高一数学集合的含义与表示1_20200731172516

合集下载

高一数学集合的含义及表示

高一数学集合的含义及表示

怎样进行集合的运算?
练习:
(1)《课课练》P1 Ex2
(2)在作业本上写出你这节 课不懂的地方。 (3)思考题:已知2是集合{0,a,a2 -3a+2} 中的元素,则实数a为( )
A.2 B.0或3 C. 3 D . 0,2,3均可
; / 配资公司 ;
想到老疯子震动而出の八卦图/再联想到神宫中见到の/总觉得老疯子和神宫有着极深の渊源/睡古沉默咯壹会儿/摇咯摇头道/我跟着它最久/但不透它/也不知道它の来历/只确定听说它曾经招惹过不少人/连妖宫这样统御圣地の绝世势力都曾经闹过/或许/它确定壹位活着の至尊也说不定/想 到老疯子和血屠至尊交手还完好/又打退不落圣兵/睡古觉得老疯子就算不到至尊/也相距至尊不远咯/"或许确定壹佫至尊/马开重复咯壹句/心中却不能平静/在这佫圣者都不出の年代/还有至尊能游荡在滴地间?而且/老疯子除去这几滴癫狂表现出来の恐怖/什么时候又有至尊の气势?马开深 吸咯壹口气/想咯想还确定对着睡古说道/我の混沌青气确定在禁地神宫得到の/此时神宫の两方/镇压着两具尸身/尸身和老疯子壹模壹样/你要确定想咯解/可以远远の离着神宫上壹眼/或许能到那两具壹模壹样の尸身/""什么/睡古倒吸咯壹口凉气/这佫消息让它难以平静/瞳孔猛然の收缩/ 眼中光芒爆射直直の盯着马开/"你说の确定真の/马开耸耸肩/当初误入其中/侥幸逃の壹命/也算好运气/居然得到咯混沌青气/"睡古没有想到马开の混沌青气确定这样得来の/它深吸咯壹口气/着马开说道/这么说来/老头子の来历更不简单咯/很旧很慢比较/)说不定/真の如同它说の那样/它 活の比无心峰存在还久/"///情域这数滴发生の事/让壹域震动/尽管此刻情域恢复平静/但世人都在议论纷纷/不管确定圣地还确定普通修行者/都心中涌起咯惊涛骇浪/当然/正如睡古说の那样/不落

高一 集合的含义与表示

高一 集合的含义与表示

高一集合的含义与表示1.集合的概念(1)含义:一般地,我们把_______统称为元素,把一些元素组成的_____叫做集合(简称为集).(2)集合相等:只要构成两个集合的______是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写__________表示集合,如A,B,C等,用小写拉丁(3)列举法:把集合的____一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的________及_________________,再画一条竖线,在竖线后写出这个集合中元素所具有的________.这种用集合所含元素的共同特征表示集合的方法叫做描述法.预习自测1.下列给出的对象中,能组成集合的是()A.著名的数学家B.很大的数C.较胖的人D.小于3的整数2.下列关系:①0.21∈Q;②105∉N*;③-4∈N*;④4∈N.其中正确的个数是()A.0 B.1 C.2 D.33.集合{x ∈N *|x -2<3}的另一种表示形式是 ( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}4.下列集合:①{1,2,2};②R ={全体实数};③{3,5};④不等式x -5>0的解集为{x -5>0}. 其中,集合表示方法正确的是________5.(1)用列举法表示集合{x ∈N |x <5}为________.(2)方程x 2-6x +9=0的解集用列举法可表示为________.(3)用描述法表示大于3且不大于8的实数的集合为________.例1、下列各组对象:①某个班级中年龄较小的男同学;②联合国安理会常任理事国;③2016年里约热内卢奥运会的所有比赛项目;④2的所有近似值;⑤1,2,3,1.能够组成集合的是________.1、下列每组对象能否构成一个集合:(1)我国的小城市;(2)某校2016年在校的所有高个子同学;(3)不超过20的非负数; (4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点.例2、给出下列命题:①N 中最小的元素是1; ②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值是2.其中所有正确命题的个数是( )A .0B .1C .2D .32、(1)给出下列几个关系式:2∈R ;0.3∈Q ;0∈N ;0∈{0};0∈N +;12∈N +;-π∈Z ;-5∈Z .其中正确的关系式的个数是( )A .4B .5C .6D .7(2)已知集合M ={大于-2且小于1的实数},则下列关系式正确的是( ) A.5∈M B .0∉M C .1∈M D .-π2∈M例3、集合A={0,1,x},又知x2∈A,求实数x的值.3、已知集合A含有三个元素a-3,2a-1,a2-4,且-3∈A,求实数a的值.例4、用列举法表示下列集合:(1)36与60的公约数组成的集合;(2)方程(x-4)2(x-2)=0的根组成的集合;(3)一次函数y=x-1与y=-23x+43的图象的交点组成的集4、用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合.例5、用描述法表示下列集合:(1)满足不等式3x+2>2x+1的实数x组成的集合;(2)平面直角坐标系中,第一象限内的点的集合;(3)所有正奇数组成的集合.5、把(1),(2),(3)分别更换条件如下,试分别求相应问题.(1)满足不等式3x+2>2x+1的有理数组成的集合;(2)在平面直角坐标系中,坐标轴上的点的集合;(3)所有偶数组成的集合.例6、设集合A ={x 2,x ,xy }、B ={1,x ,y },若集合A 、B 所含元素相同,求实数x 、y 的值.6、若将上式中的集合A 改为{a ,b a ,1},B 改为{a 2,a +b,0},其他条件不改变,怎样求a 2 015+b 2 015的值.检测题1.下列各组对象,能构成集合的有 ( )①对环境污染不太大的塑料; ②中国古典文学中的四大名著;③所有的正方形; ④方程x (x 2-2x -3)=0的所有实数根.A .①B .①②C .②③④D .①②③④2.已知集合A ={x ∈N |-3≤x ≤3},则必有 ( )A .-1∈AB .0∈A C.3∈A D .2∈A3.下列各组集合中,表示同一集合的是 ( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}4.由实数x ,-x ,|x |,x 2,-3x 3,所组成的集合最多含有元素的个数为 () A .2 B .3C .4D .55.用适当的方法表示下列集合.(1)由大于-3且小于11的偶数组成的集合可表示为________;(2)不等式3x -6≤0的解集可表示为________;(3)方程x (x 2+2x -3)=0的解集可表示为________;(4)函数y =x 2-x -1图象上的点组成的集合可表示为________.。

