正方体表面展开图

合集下载

常见几何体的表面展开图

常见几何体的表面展开图

常见几何体的外表展开图将一个几何体的外外表展开,就像掀开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不一样.那么咱们熟悉的一些几何体,如圆柱、圆锥、棱柱的外表展开图是什么形状呢?(1)圆柱的外表展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的外表展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的外表展开图是两个完全一样的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在讲义中、习题中会常常碰到让大伙儿识别正方体外表展开图的题目.下面列出正方体的十一种展开图,供大伙儿参考.例1 以下四张图中,通过折叠能够围成一个棱柱的是( )分析:由平面图围成一个棱柱,咱们能够动手实践操作,也能够展开丰硕的想像,但咱们最关键的是要抓住棱柱的特点,棱柱的平面图是由两个完全一样的多边形(且在平面图的双侧)和几个长方形组成的.解:正确答案选C.点评:专门要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的双侧),故不选D,另外定几个长方形,究竟是几个呢,它的个数确实是上下底多边形的边数,应选C.例2如以下图的平面图形是由哪几种几何体的外表展开的?(1) (2) (3)分析:找几何体的外表展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如以下图,在正方体的两个相距最远的极点处停留着一只苍蝇和一只蜘蛛,蜘蛛能够从哪条最短的途径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有专门大的帮忙,由于作展开图有各类不同的方式,因此从蜘蛛到苍蝇能够用6种不同方式选择最短途径,而其中每一条途径都通过连结正方体2个极点的棱的中点.解:由于蜘蛛只能在正方体的外表爬行,因此只需作出那个正方体的展开图并用点标出苍蝇和蜘蛛的位置,依照“两点之间线段最短〞这一常识可知,连结这两个点的线段确实是最短的途径.点评:这种求最短路程是多少及求与棱的夹角是多少等问题,同窗们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,咱们必然要养成擅长观看,随时寻觅规律的良好适应,只有如此,才能把所学知识融会贯穿.。

正方体的11种展开图

正方体的11种展开图
探究常见的立体图形的展开图:
将正方体的表面沿棱适当剪开,观察它的展开图 是怎样的,然后画出示意图.(沿着不同的棱剪开,会 得到不同的展开图,比一比,看谁得到的结果多!)
5.正方体(含长方体-四棱柱)展开图
第一类,中间四连方,两侧各一 个,共六种。
1 2 3
4
5
6
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型

正方体11种展开图

正方体11种展开图

图1
图2
图3
图4
图5
图6
第二类(3种):中间三连方,两侧各有二、一个。 “二三一”

图7
图8
图9
第三类(1种):中间二连方,两侧各有二个。
图 10 “二二二”型
第四类 (1种):两排各有三个。
“三三”型
图 11
展开1 第一类(6种):中间四连方,两侧各有一个。
展开第一类(6种):中间四连方,两侧各有一个。 2
(16)
(17)
(18)
在展开的过程中注意你剪开了几条棱?
将正方体展开成平面图形 需要剪开7条棱
(无论用哪种方案展开)
开始时我们已经在正方体的 相对的面上标上相同的数字,现在观察一下这些数字在展
开图中有什么规律?
“一四一” 型
“二三一”型
“三三”型
“二二二”型
考考你 下图是正方体的表面展开图。
1、如果“你”在前面,那么谁在 后面?
了!
太棒
你们
2、“坚”在下,“就”在后, “胜”、“利”在哪里?

持就是


圆 柱 圆 锥
三 棱 锥
四棱 锥
五棱锥
展开第3 一类(6种):中间四连方,两侧各有一个。
展开4 第一类(6种):中间四连方,两侧各有一个。
展开5 第一类(6种):中间四连方,两侧各有一个。
展开6 第一类(6种):中间四连方,两侧各有一个。
展开7
第二类(3种):中间三连方,两侧各有一、二个。
展开8
第二类(3种):中间三连方,两侧各有一、二个。
展开9
第二类(3种):中间三连方,两侧各有一、二个
展开10
第三类(1种):中间二连方,两侧各有二个。

