√34. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sinBsinA =1−cosB cosA.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( )A. 8+5√34B. 4+5√34C. 3D. 4+5√327. 在△ABC 中,a =1,b =x ,∠A =30∘,则使△ABC 有两解的x 的范围是( )A. (1,2√33) B. (1,+∞)C. (2√33,2) D. (1,2)8. △ABC 的外接圆的圆心为O ,半径为1,若AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,且|OA ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,则△ABC 的面积为( )A. √3B. √32C. 2√3D. 19. 在△ABC 中,若sinBsinC =cos 2A2,则△ABC 是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形10. 在△ABC 中,已知∠C =60∘.a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab+c +bc+a 为( )A. 3−2√3B. 1C. 3−2√3或1D. 3+2√311. 设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( ) A. (√2,√3) B. (1,√3) C. (√2,2) D. (0,2)12. 在△ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2bcosB =acosC +ccosA ,若b =√3,则a +c 的最大值为( )A. 2√3B. 3C. 32D. 9二、填空题(本大题共7小题,共35.0分)13. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 且acosC +12c =b ,则角A 的大小为______ ;若a =1,则△ABC 的周长l 的取值范围为______ .14. 在△ABC 中,∠A ,∠B ,∠C 所对边的长分别为a ,b ,c.已知a +√2c =2b ,sinB =√2sinC ,则sin C2= ______ .15. 已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a −b =ccosB −ccosA ,则△ABC 的形状是______ . 16. 在△ABC 中,若a 2b 2=tanA tanB,则△ABC 的形状为______ .17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a −b)sinB =asinA −csinC ,且a 2+b 2−6(a +b)+18=0,则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ = ______ . 18. 如果满足∠ABC =60∘,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是______ .19. 已知△ABC 的三个内角A ,B ,C 的对边依次为a ,b ,c ,外接圆半径为1,且满足tanA tanB=2c−b b,则△ABC 面积的最大值为______ .三、解答题(本大题共11小题,共132.0分)20. 在锐角△ABC 中,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA .(1)求角C 的大小;(2)若a =2,且△ABC 的面积为3√32,求c 的值.21. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知asinB =√3bcosA .(1)求角A 的大小;(2)若a =√7,b =2,求△ABC 的面积.22.已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA−csinC=(a−b)sinB.(1)求角C的大小;(2)若边长c=√3,求△ABC的周长最大值.23.已知函数f(x)=√3sinxcosx−cos2x−1,x∈R.2(1)求函数f(x)的最小值和最小正周期;(2)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a,b的值.24.已知△ABC中,A<B<C,a=cosB,b=cosA,c=sinC(1)求△ABC的外接圆半径和角C的值;(2)求a+b+c的取值范围.25.△ABC中,角A,B,C的对边分别是a,b,c且满足(2a−c)cosB=bcosC,(1)求角B的大小;(2)若△ABC的面积为为3√3且b=√3,求a+c的值.426.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA−sinB)=(c−b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.27.已知函数f(x)=2cos2x+2√3sinxcosx(x∈R).(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;]内恒有两个不相等的实数解,求实数t的取值(Ⅱ)若方程f(x)−t=1在x∈[0,π2范围.28.已知A、B、C是△ABC的三个内角,向量m⃗⃗⃗ =(cosA+1,√3),n⃗=(sinA,1),且m⃗⃗⃗ //n⃗;(1)求角A;=−3,求tanC.(2)若1+sin2Bcos 2B−sin 2B29.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1−sin C2(1)求sinC的值(2)若a2+b2=4(a+b)−8,求边c的值.30.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA−sinC)=sinB(a−b)(I)求角C的大小;(II)若c=2,求a+b的取值范围.答案和解析【答案】 1. D 2. A 3. A 4. D 5. A 6. A7. D8. B 9. B 10. B 11. A 12. A13. 60∘;(2,3]14. √2415. 等腰三角形或直角三角形 16. 等腰三角形或直角三角形 17. −27218. 0<k ≤12或k =8√319. 3√3420. 解:(1)△ABC 是锐角,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA . 由正弦定理得:√3sinA =2sinC ⋅sinA∵△ABC 是锐角, ∴sinC =√32, 故C =π3;(2)a =2,且△ABC 的面积为3√32, 根据△ABC 的面积S =12acsinB =12×2×b ×sin π3=3√32解得:b =3.由余弦定理得c 2=a 2+b 2−2abcosC =4+9−2×3=7 ∴c =√7.故得c 的值为√7. 21. (本题满分为14分)解:(1)∵asinB =√3bcosA ,由正弦定理得sinAsinB =√3sinBcosA.…(3分) 又sinB ≠0,从而tanA =√3.…(5分) 由于0<A <π, 所以A =π3.…(7分)(2)解法一:由余弦定理a 2=b 2+c 2−2bccosA ,而a =√7,b =2,A =π3,…(9分) 得7=4+c 2−2c =13,即c 2−2c −3=0. 因为c >0,所以c =3.…(11分) 故△ABC 的面积为S =12bcsinA =3√32.…(14分) 解法二:由正弦定理,得√7sin π3=2sinB , 从而sinB =√217,…(9分)又由a >b 知A >B ,所以cosB=2√77.故sinC=sin(A+B)=sin(B+π3)=sinBcosπ3+cosBsinπ3=3√2114.…(12分)所以△ABC的面积为12bcsinA=3√32.…(14分)22. 解:(1)由已知,根据正弦定理,asinA−csinC=(a−b)sinB 得,a2−c2=(a−b)b,即a2+b2−c2=ab.由余弦定理得cosC=a2+b2−c22ab =12.又C∈(0,π).所以C=π3.(2)∵C=π3,c=√3,A+B=2π3,∴asinA =bsinB=√3√32=2,可得:a=2sinA,b=2sinB=2sin(2π3−A),∴a+b+c=√3+2sinA+2sin(2π3−A)=√3+2sinA+2(√32cosA+12sinA)=2√3sin(A+π6)+√3∵由0<A<2π3可知,π6<A+π6<5π6,可得:12<sin(A+π6)≤1.∴a+b+c的取值范围(2√3,3√3].23. 解:(1)由于函数f(x)=√3sinxcosx−cos2x−12=√32sin2x−1+cos2x2−12=sin(2x−π6)−1,故函数的最小值为−2,最小正周期为2π2=π.(2)△ABC中,由于f(C)=sin(2C−π6)−1=0,可得2C−π6=π2,∴C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0.再结合正弦定理可得b=2a,且B=2π3−A.故有sin(2π3−A)=2sinA,化简可得tanA=√33,∴A=π6,∴B=π2.再由asinA =bsinB=csinC可得asinπ6=bsinπ2=3sinπ3,解得a=√3,b=2√3.24. 解:(1)由正弦定理csinC =2R=1,∴R=12.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,故有sinAcosA=sinBcosB,即sin2A=sin2B.再由A <B <C ,可得2A +2B =π,∴C =π2.(2)由于a +b +c =cosB +cosA +sinC =sinA +cosA +1=√2sin(A +π4)+1.再由O <A <π4,可得π4<A +π4<π2,∴√22<sin(A +π4)<1,∴2<√2sin(A +π4)+1<√2+1,即a +b +c 的取值范围为(2,√2+1).25. 解:(1)又A +B +C =π,即C +B =π−A , ∴sin(C +B)=sin(π−A)=sinA ,将(2a −c)cosB =bcosC ,利用正弦定理化简得:(2sinA −sinC)cosB =sinBcosC , ∴2sinAcosB =sinCcosB +sinBcosC =sin(C +B)=sinA ,在△ABC 中,0<A <π,sinA >0,∴cosB =12,又0<B <π,则B =π3 (2)∵△ABC 的面积为3√34,sinB =sin π3=√32, ∴S =12acsinB =√34ac =3√34,∴ac =3,又b =√3,cosB =cos π3=12,∴由余弦定理b 2=a 2+c 2−2accosB 得:a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9=3,∴(a +c)2=12,则a +c =2√326. 解:(1)△ABC 中,∵a =2,且(2+b)(sinA −sinB)=(c −b)sinC , ∴利用正弦定理可得(2+b)(a −b)=(c −b)c ,即b 2+c 2−bc =4,即b 2+c 2−4=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc=12,∴A =π3.(2)再由b 2+c 2−bc =4,利用基本不等式可得4≥2bc −bc =bc , ∴bc ≤4,当且仅当b =c =2时,取等号,此时,△ABC 为等边三角形,它的面积为12bcsinA =12×2×2×√32=√3,故△ABC 的面积的最大值为:√3.27. 解:(I)f(x)=2cos 2x +2√3sinxcosx =cos2x +√3sin2x +1 2sin(2x +π6)+1令−π2+2kπ≤2x +π6≤+2kπ(k ∈Z) 解得:kπ−π3≤x ≤kπ+π6(k ∈Z) 由于x ∈[0,π]f(x)的单调递增区间为:[0,π6]和[2π3,π]. (Ⅱ)依题意:由2sin(2x +π6)+1=t +1 解得:t =2sin(2x +π6)设函数y1=t与y2=2sin(2x+π6)由于在同一坐标系内两函数在x∈[0,π2]内恒有两个不相等的交点.因为:x∈[0,π2]所以:2x+π6∈[π6,7π6]根据函数的图象:当2x+π6∈[π6,π2]sin(2x+π6)∈[12,1],t∈[1,2]当2x+π6∈[π2,7π6]时,sin(2x+π6)∈[−12,1],t∈[−1,2]所以:1≤t<228. 解:(1)∵m⃗⃗⃗ //n⃗,∴√3sinA−cosA=1,2(sinA⋅√32−cosA⋅12)=1,sin(A−π6)=12,∵0<A<π,−π6<A−π6<5π6,∴A−π6=π6.∴A=π3.(2)由题知1+sin2Bcos 2B−sin 2B=−3,∴(cosB+sinB)2(cosB+sinB)(cosB−sinB)=−3,∴cosB+sinBcosB−sinB=−3,∴1+tanB1−tanB=−3,∴tanB=2.∴tanC=tan[π−(A+B)]=−tan(A+B)=−tanA+tanB1−tanAtanB =8+5√311.29. 解:(1)∵sinC+cosC=1−sin C2∴2sin C2cosC2+1−2sin2C2=1−sinC2∴2sin C2cosC2−2sin2C2=−sinC2∴2sin2C2−2sinC2cosC2=sinC2∴2sin C2(sin C2−cosC2)=sinC2∴sin C2−cos C2=12∴sin2C2−sinC+cos2C2=14∴sinC=3 4(2)由sin C2−cos C2=12>0得π4<C2<π2即π2<C<π∴cosC=−√7 4∵a2+b2=4(a+b)−8∴(a−2)2+(b−2)2=0∴a=2,b=2由余弦定理得c2=a2+b2−2abcosC=8+2√7∴c=1+√730. (本题满分为12分)解:(I)在△ABC中,∵(a+c)(sinA−sinC)=sinB(a−b),∴由正弦定理可得:(a+c)(a−c)=b(a−b),即a2+b2−c2=ab,…(3分)∴cosC=12,∴由C为三角形内角,C=π3.…(6分)(II)由(I)可知2R=c sinC=√32=4√33,…(7分)∴a+b=4√33(sinA+sinB)=4√33[sinA+sin(A+π3)]=4√33(32sinA+√32cosA)=4sin(A+π6).…(10分)∵0<A<2π3,∴π6<A+π6<5π6,∴12<sin(A+π6)≤1,∴2<4sin(A+π6)≤4∴a+b的取值范围为(2,4].…(12分)【解析】1. 解:由正弦定理可得,a sinA=b sinB=c sinC=√3√32=2,∴b=2sinB,c=2sinC,∵△ABC为锐角三角形,∴0∘<B<90∘,0∘<C<90∘且B+C=120∘,∴30∘<B<90∘∵bc=4sinBsin(120∘−B)=4sinB(√32cosB+12sinB)=2√3sinBcosB+2sin2B=√3sin2B+(1−cos2B)=2sin(2B−30∘)+1,∵30∘<B<90∘,∴30∘<2B−30∘<150∘,∴12<sin(2B−30∘)≤1,∴2<2sin(2B−30∘)+1≤4,即2<bc≤3,∵a =√3,A =π3,由余弦定理可得:3=b 2+c 2−bc ,可得:b 2+c 2=bc +3, ∴b 2+c 2+3bc =4bc +3∈(11,15]. 故选:D .由正弦定理可得,asinA=bsinB =csinC =√3√32=2,结合已知可先表示b ,c ,然后由△ABC 为锐角三角形及B +C =120∘可求B 的范围,再把所求的bc 用sinB ,cosB 表示,利用三角公式进行化简后,结合正弦函数的性质可求bc 的范围,由余弦定理可得b 2+c 2+3bc =4bc +3,从而可求范围.本题综合考查了正弦定理和面积公式及两角和与差的正弦、余弦公式及辅助角公式的综合应用,解题的关键是熟练掌握基本公式并能灵活应用,属于中档题. 2. 解:因为sinA =2sinBcosc , 所以sin(B +C)=2sinBcosC ,所以sinBcosC −sinCcosB =0,即sin(B −C)=0, 因为A ,B ,C 是三角形内角, 所以B =C .三角形为等腰三角形. 故选:A .通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力,属于基础题.3. 解:∵∠A =60∘,b =1,S △ABC =√3=12bcsinA =12×1×c ×√32, ∴c =4,∴a 2=b 2+c 2−2bccosA =1+14−2×1×4×12=13,∴a =√13,∴a−2b+csinA−2sinB+sinC =asinA =√13√32=2√393.故选:A .先利用面积公式求得c 的值,进而利用余弦定理可求a ,再利用正弦定理求解比值. 本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.4. 解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2, 则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF , 又DE =DF ,sin∠DME =sin∠DMF ,可得:R 1=R 2, 可得:λ=1. 故选:D .设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF ,结合DE =DF ,sin∠DME =sin∠DMF ,可得λ=1,即可得解.本题主要考查了正弦定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于基础题.5. 解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ=(2x)2+x2−9 2×2x×x =5x2−94x2,∴sinθ=√1−cos2θ=√144−9(x2−5)24x2,根据公式三角形面积S=12absinθ=12×2x⋅2x⋅√144−9(x2−5)24x2=√144−9(x2−5)22,∴当x2=5时,三角形面积有最大值.此时x=√5.AB的长:2√5.故选:A.设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值时的x即可.本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.6. 解:△ABC中,∵b=c,sinBsinA =1−cosBcosA,∴sinBcosA+cosBsinA=sinA,即sin(A+B)=sin(π−C)=sinC=sinA,∴A=C,又b=c,∴△ABC为等边三角形.∴S OACB=S△AOB+S△ABC=12⋅OA⋅OB⋅sinθ+12⋅AB2⋅sinπ3=12×2×1×sinθ+√34(OA2+OB2−2OA⋅OB⋅cosθ)=sinθ−√3cosθ+5√34=2sin(θ−π3)+5√34.∵0<θ<π,∴−π3<θ−π3<2π3,故当θ−π3=π2时,sin(θ−π3)取得最大值为1,故S OACB=的最大值为2+5√34=8+5√34,故选:A.依题意,可求得△ABC为等边三角形,利用三角形的面积公式与余弦定理可求得S OACB=2sin(θ−π3)+5√34(0<θ<π),从而可求得平面四边形OACB面积的最大值.题考查三角函数中的恒等变换应用,考查余弦定理的应用,求得S OACB=2sin(θ−π3)+5√34是解题的关键,也是难点,考查等价转化思想与运算求解能力,属于中档题.7. 解:结合图形可知,三角形有两解的条件为b=x>a,bsinA<a,∴b=x>1,xsin30∘<1,则使△ABC有两解的x的范围是1<x<2,故选:D.根据题意画出图形,由题意得到三角形有两解的条件为b =x >a ,bsinA <a ,即可确定出x 的范围.此题考查了正弦定理,以及特殊角的三角函数值,画出正确的图形是解本题的关键.8. 解:由于AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,由向量加法的几何意义,O 为边BC 中点,∵△ABC 的外接圆的圆心为O ,半径为1,∴三角形应该是以BC 边为斜边的直角三角形,∠BAC =π2,斜边BC =2,又∵|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |, ∴|AC|=1,|AB|=√BC 2−AC 2=√22−12=√3, ∴S △ABC =12×|AB|×|AC|=12×1×√3=√32. 故选:B .由AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,利用向量加法的几何意义得出△ABC 是以A 为直角的直角三角形,又|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解. 本题主要考查了平面向量及应用,三角形面积的求法,属于基本知识的考查.9. 解:由题意sinBsinC =1+cosA 2,即sinBsinC =1−cosCcosB , 亦即cos(C −B)=1, ∵C ,B ∈(0,π), ∴C =B , 故选:B . 利用cos 2A2=1+cosA 2可得sinBsinC =1+cosA 2,再利用两角和差的余弦可求.本题主要考查两角和差的余弦公式的运用,考查三角函数与解三角形的结合.属于基础题.10. 解:cosC =a 2+b 2−c 22ab=12,∴ab =a 2+b 2−c 2,∴ab+c +bc+a =ac+a 2+b 2+bcab+(a+b)c+c 2=a 2+b 2+(a+b)ca 2+b 2+(a+b)c =1,故选B .先通过余弦定理求得ab 和a 2+b 2−c 2的关系式对原式进行通分,把ab 的表达式代入即可.本题主要考查了余弦定理的应用.解题的关键是找到a ,b 和c 的关系式. 11. 解:锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,B =2A , ∴0<2A <π2,且B +A =3A , ∴π2<3A <π. ∴π6<A <π3, ∴√22<cosA <√32, ∵a =1,B =2A ,∴由正弦定理可得:ba =b=sin2AsinA=2cosA,∴√2<2cosA<√3,则b的取值范围为(√2,√3).故选A由题意可得0<2A<π2,且π2<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得ba=b=2cosA,根据cosA的范围确定出b范围即可.此题考查了正弦定理,余弦函数的性质,解题的关键是确定出A的范围.12. 解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=12,∴B=π3.∵由余弦定理可得:3=a2+c2−ac,∴可得:3≥2ac−ac=ac,∴即有:ac≤3,代入:3=(a+c)2−3ac可得:(a+c)2=3+3ac≤12,∴a+c的最大值为2√3.故选:A.利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2−ac,由基本不等式可得:ac≤3,代入:3=(a+c)2−3ac可得a+c的最大值.该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.13. 解:acosC+12c=b变形得:2acosC+c=2b,利用正弦定理得:2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC,∴sinC=2cosAsinC,即sinC(2cosA−1)=0,由sinC≠0,得到cosA=12,又A为三角形的内角,则A=60∘;∵a=1,sinA=√32,B+C=120∘,即C=120∘−B,∴asinA =bsinB=csinC=2√33,即b=2√33sinB,c=2√33sin(120∘−B),则△ABC的周长l=a+b+c=1+2√33sinB+2√33sin(120∘−B)=1+2√33(32sinB+√32cosB)=1+2(√32sinB+12cosB)=1+2sin(B+30∘),∵0<B<120∘,∴30∘<B+30∘<150∘,∴12<sin(B+30∘)≤1,即2<1+2sin(B+30∘)≤3,则l范围为(2,3].故答案为:60∘;(2,3]将已知的等式左右两边都乘以2变形后,利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式变形,根据sinC不为0,得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;由A的度数求出sinA的值,及B+C的度数,用B表示出C,由正弦定理表示出b与c,而三角形ABC的周长l=a+b+c,将表示出的b与c,及a的值代入,利用两角和与差的正弦函数公式化简,整理后再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的图象与性质得出此时正弦函数的值域,即可得到l的范围.此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,正弦函数的定义域与值域,以及特殊角的三角函数值,利用了转化的思想,熟练掌握定理及公式是解本题的关键.14. 解:∵在△ABC中a+√2c=2b,sinB=√2sinC,∴由正弦定理可得a+√2c=2b,b=√2c,联立可解得a=b=√2c,∴由余弦定理可得cosC=a2+b2−c22ab=222 2×√2c×√2c =34,再由二倍角公式可得cosC=1−2sin2C2=34,解得sin C2=√24或sin C2=−√24,再由三角形内角的范围可得C2∈(0,π2)故sin C2=√24故答案为:√24由题意和正弦定理可得a=b=√2c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.本题考查解三角形,涉及正余弦定理和二倍角公式,属中档题.15. 解:将cosA=b2+c2−a22bc ,cosB=a2+c2−b22ac代入已知等式得:a−b=c a2+c2−b22ac −c⋅b2+c2−a22bc,整理得:a2+b2−c2a =a2+b2−c2b,当a2+b2−c2=0,即a2+b2=c2时,△ABC为直角三角形;当a2+b2−c2≠0时,得到a=b,△ABC为等腰三角形,则△ABC为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.利用余弦定理表示出cosA与cosB,代入已知等式,整理后即可确定出三角形形状.此题考查了余弦定理,勾股定理,以及等腰三角形的性质,熟练掌握余弦定理是解本题的关键.16. 解:原式可化为sin 2Asin 2B =sinAcosB cosAsinB ⇒sinA sinB =cosBcosA⇒sin2A =sin2B ∴2A =2B 或2A =π−2B ⇒A =B 或A +B =π2.故答案为等腰三角形或直角三角形左边利用正弦定理,右边“切变弦”,对原式进行化简整理进而可得A 和B 的关系,得到答案.本题主要考查了正弦定理的应用.考查了学生利用正弦定理解决三角形问题的能力. 17. 解:由已知(a −b)sinB =asinA −csinC ,即asinA −csinC =(a −b)sinB ,根据正弦定理,得,a 2−c 2=(a −b)b ,即a 2+b 2−c 2=ab . 由余弦定理得cosC =a 2+b 2−c 22ab =12.又C ∈(0,π).所以C =π3.a 2+b 2−6(a +b)+18=0,可得(a −3)2+(b −3)2=0, 所以a =b =3,三角形是正三角形,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =3×3×3×cos120∘=−272.故答案为:−272.通过正弦定理化简已知表达式,然后利用余弦定理求出C 的余弦值,得到C 的值.通过a 2+b 2−6(a +b)+18=0,求出a ,b 的值,推出三角形的形状,然后求解数量积的值.本题考查正弦定理与余弦定理的应用,三角函数的值的求法三角形形状的判断,向量数量积的应用,考查计算能力.18. 解:(1)当AC <BCsin∠ABC ,即12<ksin60∘,即k >8√3时,三角形无解; (2)当AC =BCsin∠ABC ,即12=ksin60∘,即k =8√3时,三角形有1解;(3)当BCsin∠ABC <AC <BC ,即ksin60∘<12<k ,即12<k <8√3,三角形有2个解;(4)当0<BC ≤AC ,即0<k ≤12时,三角形有1个解. 综上所述:当0<k ≤12或k =8√3时,三角形恰有一个解. 故答案为:0<k ≤12或k =8√3要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k 满足的条件.本题主要考查三角形解得个数问题,重在讨论.易错点在于可能漏掉k =8√3这种情况. 19. 解:由r =1,利用正弦定理可得:c =2rsinC =2sinC ,b =2rsinB =2sinB , ∵tanA =sinA cosA,tanB =sinBcosB , ∴tanAtanB =sinAcosBcosAsinB =4sinC−2sinB2sinB=2sinC−sinBsinB,∴sinAcosB =cosA(2sinC −sinB)=2sinCcosA −sinBcosA , 即sinAcosB +cosAsinB =sin(A +B)=sinC =2sinCcosA , ∵sinC ≠0,∴cosA =12,即A =π3, ∴cosA =b 2+c 2−a 22bc=12,∴bc =b 2+c 2−a 2=b 2+c 2−(2rsinA)2=b 2+c 2−3≥2bc −3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=12bcsinA≤12×3×√32=3√34,则△ABC面积的最大值为:3√34.故答案为:3√34.利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2−a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc 的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC 面积的最大值.此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.20. (1)利用正弦定理可求角C的大小(2)直接利用△ABC的面积S=12acsinB求解出b,再用余弦定理可得.本题考查了正弦定理,余弦定理的运用和计算能力.21. (1)由弦定理化简已知可得sinAsinB=√3sinBcosA,结合sinB≠0,可求tanA=√3,结合范围0<A<π,可求A的值.(2)解法一:由余弦定理整理可得:c2−2c−3=0.即可解得c的值,利用三角形面积公式即可计算得解.解法二:由正弦定理可求sinB的值,利用大边对大角可求B为锐角,利用同角三角函数基本关系式可求cosB,利用两角和的正弦函数公式可求sinC,进而利用三角形面积公式即可计算得解.本题主要考查了正弦定理,余弦定理,三角形面积公式,大边对大角,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.22. (1)通过正弦定理化简已知表达式,然后利用余弦定理求出C的余弦值,得到C的值.(2)由已知利用正弦定理可得a=2sinA,b=2sin(2π3−A),利用三角函数恒等变换的应用化简可求a+b+c=2√3sin(A+π6)+√3,根据A+π6的范围,利用正弦函数的图象和性质得到结果.本题考查正弦定理与余弦定理的应用,三角函数的值的求法,以及三角函数恒等变换的应用,考查计算能力和转化思想,属于中档题.23. (1)化简函数f(x)的解析式为sin(2x−π6)−1,可得函数的最小值为−2,最小正周期为2π2.(2)△ABC中,由f(C)=sin(2C−π6)−1=0,求得C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0,再由B=2π3−A可得sin(2π3−A)=2sinA,化简求得A=π6,故B=π2.再由正弦定理求得a、b的值.本题主要考查两角和差的正弦公式、正弦定理、两个向量共线的性质,属于中档题.24. (1)由正弦定理求得外接圆半径R.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,化简得sin2A=sin2B.再由A<B<C,可得2A+2B=π,由此可得C的值.(2)由于a+b+c=cosB+cosA+sinC=√2sin(A+π4)+1.再由O<A<π4,利用正弦函数的定义域和值域求得sin(A+π4)+1<√2+1的范围,即可求得a+b+c的取值范围.本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题.25. (1)结合三角形的内角和定理及诱导公式可得sin(C+B)=sinA,再对已知(2a−c)cosB=bcosC,利用正弦定理化简可求B(2)结合三角形的面积公式S=12acsinB,可求ac,由已知b,B,再利用余弦定理b2= a2+c2−2accosB可求a+c本题主要考查了正弦定理、余弦定理在求解三角形中的应用,解决此类问题的关键是要是考生具备综合应用公式的能力26. (1)由条件利用正弦定理可得b2+c2−bc=4.再由余弦定理可得A=π3.(2)利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得面积的最大值.本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了转化思想,属于中档题.27. (Ⅰ)首先利用三角函数的恒等变换,变形成正弦型函数进一步利用函数的单调性求函数在固定区间内的增减区间.(Ⅱ)把求方程的解得问题转化成求函数的交点问题,进一步利用函数的性质求参数的取值范围.本题考查的知识要点:三角函数的恒等变换,正弦型函数的单调性,在同一坐标系内的利用两函数的交点问题求参数的取值范围问题.28. (1)利用向量共线定理可得:√3sinA−cosA=1,再利用和差公式、三角函数求值即可得出.(2)由题知1+sin2Bcos 2B−sin 2B =−3,利用倍角公式化为cosB+sinBcosB−sinB=−3,因此1+tanB1−tanB=−3,解得tanB.再利用tanC=tan[π−(A+B)]=−tan(A+B),展开代入即可得出.本题考查了向量共线定理、和差公式、三角函数求值、倍角公式,考查了推理能力与计算能力,属于中档题.29. (1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c本题考查三角函数的二倍角公式、同角三角函数的平方关系、考查三角形中的余弦定理.30. (I)利用正弦正理化简已知等式可得:a2+b2−c2=ab,由余弦定理可得求得cosA=12,结合A的范围,即可求得A的值.(II)由正弦定理用sinA、sinB表示出a、b,由内角和定理求出A与B的关系式,代入a+b利用两角和与差的正弦公式化简,根据A的范围和正弦函数的性质得出a+b的取值范围.本题主要考查了正弦定理,余弦定理的综合应用,考查了两角和差的正弦函数公式,解题时注意分析角的范围,属于中档题.。
高中必修五导学案 第一章 解三角形(含答案)
第一章 解三角形§1.1 正弦定理和余弦定理1.1.1正弦定理 【学习目标】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.【学习过程】1、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?2、新课导学 ※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1cC c==, 从而在直角三角形ABC 中,sin sin sin a b cA B C==.探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a bA B=, 同理可得sin sin c bC B=,从而sin sin a bA B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a bA B =sin c C=. (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c bC B =,sin a A =sin c C . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.【学习评价】1.满足a =4,A=045,B=060的△ABC 的边b 的值为( ) A 62 B 232+ C 13+ D 132+2.△ABC 中6=a ,36=b ,A=030,则边c = ( ) A 6 B 12 C 6或12 D 363.在△ABC 中,若C B A cos sin 2sin ⋅=,C B A 222sin sin sin +=,则△ABC 的形状是( )A .直角三角形B 。
苏教版高中数学必修5第1章1.2余弦定理导学案设计(部分答案)
余弦定理导学案一、知识回顾余弦定理:余弦定理变形形式:余弦定理的本质二、例题分析题型一:解三角形例1(1)在△ABC中,a=3,b=4,c=37,则最大角为________;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=3a,则cos A=________.方法归纳:已知三边解三角形的策略(1)已知三角形三边求角时,直接利用余弦定理的变形形式求出所求角的余弦值。
(2)若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解.对题练习1:在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,求△ABC的最大内角的正弦值.例2(1)在△ABC中,已知b=3,c=23,A=30°,解三角形(2)在△ABC中,已知b=3,c=33,B=30°,解三角形.方法归纳:已知两边及一角解三角形的策略(1)利用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长,然后利用正弦定理和三角形内角和定理求出另外两个角.(2)直接用正弦定理,先求角再求边,但要注意解的取舍题型二:判断三角形形状例3(1)在△ABC 中,若2sin A cos B =sin C ,则△ABC 的形状为________.变式:在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.方法归纳:判断三角形形状的两条途径(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,此时要注意应用A +B +C =π这个结论.对题练习2 在△ABC 中,已知cos 2A 2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.题型三:解决实际问题例4.在长江某渡口处,江水以5km/h 速度向东流。
高中数学人教A版必修五解三角形导学案加课后作业及参考答案
1.1.1 正弦定理(一)【学习要求】1.掌握正弦定理的内容. 2.了解正弦定理的证明方法. 3.能初步运用正弦定理解三角形.【学法指导】1.学习本节内容时,要善于运用平面几何知识以及平面向量知识证明正弦定理. 2.应熟练掌握利用正弦定理进行三角形中的边角关系的相互转化.【知识要点】1.在△ABC 中,A +B +C = ,A 2+B 2+C2= .2.在Rt △ABC 中,C =π2,则a c = ,bc= .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 .4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ,这个比值是__________【问题探究】探究点一 正弦定理的提出和证明问题 在直角三角形和等边三角形中,容易验证a sin A =b sin B =csin C 成立,这一结论对更一般锐角三角形和钝角三角形还成立吗?探究1 在锐角△ABC 中,根据右图证明:a sin A =b sin B =csin C.探究2 在钝角△ABC 中(不妨设A 为钝角),根据右图证明:a sin A =b sin B =csin C.小结 综上可知,对于任意三角形,均有a sin A =b sin B =csin C ,此即正弦定理.探究点二 正弦定理的几何解释问题 如图所示,在Rt △ABC 中,斜边c 等于Rt △ABC 外接圆的直径2R ,故有a sin A =b sin B =csin C =2R ,这一关系对任意三角形也成立吗?探究1 如图所示,锐角三角形ABC 和它的外接圆O ,外接圆半径为R ,等式a sin A =b sin B =csin C =2R 成立吗?探究2 如图所示,钝角三角形ABC ,A 为钝角,圆O 是它的外接圆,半径为R ,等式a sin A =b sin B =csin C =2R 还成立吗?小结 综上所述,对于任意△ABC ,a sin A =b sin B =csin C=2R 恒成立.【典型例题】例1 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2跟踪训练1 在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于 ( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6例2 在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.小结 正弦定理的变形公式使三角形的边与边的关系和角与角的关系之间的相互转化的功能更加强大,更加灵活.跟踪训练2 在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=例3 在△ABC 中,已知a =22,A =30°,B =45°,解三角形.小结 已知两角与任一边,利用正弦定理解三角形,有以下两种情况:(1)若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边;(2)若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边. 跟踪训练3 在△ABC 中,a =5,B =45°,C =105°,解三角形.【当堂检测】1.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 所对的边,若∠A =105°,∠B =45°,b =22,则c 等于( ) A .1B .2C. 2D. 32.在△ABC 中,已知∠A =150°,a =3,则其外接圆的半径R 的值为 ( ) A .3 B. 3 C .2 D .不确定 3.在△ABC 中,sin A =sin C ,则△ABC 是 ( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形4.在△ABC 中,∠A =60°,a =43,b =42,则∠B 等于【课堂小结】1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.【课后作业】一、基础过关1.在△ABC 中,下列等式中总能成立的是( )A .a sin A =b sin BB .b sinC =c sin A C .ab sin C =bc sin BD .a sin C =c sin A2.在△ABC 中,若A =30°,B =60°,b =3,则a 等于( )A .3B .1C .2D .123.在△ABC中,sin 2A =sin 2B +sin 2C ,则△ABC为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形4.