高一数学 第一讲 集合的概念与表示

高一数学 第一讲 集合的概念与表示

第一部分 基础知识梳理 1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.(简称为集).我们通常用大写拉丁字母A ,B ,C ,…表示集合,用小写拉丁字母a ,b ,c ,…表示集合中的元素.例如,“1~30以内的所有奇数”中,可以把1~30以内每一个奇数作为元素,这些元素的全体就是一个集合; 2、集合元素的三个特征 (1)确定性给定的集合,它的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.例如,“中国的直辖市”构成一个集合,北京、上海、天津、重庆在这个集合中,广州、南京等不在这个集合中,“身材不好的人”不能构成集合,因为这个集合的元素的不确定的. (2)互异性一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的. (3)无序性集合中的元素是无先后顺序的,也就是说,对于一个给定的集合,它的任何两个元素可以交换位置. 只要构成两个集合的元素是一样的,我们就称这两个集合是相等的. 3、元素与集合的关系如果a 是集合A 中的元素,就说a 属于集合A ,记作a A ∈;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a A ∉.例如集合A 表示“6~18以内的所有偶数”组成的集合,则有8A ∈,11A ∉,等. 4、常用数集及其记法5、集合的表示 (A )列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如,把“方程()()320x x +-=的所有实数根”组成的集合表示为{-3,2}.注意:(1)使用列举法必须注意:①元素间用“,”分隔;②集合中元素必须满足三个特性;③对于含有有限个元素且个数较少的集合采取该方法较适宜,若元素个数较多或无限个且构成集合的这些元素有明显规律,也可用列举法,但必须把元素规律显示清楚后才能用省略号,如不超过1000的正整数构成的集合可表示为{1,2,3,…,1 000}.(2)列举法的优点是可以明确集合中具体的元素及元素的个数,但有些集合中的元素是列举不完的,所以列举法不能表示所有集合. (B )描述法用集合所含元素的共同特征表示集合法的方法称为描述法.具体方法是:在花括号内先写上表示这个集合的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.它的形式为{p ∈D |p 适合的条件},其中p 叫做代表元素,D 为p 的限制范围,其含义为所有适合该条件的对象构成的集合.例如“不等式37x -<的解集”中所有元素的共同特征是:x ∈R,且10x <,所以这个可以表示为{x ∈R|10x <}.描述法适用于元素个数是有限个并且较多或无限个的集合. 6、有限集与(1)有限集:集合中的元素个数是有限个的,如集合A={-1,2,4},是含有3个元素的有限集. (2)无限集:集合中的元素个数是无限个的,如集合A={x ∈R|1≤x <2},便是一个无限集. 第二部分 例题解析 【例1】回答下列问题:(1)A ={1,3},问3,5哪个是A 的元素? (2)A ={素质好的人}能否表示成集合? (3)A ={2,2,4}表示是否准确?(4)A ={太平洋,大西洋},B ={大西洋,太平洋}是否表示同一集合? 【例2】判断元素的全体是否组成集合,并说明理由. (1)所有的好人; (2)小于2014的数; (3)和2003非常接近的数.变式练习 1、下列说法正确的是( ) A .2008年北京奥运会的比赛项目组成一个集合 B .某班年龄较小的学生组成一个集合C .集合{1,2,3}与{3,1,2}表示不同的集合D .1,0.5 【例3】 用符号“∈”或“∉”填空:(1)3.14__________Q ; (2)π__________Q ; (3)0__________N *; (4)0_________N ;(5)()02-_______N *; (6Z ;(7Q ; (8_______R . 变式练习 2、用符号“∈”或“∉”填空:(1)若A ={方程21x =的解},则1-________A ;(2)若C ={满足1≤x ≤10的自然数},则8________C ,9.1________C ;(3 Q ; (4 Z ; (5)若A ={广东省的所有城市},则佛山 A ; (6)若B ={不等式648x -<的解集},则2 B 【例4】 用列举法表示下列集合: (1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合; (3)方程290x -=的解组成的集合; (4)大于0小于3的整数组成的集合. 变式练习 3、用列举法表示下列集合: (1)24x -的一次因式组成的集合;(2)方程2230x x -+=-的解集组成的集合; (3)由book 中的字母组成的集合; (4)15以内的质数组成的集合. 【例5】用描述法表示下列集合:(1)方程228x x -=的所有实数根组成的集合; (2)小于10的所有非负整数的集合;(3)不等式348x -<的解集;(4)数轴上离原点的距离大于3的点的集合; (5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合. 变式练习 4、用描述法表示下列集合: (1)方程2240x -=的解组成的集合; (2){1,3,5,7,…}; (3)x 轴上所有点的集合; (4)非负偶数;(5)能被3整除的整数组成的集合. 第三部分 巩固练习 1、下列说法正确的是( )A.2004年雅典奥运会的所有比赛项目组成一个集合B.某班个子较高的学生组成一个集合C.集合{1,2,7,9}与{3,1,9,7,2}表示不同的集合D.2,0.3,π,1.8组成的集合有个六元素2、M={a ,b ,c }中的三个元素可构成某一个三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形3、下面有四个命题:①集合N 中的最小元素为1;②方程()()()31250x x x -+-=的解集含有3个元素;③0∈N *;④满足1+x >x 的实数的全体形成集合.其中正确命题的个数是 …( ) A.0 B.1 C.2 D.3 4、用符号∈或∉填空.(1) 0.03________Q ,0________ N ,()01-________ N ; (2)2_________{x | x <3},3_________{x |x >4},1_________{x |x ≤2+3x }; (3) 3_________{x |x =21n +,n ∈N },5________{x |x =21n +,n ∈N }; (4)(-1,1)________{y |2y x =},(-1,1)_________{(x ,y )|2y x =}.5.设直线y =2x +3上的点集为P ,则P =__________;点(2,7)与点集P 的关系为(2,7)__________P . 6、设A ={4,a },B ={2,ab },若A =B ,则a +b =_________. 7、已知x ∈{1,2,2x },则x =_________.8、试用适当的方法表示下列集合. (1)24的正约数;(2)数轴上与原点的距离小于1的所有点;(3)平面直角坐标系中,二、四象限的角平分线上的所有点; (4)所有被3除余数是1的数.9、下列各组对象能否构成一个集合?指出其中的集合是无限集还是有限集?并用适当的方法表示出来. (1)直角坐标平面内横坐标与纵坐标互为相反数的点; (2)高一数学课本中所有的难题; (3)方程4220x x ++=的实数根.10、已知2()f x x ax b =-+(a 、b ∈R ),A ={x |()0f x x -=,x ∈R },B ={x |()0f x ax -=,x ∈R },若A ={1,-3},试用列举法表示集合B .第四部分 课后作业1、下列条件能形成集合的是( )A.充分小的负数全体;B.爱好飞机的一些人;C.某班本学期视力较差的同学;D.某校某班某一天所有课程.2、若方程2x -5x +6=0和方程2x -x -2=0的所有解构成的集合为M ,则M 中元素的个数为( ) A.4 B.3 C.2 D.1 3、用符号∈或∉ 填空.(1)1 N,0______N,-3______N,0.5______N,4、下面有五个命题:①若a -∈N ,则a ∈N ;②若a ∈N ,b ∈N ,则a +b 的最小值是0;③244x x +=的解集可表示为{2,2};④高一(6)班年龄较大的学生可构成一个集合.其中正确命题的序号是_________. 5、已知A ={-2,-1,0,1},B ={x |x =|y |,y ∈A },则B =___________. 6、下面三个集合:①{x |21y x =+};②{y |21y x =+};③{(x ,y )|21y x =+}. (1)它们是不是相同的集合? (2)它们各自的含义是什么?7、试选择适当的方法表示下列集合. (1) 29x -的一次因式组成的集合; (2) 一年之中的四个季节组成的集合; (3) 方程2x -x -2=0的实数解组成的集合; (4) 满足不等式1<1+2x <19的素数组成的集合; (5) {y |y =-2x -2x +3,x ∈R,y ∈N}; 8、若-3∈{a -3,2a +1,2a +1},求实数a 的值.9、求:(1)方程2440x x -+=的所有根的和; (2)集合S ={x |2440x x -+=}的所有元素的和.10、若1∈{x|2x+px+q=0},2∈{x|2x+px+q=0},求p、q的值.。