初中数学正方体的表面展开图

初中数学正方体的表面展开图

正方体的表面展开图一、正方体表面展开图的三种情况1、正方体展开后有四个面在同一层正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:2、正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:3、二面三行,象楼梯;三面二行,两台阶二、有关正方体表面展开图的中考题1、 如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是 ( )2、如图.把一个正方形三次对折后沿虚线剪下.则所得图形是( )(正方体纸盒)(A )(B )(C )(D )3、如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D1点,蚂蚁爬行的最短距离是( )(A(B)3 (C)5 (D)24、如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( )A. 2 B. 4 C. 8 D.105、如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1、2、3和一3.要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两数互为相反数,则A处应填.6、如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部..顶点A处有一只昆虫乙。

(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结 AE、E C1。

昆虫乙如果沿路径 A → E → C l 爬行 , 那么可以在最短的时间内捕捉到昆虫甲。

仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲。

(请简要说明画法)(2)如图②,假设从顶点C1以1厘米/秒的速度在盒子的内部沿C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)E 图①D1C1B1A1D C B A 图②D1C1B1A1D CBA三、同步检测1、把如图折叠成正方体,如果相对面的值相等,则一组x 、y 的值是 .2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、 “你”、“前”分别表示正方体的___ ___________________.3、下列图形中,不是立方体表面展开图的是( )4、下面的平面图形中,是正方体的平面展开图的是( )5、将一圆形纸片对折后再对折,得到图3,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )6、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )图3A B CD7、在正方体的表面上画有如图(1)中所示的粗线,图(2)时其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试噢) ( )图(1) 图(2)A B C D8、 如图是一块长、宽、高分别是6cm,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A 、(3 cm B 、 cm 97 C 、 cm 85 D 、 cm 99、把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是( )10、如图,有一圆锥形粮堆,其正视图是边长为6 m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)答案:例题1、C 2、C 3、A 4、B5、-26、(1) 略(2)至少需要8秒。

正方体展开全图11种情况演示PPT课件

正方体展开全图11种情况演示PPT课件

CHENLI
32
(13)
CHENLI
33
(14)
CHENLI
34
(15)
CHENLI
35
(16)
CHENLI
36
(17)
CHENLI
37
考考你 下图是正方体的表面展开图。
1、如果“你”在前面,那么谁在后面?
了! 太棒 你们
CHENLI
38
2、“坚”在下,“就”在后,“胜”、 “利”在哪里?

持就是


CHENLI
39
CHENLI
40
圆 柱
圆 锥
CHENLI
41
三 棱 锥
四棱锥
CHENLI
五棱锥
42
不是正方体的展开图?
CHENLI
18
练一练 用手势判断下面的平面图形是
不是正方体的展开图?
CHENLI
19
想一想:下列的图形都是正方体的展开图吗?
(3) (1)
(2)
(√)
(4)
(√)
(5)
(√)
(6)
(√)
(×) CHENLI
(×20)
在展开的过程中注意你剪开了几条棱?
将正方体展开成平面图形需要剪开 7条棱(无论用哪种方案展开)
CHENLI
21
判断下列图形能不能折成正方体?
(1)
CHENLI
22
(2)
CHENLI
23
(3)
CHENLI
24
(5)
CHENLI
25
(6)
CHENLI
26
(7)
CHENLI
27

正方体表面展开图

正方体表面展开图

正方体表面展开图
共有十一种展开图:
一、四方成线两相卫,六种图形巧组合
(1)(2)(3)(4)
(5)(6)
以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。

二、跃马失蹄四分开
(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形
(如图),另外一个小方块的位置有四种情况,即图中四个小方块中
的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。

