2015考研提高班线性代数例题-1行列式
考研辅导--线性代数--第1章行列式
第一章 行列式◆ 基础知识概要1.n 阶行列式的定义二阶行列式2112221122211211a a a a a a a a -=.三阶行列式.333231232221131211a a a a a a a a a 112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---.对角线法则:n 阶行列式的定义()1212111212122212,,,121...n nn tnj j nj j j j n n nna a a a a a D aa a a a a ⋅⋅⋅==-∑ ,它是取自不同行不同列的n 个数的乘积1212...n j j nj a a a 的代数和(共!n 项),其中各项的符号为()1t-,t 代表排列12,,,n j j j ⋅⋅⋅的逆序数,简记为()det ij a .n 阶行列式也可定义为()121212,,,1...nnt i i i n i i i D a a a ⋅⋅⋅=-∑,其中t 为行标12,,,n i i i ⋅⋅⋅排列的逆序数.例1.1 计算行列式(1)12n λλλ;(2)12nλλλ.练习:计算下列行列式(1)234134201300400; (2)111212220n nnna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(上三角形行列式);(3)11212212n n nna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅ (下三角形行列式).2. 行列式的性质与计算 2.1行列式的性质(1)行列式与其转置行列式相等;(2)互换行列式的某两行(列)得到新行列式则新行列式应反号;特别地:若行列式中有两行(列)对应元素相等,则行列式等于零; (3)行列式中某一行(列)的所有元素的公因数可以提到行列式的外面; 即以数k 乘以行列式等于用数k 乘以行列式的某一行或某一列; 特别地:若行列式中有一行(列)的元素全为零,则行列式等于零; (4)行列式中如果有某两行(列)对应元素成比例,则行列式的值为零; 特别地:比例系数为1(5)若行列式的某一列(行)的元素是两数之和,例如,第i 列的元素都是两数之和:()()()1112111212222212i i n i i nn n ni ninn a a a a a a a a a a D a a a a a '⋅⋅⋅+⋅⋅⋅'⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅+⋅⋅⋅,则D 等于如下两个行列式之和:1112111112112122222122221212i n i n i n i n n n ninnn n ninn a a a a a a a a a a a a a a a a D a a a a a a a a '⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.(6)把行列式的某一行(列)的各元素的k 倍加到另一行(列)的对应元素上,行列式的值不变.注:(1)交换行列式的第,i j 两行(或列),记作i i r r ↔(或i j c c ↔); (2)第i 行(列)提出公因子k ,记作i r k ÷(或i c k ÷);(3)以数k 乘第j 行(列)加到第i 行(列)上,记作i j r kr +(或i j c kc +).范德蒙(Vandermonde )行列式()3122222123111111231111nn i j nj i nn n n n nx x x x V x x x x x x x x x x ≤<≤----⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅∏注 右边是“大指标减小指标”.例1.2 计算行列式111311212524131122D ---=.(答:332)练习:计算行列式(1)3112513420111533D ---=---;(答:40)(2)3111131111311113D =;(答:48) (3) 1234234134124123D =;(答:160) (4)2324323631063a b c d aa b a b c a b c d D a a b a b c a b c d aa b a b c a b c d++++++=++++++++++++;(答:4a )(5)222111a ab acD ab b bc acbcc +=++;(答:2221a b c +++) (6)1234000000a x a a a x xD x x x x +-=--;(答:431i i x x a =⎛⎫+ ⎪⎝⎭∑) (7)222b c c aa b D ab c a b c +++=; (8)()()()()()()()()()()()()2222222222222222123123123123a a a a b b b b D cc c cd d d d ++++++=++++++.2.2行列式依行(列)展开余子式:ij M ,代数余子式:()1i jij ij A M +=-定理1.1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即()112211,2,,ni i i i in in ik ik k D a A a A a A a A i n ==++⋅⋅⋅+==⋅⋅⋅∑,或()112211,2,,nj j j j nj nj kj kj k D a A a A a A a A j n ==++⋅⋅⋅+==⋅⋅⋅∑.注:此定理的主要作用是——降阶.推论 行列式的任一行(列)的各元素与另一行(列)对应的代数余子式乘积之和等于零,即()112210ni j i j in jn ik jk k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑,或()112210ni j i j ni nj ki kj k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑.例1.3 用降阶的方法解例1.2.练习:用降阶的方法求解上面练习第(1)题.例1.4 设1121234134124206A --=-,求(1)12223242234A A A A -+-; (2)3132342A A A ++.