在△ABC 中,若3a =2b sin A ,则B 为 ( )A .π3B .π6C .π3或23πD .π6或56π5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小 ( ) A .π2B .π3C .π4D .π66.在△ABC 中,已知a ∶b ∶c =3∶4∶5,则2sin A -sin Bsin C =________.7.在△ABC 中,若b =5,B =π4,sin A =13,则a =______.8.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B .二、能力提升9.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A .⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D .⎝⎛⎦⎤0,403 10.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.11.在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 的对边,若b =2a ,B =A +60°,求A 的值.12.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,求证:a 2sin 2B +b 2sin 2A =2ab sin C .三、探究与拓展13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,求角C 的大小.1.1.1 正弦定理(二)【学习要求】1.熟记正弦定理的有关变形公式.2.探究三角形面积公式的表现形式,能结合正弦定理解与面积有关的斜三角形问题. 3.能根据条件,判断三角形解的个数.【学法指导】1.已知两边及其中一边对角解三角形,其解不一定唯一,应注意运用大边对大角的理论判断解的情况. 2.判断三角形形状时,不要在等式两边轻易地除以含有边角的因式,造成漏解.【知识要点】1.正弦定理:a sin A =b sin B =csin C =2R 的常见变形:(1)sin A ∶sin B ∶sin C = ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C= ;(3)a = ,b = ,c = ; (4)sin A = ,sin B = ,sin C = .2.三角形面积公式:S = = =3.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( )A .A >B B .A <BC .A ≥B 4.在△ABC 中,a =10,b =8,C =30°,则△ABC 的面积S =【问题探究】探究点一 已知两边及其中一边的对角,判断三角形解的个数问题 我们应用正弦定理解三角形时,已知三角形的两边及其中一边的对角往往得出不同情形的解,有时一解,有时两解,有时又无解,这究竟是怎么回事?探究1 在△ABC 中,已知a ,b 和A ,若A 为直角,讨论三角形解的情况.(请完成下表)探究2 在△ABC 中,已知a ,b 和A ,若A为钝角,讨论三角形解的情况.(请完成下表)探究3 在△ABC 中,已知a ,b 和A ,若A 为锐角,讨论三角形解的情况.(请完成下表)探究点二 三角形的面积公式问题 我们已经知道S △ABC =12ah a =12bh b =12ch c (其中h a ,h b ,h c 分别为a ,b ,c 边上的高).学习了正弦定理后,你还能得到哪些计算三角形面积的公式?探究1 当△ABC 为锐角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .探究2 当△ABC 为钝角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .【典型例题】例1 已知一三角形中a =23,b =6,A =30°,判断三角形是否有解,若有解,解该三角形.小结 已知三角形两边和其中一边的对角,解三角形时,首先求出另一边的对角的正弦值,根据该正弦值求角时,需对角的情况加以讨论.跟踪训练1在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于 ( )A .1B .2 C.3-1 D. 3例2 在△ABC 中,若∠A =120°,AB =5,BC =7,求△ABC 的面积. 小结 题目条件或结论中若涉及三角形的面积,要根据题意灵活选用三角形的面积公式. 跟踪训练2 在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.小结 条件是边角混合关系式,应用正弦定理化边为角,再由角的关系判断三角形的形状.跟踪训练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.【当堂检测】1.已知△ABC 的面积为3且b =2,c =2,则∠A 等于( )A .30°B .30°或150°C .60°D .60°或120° 2.在△ABC 中,AC =6,BC =2,B =60°,则C = 3.在△ABC 中,b =1,c =3,C =2π3,则a =4.不解三角形,判断下列三角形解的个数. (1)a =5,b =4,A =120°; (2)a =9,b =10,A =60°; (3)c =50,b =72,C =135°.【课堂小结】1.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,也可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.2.判断三角形的形状,最终目的是判断三角形是否是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.【课后作业】一、基础过关1.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 2.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A .45°或135°B .60°C .45°D .135° 3.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解4.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于( )A .3+1B .3-1C .3+2D .3-25.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于 ( ) A .32B .34C .32或 3D .34或326.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 7.在△ABC 中,已知23a sin B =3b ,且cos B =cos C ,试判断△ABC 的形状.8.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S . 二、能力提升9.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于 ( )A .2 3B .2 2C . 3D . 210.在△ABC 中,若acos A 2=b cos B 2=c cosC 2,则△ABC 的形状是________. 11.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =______,c =______.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c =10,又知cos A cos B =b a =43,求a 、b 及△ABC 内切圆的半径.三、探究与拓展13.已知△ABC 的面积为1,tan B =12,tan C =-2,求△ABC 的各边长以及△ABC 外接圆的面积.1.1.2 余弦定理(一)【学习要求】1.理解余弦定理的证明.2.初步运用余弦定理及其变形形式解三角形【学法指导】1.教材给出了用向量法证明余弦定理的方法,体现了向量在解决三角形度量问题中的重要作用.2.利用向量作为工具推导余弦定理时,向量知识可能被遗忘,要注意复习,要准确运用向量的减法法则和向量夹角的概念.3.余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.【知识要点】1.余弦定理三角形中任何一边的 等于其他两边的 的和减去这两边与它们的 的余弦的积的 .即a 2=_________,b 2= ,c 2= .2.余弦定理的推论cos A = ;cos B = ;cos C = 3.在△ABC 中,(1)若a 2+b 2-c 2=0,则C = ; (2)若c 2=a 2+b 2-ab ,则C = ;(3)若c 2=a 2+b 2+2ab ,则C = .4.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A .3B .3C .5D .5【问题探究】我们知道已知两边和一边的对角,或者已知两角和一角的对边能用正弦定理解三角形,如果已知两边和夹角怎样解三角形求第三边和其他两角呢?或者已知三边怎么解三角形求三个角呢?这是余弦定理所能解决的问题,这一节我们就来学习余弦定理及其应用.探究点一 利用向量法证明余弦定理问题 如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.如何利用已知的两边和夹角计算出三角形的另一边呢?探究 如图所示,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →知c =a -b .根据这一关系,试用向量的数量积证明余弦定理.探究点二 利用坐标法证明余弦定理问题 我们可以把三角形放在平面直角坐标系中来研究,写出各个顶点的坐标,能否利用平面内两点间的距离公式来推导余弦定理?探究 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c,0),C (b cos A ,b sin A ),试根据两点间的距离公式证明余弦定理.【典型例题】例1 在△ABC 中,已知a =2,b =22,C =15°,求A .小结 解三角形主要是利用正弦定理和余弦定理,本例中的条件是已知两边及其夹角,而不是两边及一边的对角,所以本例的解法应先从余弦定理入手.跟踪训练1 在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .例2 已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 小结 已知三边求三角时,余弦值是正值时,角是锐角,余弦值是负值时,角是钝角. 跟踪训练2 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状.例3 在△ABC 中,a cos A =b cos B ,试确定△ABC 的形状.小结 边角混合关系式要根据正、余弦定理统一转化为角的关系式或边的关系式,本题可采用正弦定理转化为角的关系式或采用余弦定理转化为边的关系式.跟踪训练3 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.【当堂检测】1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的另一边长为 ( )A .52B .213C .16D .4 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为 ( )A .π3B .π6C .π4D .π123.在△ABC 中,已知A =60°,最大边长和最小边长恰好是方程x 2-7x +11=0的两根,则第三边的长为______. 4.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.【课堂小结】1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.判断三角形的形状,当所给的条件是边角混合关系时,基本解题思想:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.【课后作业】一、基础过关1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( ) A .60°B .90°C .120°D .150°2.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30°B .60°C .90°D .120° 3.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14B .34C .24D .234.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且∠C =60°,则ab 的值为 ( ) A .43B .8-43C .1D .235.已知△ABC 的三边长分别是2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角的度数是________. 6.在△ABC 中,已知a =2,b =4,C =60°,则A =________.7.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1. (1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.b ac8.设2a +1,a ,a -1为钝角三角形的三边,求a 的取值范围.二、能力提升9.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎣⎡⎭⎫π6,πC .⎝⎛⎦⎤0,π3 D .⎣⎡⎭⎫π3,π 10.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度确定 11.如图,CD =16,AC =5,∠BDC =30°,∠BCA =120°,则AB =________.12.在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,求三边长.三、探究与拓展13.△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.1.1.2 余弦定理(二)【学习要求】1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.【学法指导】1.正、余弦定理都反映了任意三角形边角之间的具体关系,它们不是孤立的,而是相互密切联系的,处理三角形中的问题时,要注意两个定理的综合运用.2.已知三角形的两边和一边的对角解三角形时,一般用正弦定理求解,这时需讨论解的个数,也可用余弦定理求解,这时需转化成未知边的一元二次方程来求解.【知识要点】1.余弦定理及其变形形式:a 2= ⇔cos A = ;b 2= ⇔cos B = ;c 2= ⇔cos C = .2.正弦定理的公式表达形式:_____= = =2R (其中R 是△ABC 外接圆的半径).3.已知锐角三角形的三边长分别为2,3,x ,则x 的取值范围是 4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为【问题探究】探究点一 已知两边及其中一边的对角,利用余弦定理解三角形问题 在△ABC 中,已知两边及其中一边的对角,解三角形.一般情况下,先利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论三角形解的个数.对于这一类问题能否利用余弦定理来解三角形? 探究 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若A =π3,a =3,b =1,则c 等于 ( )A .1B .2C .3-1D . 3 探究点二 利用正、余弦定理证明三角形中的恒等式 问题 如何利用正、余弦定理证明三角形中的恒等式?证明时可以考虑两种途径:一是把角的关系通过正、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是把边的关系转化为角的关系,一般是通过正弦定理.探究 在△ABC 中,有(1)a =b cos C +c cos B ;(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ;这三个关系式也称为射影定理,请给出证明. 探究点三 利用正、余弦定理解决三角形的有关问题问题 利用正、余弦定理可以解决一些三角形问题:如面积、角、边等,你能根据已知条件选择合适的解决方法吗?探究 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.【典型例题】例1 在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的三边,已知(a +b -c )(a -b +c )=bc ,求A .跟踪训练1 已知△ABC 的三边a 、b 、c ,且△ABC 的面积S =c 2-a 2-b 243,求C .例2 在△ABC 中,若B =30°,AB =23,AC =2,求△ABC 的面积.小结 本例是已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.跟踪训练2 已知a ,b ,c 是△ABC 中A ,B ,C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.例3 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2 B +C 2-cos 2A =72. (1)求A 的度数.(2)若a =3,b +c =3,求b 和c 的值.小结 本题解题关键是通过三角恒等变换借助于A +B +C =180°,求出A ,并利用余弦定理列出关于b 、c 的方程组.跟踪训练3 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积为4,求b 、c 的值.【当堂检测】1.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为 ( )A .135°B .45°C .60°D .120°2.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若c =2,b =2a ,且cos C =14,则a 等于 ( )A .2B .12C .1D .133.在△ABC 中,cos B =12,b 2-ac =0,则△ABC 的形状为 三角形.4.在△ABC 中,∠B =120°,AC =7,AB =5,则△ABC 的面积为 .【课堂小结】1.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.余弦定理为求三角形中的有关量(如面积、中线、外接圆等)提供了有力的工具,在一定意义上,比正弦定理应用更加广泛.3.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.【课后作业】1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( )A .60°B .45°或135°C .120°D .30° 2.若三条线段的长分别为5,6,7,则用这三条线段( )A .能组成直角三角形B .能组成锐角三角形C .能组成钝角三角形D .不能组成三角形 3.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为 ( )A .13B .-23C .14D .-144.在△ABC 中,已知b =3,c =33,A =30°,则角C 等于 ( )A .30°B .120°C .60°D .150°5.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是 ( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________. 7.已知△ABC 的内角B =60°,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .二、能力提升9.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( )A .1<c <3B .2<c <3C .5<c <3D .22<c <3 10.在△ABC 中,AB =3,AC =2,BC =10,则AB →·CA →=________. 11.在△ABC 中,B =45°,AC =10,cos C =255.(1)求边BC 的长;(2)记AB 的中点为D ,求中线CD 的长.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 三、探究与拓展13.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能否做出这样的三角形?若能,是什么形状;若不能,请说明理由.习题课 正弦定理与余弦定理 【学习要求】1.进一步熟练掌握正、余弦定理在解决各类三角形中的应用.2.提高对正、余弦定理应用范围的认识.3.初步应用正、余弦定理解决一些和三角、向量有关的综合问题.【学法指导】解三角形的问题可以分为以下四类:(1)已知三角形的两边和其中一边的对角,解三角形.此种情况的基本解法是先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三个角,再用正弦定理求出第三边,注意判断解的个数. (2)已知三角形的两角和任一边,解三角形.此种情况的基本解法是若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,再由正弦定理求第三边.若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.(3)已知两边和它们的夹角,解三角形.