正方体表面展开图
常见几何体的表面展开图
常见几何体的外表展开图将一个几何体的外外表展开,就像掀开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不一样.那么咱们熟悉的一些几何体,如圆柱、圆锥、棱柱的外表展开图是什么形状呢?(1)圆柱的外表展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的外表展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的外表展开图是两个完全一样的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在讲义中、习题中会常常碰到让大伙儿识别正方体外表展开图的题目.下面列出正方体的十一种展开图,供大伙儿参考.例1 以下四张图中,通过折叠能够围成一个棱柱的是( )分析:由平面图围成一个棱柱,咱们能够动手实践操作,也能够展开丰硕的想像,但咱们最关键的是要抓住棱柱的特点,棱柱的平面图是由两个完全一样的多边形(且在平面图的双侧)和几个长方形组成的.解:正确答案选C.点评:专门要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的双侧),故不选D,另外定几个长方形,究竟是几个呢,它的个数确实是上下底多边形的边数,应选C.例2如以下图的平面图形是由哪几种几何体的外表展开的?(1) (2) (3)分析:找几何体的外表展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如以下图,在正方体的两个相距最远的极点处停留着一只苍蝇和一只蜘蛛,蜘蛛能够从哪条最短的途径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有专门大的帮忙,由于作展开图有各类不同的方式,因此从蜘蛛到苍蝇能够用6种不同方式选择最短途径,而其中每一条途径都通过连结正方体2个极点的棱的中点.解:由于蜘蛛只能在正方体的外表爬行,因此只需作出那个正方体的展开图并用点标出苍蝇和蜘蛛的位置,依照“两点之间线段最短〞这一常识可知,连结这两个点的线段确实是最短的途径.点评:这种求最短路程是多少及求与棱的夹角是多少等问题,同窗们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,咱们必然要养成擅长观看,随时寻觅规律的良好适应,只有如此,才能把所学知识融会贯穿.。
正方体的11种展开图
将正方体的表面沿棱适当剪开,观察它的展开图 是怎样的,然后画出示意图.(沿着不同的棱剪开,会 得到不同的展开图,比一比,看谁得到的结果多!)
5.正方体(含长方体-四棱柱)展开图
第一类,中间四连方,两侧各一 个,共六种。
1 2 3
4
5
6
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
正方体11种展开图
图1
图2
图3
图4
图5
图6
第二类(3种):中间三连方,两侧各有二、一个。 “二三一”
型
图7
图8
图9
第三类(1种):中间二连方,两侧各有二个。
图 10 “二二二”型
第四类 (1种):两排各有三个。
“三三”型
图 11
展开1 第一类(6种):中间四连方,两侧各有一个。
展开第一类(6种):中间四连方,两侧各有一个。 2
(16)
(17)
(18)
在展开的过程中注意你剪开了几条棱?
将正方体展开成平面图形 需要剪开7条棱
(无论用哪种方案展开)
开始时我们已经在正方体的 相对的面上标上相同的数字,现在观察一下这些数字在展
开图中有什么规律?
“一四一” 型
“二三一”型
“三三”型
“二二二”型
考考你 下图是正方体的表面展开图。
1、如果“你”在前面,那么谁在 后面?
了!
太棒
你们
2、“坚”在下,“就”在后, “胜”、“利”在哪里?