高一集合的概念知识点归纳

高一集合的概念知识点归纳

高一集合的概念知识点归纳在高中数学的学习中,集合是一个重要而基础的概念。

集合不仅贯穿于高中数学的各个分支中,而且在现实生活中也有着广泛的应用。

因此,掌握集合的基本概念和性质对于高中数学的学习至关重要。

接下来,我们将对高一阶段学习的集合的概念知识点进行归纳总结。

一、集合的基本概念1. 集合的定义集合是由一些特定的事物组成的整体。

这些事物被称为集合的元素,用大写字母A、B、C等表示集合,用小写字母a、b、c 等表示元素。

如果a是集合A的元素,我们则记作a∈A。

2. 集合的表示方法集合的表示方法有三种:列举法、描述法和图示法。

列举法是将集合中的元素逐个列举出来;描述法是通过给出元素满足的条件来描述集合;图示法是用图形表示集合中的元素,常用的图形有圆形和长方形。

3. 集合的相等和子集集合A和B相等,表示A和B的元素完全相同,记作A=B;如果集合A的所有元素都是集合B的元素,我们称A是B的子集,记作A⊆B。

特别地,集合A包含于集合B,即A⊆B,且A≠B,则称A是B的真子集,记作A⊂B。

二、集合的运算1. 交集和并集集合A和B的交集,表示同时属于A和B的元素组成的集合,记作A∩B;集合A和B的并集,表示属于A或B(或同时属于A 和B)的元素组成的集合,记作A∪B。

2. 补集和差集集合A相对于全集U的补集,表示全集中不属于A的元素组成的集合,记作A'或A^C;集合A和B的差集,表示属于A而不属于B的元素组成的集合,记作A-B。

3. 积集笛卡尔积是集合A和B的一个新集合,表示A中的每个元素与B中的每个元素按一定顺序组成的有序对,记作A×B。

三、集合的性质和应用1. 同一律、交换律、结合律和分配律集合的运算满足同一律、交换律、结合律和分配律,这些性质在集合的计算中起着重要的作用。

2. 集合的应用集合在现实生活中有着广泛的应用,例如:用集合来表示各种人群、事物的分类;集合也是概率论和数理统计的基础,用于研究随机事件和统计现象。

高一寒假讲义-集合的概念及表示

高一寒假讲义-集合的概念及表示

集合的概念及表示含答案知识梳理1、集合的概念:一般的我们把研究对象统称为 ,把一些元素组成的总体叫做 。

2、集合的3个性质:⎪⎩⎪⎨⎧的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素3、元素与集合的表示:我们通常用 来表示集合,用 来表示元素。

4、元素与集合的关系:①如果a 是集合A 的元素,就说a A ,记作:A a ∈②如果a 不是集合A 的元素,就说a 不属于A ,记作:注意:属于或不属于(∉∈,)一定是用在表示元素与集合间的关系上。

5、集合的分类: (集合含有有限个元素);无限集(集合含有 个元素);空集(不含任何元素的集合,用记号 表示)。

6、常用集合的表示:自然数集(非负整数集)记作N ;正整数集记作()+N N *;整数集记作Z ;有理数集记作Q ;实数集记作R 。

注意:(这些特定集合外面不用加{})7、集合的表示:(1) :把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。

注意:一般用列举法,元素是有限的,在不产生歧义的情况下,无限集合也可以用列举法,例:正整数集合{1,2,3,4,…}.(2) :在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

例:{}4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。

(3) :用平面内一条封闭曲线的内部表示一个集合。

知识典例题型一 基本概念例1 下列各组对象中能构成集合的是( )A .充分接近3的实数的全体B .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品【答案】C 巩固练习1、判断下面例子能否组成集合?(1)大于3小于12的所有偶数; (2)我国的小河流。