此种情况的基本解法是先用余弦定理求第三边,再用正弦定理或余弦定理求另一角,最后用三角形内角和定理求第三个角.(4)已知三角形的三边,解三角形.此种情况的基本解法是先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一个角,最后用三角形内角和定理,求出第三个角.要解三角形,必须已知三角形的一边的长.若已知条件中一条边的长也不给出,三角形可以是任意的,因此无法求解.【知识要点】1.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有 (1)A +B +C = ,A +B2= .(2)sin(A +B )= ,cos(A +B )= ,tan(A +B )= . (3)sinA +B 2= ,cos A +B2= 2.正弦定理及其变形 (1)a sin A =b sin B =csin C= .(2)a = ,b = ,c = . (3)sin A = ,sin B = ,sin C = . (4)sin A ∶sin B ∶sin C = .3.余弦定理及其推论 (1)a 2= . (2)cos A = .(3)在△ABC 中,c 2=a 2+b 2⇔C 为 ;c 2>a 2+b 2⇔C 为____;c 2<a 2+b 2⇔C 为 . 4.三角形常用面积公式(1)S = (h a 表示a 边上的高);(2)S = = = ; (3)S =12r (a +b +c )(r 为三角形内切圆半径).【基础自测】1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于 ( )A .30°B .60°C .120°D .150°2.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若c ·cos B =b ·cos C ,且cos A =23,则sin B 等于 ( )A .±66B .66C .±306 D .3063.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos B =14,sin C sin A =2,且S △ABC =154,则b 等于 ( )A .4B .3C .2D .14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,a =3,b =2,且1+2cos(B +C )=0,则BC 边上的高为 ( )A .3-1B .3+1C .3-12 D .3+12【题型解法】题型一 利用正、余弦定理证明三角恒等式例1 在△ABC 中,求证:tan A tan B =a 2+c 2-b 2b 2+c 2-a 2.小结 证明三角恒等式关键是消除等号两端三角函数式的差异.形式上一般有左⇒右;右⇒左或左⇒中⇐右三种.跟踪训练1 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证:cos B cos C =c -b cos Ab -c cos A .题型二 利用正、余弦定理判断三角形的形状例2 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.小结 本题中边的大小没有明确给出,而是通过一个关系式来确定的,可以考虑利用正弦定理将边的关系转化为角的关系,也可以利用余弦定理将边、角关系转化为边的关系来判断.跟踪训练2 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状. 题型三 利用正、余弦定理解关于三角形的综合问题例3 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .小结 这是一道向量与正、余弦定理的综合题,解题的关键是化去向量的“伪装”,找到三角形的边角关系.跟踪训练3 在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值.【当堂检测】1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 2.下列判断中正确的是 ( ) A .△ABC 中,a =7,b =14,A =30°,有两解 B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解 D .△ABC 中,b =9,c =10,B =60°,无解 3.在△ABC 中,求证:a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).4.如图所示,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ACD =1532.求AB 的长.【课堂小结】1.判断三角形的形状是看该三角形是否为某些特殊的三角形(如锐角、直角、钝角、等腰、等边三角形等).2.对于给出条件是边角关系混合在一起的问题,一般地,应运用正弦定理和余弦定理,要么把它统一为边的关系,要么把它统一为角的关系.再利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法等进行转化、化简,从而得出结论.3.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正、余弦定理求解.【课后作业】一、基础过关1.在△ABC 中,若a =18,b =24,A =44°,则此三角形解的情况为( )A .无解B .两解C .一解D .解的个数不确定2.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,sin C 等于( )A .23913B .1313C .2393D .213133.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于 ( ) A . 6B .2C . 3D . 24.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( )A .154B .34C .31516D .11165.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.7.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.8.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.二、能力提升9.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .60° 10.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 为( )A .30°B .60°C .45°或135°D .120°11.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.12.已知△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知m =(sin C ,sin B cos A ),n =(b,2c ),且m ·n =0.(1)求A 的大小;(2)若a =23,c =2,求△ABC 的面积S 的大小.三、探究与拓展13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,求tan C tan A +tan Ctan B的值.1.2 应用举例(一)【学习要求】1.利用正、余弦定理解决生产实践中的有关距离的测量问题. 2.利用正、余弦定理解决生产实践中的有关高度的测量问题. 3.利用正、余弦定理解决生产实践中的有关角度的测量问题.【学法指导】1.在我们将所求距离或方向的问题转化为一个求三角形的边和角的问题时,我们选择的三角形往往条件不够,这时需要我们寻找其他的三角形作为我们解这个三角形的支持,为我们解这个三角形提供必要的条件.2.在测量某物体高度的问题中,很多被测量的物体是一个立体的图形,而在测量过程中,我们测量的角度也不一定在同一垂面内,因此还需要我们有一定的空间想象能力,关键是画出图形,把已知量和未知量归结到三角形中来求解.【知识要点】1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做.一般来说,基线越长,测量的精确度.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α.3.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线方时叫仰角,目标视线在水平线方时叫俯角.(如图所示)4.如图,在河岸AC测量河的宽度BC,测量下列四组数据,较适宜的是()A.a,c,αB.b,c,αC.c,a,βD.b,α,β【问题探究】1.“遥不可及的月亮离我们地球究竟有多远呢?”.在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?2.现实生活中,人们经常遇到测量不可到达点之间的距离、底部不可到达建筑物的高度,以及在航海中航向的确定.这些问题究竟怎样解决?恰当利用我们所学过的正弦定理、余弦定理就可以解决上述问题,这节课我们就来探究上述问题.探究点一测量不可达距离的方法问题测量不可达距离有哪些基本类型?每种类型的解决方案是怎样的?探究表中是测量距离的基本类型及方案,请你根据所给图形,填写相应的结论:类别两点间不可达或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=AB=①AC=②BC=③AB=探究点二测量底部不可到达的建筑物的高度问题底部不可到达的高度测量有哪些基本类型?每种类型如何测量?探究下表是测量高度的基本类型及方案,请你根据所给图形,填写相应结论:类别点B与点C、D共线点B与点C、D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=AB=【典型例题】例1为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一铅垂平面内.飞机已经测量的数据有A点到M、N点的俯角α1、β1;B点到M、N点的俯角α2、β2;A、B的距离d(如图所示).甲乙两位同学各自给出了计算MN的两种方案,请你补充完整.甲方案:第一步:计算AM.由正弦定理AM=;第二步:计算AN.由正弦定理AN=;第三步:计算MN.由余弦定理MN=.乙方案:第一步:计算BM.由正弦定理BM=;第二步:计算BN.由正弦定理BN=;第三步:计算MN.由余弦定理MN=.小结测量两个不可到达的点之间的距离问题.首先把求不可到达的两点A,B之间的距离转化为应用余弦定理求三角的边长问题,然后在相关三角形中计算其他边.跟踪训练1在相距2千米的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离为千米.例2如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知。
数学必修5导学案:2-3 第1课时 距离和高度问题
§3解三角形的实际应用举例第1课时距离和高度问题知能目标解读1.能够运用正弦定理、余弦定理等知识和方法求解不可到达的两点之间的距离.2.学会处理测量距离、测量高度等解三角形的实际问题.3.深刻理解三角形的知识在实际中的应用,增强应用数学建模意识,培养自己分析问题和解决实际问题的能力.重点难点点拨重点:分析测量的实际情景,找出解决测量距离的方法.难点:分析如何运用学过的解三角形知识解决实际问题中距离测量和高度问题.学习方法指导1.解三角形应用题的基本思路解三角形应用题要注意两点:(1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称.理清量与量之间的关系.(2)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.2.常见应用题型正弦定理和余弦定理解三角形的常见题型有:测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等.3.解三角形应用题常见的几种情况(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而得到运用正弦定理去解决的方法.(2)测量两个不可到达的点之间的距离问题,一般是把求距离转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.知能自主梳理实际问题中的名词、术语1.方位角:从指北方向时针转到目标方向的水平角.如图(1)所示.2.方向角:相对于某一正方向(东、西、南、北)的水平角.①北偏东α°,即由指北方向旋转α°到达目标方向,如图(2).②北偏西α°,即是由指北方向旋转α°到达目标方向.3.基线:在测量上,我们根据测量的需要适当确定的线段叫做基线.一般来说,基线越,测量的精确度越高.4.测量底部不可到达的建筑物的高度问题,由于底部不可到达,这类问题不能直接用解三角形的方法解决,但常用和,计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的 问题 .5.仰角与俯角:目标方向线(视线)与水平线的夹角中,当目标(视线)在水平线时,称为仰角,在水平线时,称为俯角,如图.[答案] 1.顺2.顺时针逆时针3.长4.正弦定理余弦定理5.上方下方思路方法技巧命题方向测量高度问题[例1]如图,测量人员沿直线MNP的方向测量,测得塔AB的仰角分别是∠AMB=30°,∠ANB=45°∠APB=60°,且MN=PN=500m,求塔高.[分析] 解题的关键是读懂立体图形.[解析] 设AB 高为x .∵AB 垂直于地面,∴△ABM ,△ABN ,△ABP 均为直角三角形,∴BM =x ·cot30°=3x ,BN =x ·cot45°=x ,BP =x ·cot60°=33x . 在△MNB 中,由余弦定理,得BM 2=MN 2+BN 2-2MN ·BN ·cos ∠MNB,在△PNB 中,由余弦定理,得BP 2=NP 2+BN 2-2NP ·BN ·cos ∠PNB ,又∵∠BNM 与∠PNB 互补,MN=NP =500,∴3x 2=250000+x 2-2×500x ·cos ∠MNB , ①31x 2=250000+x 2-2×500x ·cos ∠PNB , ② ①+②,得310x 2=500000+2x 2, ∴x =2506.答:塔高2506m.[说明] 在测量高度时,要理解仰角和俯角的概念,区别在于视线在水平线的上方还是下方,一般步骤是:①根据已知条件画出示意图;②分析与问题有关的三角形;③运用正、余弦定理,有序地解相关的三角形,逐步求解;④把解出答案还原到实际问题中.还要注意综合运用平面几何和立体几何知识以及方程的思想.变式应用1如图,在塔底B 处测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20m ,求山高DC (精确到0.1m ).[分析] 如图,DC 在Rt △BCD 中,∠DBC =60°,只需求出边BC 的长,即可求出DC ,而BC 又在斜三角形ABC 中,依据条件由正弦定理可求出BC .[解析] 由已知条件,得∠DBC =60°,∠ECA =45°,则在△ABC 中,∠ABC =90°-60°=30°,∠ACB =60°-45°=15°,∠CAB =180°-(∠ABC +∠ACB )=135°.在△ABC 中,︒=︒15sin 135sin AB BC . ∴BC =()()13202641222015sin 135sin +=-⨯=︒︒⋅AB . 在Rt △CDB 中,CD =BC ·sin ∠CBD =20(3+1)×23≈47.3. 答:山高约为47.3m.命题方向 测量距离问题 [例2] 要测量河对岸两地A 、B 之间的距离,在岸边选取相距1003米的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A 、B 、C 、D 在同一平面内),求A 、B 两地的距离.[分析] 此题是测量计算河对岸两点间的距离,给出的角度较多,涉及几个三角形,重点应注意依次解哪几个三角形才较为简便.[解析] 如图所示,在△ACD 中,∠CAD=180°-(120°+30°)=30°,∴AC=CD =1003.在△BCD 中,∠CBD =180°-(45°+75°)=60°.由正弦定理,得BC =︒=︒75sin 20075sin 3100.在△ABC 中,由余弦定理,得AB 2=(1003)2+(200sin75°) 2-2×1003×200sin75°·cos75°=1002(3+4×︒⨯⨯-︒-150sin 322150cos 1)=1002×5, ∴AB =1005.答:A 、B 两地间的距离为1005米.[说明] (1)求解三角形中的基本元素,应由确定三角形的条件个数,选择合适的三角形求解,如本题选择的是△BCD 和△ABC .(2)本题是测量都不能到达的两点间的距离,它是测量学中应用非常广泛的三角网测量方法的原理,其中AB 可视为基线.(3)在测量上,我们根据测量需要适当确定的线段叫做基线,如本例的CD .在测量过程中,要根据实际需要选取合适的基线长度,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高. 变式应用2如图所示,货轮在海上以40km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°.问货轮到达C 点时与灯塔A 的距离是多少?[分析] 根据所给图形可以看出,在△ABC 中,已知BC 是半小时路程,只要根据所给的方位角数据,求出∠ABC 及A 的大小,由正弦定理可得出AC 的长.[解析] 在△ABC 中,BC =40×21=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,∴A =180°-(30°+105°)=45°,由正弦定理,得AC =A ABC BC sin sin ∠⋅=21045sin 30sin 20=︒︒⨯ (km). 答:货轮到达C 点时与灯塔A 的距离是102 km.探索延拓创新命题方向 综合应用问题航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°的方向B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问乙船每小时航行多少海里?[分析] 甲、乙两船航行时间相同,要求得乙船的速度,只需求得乙船航行的距离B 1B 2即可.连结A 1B 2,转化为在△A 1B 1B 2中已知两边及夹角求对边的问题.[解析] 如上图,连结A 1B 2,∵A 2B 2=102,∴A 1A 2=6020×302=102. ∵△A 1A 2B 2是等边三角形,∴∠B 1A 1B 2=105°-60°=45°.在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 12+A 1B 22-2A 1B 1·A 1B 2cos45°=202+(102)2-2×20×102×22=200, 则B 1B 2=102. 因此乙船的速度的大小为20210×60=302. 即乙船每小时航行302海里.[说明] 仔细观察图形,充分利用图形的几何性质挖掘隐含条件,并通过添加适当的辅助线将问题纳入到三角形中去解决是解此类问题的关键.变式应用3海中有小岛A ,已知A 岛四周8海里内有暗礁.今有一货轮由西向东航行,望见A 岛在北偏东75°,航行202海里后见此岛在北偏东30°.如货轮不改变航向继续前进,问有无触礁的危险?[分析] 如图所示,要判断有无触焦危险,只要看AD 的长与8的大小,若AD >8,则无触礁危险,否则有触礁危险.[解析] 如图所示,作AD ⊥BC 的延长线于D ,由已知∠NBA =75°,∠ACD =60°,BC =202. 由正弦定理,得()︒-︒-︒=︒12015180sin 22015sin AC , ∴AC =10(6-2), ∴AD =AC ·sin60°=152-56>8.∴无触礁危险.[说明] 本题中理解方位角是解题的关键.北偏东75°是指以正北方向为始边,顺时针方向转75°. 名师辨误做答[例4] 某观测站C 在城A 的南偏西20°的方向,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人,距C 为31千米,正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问:这人还要走多少千米才能到达A 城?[误解]本题为解斜三角形的应用问题,要求这人走多少路才可到达A城,即求AD 的长,在△ACD 中,已知CD =21千米,∠CAD =60°,只需再求出一个量即可.如图,设∠ACD =α,∠CDB =β,在△CBD 中,由余弦定理,得 cos β=7121202312120·2222222-=⨯⨯-+=-+CD BD CB CD BD , ∴sin β=734. ∴在△ACD 中,(),AC 232160sin 21180sin =︒=-︒β ∴AC =.247343221=⨯⨯ ∴CD 2=AC 2+AD 2-2AC ·AD ·cos60°, 即212=242+AD 2-2×24×21·AD , 整理,得AD 2-24AD +135=0,解得AD =15或AD =9,[辨析] 本题在解△ACD 时,利用余弦定理求AD ,产生了增解,应用正弦定理来求解.[正解] 如图,令∠ACD =α,∠CDB =β,在△CBD 中,由余弦定理得cos β=CDBD CB CD BD ·2222--=7121202312120222-=⨯⨯-+, ∴sin β=734. 又sin α=sin(β-60°)=sin βcos60°-sin60°cos β =734×21+23×71=1435, 在△ACD 中,αsin 60sin 21AD =︒, ∴AD =︒⨯60sin sin 21α=15(千米). 答:这个人再走15千米就可以到达A 城.课堂巩固训练一、选择题1.如图所示,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是 ( )A.a 和cB.c 和bC.c 和βD.b 和α[答案] D[解析] 在△ABC 中,能够测量到的边和角分别为b 和α.