坚
持就是
胜
利
圆 柱 圆 锥
三 棱 锥
四棱 锥
五棱锥
展开第3 一类(6种):中间四连方,两侧各有一个。
展开4 第一类(6种):中间四连方,两侧各有一个。
展开5 第一类(6种):中间四连方,两侧各有一个。
展开6 第一类(6种):中间四连方,两侧各有一个。
展开7
第二类(3种):中间三连方,两侧各有一、二个。
展开8
第二类(3种):中间三连方,两侧各有一、二个。
展开9
第二类(3种):中间三连方,两侧各有一、二个
展开10
第三类(1种):中间二连方,两侧各有二个。
初中数学正方体的表面展开图
正方体的表面展开图一、正方体表面展开图的三种情况1、正方体展开后有四个面在同一层正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:2、正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:3、二面三行,象楼梯;三面二行,两台阶二、有关正方体表面展开图的中考题1、 如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是 ( )2、如图.把一个正方形三次对折后沿虚线剪下.则所得图形是( )(正方体纸盒)(A )(B )(C )(D )3、如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D1点,蚂蚁爬行的最短距离是( )(A(B)3 (C)5 (D)24、如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( )A. 2 B. 4 C. 8 D.105、如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1、2、3和一3.要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两数互为相反数,则A处应填.6、如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部..顶点A处有一只昆虫乙。
(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结 AE、E C1。
昆虫乙如果沿路径 A → E → C l 爬行 , 那么可以在最短的时间内捕捉到昆虫甲。
仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲。
(请简要说明画法)(2)如图②,假设从顶点C1以1厘米/秒的速度在盒子的内部沿C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)E 图①D1C1B1A1D C B A 图②D1C1B1A1D CBA三、同步检测1、把如图折叠成正方体,如果相对面的值相等,则一组x 、y 的值是 .2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、 “你”、“前”分别表示正方体的___ ___________________.3、下列图形中,不是立方体表面展开图的是( )4、下面的平面图形中,是正方体的平面展开图的是( )5、将一圆形纸片对折后再对折,得到图3,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )6、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )图3A B CD7、在正方体的表面上画有如图(1)中所示的粗线,图(2)时其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试噢) ( )图(1) 图(2)A B C D8、 如图是一块长、宽、高分别是6cm,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A 、(3 cm B 、 cm 97 C 、 cm 85 D 、 cm 99、把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是( )10、如图,有一圆锥形粮堆,其正视图是边长为6 m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)答案:例题1、C 2、C 3、A 4、B5、-26、(1) 略(2)至少需要8秒。
正方体展开全图11种情况演示PPT课件
CHENLI
32
(13)
CHENLI
33
(14)
CHENLI
34
(15)
CHENLI
35
(16)
CHENLI
36
(17)
CHENLI
37
考考你 下图是正方体的表面展开图。
1、如果“你”在前面,那么谁在后面?
了! 太棒 你们
CHENLI
38
2、“坚”在下,“就”在后,“胜”、 “利”在哪里?
坚
持就是
胜
利
CHENLI
39
CHENLI
40
圆 柱
圆 锥
CHENLI
41
三 棱 锥
四棱锥
CHENLI
五棱锥
42
不是正方体的展开图?
CHENLI
18
练一练 用手势判断下面的平面图形是
不是正方体的展开图?
CHENLI
19
想一想:下列的图形都是正方体的展开图吗?
(3) (1)
(2)
(√)
(4)
(√)
(5)
(√)
(6)
(√)
(×) CHENLI
(×20)
在展开的过程中注意你剪开了几条棱?
将正方体展开成平面图形需要剪开 7条棱(无论用哪种方案展开)
CHENLI
21
判断下列图形能不能折成正方体?