解 (1)1222324212122122313241422340A A A A a A a A a A a A -+-=+++=. (2)因为ij A 的大小与元素ij a 无关,因此,313234112111214132341410322121401201120142642064206A A A -----++===-=---.练习:(1)设1234511122321462221143156,则(a )313233A A A ++=?(b )3435?A A +=(c )5152535455?A A A A A ++++=(答:0,0,0)(2)设,ij ij M A 分别为行列式3010222202001201D =--中元素ij a 的余子式和代数余子式,试求(a )31323334A A A A +++; (b )41424344M M M M +++; (c )14244432M M M -++.2.3拉普拉斯(Laplace )展开定理定义 在一个n 阶行列式D 中,任意选定k 行(比如第12,,k i i i ⋅⋅⋅行)和k 列比如12,,k j j j ⋅⋅⋅列)(k n ≤).位于这些行和列的交点上的2k 个元素按照原来的位置组成一个k 阶行列式,称为行列式D 的一个k 阶子式,记作1212k k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭,划去12,,k i i i ⋅⋅⋅行和12,,k j j j ⋅⋅⋅列后余下的元素按照原来的位置组成的n k -阶行列式,称为k 阶子式1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭的余子式,记作1212k c k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭.在余子式前面加上符号()()()12121k k i i i j j j ++⋅⋅⋅++++⋅⋅⋅+-后被称之为的代数余子式.记作()121212121s t k k c c k k i i i i i i A A j j j j j j +⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=- ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,这里1212,k k s i i i t j j j =++⋅⋅⋅+=++⋅⋅⋅+.定理1.2 在n 阶行列式D 中,任意选定k 列121k j j j n ≤<<⋅⋅⋅<≤,则12121211212k k k c i i i nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑. 类似地,任意选定k 行121k i i i n ≤<<⋅⋅⋅<≤,则12121211212k k k c j j j nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑.证 (略)注 这是定理1.2的推广,它仍然是一种——降阶的思想.例1.4 在行列式1214012110130131D -=中取定1,2行,得到6个子式1,21211,201A ⎛⎫==- ⎪-⎝⎭, 1,21121,302A ⎛⎫== ⎪⎝⎭, 1,21411,401A ⎛⎫== ⎪⎝⎭, 1,22152,312A ⎛⎫== ⎪-⎝⎭, 1,22462,411A ⎛⎫== ⎪-⎝⎭, 1,21473,421A ⎛⎫==- ⎪⎝⎭. 对应的代数余子式分别是()()()12121,213181,231c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12131,203131,311c A +++⎛⎫=-= ⎪⎝⎭, ()()()12141,201111,413c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12231,213112,301c A +++⎛⎫=-= ⎪⎝⎭, ()()()12241,211132,403c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12341,210113,401c A +++⎛⎫=-= ⎪⎝⎭. 由Laplace 展开定理可知()()()()()1823115163717D =-⨯-+⨯+⨯-+⨯+⨯-+-⨯=-.例1.5 证明111111111111111111110000k k r k kk k r k kk r rrr rkr rra a a ab b a ac c b b a a b b c c b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅. 证 由Laplace 定理展开,选定第1,2,,k ⋅⋅⋅行,得12112121,2,1,2,,k c j j j nk k k k D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑1,2,1,2,,1,2,,1,2,,c k k A A k k ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭()()()1111111212111k rk k k kk r rra ab b a a b b ++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=⋅-⋅⋅⋅⋅⋅⋅11111111k rk kk r rra ab b a a b b ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅.注 例1.5的结论可以简记为A ABC B=⋅.练习:1.计算(1)123451234512121200000000a a a a ab b b b bc cd de e ; (2)1111111111110000k kk krk kk rr rrc c a a c c a a b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.2. 设A 为n 阶方阵,A a =,B 为m 阶方阵,B b =,则23O AB O为( )(A )6ab -, (B )23n mab -, (C )()123mnn m ab -, (D )()123m nn m ab +-.◆ 行列式的计算举例例1.6 计算n 阶行列式n x a a a a x a aD a a x a a a a x=解法1112,3,2,3,(1)(1)(1)000(1)000(1)000i i C C r r ni ni nx n a a a a x n a aa a x n a x a a x a D x n a a x a x a x n a a a x x a+-==+-+-+--==+--+-- []()1(1)n x n a x a -=+--.