则A 点离地面的高AB 等于 ( )A.10mB.53mC.5(3-1)mD.5(3+1)m[答案] D[解析] 在△ABC 中,由正弦定理得AD =()131015sin 135sin 10+=︒︒ 在Rt △ABC 中,AB=AD sin30°=5(3+1)(m).3.(2012·福州高二质检)如图所示,为了测量隧道口AB 的长度,给定下列四组数据,测量时应当用数据 ( )A.α,a,bB.α,β,aC.a,b,γD.α,β,b[答案] C[解析] 根据实际情况,α、β都是不易测量的数据,而a,b 可以测得,角γ也可以测得,根据余弦定理AB 2=a 2+b 2-2ab cos γ能直接求出AB 的长,故选C.4.(2011·上海理,6)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为 千米.[答案] 6[解析] 本题考查正弦定理等解三角形的知识,在三角形中,已知两角和一边可求第三个角以及利用正弦定理求其它两边.∵∠CAB =75°,∠CBA =60°,∴∠C =180°-75°-60°=45°, 由正弦定理:CAB CBA AC ∠=∠sin sin , ∴︒=︒45sin 260sin AC , ∴AC =6.二、填空题5.某地电信局信号转播塔建在一山坡上,如图所示,施工人员欲在山坡上A 、B 两点处测量与地面垂直的塔CD 的高,由A 、B 两地测得塔顶C 的仰角分别为60°和45°,又知AB 的长为40米,斜坡与水平面成30°角,则该转播塔的高度是 米.[答案] 3340 [解析] 如图所示,由题意,得∠ABC =45°-30°=15°,∠DAC =60°-30°=30°.∴∠BAC =150°,∠ACB =15°,∴AC=AB =40米,∠ADC =120°,∠ACD =30°,在△ACD 中,由正弦定理,得CD =ADC ACD ∠∠sin sin ·AC =︒︒120sin 30sin ·40=3340. 三、解答题6.如图,为了测量河的宽度,在一岸边选定两点A 、B ,望对岸的标记物C ,测得∠CAB = 45°,∠CBA =75°,AB =120米,求河的宽度.[解析] 如图,在△ABC 中,∵∠CAB =45°,∠CBA =75°,∴∠ACB =60°.由正弦定理,得AC =︒=∠⋅75sin 120sin CBA AB=20(362+). 设C 到AB 的距离为CD , 则CD =AC sin ∠CAB =22AC =20(3+3). 答:河的宽度为20(3+3)米.课后强化作业一、选择题1.学校体育馆的人字形屋架为等腰三角形,如图,测得AC 的长度为4m,∠A =30°,则其跨度AB 的长为( )A.12mB.8mC.33mD.43m [答案] D[解析] 在△ABC 中,已知可得 BC=AC =4,∠C =180°-30°×2=120° 所以由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120° =42+42-2×4×4×(-21)=48 ∴AB =43 (m).2.从塔顶处望地面A 处的俯角为30°,则从A 处望塔顶的仰角是 ( ) A.-60° B.30° C.60° D.150° [答案] B3.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )A.103海里B.106海里C.52海里D.56海里 [答案] D[解析] 如图,由正弦定理得︒=︒45sin 1060sin BC ,∴BC =56.4.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好3km ,那么x 的值为( ) A.3 B.23C.23或3D.3 [答案] C[解析] 由题意画出三角形如下图.则∠ABC =30°,由余弦定理得,cos30°=xx 6392-+,∴x=23或3.5.甲船在湖中B 岛的正南A 处,AB =3km ,甲船以8km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12km/h 的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是 ( )A.7 kmB. 13kmC.19km D.3310- km[答案] B[解析] 由题意知AM =8×360151226015=⨯==,BN ,MB=AB-AM =3-2=1,所以由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-21)=13,所以MN =13km. 6.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( ) A.3400米 B.33400米 C.2003米 D.200米 [答案] A[解析] 如图,设AB 为山高,CD 为塔高,则AB =200,∠ADM =30°,∠ACB =60°,∴BC =200cot60°=33200,AM =DM tan30°=BC tan30°=3200.∴CD=AB-AM =3400.7.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A.20(2+6)海里/时 B.20(6-2)海里/时C.20(6+3)海里/时D.20(6-3)海里/时 [答案][解析] 题意可知∠NMS =45°,∠MNS =105°, 则∠MSN =180°-105°-45°=30°. 而MS =20,在△MNS 中,由正弦定理得︒=︒105sin 30sin MSMN ,∴MN =()︒+︒=︒︒4560sin 10105sin 30sin 20=︒︒+︒︒30sin 60cos 30cos 60sin 10=()261042610-=+=10(6-2).∴货轮的速度为10(6-2)÷21=20(6-2)(海里/时). 8.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000米到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( )A.5002mB.200mC.10002mD.1000m [答案] D[解析] ∵∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°,在△ABS 中,AB =︒︒⋅30sin 135sin AB =2221000⨯ =1 0002,∴BC =AB ·sin45°=1 0002×22=1 000(m ). 二、填空题9.一船以24 km/h 的速度向正北方向航行,在点A 处望见灯塔S 在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东75°方向上,则船在点B 时与灯塔S 的距离是 km.(精确到0.1 km ) [答案] 4.2[解析] 作出示意图如图.由题意知,AB =24×6015=6, ∠ASB =45°,由正弦定理得,︒45sin 6=︒30sin BS,可得BS =22216⨯=32≈4.2(km ). 10.从观测点A 看湖泊两岸的建筑物B 、C 的视角为60°,AB =100m,AC =200m,则B 、C 相距 .[答案] 1003m[解析] 在△ABC 中,由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =1002+2002-2×100×200×21=30000 所以BC =1003m.11.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 . [答案] 203米,3340米 [解析] 如图,依题意有甲楼的高度AB =20·tan60°=203 (米),又CM=DB =20米,∠CAM =60°,所以AM=CM ·cot60°=3320米, 故乙楼的高度为CD =203-3320=3340(米). 12.如图,一辆汽车在一条水平的公路上从C 处向正东行驶,到A 处时,测量公路南侧远处一山顶D 在东南15°的方向上,行驶15km 后到达B 处,测得此山顶在东偏南30°的方向上,仰角为15°,则此山的高度CD 等于 km.[答案] 5(2-3)[解析] 在△ABC 中,∠A =15°,∠C =30°-15°=15°, 由正弦定理,得BC =515sin 15sin 5sin sin =︒︒⨯=C A AB .又CD=BC ·tan ∠DBC =5×tan15°=5×tan(45°-30°)= 5(2-3). 三、解答题13.(2012·厦门高二检测)海面上相距10海里的A 、B 两船,B 船在A 船的北偏东45°方向上,两船同时接到指令同时驶向C 岛,C 岛在B 船的南偏东75°方向上,行驶了80分钟后两船同时到达C 岛,经测算,A 船行驶了107海里,求B 船的速度.[解析] 如图所示,在△ABC 中,AB =10,AC =107,∠ABC =120°由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos120° 即700=100+BC 2+10BC ,∴BC =20, 设B 船速度为v ,则有v =3420=15(海里/小时). 即B 船的速度为15海里/小时.14.在上海世博会期间,小明在中国馆门口A 处看到正前方上空一红灯笼,测得此时的仰角为45°,前进200米到达B 处,测得此时的仰角为60°,小明身高1.8米,试计算红灯笼的高度(精确到1m ). [解析] 由题意画出示意图(AA ′表示小明的身高).∵AB =200,∠CA ′B ′=45°,∠CB ′D ′=60°, ∴在△A ′B ′C 中,︒'=''∠''45sin sin CB BC A B A∴B ′C =︒''15sin 45sin B A =()1320042622200+=-⨯. 在Rt △CD ′B ′中, CD ′=B ′C ·sin60°=100(3+3), ∴CD =1.8+100(3+3)≈475(米). 答:红灯笼高约475米.15.山上有一纪念塔,不能到达底部,你有哪些方法测量塔的高度PO ?[解析] 如图(1),在地面上引一条基线AB ,使其延长线通过塔底点O ,测出A 、B 分别对塔顶P 的仰角α、β及AB 的长度就可以求出塔高PO .计算方法:在△P AB 中,由正弦定理得 P A =()βα-sin AB·sin β,在Rt △P AO 中,PO =P A sin α ∴PO =()βαβα-sin sin sin AB .16.在大海上,“蓝天号”渔轮在A 处进行海上作业,“白云号”货轮在“蓝天号”正南方向距“蓝天号”20海里的B 处.现在“白云号”以每小时10海里的速度向正北方向行驶,而“蓝天号”同时以每小时8海里的速度由A 处向南偏西60°方向行驶,经过多少小时后,“蓝天号”和“白云号”两船相距最近. [解析] 如右图,设经过t 小时,“蓝天号”渔轮行驶到C 处,“白云号”货轮行驶到D 处,此时“蓝天号”和“白云号”两船的距离为CD .则根据题意,知在△ABC 中,AC =8t ,AD =20-10t,∠CAD =60°.由余弦定理,知CD 2=AC 2+AD 2-2×AC ×AD cos60°=(8t )2+(20-10t) 2-2×8t ×(20-10t )×cos60° =244t 2-560t+400=244(t-6170)2+400-244×(6170)2, ∴当t =6170时,CD 2取得最小值,即“蓝天号”和“白云号”两船相距最近.。
《导学案》2015版高中数学(人教A版,必修5)教师用书(预学+导学+固学+思学):第一章 解三角形
课程纲要课程类型:基础学科类课程资源:新编主持开发老师:参与开发老师:学习对象:高中一、二年级学生规模预设人学习时限:共36课时场地设备:教学班教室学生基本情况分析班级学生人数上学期测试情况分析优秀良好一般人数百分率人数百分率人数百分率最优学生姓名后进学生姓名特殊学生情况说明姓名情况说明一、课程元素1.课程内容本模块包含解三角形、数列、不等式三章内容.2.课程目标(1)解三角形①通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理;②能初步运用正弦定理、余弦定理解斜三角形;③能够运用正弦定理、余弦定理等知识和方法,解决一些与测量和几何计算有关的实际问题;④能够运用正弦定理、余弦定理解决一些三角恒等式的证明以及三角形中的有关计算问题.(2)数列①通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是特殊的函数;②了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项,能求某些数列的通项公式;③掌握等差数列、等差中项的概念,会用定义判定数列是否为等差数列;④掌握等差数列的通项公式及推导方法,会类比直线、一次函数等有关知识研究等差数列的性质,能运用数列通项公式求有关的量:a1,d,n,a n;⑤掌握等差数列的前n项和公式、通项公式,对于a1、d、n、a n、S n,已知三个量能求另外两个量,能灵活运用公式解决与等差数列有关的综合问题,能构建等差数列模型解决实际问题;⑥掌握等比数列、等比中项的概念,能利用定义判定数列是否为等比数列;⑦掌握等比数列的通项公式及推导方法,能类比指数函数等有关知识研究等比数列的性质,能熟练运用公式求有关的量:a1,q,n,a n;⑧掌握等比数列的前n项和公式、通项公式,会运用通项公式、前n项和公式,对于a1、q、n、a n、S n,已知三个量能求另外两个量,能灵活运用公式解决与等比数列有关的综合问题,能构建等比数列模型解决实际问题;⑨提高观察、概括、猜想、运算和论证的能力,能通过类比、转化等方法解决有关数列的一些问题.(3)不等式①通过具体情境,感受现实世界和生活中存在着大量的不等关系,了解不等式(组)的实际背景;②理解不等式的性质,能运用不等式的性质证明简单的不等式及解不等式;③经历从实际情景中抽象出一元二次不等式模型的过程,通过图象了解一元二次不等式与相应函数、方程的关系;④会解一元二次不等式,并解决一些实际问题;⑤了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组的解集;⑥能从实际问题中抽象出一些简单的二元线性规划问题,并能加以解决;⑦理解基本不等式,能用基本不等式解决简单的最大(小)值问题;⑧能将实际问题转化为数学问题,建立不等式模型,求解不等式.二、课程实施1.课时安排本模块安排30个课时.(具体见目录)2.学习时间安排学习时间从年月日至年月日.3.教材重难点分析第一章解三角形学习重点:运用正弦定理、余弦定理探求任意三角形的边角关系,解决与之相关的计算问题,运用这两个定理解决一些测量以及几何计算的有关问题.学习难点:两个定理的推导以及运用两个定理解决实际问题.第二章数列学习重点:数列的概念,等差数列、等比数列的通项公式和前n项和公式.学习难点:等差数列、等比数列的通项公式与前n项和公式的推导,以及它们的综合运用.第三章不等式学习重点:一元二次不等式的解法、基本不等式的应用以及简单的线性规划问题.学习难点:不等式的性质及其证明,不等式在实际问题中的应用.三、教学建议“学案导学法”根据不同的学习内容、不同的教学环节,教师可以采用三种不同的组织形式:分组讨论式、学生主讲式与教师主讲式.分组讨论式,把全班同学分成若干学习小组,一般按4至6名学生为一组划分,每个组都要有上中下三个层次的学生,指定其中一人为组长(也可以选举产生或自荐产生,过一段时间后需调换),由他组织学生进行自习讨论、分析讨论等活动,形成结论后推举一位为代表发言,与全班交流,其他人可以补充.各组之间可以采用多种形式的交流、竞赛等.注意:此种组织形式如果组织不当,将导致学生学习成绩两极分化更加严重.为避免这种情况,在采用此种组织形式时,需培养后进生,提高他们的学习成绩,教师要有意识地引导小组其他同学,尽量让他们鼓励后进生积极发言参与讨论或作为本组代表进行展示.学生主讲(教师在旁边指导)式,可由教师指定一人(也可以是几位学生合作,主讲人由学习小组推荐或自荐),先自行学习(与同学讨论及请求老师帮助与指导),然后在班级内主讲,主讲过程中教师要给予必要的指导和帮助.教师主要是利用他的学习活动带动全班学习.注意:此种组织形式如果组织不当,将会把学习成绩较差的、比较内向的学生排斥在外,需要十分重视.因此采用此种组织形式时,教师要有意识地让学习成绩中下的学生参与主讲,要多加鼓励,以提高他们学习积极性.如果是学习成绩较好的学生进行主讲,那么,教师要积极引导学习成绩中下的学生提出点评(教师可以给予提示或帮助).教师主讲式,就是教师主讲,采用设疑、提问、解惑、拓展等手段,引导学生认识、理解、掌握、探索,从而起到能力提升与素质提高的作用.这里的主讲式与原教学大纲时的主讲式是截然不同的,原主讲式近似于“报告式”,这里是“主持讨论式”,任何学生都可以提出不同意见,教师也可以故意设置陷阱,以揭示问题.注意:此种组织形式极易让课堂回归到原来教师一言堂的授课方式,因此,教师务必在问题设置、设疑提问、点拨探究等方面引起充分重视.这三种组织形式可以说是构成“学案导学法”的三个教学元素,教师要根据学习内容、学习时间、学生状态统筹兼顾,灵活安排,进行科学的组合,以充分发挥教学的有效性.四、课程观察安排本模块教学过程中,安排观察课两次,具体如下:课程观察课安排观察课课题实施时间实施班级负责人实施人说明(目的、条件、评估)五、测试与评估本模块结束后,采用书面考试的形式对学生的学习情况进行测试评估,考试时间120分钟,满分150分,题目难度比为容易题∶中档题∶难题=5∶4∶1.由学校统一组织命题,由教研组安排教师统一阅卷,测试成绩达到90分以上的均可获得2学分,对测试达不到标准的学生,给予一次补考机会.六、使用说明(一)构成本书集预、导、固、思四层级于一体,是一本真正意义上的导学案.本书给广大师生提供了一个选择的平台.学校、教师在使用时要根据各个学校的实际情况,其中包括学校课时安排、学生学习基础情况、学生学习态度情况、学校硬件设施情况等,对本导学案所列内容进行有效调整(如取舍、增减、重组等).每个模块都设置了《课程纲要》,目的是让学生能全面了解本模块的知识构成、课程目标、学习重点与难点及大致的学习时间与方法.它包含如下几个部分:课程元素:包括课程内容、课程目标,起到整体“导向”的作用.课程实施:包括课时安排、学习时间安排、教材重难点分析.教学建议:主要介绍“学案导学法”的几种组织形式.每章开始都设置了课标要求、单元结构和教学建议.单元结构以知识分类、知识综合、知识应用、知识拓展等形式描述出了本章的知识结构及与其他知识的联系,形成了完整的知识体系.(二)课时安排本书根据新课程标准与学校的教学实际情况,以方便教师教学与学生学习为目的,进行了科学的课时划分.此外,为方便教师进行每章复习与模块复习,每章结束与模块结束后均设置了复习课及章末测试与模块测试,供教师选择使用.(三)课时结构每课时分四个学习目标进行编写,方便学生自习与讨论.每课时开始,首先安排了《课程学习目标》,给学生指明了通过本课时的学习要达到的目标,让学生明确学习目标,起到“导向”的作用.第一层级为《知识记忆与理解》,包含两个内容:一是《知识体系梳理》,创设一个学生感兴趣又简单的情境,主要是引导学生认真阅读教材,一方面掌握书本基础知识,另一方面掌握“自习方法”,实施“依法自习”;二是《基础学习交流》,主要是引导学生应用教材的基础知识通过分析交流,解决简单的基础问题,初步学会分析与解决问题,是“导思”的初级阶段.第二层级为《思维探究与创新》,包含两个内容:一是《重点难点探究》,主要是根据知识要点,结合近年来高考趋势设计出具有代表性的探究题型,引导学生应用教材知识,通过“方法指导与解析”,解决有关问题,达到能力与技能的提升,起到“基本技能应用”的作用;二是《思维拓展应用》,主要是依据《重点难点探究》中的探究题型,设置了具有互补性、拓展性的问题,供学生讨论训练,达到巩固知识、提升能力的目的,起到“全面提升能力”的作用.第三层级为《技能应用与拓展》,包含两个内容:一是《基础智能检测》,主要是引导学生应用前面所学的基础知识通过智能化、迁移化,解决一些具有灵活性的基础问题;二是《全新视角拓展》,主要是结合近年来的高考真题、改编题或大型考试试题中对本节课相关知识的涉及作分析与讲解.第四层级为《总结评价与反思》,包含两个内容:一是《思维导图构建》,主要是根据学生的学习特点、思维情况、学习效果等方面对重点难点用形象的图形来复述;二是《学习体验分享》,主要是要求学生根据自身对本节课的参与情况、学习效果、学习体会等方面作出一个客观的评价.(四)课时学案的使用方法在进行教学时,教师应根据学校、学生的实际情况对导学案中的有关内容进行必要的选择与增减.对导学案的使用,一般按“自习预习、相互讨论——展示交流、相互补充——点评方法、总结规律——课外练习、反思评价”的循环形式,循序渐进.具体操作模式:要根据班级情况(学生学习基础与人数)确定分成若干学习小组,注意这里说的学习小组与原来班级的行政小组是有区别的,行政小组是属于班级组长管理范畴,各个学科是相同的,是相对固定的,由班主任负责分组;学习小组是由各学科教师根据教学需要而划分的,各个学科可以是不相同的,而且它呈现动态架构形式,一段时间后学科教师应根据小组学习状态进行适当调整.每个组设立一名组长,各组之间学习成绩层次的人数应基本相同.第一环节自习预习、相互讨论在上课前由各小组对学案所列的内容(包括第一、二学习目标的所有内容)进行讨论,共同分析研究,完成所有问题.这项工作都是在课外进行的,时间一般为40~50分钟.教师在课前把学案交给组长,由他组织组员进行自习与讨论.要做到定时间、定地点、定内容,一般分三步进行.第一步:自主学习.根据学案所列的问题,由学生自行阅读教材,完成第一层级学习目标所列的两类问题(允许有些问题不会或解答错误).这一步工作要求学生独立完成,一般限时15~20分钟.学生完成后按要求交给组长,然后交换批改.注意问题:学习自觉性较差的学生可能不会完成任务,基础较差的学生会无法完成任务.采取措施:对学习自觉性较差的学生采取一定的强制手段,规定他们必须完成,给组长以批评教育的权力,教师要加强思想工作;对基础较差的学生,一段时间内可以允许他们只完成部分问题,要求他们先做到认真、自主,然后逐步提高要求,必要时教师可以预先给予适当的辅导.第二步:互相讨论.对第一步中出现的不同意见、第二层级学习目标所列问题,学生在组内展开讨论,形成统一意见,完成任务.这一步一般限时30分钟左右.注意问题:①讨论过程成为学习成绩较好的学生的“主题发言”过程,学习成绩较差与性格内向的学生默不作声,不发表意见.②错误意见或不成熟意见成为学生取笑的对象,久而久之,那些学生就不参加讨论了.