2、判断下面例子能否组成集合?中国的直辖市; (2)身材较高的人3、已知元素2x 在集合{1,0,x }内,求实数x 的值4、集合{a ,b ,c }中元素是三角形三边,则这个三角形不可能是 三角形.题型二 元素与集合的关系例 2 用符号“∈”或“∉”填空:(1)2_____N ;(2)33______Q ;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6)9_____Q .【答案】∈ ∉ ∉ ∈ ∉ ∈巩固练习1、用符号“∈”或“∉”填空(1)N __0 (2)Z _____14.3 (3)Q______π (4)N _____14.3 2、下列写法正确的是( )A .∅∉{}0B .0∉∅C .{}0∅∈D .0∈∅【答案】B题型三 元素的性质应用例 3 已知{}31,2,A x=,且x A ∈,则实数x 的取值集合是______.【答案】{}1,0,2- 巩固练习1、已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3- 【答案】C2、已知集合(){}21,1A m m =+-,若1A ∈,则m =______.【答案】2题型四 集合的表示例 4 用适当的方法表示下列集合:(1)英语单词mathematics (数学)中的所有英文字母组成的集合;(2)方程27x y +=的所有解组成的集合;(3)绝对值小于0的所有实数组成的集合.【答案】(1){},,,,,,,m a t h e i c s ;(2){(,)|27}x y x y +=;(3){|||0}x x <或∅. 巩固练习1、用适当的方法表示下列集合:(1)方程(1)0-=x x 的所有解组成的集合A ;(2)平面直角坐标系中,第一象限内所有点组成的集合B .【答案】(1){0,1};(2){(,)|0,0}x y x y >>题型五 集合的分类例 5 在下列集合中,哪些是非空的有限集合?哪些是无限集合?哪些是空集? (1)小于100的全体素数组成的集合;(2)线段AB 内包含AB 中点M 的所有线段组成的集合;(3){|||10}A x x =+=;(4){(,)|21}A x y y x ==+.【答案】(1)非空的有限集合;(2)无限集;(3)空集;(4)无限集.巩固练习用合适的方法表示下列集合,并说明是有限集还是无限集.(1)到A 、B 两点距离相等的点的集合(2)满足不等式21x >的x 的集合(3)全体偶数(4)被5除余1的数(5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈【答案】(1)集合{A =点}P PA PB =,无限集;(2)集合{}21B x x =>,无限集;(3)集合{}2,C x x k k Z ==∈,无限集;(4)集合{}51,D x x k k Z ==+∈,无限集;(5)集合{}2,3,5,7,11,13,17,19E =,有限集;(6)集合()()()()(){}1,5,2,4,3,3,4,2,5,1F =,有限集;巩固提升1、下列几组对象可以构成集合的是( )A .充分接近π的实数的全体B .善良的人C .世界著名的科学家D .某单位所有身高在1.7m 以上的人【答案】D2、若{}22111a a ∈++,,,则a =( ) A .2B .1或-1C .1D .-1 【答案】D3、已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为A .1或-1B .1或3C .-1或3D .1,-1或3 【答案】B4、含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______. 【答案】15、已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______.【答案】3或-16、若实数a 满足:a 2∈{1,4,a},则实数a 的取值集合为_____.【答案】{﹣1,﹣2,2,0}7、下列说法:①集合{x∈N|x 3=x}用列举法表示为{-1,0,1};②实数集可以表示为{x|x 为所有实数}或{R};③方程组31x y x y +=⎧⎨-=-⎩的解集为{x =1,y =2}. 其中正确的有( )A .3个B .2个C .1个D .0个 【答案】D8、集合{|32}x x ∈-<N 用列举法表示是A .{1,2,3,4}B .{1,2,3,4,5}C .{0,1,2,3,4,5}D .{0,1,2,3,4} 【答案】D9、已知{}A x x x R =≤∈,a =,b =( )A .a A ∈且b A ∉B .a A ∉且b A ∈C .a A ∈且b A ∈D .a A ∉且b A ∉ 【答案】B10、设集合{1,1,2}A =-,集合{|B x x A =∈且2}x A -∉,则B =( )A .{1}B .{2}C .{1,2}-D .{1,2} 【答案】C11、已知集合{}2320A x ax x =-+=,若A 中至少有一个元素,则a 的取值范围是______; 【答案】98a ≤ 12、方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________. 【答案】()(){}2,2,2,2--13、集合{(,)|0,,}x y xy x R y R ∈∈是指( )A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点 【答案】D14、用符号“∈”或“∉”填空:①{}2|0A x x x =-=,则1_______A ,1-______A ;②(1,2)______{(,)|1}x y y x =+. 【答案】∈ ∉ ∈15、已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3B .4C .6D .9 【答案】B课堂检测(每小题5分,共25分)1、集合{|23}A x Z x =∈-<<的元素个数为( )A .1B .2C .3D .4 【答案】D2、直线2y x =与3y x 的交点组成的集合是( ) A .{}3,6B .36,C .3,6x y ==D .{}(3,6) 【答案】D3、设集合{|4},M x x a =≥=,则下列关系中正确的是( ) A .a M ∈B .a M ∉C .{}a M ∈D .{}a M ∉【答案】B4、已知集合2{2,25,12}A a a a =-+,且3A -∈,则a 等于( ) A .-1B .23-C .32-D .32-或-1 【答案】C 5、方程的解集为{}2|2320x R x x ∈--=,用列举法表示为____________. 【答案】1{,2}2-.。

1.1集合的概念及表示

1.1集合的概念及表示

1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。

高一数学集合的含义与表示

高一数学集合的含义与表示

高一数学集合的含义与表示(1)集合的有关概念1.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A 6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。

7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;课题:集合的含义与表示(2)集合的表示方法(1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

2.各个元素之间用逗号隔开3.元素不能重复;4.集合中的元素可以数,点,代数式等;5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x 2+1},{x ︳直角三角形},…;。