三、两两错开一阶梯
这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。

正方体11种展开图

正方体11种展开图

类型六:十字型
总结词
由两个相同的等腰直角三角形和两个相同的矩形组成的展开图,呈十字形状。
详细描述
这种类型的展开图在正方体的两个相对的面上保留了一个矩形,而其他面则由两个等腰直角三角形组成,整体呈 十字形状。
类型七:二字型
总结词
由两个相同的矩形和两个相同的等腰直角三角形组成的展开图,呈二字形状。
详细描述
正方体11种展开图
• 正方体的基本特性 • 正方体的11种展开图 • 正方体展开图的制作方法 • 正方体展开图的应用场景 • 正方体展开图的挑战与未来发展
01
正方体的基本特性
定义与特性
01
正方体是一种三维几何体,由六 个正方形面组成,每个面都是等 大的正方形。
02
正方体的体对角线、棱和面都是 对称的,具有高度的空间对称性 。
05
正方体展开图的挑战与未来发展
当前面临的挑战
寻找新的展开方式
目前已知的正方体展开图种类有 限,需要探索新的展开方式以丰
富其多样性。
证明无解的存在
对于某些特定条件下的正方体展开 问题,需要证明无解的存在,这需 要深入的数学理论支持。
实际应用中的限制
正方体展开图在实际应用中可能受 到材料、工艺等因素的限制,需要 解决这些实际问题。
正方体的几何属性
正方体的体积是边长的三次方,记作 V=a^3,其中a是正方体的边长。
正方体的表面积是6倍的边长的平方, 记作A=6a^2。
正方体的展开与折叠
正方体的展开是将正方体的表面沿某些边展开成平面的过程,通常用于制作纸盒等 包装材料。
正方体的折叠则是将展开的平面重新折回成立体的过程,常用于制作纸艺模型和玩 具。
详细描述

正方体的表面展开图

正方体的表面展开图
认真是一种态度
1/18
2/14
类型一:“一四一”型
记忆口诀:四方成线组6图,上下两侧巧组合;
解释:四方连线,即 ,另外两个小方块在四
个方块的上下两侧自由组合成六种情况。
3/18
类型二:“二三一”型
记忆口诀:二三野马3种足;
解释:野马,即 ,
4/18
类型三:“二二二”型
记忆口诀:两两开成阶梯;
解释:两个小方块一组,两两错开,像登上成功的
阶梯一样。
5/18
类型四:“三三”型
记忆口诀:三三最后来压轴;
解释:三个小方块一组,错开,最后一种情况。
6/14
正方体展开图口诀
四方成线组 6图, 上下两侧巧组合; 二三野马 3种足; 两两错开成阶梯; 三三最后来压轴;
7/14
C
正方体展开图有 如下11种情况:
探究问题2:怎样剪裁更省包装纸?
纸张浪费的部分越少,则越节约纸张。
14/14 14/18
研讨—— 我们合作解决新问题
挑战自我
如图,一只蚂蚁要从正方体的顶点 A 沿表面爬行到顶点 B,怎样爬行路线 最短?如果要爬行到顶点 C 呢?说出 你的理由. C
B
A
15/18
A.
B.
C.
D.
11/18
挑战自我
2.下列图形中,哪些不是正方体的展开图 ( C ) A. B. C. D.
12/18
挑战自我
3、如图所示的纸板上有10个无阴影的正方 形,从中选出一个,与图中5个有阴影的正 方形一起折一个正方体的包装盒,有多少 种不同的选法。
答:共有四种不同的选法
13/14 13/18
A B
8/18

正方体的11种展开图规律大全-正方体展开264种

正方体的11种展开图规律大全-正方体展开264种

正方体的11种展开图
判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。

常见的正方体平面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成9个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。

好啦!现在只要把刚才剪去的一个小正方形作为“上”面,就可拼成一个正方体。

作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2。

根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形。

平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上”向左平移,得图11;若移动图8(或图9、图10)中的“左”,又可得图12。

同学们,当你和我一样,把图2~图12这11个图剪下来,动手折一折,得到11个漂亮的小正方体时,你一定为我们的收获感到欢欣鼓舞吧!
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。

“动手实践,自主探索和合作交流”是新课程标准倡导学习数学的三种重要方法,而实践活动是培养我们进行主动探索与合作交流的重要途径。

只要通过自己主动观察、实验、猜想、验证等数学活动,就能使我们“建立空间观念,发展几何直觉”,提高思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档