采取措施:教师要注意引导学习成绩较好的学生一方面先不要抢着发言,另一方面要启发其他同学发言;对学习成绩较差与性格内向的学生要注意肯定、鼓励、表扬,让他们找到自信,达到踊跃参与的目的.第三步:达成共识.通过前两步的学习,在组内形成统一意见,并选出在课内展示的代表,鼓励组内学生自我推荐.同时对全组成员给出适当评价,并要求组内同学在讨论结束后继续反思讨论的过程与有关结论,对新发现、新问题鼓励组员在课堂展示时发表意见.注意问题:学习成绩较差与性格内向的学生不敢参与课堂展示.采取措施:初期采取一定的强制性措施,教师要动员学习成绩较好的学生帮助其他同学做好展示的准备工作.特别说明:对于一些内容比较少、比较容易的课时,第一环节也可以放在课堂内完成,但这只是在时间上的不同处理,在讨论方法、步骤、注意问题等方面都不能变化.第二环节展示交流、相互补充在课堂上,各组派代表在演示板(黑板、屏幕等)上展示各自的研究成果,组内成员可对此予以补充或说明.课堂展示是“学案导学法”的关键一环,对不同的问题要采用不同的展示形式,这一环节一般分两步进行.第一步:简单展示.第一层级学习目标所列问题一般可采用简单展示法,即由某个小组成员报出答案,教师直接在演示板上显示,其他各组如无异议,就不必议论,教师也只作简单总结或拓展.这段时间一般限制在5~8分钟.第二步:综合展示.第二层级学习目标所列问题一般采用综合展示法,即对某个问题先由某个小组成员展示出他们讨论的结论(课堂内一般是几个组同时进行,同一时间展示出所列的全部问题),组内成员可以补充,教师组织其他各组分别对各个问题的结论进行讨论、批评、修改或提出其他结论与方法,教师对大家所提问题、结论、方法等作出总结或拓展.对具有拓展性的问题可采用启发式展示法,即在教师的启发、点拨、提醒、引导下对问题逐步深入,挖掘规律性的结论.这段时间一般限制在25~30分钟.这一环节的注意问题与采取措施列表如下:注意问题采取措施1.课堂内缺乏组织,整个课采取逐题讨论,逐题总结堂如一盘散沙2.学生发表的意见不全面加强课前准备,预先全面解题,注意引导、启发、点拨3.问题较难,学生发表不出分解问题,对问题做一些铺垫意见4.课堂时间无法控制,造成注意统筹,课前分解好每题的讨论时间,控制使用拖课第三环节点评方法、总结规律教师总结归纳(也可以由学生进行归纳),把讨论得出的结论归纳成一般的理性结论,提炼解题的一般方法.同时对本课时学习情况进行总结,肯定成绩,指出问题及改进要求,安排课后练习、课程评价与下一课时的学习内容.第四环节课外练习、反思评价学生自主完成作业,完成后交由小组交流批改,教师也可以指定此项训练交由教师批改,完成后学生先各自反思本课时的学习过程,总结经验教训,再由小组或教师对每个学生这节课的学习情况(如学习态度、自觉性、创新性、成效性、进步性等)作出一个评价.评价要从鼓励进步的角度出发,作出有利于学生更好地发挥学习积极性的评价.这个环节一般需要一个小时左右.完成这一环节工作后,即转入下一课时的第一个环节,事实上,上一课时的第四环节与下一课时的第一环节是连在一起进行的.知识点新课程标准的要求层次要求领域目标要求正弦定理和余弦定理 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理 2.掌握正弦定理、余弦定理的变形公式 1.通过对三角形边角关系的探究学习,体验数学探究活动的过程,培养探索精神和创新意识 2.通过“应用举例”,提高应用数学知识解决实际问题的能力和实际操作的能力3.通过学习和运用,进一步体会数学的科学价值、应用价值,进而领会数学的人文价值,提高自身修养解三角形 1.能够运用正、余弦定理求解三角形的边、角2.能够运用正、余弦定理解斜三角形(无解型、一解型、两解型) 正、余弦定理在几何问题中的应用 1.能够运用三角形的面积公式计算与面积相关的问题2.能够运用正、余弦定理证明三角恒等式正、余弦定理在实际问题中的应用1.能够运用正、余弦定理解决不能到达位置的距离、高度的测量问题 2.能够运用正、余弦定理解决角度测量问题本章的重点内容主要有:两个定理(正弦定理和余弦定理)、利用两个定理解三角形、三角形的面积公式及其应用、利用两个定理解决一些实际问题等.在教学时应注意以下几点:1.在讲解两个定理时,要引导学生对它们进行全方位地理解,知道定理的来龙去脉,如何应用,应用时应注意的问题等.例如:对于余弦定理,要求学生要掌握它的推导过程(可利用向量来进行证明)、定理及其推论的形式、适用的解三角形的类型等.2.教学过程中要引导学生有意识地总结一些规律方法.例如:利用正弦定理和余弦定理判断三角形形状的方法,一种是将条件中的边全部化为角的正弦或余弦值,然后利用三角变换及三角形内角和定理得到角的关系,从而判断三角形的形状;另一种是将条件中的所有角的三角函数值化为边的关系,通过代数式的运算得出边的关系,从而判断出三角形的形状.3.引导学生多注意一些易错点.例如:当已知两边和其中一边的对角时,若用正弦定理求另一个边所对的角会产生解的不确定性,对于此类问题要通过各种方式提醒学生解题时要加倍小心,以免漏解或多解.4.解三角形实际上是三角函数知识在三角形中的应用,因此三角函数的有关知识,如三角函数的定义,相关公式(同角三角函数基本关系式、诱导公式、两角和与差的三角函数公式、二倍角公式等),三角函数的图象和性质等要求学生必须熟练掌握.第1课时 正 弦 定 理1.掌握正弦定理及其证明过程.2.根据已知三角形的边和角,利用正弦定理解三角形.3.能根据正弦定理及三角变换公式判断三角形的形状.重点:正弦定理在解三角形中的应用.难点:三角形多解情况的判断.古埃及时代,尼罗河经常泛滥,古埃及人为了研究尼罗河水运行的规律,准备测量各种数据.当尼罗河涨水时,古埃及人想测量某处河面的宽度(如图),如果古埃及人通过测量得到了AB的长度,∠BAC,∠ABC的大小,那么就可以求解出河面的宽度CD,古埃及人是如何利用这些数据计算的呢?问题1:在上面的问题中,△ABC的已知元素有∠ABC、∠BAC和边AB.若AB=2,∠ABC=30°,∠BAC=120°,则BC=2,CD= .解三角形:已知三角形的几个元素求其他元素的过程.问题2:正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等,即==.问题3:正弦定理的拓展:①a∶b∶c=sin A∶sin B∶sin C;②设R为△ABC外接圆的半径,则===2R.问题4:在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式①a=b sin A ②b sin A<a<b③a≥b a>b解的个数一解两解一解一解正弦定理是由伊朗著名的天文学家阿布尔·威发首先发现与证明的.中亚细亚人阿尔比鲁尼给正弦定理作出了一个证明,也有说正弦定理的证明是13世纪的那希尔丁在《论完全四边形》中首次清楚地论证了正弦定理.他还指出,由球面三角形的三个角,可以求得它的三条边,或由三边去求三个角,也就是正弦定理向球面三角学中的拓展.1.在△ABC中,下列等式总能成立的是().A.a cos C=c cos AB.b sin C=c sin AC.ab sin C=bc sin BD.a sin C=c sin A【解析】根据正弦定理有:=,所以a sin C=c sin A,故选D.【答案】D2.已知△ABC中,a=4,b=5,A=30°.下列对三角形解的情况的判断中,正确的是().A.一解B.两解C.无解D.一解或无解【解析】因为a,b,A的关系满足b sin A<a<b,故有两解.【答案】B3.在△ABC中,已知a=5,c=10,A=30°,则B等于.【解析】根据正弦定理得: sin C===,∴C=45°或135°,故B=105°或15°.【答案】105°或15°4.在△ABC中,已知b=5,B=,tan A=2,求sin A和边a.【解析】因为△ABC中,tan A=2,所以A是锐角,又=2,sin2A+cos2A=1,联立解得sin A=,再由正弦定理得=,代入数据解得a=2.利用正弦定理判断三角形的形状在△ABC中,若sin A=2sin B cos C,且sin2A=sin2B+sin2C,试判断△ABC的形状.【方法指导】先利用正弦定理将“sin2A=sin2B+sin2C”转化为三角形边之间的关系,再结合第一个条件进行转化判断.【解析】在△ABC中,根据正弦定理:===2R,∵sin2A=sin2B+sin2C,∴()2=()2+()2,即a2=b2+c2,∴A=90°,∴B+C=180°-A=90°.由sin A=2sin B cos C,得sin 90°=2sin B cos(90°-B),∴sin2B=.∵B是锐角,∴sin B=,∴B=45°,C=45°.∴△ABC是等腰直角三角形.【小结】(1)判断三角形的形状,可以从三边的关系入手,也可以从三个内角的关系入手.从条件出发,利用正弦定理进行代换、转化,求出边与边的关系或求出角与角的关系,从而作出准确判断.(2)判断三角形的形状,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形等,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.已知两角及其中一角的对边,解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.【方法指导】由A+B+C=180°可求出B,再由=和=,求出a和b.【解析】∵A=45°,C=30°,∴B=180°-(A+C)=105°.由=得a===10.由=得b===20sin 75°,∵sin 75°=sin(30°+45°)=sin 30°cos45°+cos 30°sin45°=,∴b=20×=5+5.【小结】解三角形时,如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一个角,由正弦定理可计算出三角形的另两边.已知两边及其中一边的对角,解三角形在△ABC中,a=,b=,B=45°.求角A,C和边c.【方法指导】已知两边及其中一边的对角,要根据正弦定理先求解另一角,再求出三角形的另外两个元素.【解析】由正弦定理得=,=,∴sin A=,∴A=60°,C=180°-45°-60°=75°,由正弦定理得:c==.[问题]本题中根据sin A=得出的角A一定是60°吗?[结论]角A不一定是60°,由于a>b,所以角A还可能是120°.于是正确的解答如下:由正弦定理得=,=,∴sin A=.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c==;当A=120°时,C=180°-45°-120°=15°,c==.【小结】已知三角形的两个角求第三个角时注意三角形内角和定理的运用,求边时可用正弦定理的变式,把要求的边用已知条件表示出来再代入计算.已知三角形两边和其中一边的对角解三角形时,首先运用正弦定理求出另一边对角的正弦值,再利用三角形中大边对大角看能否判断所求的这个角是锐角,当已知的角为大边对的角时,则能判断另一边所对的角为锐角;当已知小边对的角时,则不能判断.在△ABC中,若==,则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【解析】由正弦定理得a=2R sin A,b=2R sin B,c=2R sin C(R为△ABC外接圆的半径),∴==,即tan A=tan B=tan C,∴A=B=C.【答案】B在△ABC中,已知a=8,B=60°,C=75°,则A=,b=,c=.【解析】A=180°-(B+C)=180°-(60°+75°)=45°.由正弦定理=,得b===4,由=,得c====4(+1).【答案】45°44(+1)在△ABC中,已知a=,c=2,A=60°,求B、C及b的值.【解析】由正弦定理==,得sin C===.。
人教A版必修5数学 精品导学案:第1章 解三角形(复习)
第一章 解三角形(复习)班级 姓名 学号 学习目标学习过程一、课前准备(1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.练习:在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若32a b =,则2222sin sin sin B A A-的值为例2. 【2014高考山东文第17题】△ABC 中,角C B A ,,所对的边分别为c b a ,,,已知a =3,A cos =36,2π+=A B , (1)求b 得值;(2)求△ABC 的面积.练习:在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a(Ⅰ)若25,2==b a ,求C cos 的值; (Ⅱ)若C A B B A sin 22cos sin 2cos sin 22=+,且ABC ∆的面积C S sin 29=,求a 和b 的值.例3. 在∆ABC 中,设tan 2,tan A c b B b-= 求A 的值.练习:在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = .例4.在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ).A . 60°B . 90°C .150°D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ).A .0个B .1个C .2个D .不确定的4. 在△ABC 中,a =,b =1cos 3C =,则ABC S =△_______ 5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=. (1)求A ;(2)若4a b c =+=,求ABC ∆的面积.2. 在△ABC中,,,a b c分别为角A、B、C的对边,2228 5 bca c b-=-,a=3,△ABC的面积为6,(1)求角A的正弦值;(2)求边b、c.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
高中必修5解三角形习题与答案
解三角形【知识点】1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b RB =,sin 2cC R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 3、三角形面积公式:111sin sin sin 222CS bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①假设222a b c +=,则90C =; ②假设222a b c +>,则90C <;③假设222a b c +<,则90C >. 【例题讲解】例1. 在△ABC 中,假设B a b sin 2=,则A 等于〔 〕 A 006030或 B 006045或C 0060120或 D 0015030或例2. 在△ABC 中,假设=++=A c bc b a 则,222_________例3 在△ABC 中,假设,1cos cos cos 222=++C B A 则△ABC 的形状是______________例4 在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+==则z y x ,,的大小关系是___________________________例5 在△ABC 中,假设ac b =2,则B B C A 2cos cos )cos(++-的值是_________例6 在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++例7 在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值例8.在锐角△ABC 中,求证:tan tan tan >⋅⋅C B A例9.在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin C B A C B A =++【课堂练习】1. 在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是〔 〕A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形2 在△ABC 中,假设1413cos ,8,7===C b a ,则最大角的余弦是〔 〕 A 51- B 61- C 71- D 81-3 在△ABC 中,假设,900=C 则三边的比cb a +等于〔 〕A 2cos 2B A + B 2cos 2B A -C 2sin 2B A +D 2sin 2BA -4. 在△ABC 中,090C ∠=,00450<<A ,则以下各式中正确的选项是〔 〕A sin cos A A >B sin cos B A >C sin cos A B >D sin cos B B >5 在△ABC 中,假设)())((c b b c a c a +=-+,则A ∠=〔 〕A 090 B 060 C 0120 D 01506 在△ABC 中,假设22tan tan ba B A =,则△ABC 的形状是〔 〕 A 直角三角形 B 等腰或直角三角形 C 不能确定 D 等腰三角形7 在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________8.在△ABC 中,假设,cos cos cos C c B b A a =+则△ABC 的形状是什么?9 在△ABC 中,假设=+=C B C B A tan tan ,cos cos 2sin 则_________10 在锐角△ABC 中,假设2,3a b ==,则边长c 的取值范围是_________11.在△ABC 中,假设0120=+B A ,则求证:1=+++ca b c b a12. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC的面积的最大值13 (c4在△ABC 中,假设()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB 边上的高为,,A B C 的大小与边,,a b c 的长【课后作业】1. 边长为5,7,8的三角形的最大角与最小角的和是〔 〕A 090 B 0120 C 0135 D 01502 在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________3. 在△ABC 中,假设sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________ 4 在△ABC 中,::1:2:3A B C =,则::a b c 等于〔 〕A 1:2:3B 3:2:1C 2D 25 在△ABC 中,假设角B 为钝角,则sin sin B A -的值〔 〕 A 大于零 B 小于零 C 等于零 D 不能确定6 在△ABC 中,假设B A 2=,则a 等于〔 〕A A b sin 2B A b cos 2C B b sin 2D B b cos 27 在△ABC 中,假设,3))((bc a c b c b a =-+++则A = ( )A 090 B 060 C 0135 D 01508. 在△ABC 中,假设,sin sin B A >则A 一定大于B ,对吗?填_________〔对或错〕9 假设在△ABC 中,060,1,ABC A b S ∆∠==则CB A cb a sin sin sin ++++=_______10 假设,A B 是锐角三角形的两内角,则B A tan tan _____1〔填>或<〕11 在△ABC 中,假设,12,10,9===c b a 则△ABC 的形状是_________12..在△ABC 中,0120,,ABCA c b a S =>=,求c b ,13 在△ABC 中,求证:)cos cos (aA bB c a b b a -=-解三角形答案【例题答案】例1. D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150例2.0120 22201cos ,12022b c a A A bc +-==-= 例3.直角三角形21(1cos 21cos 2)cos ()1,2A B A B +++++= Cos2A+cos2B+cos2(A+B)+1=0Cos2A+cos2B+cos2Acos2B-sin2Asin2B+1=0 (cos2A+1)(cos2B+1〕=sin2Asin2B cosAcosB(cosAcosB-sinAsinB)=0cosAcosBcos(A+B)=0,所以cosAcosBcosC=0例4. z y x << ,,sin cos ,sin cos ,22A B A B A B B A y z ππ+<<-<<<,sin sin sin ,,c a b C A B x y x y z <+<+<<< 例5. 1 22,sin sin sin ,b ac B A C ==B B C A 2cos cos )cos(++-2cos cos sin sin cos 12sin A C A C B B =+++-cos cos sin sin cos 12sin sin A C A C B A C =+++-cos cos sin sin cos 1A C A C B =-++cos()cos 11A C B =+++=例6. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++例7.解:839sin ,8/5cosB 432B sin ,2cos 2sin 42cos 3,sin 2)2-3sin()232sin(,sin 2sin sinA 2,23232A =====+-=+=+-=-=B B B B B B B BC b c a BC B ,可得展开,整理得得由,由题可得:ππππ例8.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B CA B C A B C A B C>>∴1tan tan tan >⋅⋅C B A得证带入等式由例,sin sin A sin )sin(sin A sin sin cos cos sin sin sin )cos 1(sin )cos 1(sin 2cos 2sin 2cos 42cos 2sin 2cos 42cos 2cos 2cos 4,2sin 2cos 2cos 2sin )22sin()2cos(2cos.922C B B A B B A B A B A A B B A A B B B A A C B A B A B A B A B A C ++=+++=+++=+++=+=+=+=--=π【课堂练习答案】 1.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>2. C 2222cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7B =- 3. Bsin sin sin sin sin a b A BA B c C++==+ B,2A 4)4cos(2cos sin 代入,可得,又BA B A +=-=+=ππ4. D 090A B +=则sin cos ,sin cos A B B A ==,0045,A <<sin cos A A <,04590,sin cos B B B <<>5 C 2222221,,cos ,1202a cb bc b c a bc A A -=++-=-=-=6 B22sin cos sin cos sin ,,sin cos sin cos cos sin sin cos sin A B A B AA AB B A B B A B⋅=== sin 2sin 2,2222A B A B A B π==+=或 7. 4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC + 4)26c )sin()26(]sin )32([cos )]3cos([sin 2)]65sin([sin 2)sin (sin 2=+=++=++=-+=-+=+(所以,最大值ϕππA c A A c A A c A A c B A c8.解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=。