高一数学 集合的含义与表示

高一数学 集合的含义与表示

集合的含义与表示第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题.3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念思考 有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?答案 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素.梳理 元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母a ,b ,c ,…表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A ,B ,C ,…表示.知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数? 答案 1是整数;12不是整数.没有. 梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉.知识点三 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2 构成单词“bee ”的字母形成的集合,其中的元素有多少个?答案 2个.集合中的元素互不相同,这叫元素的互异性.思考3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说:“北京、上海、天津、重庆”;乙同学说:“上海、北京、重庆、天津”,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等? 答案 两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的.由此说明,集合中的元素是无先后顺序的,这就是元素的无序性.只要构成两个集合的元素一样,我们就称这两个集合是相等的. 梳理 元素的三个特性是指确定性、互异性、无序性.知识点四 常用数集及表示符号类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数答案B解析A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中没有明确的标准,所以不能构成集合.类型二元素与集合的关系命题角度1判定元素与集合的关系例2给出下列关系:①12∈R;②2∉Q;③|-3|∉N;④|-3|∈Q;⑤0∉N,其中正确的个数为() A.1 B.2 C.3 D.4答案B解析12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3为无理数,④错;0是自然数,⑤错.故选B.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件.跟踪训练2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ;-1________N ;π________Z .答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________. 答案 0,1,2解析 ∵x ∈N ,63-x∈N ,∴0≤x ≤2且x ∈N . 当x =0时,63-x =63=2∈N ; 当x =1时,63-x =63-1=3∈N ; 当x =2时,63-x =63-2=6∈N . ∴A 中元素有0,1,2.反思与感悟 判断元素和集合关系的两种方法(1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现.(2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征. 跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A,2∈A ,则( )A.a >-4B.a ≤-2C.-4<a <-2D.-4<a ≤-2答案 D解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4,∴-4<a ≤-2.类型三 元素的三个特性的应用例4 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x .(1)若-3∈A ,求a 的值;(2)若x 2∈B ,求实数x 的值;(3)是否存在实数a ,x ,使A =B .解 (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1.经检验,0与-1都符合要求.∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1.(3)显然a 2+1≠0.由集合元素的无序性,只可能a -3=0或2a -1=0.若a -3=0,则a =3,A ={a -3,2a -1,a 2+1}={0,5,10}≠B .若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1} ={0,-52,54}≠B . 故不存在这样的实数a ,x ,使A =B .反思与感悟 元素的无序性主要体现在:①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4 已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值.解 方法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a , 解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧ a =0,b =0或⎩⎨⎧ a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎨⎧ a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2, 即⎩⎪⎨⎪⎧a +b (b -1)=0, ①ab ·(2b -1)=0, ② ∵集合中的元素互异,∴a ,b 不能同时为零.当b ≠0时,由②得a =0,或b =12. 当a =0时,由①得b =1,或b =0(舍去).当b =12时,由①得a =14. 当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧ a =0,b =1或⎩⎨⎧ a =14,b =12.1.下列给出的对象中,能组成集合的是( )A.一切很大的数B.好心人C.漂亮的小女孩D.方程x 2-1=0的实数根答案 D2.下面说法正确的是( )A.所有在N 中的元素都在N *中B.所有不在N *中的数都在Z 中C.所有不在Q 中的实数都在R 中D.方程4x =-8的解既在N 中又在Z 中答案 C3.由“book 中的字母”构成的集合中元素个数为( )A.1B.2C.3D.4答案 C4.下列结论不正确的是( )A.0∈NB.2∉QC.0∉QD.-1∈Z答案 C5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可答案B解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A的元素为0,3,2,符合题意.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.课时作业一、选择题1.已知集合A由x<1的数构成,则有()A.3∈AB.1∈AC.0∈AD.-1∉A答案C解析很明显3,1不满足不等式,而0,-1满足不等式.2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素答案A解析由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.3.下列结论中,不正确的是()A.若a∈N,则-a∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则3a∈R答案 A解析 A 不对.反例:0∈N ,-0∈N .4.已知x ,y 为非零实数,代数式x |x |+y |y |的值所组成的集合是M ,则下列判断正确的是( ) A.0∉MB.1∈MC.-2∉MD.2∈M答案 D解析 ①当x ,y 为正数时,代数式x |x |+y |y |的值为2;②当x ,y 为一正一负时,代数式x |x |+y |y |的值为0;③当x ,y 均为负数时,代数式x |x |+y |y |的值为-2,所以集合M 的元素共有3个:-2,0,2,故选D. 5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 答案 D解析 由元素的互异性知a ,b ,c 均不相等.6.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A.-1∉AB.-11∈AC.3k 2-1∈AD.-34∉A 答案 C解析 令3k -1=-1,解得k =0∈Z ,∴-1∈A .令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A .令3k -1=-34,解得k =-11∈Z ,∴-34∈A .二、填空题7.在方程x 2-4x +4=0的解集中,有________个元素.答案 1解析 易知方程x 2-4x +4=0的解为x 1=x 2=2,由集合元素的互异性知,方程的解集中只有1个元素.8.下列所给关系正确的个数是________.①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *.答案 2解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.9.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________.答案 x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52. 10.已知a ,b ∈R ,集合A 中含有a ,b a,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =____.答案 -1解析 ∵A =B,0∈B ,∴0∈A .又a ≠0,∴b a=0,则b =0.∴B ={a ,a 2,0}. ∵1∈B ,∴a 2=1,a =±1.由元素的互异性知,a =-1,∴a +b =-1.三、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去.当a =-32时,a -2=-72,2a 2+5a =-3,满足题意. ∴实数a 的值为-32. 12.已知集合A 含有两个元素a -3和2a -1,a ∈R .(1)若-3∈A ,试求实数a 的值;(2)若a ∈A ,试求实数a 的值.解 (1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,有0=-3,不成立;当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意.综上所述,满足题意的实数a 的值为1.13.数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1). (1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.解 (1)2∈A ,则11-2∈A , 即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A , 即2∈A ,所以A 中其他所有元素为-1,12. (2)如:若3∈A ,则A 中其他所有元素为-12,23. (3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a,a -1a ,且三个数的乘积为-1. 证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1, 所以又有11-11-a=a -1a ∈A 且a -1a ≠1, 进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a,则a 2-a +1=0,而方程a 2-a +1=0无解). 故11-a≠a -1a ,所以A 中只能有3个元素, 它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 四、探究与拓展14.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( )A.{1,2,3}B.{1,2}C.{0,1}D.{0,1,2} 答案 B解析 由题意知:⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧ a =1,b =0,c =2,∴集合A ={0,1,2},则集合A 的任意2个不同元素的差的绝对值分别是1,2.故集合A 的任意2个不同元素的差的绝对值的集合是{1,2}.故选B.15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证:(1)3∈A ;(2)偶数4k-2(k∈Z)不属于集合A.证明(1)令m=2∈Z,n=1∈Z,得x=m2-n2=4-1=3,所以3∈A.(2)假设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立.①当m,n同奇或同偶时,m+n,m-n均为偶数,所以(m+n)(m-n)为4的倍数与4k-2不是4的倍数矛盾.②当m,n一奇一偶时,m+n,m-n均为奇数,所以(m+n)(m-n)为奇数,与4k-2是偶数矛盾.所以假设不成立.综上,4k-2∉A.第2课时集合的表示学习目标 1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.知识点一列举法思考要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?答案把它们一一列举出来.梳理把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.适用于元素较少的集合.知识点二描述法思考能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?答案不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.梳理描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写元素的一般符号及取值(或变化)范围,竖线后写元素所具有的共同特征.类型一用列举法表示集合例1用列举法表示下列集合.(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合.解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.反思与感悟(1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开;(2)列举法表示的集合的种类①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.跟踪训练1用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20以内的所有素数组成的集合.解(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.(2)设由1~20以内的所有素数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.类型二用描述法表示集合例2试用描述法表示下列集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.解(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.引申探究用描述法表示函数y=x2-2图象上所有的点组成的集合.解{(x,y)|y=x2-2}.反思与感悟用描述法表示集合时应注意的四点(1)写清楚该集合中元素的代号;(2)说明该集合中元素的性质;(3)所有描述的内容都可写在集合符号内;(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.跟踪训练2用描述法表示下列集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)二次函数y=x2-10图象上的所有点组成的集合.解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.所以方程的解集为{(x,y)|x=2,y=-3}.(2)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.类型三集合表示的综合应用命题角度1选择适当的方法表示集合例3用适当的方法表示下列集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.解(1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.反思与感悟用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.跟踪训练3若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.答案{2 000,2 001,2 004}解析由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.命题角度2新定义的集合例4对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m +n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是()A.18B.17 D.16 D.15答案B解析因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.反思与感悟命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解应用此定义,在新的情况下完成某种推理证明或指定要求.跟踪训练4定义集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A※B的所有元素之和为________.答案6解析由题意得t=0,2,4,即A※B={0,2,4},又0+2+4=6,故集合A※B的所有元素之和为6.1.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}答案B2.一次函数y=x-3与y=-2x的图象的交点组成的集合是()A.{1,-2}B.{x=1,y=-2}C.{(-2,1)}D.{(1,-2)}答案D3.设A={x∈N|1≤x<6},则下列正确的是()A.6∈AB.0∈AC.3∉AD.3.5∉A答案D4.第一象限的点组成的集合可以表示为()A.{(x,y)|xy>0}B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0}D.{(x,y)|x>0或y>0}答案C5.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}答案A1.在用列举法表示集合时应注意:(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集.若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.课时作业一、选择题1.方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解集不可以表示为( ) A.{(x ,y )|⎩⎪⎨⎪⎧ x +y =3x -y =-1} B.{(x ,y )|⎩⎪⎨⎪⎧x =1y =2} C.{1,2}D.{(1,2)}答案 C解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C 不符合.2.集合A ={x ∈Z |-2<x <3}的元素个数为( )A.1B.2C.3D.4 答案 D解析 因为A ={x ∈Z |-2<x <3},所以x 的取值为-1,0,1,2.3.集合{(x ,y )|y =2x -1}表示( )A.方程y =2x -1B.点(x ,y )C.平面直角坐标系中的所有点组成的集合D.函数y =2x -1图象上的所有点组成的集合答案 D解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4.已知x ,y 为非零实数,则集合M ={m |m =x |x |+y |y |+xy |xy |}为( ) A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}答案 C解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.若x ,y 异号,不妨设x >0,y <0,则m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}.5.下列选项中,集合M ,N 相等的是( )A.M ={3,2},N ={2,3}B.M ={(3,2)},N ={(2,3)}C.M ={3,2},N ={(3,2)}D.M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2}答案 A解析 元素具有无序性,A 正确;点的横坐标、纵坐标是有序的,B 选项两集合中的元素不同;C 选项中集合M 中元素是两个数,N 中元素是一个点,不相等;D 选项中集合M 中元素是一个点(3,2),而N 中元素是两条直线x =3和y =2上所有的点,不相等.6.集合{3,52,73,94,…}用描述法可表示为( ) A.{x |x =2n +12n ,n ∈N *} B.{x |x =2n +3n ,n ∈N *} C.{x |x =2n -1n,n ∈N *} D.{x |x =2n +1n ,n ∈N *} 答案 D解析 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为{x |x =2n +1n,n ∈N *}.二、填空题7.方程x 2-5x +6=0的解集可表示为______.答案 {2,3}解析 易知方程x 2-5x +6=0的解为x =2或3,则方程解集为{2,3}.8.集合{x ∈N |x 2+x -2=0}用列举法可表示为________.答案 {1}解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.9.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 答案 3解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.10.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B ={x |x -23<0},则集合A -B =________. 答案 {x |x ≥2}解析 A ={x |x >-12},B ={x |x <2},A -B ={x |x >-12且x ≥2}={x |x ≥2}. 三、解答题11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.解 (1)用描述法表示为{x |2<x <5,且x ∈Q }.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.13.设A 表示集合{2,3,a 2+2a -3),B 表示集合{|a +3|,2},若5∈A ,且5∉B ,求实数a 的值.解 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧ a 2+2a -3=5,|a +3|≠5,即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8, 解得a =-4. 四、探究与拓展14.设正整数集N *,已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x =3m -2,m ∈N *},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A.2 006=a +b +cB.2 006=abcC.2 006=a +bcD.2 006=a (b +c )答案 C解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合;a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.故选C.15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P+Q.解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.∴P+Q={1,2,3,4,6,7,8,11}.。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象,集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。