解法212,3,11111100010000100001i r r n i n nn n a a a a a a a a xaa axaa ax aa x a aa x a a x a D aa x a a a x a x a a a a x aaa xx a -=+++----===----①如果x a =,则1110000100000100001n n a a a a D +--==--②如果x a ≠,则12,3,11100000000(1)()0000C i x anax aC n nanx ai n n a a a a x a x a D x a x a x a --+-=+++--==+--- .综合①、②有:()()11n n D x n a x a -=+--⎡⎤⎣⎦.例1.7 计算行列式1221100001000000001n nn n xx x xa a a a x a ----∆=-+.解 按第一列展开,12321100001000001n n n n x x x x a a a a xa -----∆=-+110001000(1)01000001n n xa x x +--+---()121n n n n n x a x x a a ---=∆+=∆++221n n n x a x a --=∆++== 12121n n n n x a x a x a ---∆++++又111x a x a ∆=+=+,11n n n n x a x a -∴∆=+++ .例1.8 计算2n a ba bab Dcd c dcd=.解法1 依第一行展开12200(1)00000000n n a ba b ab a b D ab cdc dcdcdd c +=+-2112(1)2(1)2(1)(1)()n n n n adD bc D ad bc D -+---=--=-,222(1)2(2)112()()()()().n n n n n n D ad bc D ad bc D a b ad bc D ad bc ad bc cd----=-=-==-=-=-解法2 利用Laplace 展开定理,选定第1行和第2n 行展开,则1221212121,21,2,,c n j j nn n D A A j j j j ≤<≤⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭∑1,21,21,21,2c n n A A n n ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭ ()()()()1212211n n n a b D c d+++-=⋅-()()21n ad bc D -=-⋅=⋅⋅⋅ 1()n ab ad bc cd-=- ().n ad bc =-练习:计算n 阶行列式(1)122222222232222n D n=;(答:()22!n --)(2)01211111001001n n a a a D a -=,其中110n a a -⋅⋅⋅≠;(答:111011n n i i a a a a --=⎛⎫⋅⋅⋅- ⎪⎝⎭∑)(3)2222212121212naa aa aDaaa a=;(答:()1nn a+)(4)()()()()111111111n nnn nnna a a na a a nDa a a n----⋅⋅⋅--⋅⋅⋅-=-⋅⋅⋅-⋅⋅⋅;(5)1231110000220000011 nn n Dn n⋅⋅⋅--⋅⋅⋅=-⋅⋅⋅⋅⋅⋅--。
考研数学(二)题库(线性代数)-第一章 行列式【圣才出品】
【答案】6
【解析】根据行列式的性质可知
A3 2A1 把第3行的2倍加到第1行 A3
A3
A1
3A2
3A2 3 A2 3 A2 6
A1
A1
A1
A3
bca 5. b c c d a b ______。
222 cd b
3 / 21
圣才电子书
【答案】0
十万种考研考证电子书、题库视频学习平台
1 / 21
圣才电子书 十万种考研考证电子书、题库视频学习平台
ur
ur
r
r
→ →→
→
3.设
3
阶矩阵
A
2 r
2
2 3
,
B
r
2 3
,其中α
,β,γ
2,γ 3
均为
3
维行向量,且已知
行列式|A|=18,|B|=2,则行列式|A-B|等于( )。
A.1
B.2
12x
【答案】-3
【解析】根据行列式的定义,能出现 x2 的只有以下两项:(-1)r(132)a11a23a32
+(-1)r(213)a12a21a33=-3x2,因此 x2 的系数为-3。
2.在 n 阶行列式 D=|aij|中,当 i<j 时,aij=0(i,j=1,2,…,n),则 D=______。 【答案】a11a22·…·ann
2 / 21
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】根据题中所给条件可知,行列式 D 为
a11 0 L D a21 a22 L
MM an1 an2 L
0 0 M a11a22 gL gann ann
考研高数之线性代数自我检测试题(附详细答案解析)第一章行列式答案
第一章 行列式1.利用对角线计算下列行列式(1) 381 1 4 11 0 2- - - 4 -= (2) ba c a c bcb a 33 3 3 a b c abc - - - = 2.按自然数从小到大为标准次序,求下列排列的逆序数 (1) 1 2 34 0 (2) 4 1 3 2 4 (3) 3 4 2 15(4) 2 4 1 33(5) 1 3 ┈(2n1) 2 4 ┈(2n ) 2) 1 ( nn - (6) 1 3 ┈(2n1)(2n)(2n2)┈2 )1 ( - n n 3.写出四阶行列式中含有因子 23 11 a a 的项 4432 23 11 a a a a - 3442 23 11 a a a a 4.用行列式的定义计算下列行列式(1) nn n n a a a a a D 0 0 00 0 0 0 00 0 0 0 00 0 0 0 1 2 2 1 L L L M M M L M M L L - - =( )nn n a a a L 2 1 2)1 )(2 ( 1 - - - (2) 443332 23 21 1211 4 00 0 0 0 0 0 a a a a a a a D =4432 23 11 44 33 21 12 a a a a a a a a - - 5.