(新)人教版高中数学必修5第一章《解三角形》导学案(全套)
学案 1 正弦定理 (1)教学目标:1、掌握正弦定理及其推导过程;2、能利用正弦定理解三角形及判断三角形解的个数.教学重点:利用正弦定理解三角形.教学难点:正弦定理的证明.教学过程:一、问题情境:1.复习:在Rt ΔABC 中,∠C=90 ,试判定A a sin ,B b sin 与Cc sin 之间的大小关系? 2.猜想:对任意三角形ABC 上述关系是否成立?如何证明?二、讲授新课:1.正弦定理:_________________________________.2.利用正弦定理,可解决两类三角形问题:(1)已知两角与一边,求另两边与另一角;(2)已知两边和其中一边的对角,求其他边角.3.三角形的元素与解三角形:(1)把三角形的_________________和它们的_________________叫做三角形的元素.(2)已知三角形的_________________求其他____________的过程叫做解三角形.三、知识运用:例1.在ΔABC 中 已知23,45,7500===c B A ,求b a C ,,.例2.在ΔA BC 中 ,已知060,67,14===B b a ,解ABC ∆.例3.在ΔABC 中 ,已知045,332,2===B b c ,解ABC ∆.探究:对于例2、例3能否从图形来分析为什么解的个数不一样,分析类型(2)产生多解的原因.四、课堂练习:1.在ABC ∆中,一定成立的是( )A.B b A a sin sin =B.B b A a cos cos =C.A b B a sin sin =D.A b B a cos cos =2.在ABC ∆中,45A =,60B =,10a =,则b =( )A.3.在ABC ∆中,︒=60A ,24,34==b a ,则B 等于( )A.︒45或︒135B.︒135C.︒45D.以上都不对4.在ABC ∆中,45,75AB A C ==︒=︒,则=BC ( )A .33-B .2C .2D .33+5.不解三角形,下列判断正确的是( )A.7a =,14b =,30A =,有两解B.30a =,25b =,150A =,有一解C.6a =,9b =,45A =,有两解D.9b =,10c =,60B =,无解6.在ΔABC 中 ,已知060,32,2===B b a ,解三角形ABC .学案 2 正弦定理 (2)教学目标:1、掌握公式的变式及三角形面积公式;2、能灵活运用正弦定理解决三角形相关问题,比如判断三角形的形状.教学过程:一、回顾练习:(1)在ABC ∆中,已知B=60°,2=a ,3=b ,求A .(2)在ABC ∆中,已知A =15°,B=120°,12=b ,求a 和c .二、正弦定理的变形及面积公式:1.正弦定理的变形①__________________________________________________②__________________________________________________③__________________________________________________2.三角形的面积公式:__________________________________________________三、例题分析:例1.在ΔABC 中,5:4:3sin :sin :sin =C B A ,且12=++c b a ,求c b a ,,.例2.在ΔABC 中, 30B =,AB =2AC =,求三角形的面积.例3.① 在ΔABC 中,已知Cc B b A a cos cos cos ==,试判断ΔABC 的形状. ② 在ΔABC 中,已知B b A a cos cos =,试判断ΔABC 的形状.四、课堂练习:1.在ABC ∆中,︒=30A ,3=a ,则ABC ∆的外接圆半径为( )A .23B .3C .33D .62.在ΔABC 中,若,3,600==a A 则CB A c b a sin sin sin ++++等于___________. 3.在ΔABC 中,若3:2:1::=C B A ,则_____________::=c b a .4.在ΔABC 中,已知2sin b c B =,求角C.5.根据下列条件,判断ΔABC 的形状:① C B A 222sin sin sin =+; ② cC b B a A cos cos sin ==学案 3 余弦定理教学目标:1.掌握余弦定理的两种表示形式;2.证明余弦定理的向量方法;3.运用余弦定理解决两类基本的解三角形问题.教学过程:一、问题探究:问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a b ab C =+-.二、讲授新知:1.余弦定理:_________________________________;_________________________________;_________________________________.推论: _________________________________;_________________________________;_________________________________.2.利用余弦定理,可解决两类三角形问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两个角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b ,1c,求A .三、典型例题:例1.在△ABC 中,已知a =b ,45B =,求,A C 和c .变式:在△ABC 中,若AB ,AC =5,且cos C =910,则BC =________.例2.在△ABC 中,已知三边长3a =,4b =,c =变式:在∆ABC 中,若222a b c bc =++,求角A .四、课堂练习:1. 已知a c =2,B =150°,则边b 的长为( )A. 222. 已知三角形的三边长分别为3、5、7,则最大角为( )A .60B .75C .120D .1503.在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .4. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.5. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.学案 4 正、余弦定理在三角形中的应用(1)题型一 利用正、余弦定理求边、角例1 已知ABC ∆中, 6b =,c =30B =,求边a 的值.题型二 判定三角形的形状例2 在ABC ∆中,已知()()3a b c a b c ab +++-=,且2cos sin sin A B C ⋅=,试判断三角形的形状.题型三 三角形的面积例3 ABC ∆的周长为20,BC 边的长为7,60A =,求它的内切圆的半径.自我检测1.在△ABC 中,sin :sin :sin 2:3:4A B C =,那么cos C 等于( )A .23B . 23-C .13-D .14- 2.在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ) A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形3.已知△ABC 的两边长为2和3,其夹角的余弦为13,则其外接圆的半径为( )A .2B .4C .8D .94.根据下列条件,确定ABC ∆有两解的是( )A .︒===120,20,18A b aB .︒===60,48,3B c aC .︒===30,6,3A b aD .︒===45,16,14A b a5.在平行四边形ABCD 中,120,6,4B AB BC ===则AC =_________,BD =_______.6.在△ABC 中,其三边长分别为,,a b c ,且三角形面积2224a b c S +-=,则角C =_________.7.在△ABC 中,已知sinA =2sinBcosC ,试判断△ABC 的形状.8.在ΔABC 中,∠A 的外角平分线交BC 的延长线于D,证明DCBD AC AB =.9.用余弦定理证明:平行四边形的两条对角线平方和等于四边平方的和.学案 4 正、余弦定理在三角形中的应用(2)题型一 利用正、余弦定理求边、角例1 已知ABC ∆中, 6b =,c =30B =,求边a 的值.题型二 判定三角形的形状例2 在ABC ∆中,已知()()3a b c a b c ab +++-=,且2cos sin sin A B C ⋅=,试判断三角形的形状.题型三 三角形的面积例3 ABC ∆的周长为20,BC 边的长为7,60A =,求它的内切圆的半径.自我检测1.在△ABC 中,sin :sin :sin 2:3:4A B C =,那么cos C 等于( )A .23B . 23-C .13-D .14- 2. 在ABC ∆中,若cos cos A b B a =,则ABC ∆是( ) A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形3.已知ABC ∆中,角C B A 、、所对的边分别为c b a 、、.若2=b , B =45°,那么ABC ∆ 的外接圆的直径等于 .4.在ABC ∆中,c b a 、、分别是角A 、B 、C 所对的边.若105A =,45B =,22=b ,则=c __________.5.在平行四边形ABCD 中,120,6,4B AB BC ===则AC =_________,BD =_______.6.已知锐角ABC ∆的面积为4,3BC CA ==,则角C 的大小为 .7.在ABC ∆中,若A a C c B b sin sin sin =+,试判断三角形的形状.8.在△ABC 中,已知sinA =2sinBcosC ,试判断△ABC 的形状.学案 5 正、余弦定理的实际应用课前准备:1、正弦定理:___________=____________=___________=________2、余弦定理:_____________2=a _____________2=b _____________2=c余弦定理推论:cosA=__________________cosB=______________________cosC=______________________3、解斜三角形中的有关名词、术语:(1)坡度:斜面与地平面所成的角度.(2)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角.(3)方位角:从正北方向顺时针转到目标方向的夹角.(4)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.(5)基线:在测量上,根据测量需要适当确定的 叫基线.知识运用:1.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a kmB.3a kmC.2a kmD .2a km2.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD .2522 m3.如右图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D.测得 ∠BCD =15°,∠BDC =30°,CD =30米,并在点C 测得塔顶A 的仰角为60°,则塔高AB =__________米.4.如图,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得望树尖的仰角为30°,45°,且A、B两点之间的距离为60 m,则树的高度为( )A.(30+303) m B.(30+153) mC.(15+303) m D.(15+33) m5.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的持续时间为( ) A.0.5小时B.1小时C.1.5小时D.2小时6.如图,在山顶铁塔上B处测得地面上一点A的俯角α=60°,在塔底C处测得A处的俯角β=45°. 已知铁塔BC部分的高为28 m,求出山高CD.学案 6 第一章知识整合题型1 利用正、余弦定理解三角形例1 在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .例 2 如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.题型2 利用正、余弦定理判定三角形的形状例3 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.题型3 三角形解的个数的确定例4 在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?题型4 正、余弦定理在实际问题中的应用 例5 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.达标检测1.在△ABC 中,若sin A a =cos B b,则角B 的值为( ) A .30° B .45° C .60° D .90°2.已知三角形的三边长分别是a ,b ,a 2+b 2+ab ,则此三角形中最大的角是( )A .30°B .60°C .120°D .150°3.在△ABC 中,a =5,c =7,C =120°,则三角形的面积为( )A .152B .154C .1534D .15324.在△ABC 中,B =60°,b 2=ac ,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形5.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 间的距离是( )A .103海里B .1036海里 C .52海里 D .56海里 6.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .。
广东省肇庆市实验中学高中数学必修五校本教材导学案:第一章 解三角形 第三课 三角形的面积 Word版含答案
第三课 三角形的面积 一、课标要求能根据两边和夹角求出三角形的面积. 二、先学后讲在三角形ABC 中,三边,,a b c 所对的角分别为,,A B C ,那么,三角形ABC 的面积为:1sin 2ABC S ab C ∆=________________=________________= 三、合作探究 1.对公式的理解1.根据下列条件,求三角形ABC 的面积(1)3,4,30o a b C === (2)34,5,cos 5a b C ===【思路分析】(1)直接用公式求解;(2)先求出sin C 的值,再用公式求解. 【解析】(1)∵3,4,30o a b C ===,∴11sin 34sin 30322o ABC S ab C ∆==⨯⨯⨯= (2) ∵33,4,cos 5a b C ===,角C 是三角形内角,∴4sin 5C ==,∴114sin 458225ABC S ab C ∆==⨯⨯⨯=【点评】根据公式“缺什么求什么”是这类题的基本解法. ☆自主探究1.根据下列条件,求三角形ABC 的面积(1)4,6,60o a b C === (2)44,3,cos 5a b C ===-2.三角形面积综合问题例2在△ABC 中,已知3,30o b c B ===,求三角形的面积.【思路分析】可根据余弦定理先求出a ,也可由正弦定理先求出C ,后求出角A ,然后用公式求面积。
【解析】(方法一)把3,30o b c B ===代入2222cos b a c ac B =+-,可得,即a 2-9a +18=0. 解之得a =6或3.∴11sin 6sin3022o ABC S ac B ∆==⨯⨯=或11sin 3sin3022o ABC S ac B ∆==⨯⨯(方法二)由正弦定理sin sin b cB C=得sin 1sin 2c B C b ==∵C 是三角形的内角,∴60o C =或120o ,∴90o A =或30o∴11322ABC S bc ∆==⨯⨯或11sin 3sin3022o ABC S bc A ∆==⨯⨯【点评】本例提供了两种解题方法,至于哪种方法更好,其标准是“能快速得到正确结论的方法就是最好的方法”。
必修5第一章导学案答案
教材导读3P 1.在Rt ABC ∆中,有sin sin sin a b cA B C==.在锐角ABC ∆中上述数量关系仍然成立.若ABC ∆为钝角三角形时此关系式也成立.4P 2.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.即sin sin sin a b cA B C== 证明: 当∆ABC 是直角三角形时,根据三角函数的定义得,sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. 当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =,从而sin sin sin a b c A B C ==. 当∆ABC 是钝角三角形时,也可证明。
一般地,把三角形的三个角A ,B ,C 和它们的对边a,b,c 叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做解三角形。
4P 3.正弦定理可以用于解决两类解三角形的问题:(1) 已知三角形的任意两个角与一边,求其他两边和另一个角。
(2) 已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
4P 4. 已知三角形的两边与其中一边的对角时,解三角形问题的解有多样性。
例:在C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=a A c C C c A a 0012060,1800或=∴︒<<︒C C1360sin 75sin 6sin sin ,7560000+=====∴C B c b B C 时,当,1360sin 15sin 6sin sin ,151200-=====∴C B c b B C 时,当 或0060,75,13==+=∴C B b 00120,15,13==-=C B b4P 5.变式:sin sin sin ,,sin sin sin b A c B a Ca b c B C A===. ::sin :sin :sin a b c A B C =等。
高中数学必修五习题第一章解三角形有答案解析
必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A>B>CB .B>A>C C .C>B>AD .C>A>B3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( )A .5B .-5C .15D .-15答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2 +3a 2-2a 22a ·3a ==2a 2+3a 2-2·2a ·3a °,∴C =60°. 因此三角之比为答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数不确定7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°8.在△ABC 中,已知sin A +sin B -sinAsinB =sin C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 39.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC的值为( ) A.85 B.58 C.53 D.3510.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π311.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 213.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.14.在△ABC 中,若b =2a ,B =A +60°,则A =________.15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.16.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =3b ,试判断△ABC 的形状.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.19.a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.。