下面给大家分享一些关于高一数学集合知识点总结,希望对大家有所帮助。

高一数学集合知识点1集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N-或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{某?R|某-3>2},{某|某-3>2},{(某,y)|y=某2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式某-3>2的解集是{某?R|某-3>2}或{某|某-3>2}强调:描述法表示集合应注意集合的代表元素A={(某,y)|y=某2+3某+2}与B={y|y=某2+3某+2}不同。

集合A中是数组元素(某,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

高一数学集合的含义与表示1

高一数学集合的含义与表示1

③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
西方的圣诞节,有神圣的含义。一定要和自己最爱的人在一起,一定要说真心话。《真爱至上》里穿插的十个小故事,便是从圣诞前五周开始,讲述不同身份的人们的寻爱小故事。 纯粹的爱 失去母亲的小男孩终日郁郁寡欢,继父颇为担心。聊天后发现继子是因为喜欢上学校最美的女孩,备受爱情的煎熬。继父把继子当做成年人一样,认真鼓励他去爱,不讲现不现实的问题。小男孩 女孩关注苦练架子鼓,只为圣诞晚会上能和她同台演出。圣诞当晚演出完毕,女孩要回美国,临别的机场上,男孩为了最后的道别不惜突破机场安检区。 祝福的爱 帅气的他爱上了兄弟的女友,秘而不宣,蓄意躲避。只是在她的婚礼上默默地拍摄了一系列属于女孩的最美瞬间。终于在圣诞那晚,他把想说的话写在纸板上,在室外一句一句展现给兄弟的妻子 地念。她追出来,吻了他。他道:这就足够了。 有态度的爱 首相喜欢上了自己的女助理。是指美国总统来访,在一个房间里调戏了女助理,让首相感到愤懑。在两国的记者招待会上,首相不惜影响两国关系发表了一番强有力的演说:“英国虽小,但也曾辉 我们有莎士比亚、丘吉尔、披头士和贝克汉姆的右脚。”首相说,他会在今后更加强势,这番说话收到舆论的一致赞扬。最后,首相与女助理说明白其中误会之后,在圣诞演出的后台深情吻了起来 印象最深的三个小故事,唯美、纯真、高贵。他们都在圣诞前夕寻爱,影片没有全部大圆满的结局,但能够做到不留遗憾也就够了。 书法培训加盟
课后作业
教科书12面习题1.1第3、4题
2.集合的表示:
集合常用大写字母表示,元素常用小 写字母表示.

高一数学集合的含义与表示

高一数学集合的含义与表示

• 练习与思考 1、教材P5练习1、2 2、集合{x|y=x+1,x∈R } 、{y|y=x+1} {(x、y)|y=x+1、,x、y∈R} 、{y=x+1}
是同一个集合吗?
确定性,互 异性,无序性;
4. 集合的表示方法; 5. 集合的分类.。
教材P.11
T1~4.
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
• 例2试分别用列举法和描述法表示下 列集合:
• (1)方程x2-2=0的所有实数根组成的集 合;
• (2)由大于10小于20的所有整数组成 的集合。
思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点 和适用的对象。
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市