计算下列各行列式(1) 07 1 1 02 5 10 2 0 2 1 4 2 1 4= =D 【解析】71120 2 15 4 2 7 711202 15 0 2 0 2 1 4 2 7 0= - - - - - = - - - -(2) abcdef efcfbfde cd bdaeac abD 4 = - - - = (3) ( ) [ ]( )11 - - + - = = n na x x a n xa aa x a aa xD L L L L L L L (4) n D na a a a + + + + =1 1111 1 1 1 1 1 1 11 1 1 1 3 21 L LLL L L L L L na a a a a a a L L L L L L L L L 0 00 0 00 1 1 1 1 13 121 1 - - - + = nni ia a a a L 2 1 1 ) 1 1 ( å = + = (其中 0 2 1 ¹ n a a a L )6.证明 322) ( 1 1 1 2 2 b a b b a a b aba - = + 利用对角线法则可得证7.计算下列各行列式:(1) ) 1 ( ) 1 )( 1 ( 1 0 0 11 0 1 1 1 014+ + + + = - - - = d a cd ab d cb aD 【解析】 ) 1 ( ) 1 )( 1 ( 1 0 1 1 0 0 1 ) 1 ( ) 1 ( 1 0 1 1 1 1 1 0 011 0 11 1 01 12 + + + + = - - - - + - - = - - -+ d a cd ab dc d c b a d cb a(2) aa aD nL M M M M L L0 1 0 0 10 = ,其中对角线上的元素都是a ,未写的元素都为零【解析】 )1 ( ) 1 ( 1 )1 ( ) 1 ( 0 0 0 0 1 0 0 1 ) 1 ( 0 00 0 0 0 0 10 01 0 - ´ - + - ´ - ´ ×× - + = n n n n n nn aa a a a aa a aLM LO M L L L MLM M L L L MMMM L L 2- - = n n a a(4) b a c a cb ac b c b a cb a D 2 2 2 + + + + + + =( )32 2 2 2 2 2 2 2 2 2 2 2 c b a ba c a cb a b ac b c b a b a c b a D + + = + + + + + + + + + + = (5)125 343 27 64 573425 49 9 16 1 1 1 1- - =D ( ) ( ) 1036812 12 8 9 573 4 573457 3 4 11 1 1 3 3 3 3 2222 - = ´ ´ ´ - = - - - =D 8.解下列方程(1)9 1 32 5 13 2 32 2 1 32 11 22= - - x x 【解析】( )( )( ) 0 31 4 4 0 00 5 1 3 2 0 0 1 0 32 1 1 9 1 32 5 13 2 3 2 2 1 3 2 1 1 2 2222 2= - - - = - - =- - x x x x x x 故可得 1 ± = x 或 2± = x (2)0 00 0 0 = a x a a a x x a a a x a 【解析】 ( )0 0 1 1 1 1 2 00 0 2 2 2 2 00 0 0 a x a aa x xa a x a axaa a x x a a x a x a x a x a a x a a a x x a a a x a + = + + + + =( )( ) ( ) 0 4 0 02 0 0 0 0 0 1 1 1 1 2 2 24 = - = - - - - - - - + = - - - - - - - + = a x xxx xa x x a x x x a a a x x a x x a ax a x a 故可得 0 = x ,或者 ax 2 ± =。
线性代数习题-[第一章]行列式
习题1—1 全排列及行列式的定义1. 计算三阶行列式123456789。
2. 写出4阶行列式中含有因子1324a a 并带正号的项。
3. 利用行列式的定义计算下列行列式:⑴00040030020010004D⑵0000000005251424132312524232221151********a a a a a a a a a a a a a a a a D =⑶000100002000010nn D n -=4. 利用行列式的定义计算210111()021111xx x f x x x-=中34,x x 的系数。
习题1—2 行列式的性质1. 计算下列各行列式的值:⑴214101211202562-⑵efcfbfde cd bdae ac ab---⑶2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a2. 在n 阶行列式nnn n nna a a a a a a a a D 212222111211=中,已知),,2,1,(n j i a a ji ij =-=,证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值:⑴xaaa x a a a xD n=⑵nn a a a D +++=11111111121()120n a a a ≠习题1—3 行列式按行(列)展开1. 已知ij A 是行列式122305403--的元素ij a (3,2,1,=j i )的代数余子式,求323127A A +的值。
2. 按第三列展开下列行列式,并计算其值:11111110101dcb a ------3. 计算下列n 阶行列式的值⑴aa a aD n 01000000100=⑵xy yx y x y x D n 000000000000=4. 试用数学归纳法证明:n n n n n n nn a x a x a x a x a a a a x x xD ++++=+---=----1111221100000100001习题1—4 克拉默法则1. 用克拉默法则解下列方程组:⑴⎪⎩⎪⎨⎧=+-=+--=-+44522272532z y x z y x z y x⑵⎪⎪⎩⎪⎪⎨⎧-=++-=+-+=---=-++8232422383226232t z y x t z y x t z y x t z y x2. 判断齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+028*******z y x z y x z y x 是否仅有零解?3. 问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(z y x z y x z y x λλλ有非零解?4. λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=-+0200z y x z y x z y x λλ仅有零解?。