高中必修五——解三角形(含答案)
解三角形一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.解三角形参考答案与试题解析一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.【分析】(1)利用正弦定理可求2b=3c,结合已知可得a=2c,b=,用余弦定理即可求值得解.(2)如图所示,延长AO交外接圆于D.由于AD是⊙O的直径,可得∠ACD=∠ABD=90°,于是cos,cos∠BAD=.可得=•(﹣)=2﹣2,.再利用c2=2b﹣b2,化为=(b﹣)2﹣.由于c2=2b﹣b2>0,解得0<b<2.令f(b)=(b﹣)2﹣.利用二次函数的单调性即可得出.【解答】解:(1)∵2sinB=3sinC,∴2b=3c.又∵b﹣c=a,∴a=2c,b=,∴cosA==﹣.(2)∵O为△ABC三边中垂线的交点,∴O为三角形外接圆的圆心.如图所示,延长AO交外接圆于D,连接BD、CD,∵AD是圆O的直径,∴∠ACD=∠ABD=90°,cos,cos∠BAD=.∵c2=2b﹣b2,∴=•(﹣AB)=•﹣•=2﹣2=b2﹣c2=b2﹣(2b﹣b2)=b2﹣b=(b﹣)2﹣.∵c2=2b﹣b2>0,∴0<b<2,设f(b)=(b﹣)2﹣,又f(0)=0,f(2)=2,∴的取值范围是:[﹣,2].【点评】本题考查了正弦定理,余弦定理,三角形的外接圆的性质、向量的运算法则、数量积运算、二次函数的单调性等基础知识与基本方法,属于难题.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.【分析】(Ⅰ)利用三角函数间的关系将f(x)化简为f(x)=2sin(2x+)+1,由x∈[0,];可求得2x+∈[,],从而可求得函数f(x)的值域.(Ⅱ)由f(C)=3可求得C,利用余弦定理可求得a2+b2=7,通过解方程可求得a、b的值.【解答】解:(Ⅰ)f(x)=sin2x+2cos2x=sin2x+cos2x+1(2分)=2sin(2x+)+1(4分)∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[﹣,1],(6分)∴函数f(x)的值域为[0,3].(7分)(Ⅱ)∵f(C)=3,∴2sin(2C+)+1=3,即sin(2C+)=1.∵0<C<π,∴2C+∈[,],∴2C+=,∴C=.(10分)又c2=a2+b2﹣2abcosC,c=1,ab=2,cosC=,∴a2+b2=7.(12分)由,得或.(14分)【点评】本题考查三角函数间的关系,考查正弦函数的性质,考查余弦定理与解方程得能力,属于难题.3.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【分析】(Ⅰ)a=2,b=3,C=,由余弦定理可求得c,再利用正弦定理可求得△ABC的外接圆的半径,从而可求△ABC的外接圆的面积;(Ⅱ)利用三角函数间的关系将条件转化为:sinBcosA=2sinAcosA,对cosA分cosA=0与cosA≠0讨论,再分别借助正弦定理,通过解方程组与再由三角形的面积公式即可求得△ABC的面积.【解答】解:(Ⅰ)∵a=2,b=3,C=,∴由余弦定理得:c2=a2+b2﹣2abcosC=4+9﹣2×2×3×=7,∴c=,设其外接圆半径为R,则2R=,故R=,∴△ABC的外接圆的面积S=πR2=;(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sinBcosA=2sin2A=4sinAcosA,∴sinBcosA=2sinAcosA当cosA=0时,∠A=,∠B=,a=,b=,可得S=;当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a…①,∵c=2,∠C=60°,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=4…②,联立①①解得a=,b=,∴△ABC的面积S=absinC=absin60°=.综上可知△ABC的面积为.【点评】本题考查余弦定理与正弦定理,考查转化与方程思想的综合运用,考查综合分析与运算能力,属于难题.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.【分析】(I)由三角函数的平方关系、余弦定理即可得出;(II)利用正弦定理、两角和差的正弦公式、三角函数的单调性即可得出.【解答】解:(I)∵cos2A=sin2B+cos2C+sinAsinB,∴1﹣sin2A=sin2B+1﹣sin2C+sinAsinB,∴sin2A+sin2B﹣sin2C=﹣sinAsinB,∴a2+b2﹣c2=﹣ab,∴=,又0<C<π,∴.(2)∵,∴a=2sinA,b=2sinB,则△ABC的周长L=a+b+c=2(sinA+sinB)+=2(sinA+)+=,∵,,∴,即,∴△ABC周长的取值范围是.【点评】熟练掌握三角函数的平方关系、正、余弦定理、两角和差的正弦公式、三角函数的单调性等是解题的关键.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=2,C=60°.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.【分析】(I)由余弦定理可得:c2=a2+b2﹣2abcosC,化为a2+b2﹣ab=4.由于△ABC 的面积等于,可得=,即ab=4,联立即可解得.(II)由sinC+sin(B﹣A)=2sin2A,可得sin(A+B)+sin(B﹣A)=2sin2A,化为cosA=0或cosB=2sinA.当cosA=0,A=90°,当cosB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得a,再利用正弦定理可得sinA==,解得A,由a <c,A只能是锐角.(III)由a2+b2﹣ab=4.与ab=,解得a+b=3,即可得出.【解答】解:(I)由余弦定理可得:c2=a2+b2﹣2abcosC,∴4=a2+b2﹣2abcos60°,化为a2+b2﹣ab=4.∵△ABC的面积等于,∴=,化为ab=4,联立,解得a=b=2.(II)∵sinC+sin(B﹣A)=2sin2A,∴sin(A+B)+sin(B﹣A)=2sin2A,∴2sinBcosA=4sinAcosA,∴cosA=0或sinB=2sinA.当cosA=0,A=90°,当sinB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得,则sinA==,解得A=30°,或A=150°,∵a<c,∴A<C,∴A=30°.综上可得:A=90°或A=30°.(III)由a2+b2﹣ab=4.可得:(a+b)2﹣3ab=4,由ab=,解得a+b=3,∴△ABC的周长=a+b+c=3+2=5.【点评】本题综合考查了正弦定理、余弦定理、三角形的面积计算公式、诱导公式、等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。
高一数学必修五第一章解三角形测试题参考答案
高一数学必修五第一章解三角形测试题参考答案1.答案:A .解析:设o 60角所对的边长是x ,由正弦定理得o o 6sin 45sin 60x =,解得36x =. 2.答案:D .解析:在ABC ∆中,由sin sin a c A C =,得sin 2sin 2c A C a ==,则o 45C =或o 135C =.故当o 45C =时,o 105B =;当o 135C =时,o 15B =.3.答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅=||AB ⋅||cos(BC π)B -= 1975()1935⨯⨯-=-. 4.答案:A . 解析:在ABC ∆中,由正弦定理2sin sin a b R A B ==,得s i n 2a A R =,sin 2b B R =,由s i n A <sin B ,得<22a b R R,故<a b . 5.答案:B .解析:设三边分别为5k ,7k ,8k (k >0),中间角为 α 由cos α k k k k k 85249-64+25222⨯⨯=21,得 α 60°,∴最大角和最小角之和为180°-60°=120°.6.答案:B .解析:① sin <<c B b c ,三角形有两解;②o <sin 60c b ,三角形无解;③b =sin c B ,三角形只有一解;④sin <<b A a b ,三角形有两解.7.答案:A解析:b ·cos C +c ·cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a=a . 8.答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A是ABC ∆的内角可得15sin 8A =,故1242S =⨯⨯151582⨯=. 9.答案:B 解析:由22tan tan b a B A =可得:22sin cos .cos sin b a B B A A =;又由正弦定理有:BA b a 2222sin sin =;所以:B B A A BA AB cos sin cos sin sin sin cos cos ==即 B A 2sin 2sin =∴,有:π=+=2B 2A 22或B A ;所以三角形为等腰三角形或直角三角形10.答案:C .解析:由已知,得tan tan 3(1tan tan )A B A B +=--⋅,即tan()3A B+=-,又A 、B 是ABC∆的内角,故o 120A B +=,则o 60C =,由2224(5)24(5)c c c =+--⨯⨯-o c o s 60,解得72c =,故32b =,故113333s i n 422222ABC S ab C ∆==⨯⨯⨯=. 11.答案:6.解析:由3cos 3B =,得2236sin 1cos 1()33B B =-=-=,由s i n s i n a b A B =,得b = 61sin 361sin 3a B A ⨯==.12.答案:2.解析:由余弦定理得2222cos b a c ac B =+-,即2o6222cos120a a =+-,即224a a +-0=,解得2a =(舍去负值).13.答案:o 30.解析:由题意得2221sin 243a b c ab C +-=,即3sin cos C C =,故3tan 3C =,故o 30C =14.答案:1063. 解析:由题意作出示意图如图所示,则ABC ∠=o o o 18010575-=,BCA ∠=o o o 18013545-=,10BC =,故o o o 1807545A =--=o 60,由正弦定理得o o 10sin 45sin 60x =,解得1063x =(cm ). 15.解:由正弦定理,得sin 623sin 222c A C a ==⨯=,故o 60C ∠=或o 120. 当o 60C ∠=时,o o 180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+- o 46226cos75423=+-⨯⨯=+,则31b =+. 当o 120C ∠=时,o o 180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+- o 46226cos15423=+-⨯⨯=-,则31b =-. 故31b =+,o 60C ∠=,o 75B ∠=或31b =-,o 120C ∠=,o 15B ∠=.16.解:在ABC ∆中,由正弦定理,得sin sin AB BAC BCA BC⋅∠∠= o 10sin602256==,因>BC AB ,故>C AB BC A ∠∠,故o 45BCA ∠=,故o 75B =,由正弦定理,得o o10sin 755(31)sin 45AC ==+,在ACD ∆中,因o o 9030CAD BAC ∠=-∠=,由正弦定理,得o o sin 305(62)sin1352AC CD +==. 答:CD 的长为5(62)2+.17.解:由11sin 45sin 5322S ab C C ==⋅⋅⋅=,得3sin 2C =,则1cos 2C =或1cos 2C =-. (1)当1cos 2C =时,由余弦定理,得211625245212c =+-⋅⋅⋅=,故21c =; (2)当1cos 2C =-时,由余弦定理,得211625245612c =++⋅⋅⋅=,故61c =. 综上可知c 为21或61.18.解:(1)由sin sin cos B A C =根据正弦定理和余弦定理,得2222a b c b a ab +-=⋅,得222b c a +=,故ABC ∆是直角三角形.(2)由(1)知12a =,设最小角为α,则1s i n 3α=,故22cos 3α=(舍去负值),故ABC S ∆= 111122sin cos 121216222233bc a a αα=⋅=⋅⋅⋅⋅=. 19.解:由题意画出示意图,如图所示.(1)ABD ∆中,由题意得o 60ADB ∠=,o 45B ∠=,由正弦定理得o o sin 45sin 60AB AD =24= (海里).(2)在ABD ∆中,由余弦定理,得2222CD AD AC AD AC =+-⋅o cos302224(83)=+- 3224832⨯⨯⨯,故83CD =(海里). 答:A 处与D 处之间的距离为24海里,灯塔C 与D 处之间的距离为83海里.20.解:(1)由题意,得3sin()2A B +=,因ABC ∆是锐角三角形,故o 120A B +=,o 60C =; (2)由a 、b 是方程22320x x -+=的两根,得23a b +=,2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故6c =.(3)故1sin 2ABC S ab C ∆==1332222⨯⨯=.。
苏教版高中数学必修五学案第一章解三角形课外作业参考答案
课外作业参考答案第1课时 正弦定理(1)1.A 2.C 3.450或1350 4.300或1500 5.等边 6.4π 7.解:由正弦定理知:21045sin 30sin 10sin sin 0=⋅=⋅=A C c a , 2565105sin 45sin 210sin sin 105180000+=⋅=⋅=⇒=--=B A a b C A B 8.解:由正弦定理知:2160sin 31sin sin 0=⋅=⋅=B b cC 解得 030=C 或1500,因为 A+B+C=1800,所以 C=1500不合题意,舍去。
从而有 A=900, 222=+=c b a 。
9.解:如图,00028843633sin sin =∠=∠=∠⇒=⇒≈⇒=⋅=FCB ECF ACE C B A a b B 7.860sin 96sin 10sin sin 00≈⋅=⋅∠=A AEC b CE 2.1036sin 120sin 15sin sin 0≈⋅=⋅∠=B BFC a CF第2课时 正弦定理(2)1 C2 D3 562-4 1 (提示:由c a b +=2知 C A B sin sin sin 2+=2cos2cos2CA C A -=+⇒,再将原式化简即可。
)5.解:易知,∠BMA=450,∠CMB=300。
在△ABM 中045sin 1=θ∠sin AM在△BCM 中,30sin 1=)sin(θπ-CM 。
∴CM =2AM , 又∠CMA=450+300=750,∴22=CM 2+AM 2-2·CM ·AM cos750。
2h =CM ·AM sin750, ∴h =13357+ 答:塔M 到路的最短距离为13357+km 6.解:由已知,22cos 1A -+cosA=45,即 cos 2A -cosA+41=0, ∴cosA=21 A=3π ∵b+c=3a ∴由正弦定理得:sinB+sinC=3sinA=232sin 2C B +cos 2C B -=23 ∴cos 2C B -=237.解:由已知a a b +=A B B sin sin sin -=ab b -, ∴ab a b =-22 ①又C B A C 2cos 1)cos(cos -=-+, 即C B A B A 2sin 2)cos()cos(=+--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五解三角形测试题答案
一、选择题:共8小题,每小题5分,共计40分
二、填空题:本大题共6小题,每小题5分,满分30分. 9.______________14/5___________
10._2___
11. __________2_ 12._______
90_______
13. ___________
120 14.__不用做___)),(),((321_____
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
15.解:(1)在ABC ∆中,由
cos A =,可得sin A =,又由s i n s i n a c A C =及
2a =,c =可得sin C =
由2
2
2
2
2cos 20a b c bc A b b =+-⇒+-=,因为0b >,故解得1b =.
所以sin 1C b =
=
(2)由cos 4A =-
sin 4
A =,
得2
3cos 22cos 14A A =-=-
,sin 2sin cos A A A ==
所以3cos(2)cos 2cos
sin 2sin
3
3
3
8
A A A π
π
π
-+
=-=
16.解:(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,
sin sin()sin sin B A C A C +=,则2sin sin sin B A C =,
再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.
(II)若1,2a c ==,则2
2b ac ==,∴2223
cos 24
a c
b B a
c +-==,
sin C ==
,
∴△ABC 的面积11sin 1222S ac B =
=⨯⨯=. 17. 【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈⇒+=>
2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+= 1cos 23
A A π⇔=
⇔=
(II)2
2
2
2
2
2
2cos 2
a b c bc A a b a c B π
=+-⇔==+⇒=
在Rt ABD ∆中,AD =
==
18. 【解析】
解:(1)证明:由 sin(
)sin()44
b C
c B a π
π
+-+=及正弦定理得:
sin sin()sin sin()sin 44
B C C B A ππ
+-+=,
即sin )sin )B C C C B B -+=
整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4
B C π
<< 所以2
B C π
-=
(2) 由(1)及34B C π+=可得5,88B C ππ=
=,又,4
A a π
==所以sin 5sin 2sin ,2sin sin 8sin 8
a B a C
b
c A A ππ
=
===, 所以三角形ABC 的面积
151
sin sin cos 2888842
bc A πππππ=====
19.考点分析:本题考察三角恒等变化,三角函数的图像与性质.
解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+
cos22x x ωωλ=-+π
2sin(2)6
x ωλ=-+.
由直线πx =是()y f x =图象的一条对称轴,可得π
sin(2π)16ω-=±,
所以ππ2ππ()62k k ω-
=+∈Z ,即1
()23
k k ω=+∈Z . 又1
(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.
所以()f x 的最小正周期是
6π
5
. (Ⅱ)由()y f x =的图象过点π(,0)4,得π
()04
f =,
即5πππ
2sin()2sin 6264
λ=-⨯-=-=,即λ=
故5π
()2sin()36f x x =-由3π05x ≤≤
,有π5π5π6366
x -≤-≤,
所以15πsin()1236x -≤-≤,得5π
12sin()236x --
故函数()f x 在3π
[0,]5
上的取值范围为[12-. 2.解析:
(Ⅰ)⎪⎭⎫ ⎝
⎛+=+=+
=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A n m x f , 则6=A ;
(Ⅱ)函数y=f(x)的图象像左平移
12π个单位得到函数]6
)12(2sin[6π
π++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的1
2
倍,纵坐标不变,得到函数
)3
4sin(6)(π
+
=x x g .
当]245,
0[π∈x 时,]1,2
1
[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24
π
上的值域为]6,3[-. 另解:由)3
4sin(6)(π
+=x x g 可得)3
4cos(24)(π
+
='x x g ,令0)(='x g ,
则)(234Z k k x ∈+
=+
π
ππ,而]24
5,
0[π
∈x ,则24π=x ,
于是36
7sin
6)245(,62sin 6)24(,333sin 6)0(-======π
ππππg g g , 故6)(3≤≤-x g ,即函数()g x 在5[0,]24
π
上的值域为]6,3[-.。