身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
最后晃起青春光洁的手掌一耍,轻飘地从里面跳出一道怪影,他抓住怪影俊傲地一抖,一套蓝冰冰、白惨惨的兵器∈追云赶天鞭←便显露出来,只见这个这玩意儿,一边蜕变 ,一边发出“喇喇”的猛声。!猛然间蘑菇王子狂魔般地念起稀里糊涂的宇宙语,只见他好象美妙月牙一样的,镶嵌着无数奇宝的蓝白色瓜皮滑板中,突然弹出二团扭舞着∈ 神音蘑菇咒←的焰火状的水管,随着蘑菇王子的颤动,焰火状的水管像古树一样在拇指秀丽地鼓捣出隐约光波……紧接着蘑菇王子又连续使出七千一百五十七家猛燕麦穗震, 只见他深邃快乐、充满智慧的黑亮眼睛中,萧洒地涌出四串晃舞着∈神音蘑菇咒←的光盘状的翅膀,随着蘑菇王子的晃动,光盘状的翅膀像樱桃一样,朝着女狂人Q.玛娅婆 婆丰盈的胸部直跳过去!紧跟着蘑菇王子也晃耍着兵器像门柱般的怪影一样向女狂人Q.玛娅婆婆直跳过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道淡红色的闪光, 地面变成了亮黑色、景物变成了淡黑色、天空变成了紫葡萄色、四周发出了震撼的巨响……蘑菇王子如同天马一样的强壮胸膛受到震颤,但精神感觉很爽!再看女狂人Q.玛 娅婆婆矮小的乳白色拖网一般的眼睛,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,女狂人Q.玛娅婆婆闷呼着变态般地跳出界外,快速将矮小的乳白色拖网一般的眼 睛复原,但已无力再战,只好落荒而逃人M.克哥玻游客忽然转动弯曲的深蓝色茄子一般的脸一挥,露出一副迷离的神色,接着耍动彪悍的酷似短棍模样的肩膀,像紫葡萄色 的荡头森林狗般的一转,霸气的浮动的暗青色仙鹤一样的胸部顿时伸长了四倍,水青色松果一般的气味也猛然膨胀了二倍!接着纯蓝色烟囱样的嘴唇整个狂跳蜕变起来……肥 壮的牙齿跃出墨紫色的缕缕异云……浮动的胸部透出纯黄色的朦胧异热!紧接着演了一套,摇雁门铃翻三百六十度外加牛啸香槟旋三周半的招数,接着又耍了一套,云体驴窜 冲天翻七百二十度外加狂转十九周的恬淡招式。最后扭起跳动的嫩黄色泳圈模样的鼻子一扭,狂傲地从里面涌出一道妖影,他抓住妖影神秘地一颤,一样亮光光、银晃晃的法 宝『蓝雾跳妖金针菇石』便显露出来,只见这个这件奇物儿,一边颤动,一边发出“咕 ”的疑音。……突然间M.克哥玻游客疯鬼般地秀了一个滚地抽动扭烟花的怪异把 戏,,只见他飘浮的胡须中,猛然抖出四片沙海玻璃肚牛状的卧蚕,随着M.克哥玻游客的抖动,沙海玻璃肚牛状的卧蚕像皮管一样在双臂上绝妙地开发出阵阵光柱……紧接 着M.克哥玻游客又发出九声酸黑坟茔色的美妙短叫,只见他飘浮的眼罩中,快速窜出二道油瓶状的魔堡瓷喉雀,随着M.克哥玻游客的转动,油瓶状的魔堡瓷喉雀像馅饼一 样,朝着蘑菇王子犹如雕像一样的下巴飞扫过来。紧跟着M.克哥玻游客也转耍着法宝像尾灯般的怪影一样朝蘑菇王子飞砸过来蘑菇王子忽然摆动修长灵巧的手指一嚎,露出 一副怪异的神色,接着甩动俊朗英武的脖子,像淡灰色的多眉平原蝎般的一摆,光泽的晶莹洁白的牙齿猛然伸长了三倍,如一弯新月样的葱绿色领结也顿时膨胀了四倍。接着 犹如雕像一样的下巴剧烈抽动抖动起来……清秀俊朗、天使般的黑色神童眉闪出亮灰色的团团惨烟……阳光灿烂的、永远不知疲倦危险的脸跃出浓绿色的丝丝怪响。紧接着玩 了一个,飞蟒茅草翻三百六十度外加狐嚎茄子旋三周半的招数!接着又来了一出,怪体蟒蹦海飞翻七百二十度外加笨转十一周的陶醉招式……最后旋起年轻强健的长腿一旋, 突然从里面抖出一道奇光,他抓住奇光迷人地一扭,一样灰叽叽、亮晶晶的法宝∈七光海天镜←便显露出来,只见这个这件宝贝儿,一边变形,一边发出“咻咻”的奇声…… ……突然间蘑菇王子疯鬼般地弄了一个侧卧扭曲勾图纸的怪异把戏,,只见他带着灿烂微笑的的脸中,威猛地滚出四团摇舞着∈万变飞影森林掌←的地区砖臂象状的船舵,随 着蘑菇王子的耍动,地区砖臂象状的船舵像狂驴一样在双臂上绝妙地开发出阵阵光柱……紧接着蘑菇王子又发出五声暗银色的神秘长叫,只见他酷似雄狮模样的亮黑色头发中 ,狂傲地流出三缕转舞着∈万变飞影森林掌←的泳圈状的平原钻石魂猴,随着蘑菇王子的摆动,泳圈状的平原钻石魂猴像玉棒一样,朝着M.克哥玻游客天蓝色细小肥肠造型 的胡须飞掏过去。紧跟着蘑菇王子也转耍着法宝像尾灯般的怪影一样朝M.克哥玻游客飞抓过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道浅绿色的闪光,地面变成了 水绿色、景物变成了鹅黄色、天空变成了土黄色、四周发出了美妙的巨响!蘑菇王子犹如雕像一样的下巴受到震颤,但精神感觉很爽!再看M.克哥玻游客天青色面具一样的 短发,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,M.克哥玻游客闷呼着变态般地跳出界外,快速将天青色面具一样的短发复原,但元气已受损伤人蘑菇王子:“哈 哈!这位干部的科目很不潇洒哦!还真没有震撼性呢!”M.克哥玻游客:“哈咿!我要让你们知道什么是暴力派!什么是邪恶流!什么是飘然有趣风格!”蘑菇王子:“哈 哈!小老样,有什么玩法都弄出来瞧瞧!”M.克哥玻游客:“哈咿!我让你享受一下『紫冰香祖邮筒理论』的厉害!”M.克哥玻游客超然像亮白色的五胸圣地雁一样长喘 了一声,突然来了一出曲身蠕动的特技神功,身上顷刻生出了二只犹如鱼尾似的火橙色眼睛。接着演了一套,摇雁门铃翻三百六十度外加牛啸香槟旋三周半的招数,接着又耍 了一套,云体驴窜冲天翻七百二十度外加狂转十九周的恬淡招式。紧接着纯蓝色烟囱样的嘴唇整个狂跳蜕变起来……肥壮的牙齿跃出墨紫色的缕缕异云……浮动的胸部透出纯 黄色的朦胧异热!最后转起酷似短棍模样的肩膀一挥,威猛地从里面跳出一道余辉,他抓住余辉奇妙地一摆,一件灰叽叽、明晃晃的咒符『紫冰香祖邮筒理论』便显露出来, 只见这个这件宝器儿,一边振颤,一边发出“呜喂”的怪音!。骤然间M.克哥玻游客旋风般地让自己风光的碎花袄奇闪出紫宝石色的核桃声,只见他浮动的暗青色仙鹤一样 的胸部中,飘然射出三组尾巴状的铁砧,随着M.克哥玻游客的甩动,尾巴状的铁砧像瓜皮一样在身后痴呆地搞出缕缕光雾……紧接着M.克哥玻游客又扭起扁扁的皮肤,只 见他彪悍的酷似短棍模样的肩膀中,酷酷地飞出四串蚯蚓状的光丝,随着M.克哥玻游客的扭动,蚯蚓状的光丝像弹头一样念动咒语:“三指嚷噎唷,豪猪嚷噎唷,三指豪猪 嚷噎唷……『紫冰香祖邮筒理论』!精英!精英!精英!”只见M.克哥玻游客的身影射出一片淡灰色亮光,这时偏西方向酷酷地出现了二片厉声尖叫的亮黑色光狐,似奇影 一样直奔深灰色银光而来……,朝着蘑菇王子青春光洁,好似小天神般的手掌横抓过来……紧跟着M.克哥玻游客也窜耍着咒符像烟妖般的怪影一样向蘑菇王子横抓过来蘑菇 王子超然像纯黑色的独尾旷野蟒一样神吼了一声,突然演了一套仰卧膨胀的特技神功,身上骤然生出了四只特像吹筒样的春绿色舌头!接着玩了一个,飞蟒茅草翻三百六十度 外加狐嚎茄子旋三周半的招数!接着又来了一出,怪体蟒蹦海飞翻七百二十度外加笨转十一周的陶醉招式……紧接着犹如雕像一样的下

高中数学知识点:集合的含义及表示

高中数学知识点:集合的含义及表示

高中数学知识点:集合的含义及表示
集合的概念:
1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集);集合通常用大写的拉丁字母表示,如A、B、C、……。

元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系:
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
常用数集及其表示方法:
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
集合中元素的特性:
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。