(1)
CHENLI
22
(2)
CHENLI
23
(3)
CHENLI
24
(5)
CHENLI
25
(6)
CHENLI
26
(7)
CHENLI
27
正方体表面展开图
正方体表面展开图
共有十一种展开图:
一、四方成线两相卫,六种图形巧组合
(1)(2)(3)(4)
(5)(6)
以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开
(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形
(如图),另外一个小方块的位置有四种情况,即图中四个小方块中
的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯
这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
正方体11种展开图
类型六:十字型
总结词
由两个相同的等腰直角三角形和两个相同的矩形组成的展开图,呈十字形状。
详细描述
这种类型的展开图在正方体的两个相对的面上保留了一个矩形,而其他面则由两个等腰直角三角形组成,整体呈 十字形状。
类型七:二字型
总结词
由两个相同的矩形和两个相同的等腰直角三角形组成的展开图,呈二字形状。
详细描述
正方体11种展开图
• 正方体的基本特性 • 正方体的11种展开图 • 正方体展开图的制作方法 • 正方体展开图的应用场景 • 正方体展开图的挑战与未来发展
01
正方体的基本特性
定义与特性
01
正方体是一种三维几何体,由六 个正方形面组成,每个面都是等 大的正方形。
02
正方体的体对角线、棱和面都是 对称的,具有高度的空间对称性 。
05
正方体展开图的挑战与未来发展
当前面临的挑战
寻找新的展开方式
目前已知的正方体展开图种类有 限,需要探索新的展开方式以丰
富其多样性。
证明无解的存在
对于某些特定条件下的正方体展开 问题,需要证明无解的存在,这需 要深入的数学理论支持。
实际应用中的限制
正方体展开图在实际应用中可能受 到材料、工艺等因素的限制,需要 解决这些实际问题。
正方体的几何属性
正方体的体积是边长的三次方,记作 V=a^3,其中a是正方体的边长。
正方体的表面积是6倍的边长的平方, 记作A=6a^2。
正方体的展开与折叠
正方体的展开是将正方体的表面沿某些边展开成平面的过程,通常用于制作纸盒等 包装材料。
正方体的折叠则是将展开的平面重新折回成立体的过程,常用于制作纸艺模型和玩 具。
详细描述
正方体的表面展开图
1/18
2/14
类型一:“一四一”型
记忆口诀:四方成线组6图,上下两侧巧组合;
解释:四方连线,即 ,另外两个小方块在四
个方块的上下两侧自由组合成六种情况。
3/18
类型二:“二三一”型
记忆口诀:二三野马3种足;
解释:野马,即 ,
4/18
类型三:“二二二”型
记忆口诀:两两开成阶梯;
解释:两个小方块一组,两两错开,像登上成功的
阶梯一样。
5/18
类型四:“三三”型
记忆口诀:三三最后来压轴;
解释:三个小方块一组,错开,最后一种情况。
6/14
正方体展开图口诀
四方成线组 6图, 上下两侧巧组合; 二三野马 3种足; 两两错开成阶梯; 三三最后来压轴;
7/14
C
正方体展开图有 如下11种情况:
探究问题2:怎样剪裁更省包装纸?
纸张浪费的部分越少,则越节约纸张。
14/14 14/18
研讨—— 我们合作解决新问题
挑战自我
如图,一只蚂蚁要从正方体的顶点 A 沿表面爬行到顶点 B,怎样爬行路线 最短?如果要爬行到顶点 C 呢?说出 你的理由. C
B
A
15/18
A.
B.
C.
D.
11/18
挑战自我
2.下列图形中,哪些不是正方体的展开图 ( C ) A. B. C. D.
12/18
挑战自我
3、如图所示的纸板上有10个无阴影的正方 形,从中选出一个,与图中5个有阴影的正 方形一起折一个正方体的包装盒,有多少 种不同的选法。
答:共有四种不同的选法
13/14 13/18
A B
8/18
正方体的11种展开图规律大全-正方体展开264种
正方体的11种展开图
判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。
常见的正方体平面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成9个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。
好啦!现在只要把刚才剪去的一个小正方形作为“上”面,就可拼成一个正方体。
作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2。
根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形。
平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上”向左平移,得图11;若移动图8(或图9、图10)中的“左”,又可得图12。
同学们,当你和我一样,把图2~图12这11个图剪下来,动手折一折,得到11个漂亮的小正方体时,你一定为我们的收获感到欢欣鼓舞吧!
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。
“动手实践,自主探索和合作交流”是新课程标准倡导学习数学的三种重要方法,而实践活动是培养我们进行主动探索与合作交流的重要途径。
只要通过自己主动观察、实验、猜想、验证等数学活动,就能使我们“建立空间观念,发展几何直觉”,提高思维能力。