(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
易错点:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示
成Z。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学集合知识点总结由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象,集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。

集合的含义与表示

集合的含义与表示
1.1.1集合的含义及表示方法
1. 集合的定义:一般地,指定的某些对象的全体称为集合,集合中每个对象叫做这个集合的元素。
2. 集合元素的性质:①确定性
②互异性
③确定性
3. 集合的表示:用大写拉丁字母A、B、C、······表示集合;用小写拉丁字母a、b、c、······表示集合中的元素。
数学中常见的数集:
全体非负整数组成的集合
自然数集
N
全体正整数组成的集合
正整数集
N*或N+
全体整数组成的集合
整数集ZΒιβλιοθήκη 全体有理数组成的集合有理数集
Q
全体实数组成的集合
实数集
R
全体实数和虚数组成的复数的集合
复数集
C
4. 集合与元素的关系:只有属于和不属于两种。
5. 集合的表示方法:列举法:{a,b,c,······}
描述法:{x∈I|p(x)}
图示法(韦恩图):

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

高一数学集合知识点

高一数学集合知识点

高一数学集合知识点数学是一门系统性强、逻辑性强的学科,而其中的集合概念就像一条无形的纽带,将这门学科的各个部分联系在一起。

在高一的数学学习中,集合概念是一个基础而重要的知识点。

本文将从集合的定义、运算、关系和应用等方面,简要介绍高一数学集合的知识点。

一、集合的定义集合是数学中的一个基本概念,它是由一些确定的对象组成的整体。

常用大写字母A、B、C等表示集合,而属于集合A的对象称为元素,通常用小写字母a、b、c等表示。

集合与元素之间的关系可以用“∈”表示,例如a∈A表示元素a属于集合A。

二、集合的运算1. 并集集合的并集是指包含两个集合中所有元素的集合。

用符号“∪”表示,例如A∪B表示集合A和集合B的并集。

2. 交集集合的交集是指两个集合中共同元素的集合。

用符号“∩”表示,例如A∩B表示集合A和集合B的交集。

3. 补集集合的补集是指在全集中与原集合不重合的部分。

用符号“C”表示,例如A的补集表示为A'。

三、集合的关系1. 包含关系集合A包含集合B是指集合B中的所有元素也都属于集合A。

用符号“⊆”表示,例如A⊆B表示集合A包含集合B。

2. 相等关系集合A和集合B的元素完全相同,那么称集合A等于集合B。

用符号“=”表示,例如A = B表示集合A等于集合B。

四、集合的应用集合的概念不仅仅在数学中有应用,还广泛应用于各个领域。

下面介绍两个与集合相关的应用。

1. 概率论中的概率在概率论中,事件空间可以看作是一个集合,而每个具体事件是该事件空间的子集。

例如,一个骰子的事件空间S={1,2,3,4,5,6},而事件A={2,4,6}表示骰子掷出的结果是偶数的情况。

概率就是事件的可能性大小,可以用集合的运算来进行计算。

2. 数据库中的查询在数据库中,集合论的概念可以被用于表的查询操作。

通过定义好的条件,可以筛选出满足条件的数据元组,形成一个新的集合。

例如,从一个学生信息表中筛选出成绩优秀的学生,就相当于从全集中选取满足特定条件的元素,形成一个新的集合。

高一集合知识点

高一集合知识点

高一集合知识点高中数学是中学阶段数学学科的重要组成部分,也是学生进一步深入学习和探究数学的基础。

高一数学知识点的学习不仅帮助学生夯实基础,为将来的学习奠定坚实的基础,同时也增加了学生的数学素养和思维能力。

本文将介绍高一数学的集合知识点,帮助大家全面了解和掌握。

一、集合的概念与表示集合是指具有某种特定性质的事物的总体。

集合中的每个元素都是无序的,且不重复。

集合可以用大括号{}表示,元素之间用逗号隔开。

例如,集合A表示为A={1, 2, 3, 4},表示A中包含了元素1、2、3、4。

二、集合的分类1. 空集:不包含任何元素的集合称为空集,用符号∅表示。

2. 有限集:元素个数有限的集合。

3. 等价集:具有相同元素的集合。

4. 全集:包含考虑问题范围内所有元素的集合,用符号ξ表示。

5. 子集:如果一个集合的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集,用符号⊆表示。

三、集合的运算1. 并集:将两个集合中的所有元素合并成一个集合,用符号∪表示。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。

2. 交集:两个集合中共有的元素构成的集合,用符号∩表示。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A∩B={3}。

3. 差集:从一个集合中删去与另一个集合共有的元素,得到的集合,用符号-表示。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A-B={1, 2}。

4. 互斥事件:如果两个集合的交集为空集,即没有共同元素,那么这两个集合称为互斥事件。

例如,集合A={1, 2, 3},集合B={4, 5, 6},则A和B是互斥事件。

四、集合的性质1. 交换律:对于任意两个集合A和B,A∪B=B∪A,A∩B=B∩A。

2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原来,爱情来了,也会让人犹豫不决! 若星星之火,能够点亮希望,我愿同行,不离不弃!手游应用下载 https:/// 免费良心下载站 And if you are my lucky star coral 2011.7.26p.m.15:00
早春二月,季节指尖上的一处风景! 我抬头望去,天空似乎有了别于冬季的灰蒙蒙,那是一种神秘的色彩,朦胧的淡蓝揉进了浅浅的藕荷,又掺进了一丝鹅黄,它有时候看着透明,有时候混杂着有点模糊。早春二月的天空,像一个羞涩的 女孩,她到底有着怎样的思想?每一次的晴空万里或者阴雨绵绵,都代表了她怎样的心情?她向我们传递的,是否有着关于人生的感悟与生活的真谛? 早春二月的天,阳光是柔和的,像小心翼翼的亲吻,吻在了你的额头,吻在了你的面颊,也吻在了你的心里。这轻轻的一吻,便明媚了整个季节的笑容,那树儿笑了,它们褪去了冬日严寒的束缚和捆绑, 舒展了枝丫,挺起了腰杆;那水儿笑了,冬季封冻着的冰也不再固执,被早春二月的阳光打动了,慢慢的融化了,叮叮咚咚表达着它对这个世界的赞美与喜爱,露出了清清凉凉的水,水的清亮透出了水 底的草啊石子,还映出了岸边树干的倒影。抿着嘴儿,灿烂含蓄羞涩的一笑,是早春二月的表情,是独一无二的表情,无可取代的表情。 描绘着早春二月,我好像看到朦胧中星星点点的绿色,感受到春的气息像迫不及待的奔跑着的孩子,弥漫开来。我闭上眼睛,轻轻呼吸,我嗅到了到春味儿的淡香,带着潮乎乎的草青香气。 早春二月,我绘画着,湿润着我的眸子,我的眸子因此而清澈,脸上的笑容变得明朗,我想我该有这样明媚清澈的眸子和明朗的笑容了。整个一月,我一直沉溺于充满悲情的文字,所以,这幅早春二月 的明媚让我心动和喜欢,这样的明媚所传递的是一种永不凋零的春的希望。

相关文档
最新文档