线性代数习题集[带答案解析]教学提纲
线性代数习题集[带答案解析]仅供学习与交流,如有侵权请联系网站删除 谢谢1第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 2仅供学习与交流,如有侵权请联系网站删除 谢谢27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题仅供学习与交流,如有侵权请联系网站删除 谢谢31. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.仅供学习与交流,如有侵权请联系网站删除 谢谢410.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .仅供学习与交流,如有侵权请联系网站删除 谢谢516.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;仅供学习与交流,如有侵权请联系网站删除 谢谢65. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.仅供学习与交流,如有侵权请联系网站删除 谢谢7四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .仅供学习与交流,如有侵权请联系网站删除 谢谢8参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. ∏-=-11)(n k k a x5. )111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)仅供学习与交流,如有侵权请联系网站删除 谢谢9第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数重要知识点及典型例题答案
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
《线性代数》第一章行列式精选习题及解答
第一章 行列式1.1 目的要求1.会求n 元排列的逆序数;2.会用对角线法则计算2阶和3阶行列式; 3.深入领会行列式的定义;4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质;7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.1.2 重要公式和结论1.2.1 n 阶行列式的定义n 阶行列式 nnn n n n a a a a a a a a a D (2122221)11211=n n np p p tp p p a a a ...)1(212121)...(∑−=.其中是n 个数12…n 的一个排列,t 是此排列的逆序数,∑表示对所有n 元排列求和,故共有n !项. n p p p ...211.2.2 行列式的性质1.行列式和它的转置行列式相等;2.行列式的两行(列)互换,行列式改变符号;3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数乘此行列式的任意一行(列);4.行列式中若有两行(列)成比例,则该行列式为零;5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n in i i nnn n n in in i i i i n a a a a a a a a a a a a b a b a b a a a a L MMM L M M M L LMM M L MM M L21211121121221111211=++++nnn n ini i na a ab b b a a a L MMM L M M M L 2121112116. 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 1.2.3 行列式按行(列)展开设D 为n 阶行列式,则有=∑=nK jkika A 1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0...2211=∑=nK jkika A1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0 (2211)其中是的代数余子式. st A st a 1.2.4 克拉默法则1.如果线性非齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L M M M M M L L 22112222212111212111的系数行列式,则方程组有唯一解0≠D DD x 11=( i=1,2,…,n ),其中是D 中第i 列元素(即的系数)换成方程中右端常数项所构成的行列式.i D i x 2.如果线性齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a L M M M M M L L的系数行列式,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行列式.0≠D 0=D 1.2.5 一些常用的行列式1.上、下三角形行列式等于主对角线上的元素的积.2.设 kk k k a a a a D L M M ML 11111=,nnn nb b b b D L M M M L 11112=,则 211111*********D D b bc c b b c c a a a a nn n nkn n k kkk k =L L M M M MM ML L L MMM L .3.范德蒙行列式)(..................1 (11)11121121i j nj i n nn n n a a aaaa a a −=∏≤<≤−−−.1.2.6 计算行列式的常用方法1.利用对角线法则计算行列式,它只适用于2、3阶行列式; 2.利用n 阶行列式定义计算行列式; 3.利用行列式的性质化三角形法计算行列式; 4.利用行列式按某一行(列)展开定理计算行列式; 5.利用数学归纳法计算行列式; 6.利用递推公式计算行列式;7.利用范德蒙行列式的结论计算特殊的行列式; 8.利用加边法计算行列式; 9.综合运用上述方法计算行列式.1.3 例题分析例1.1 排列14536287的逆序数为 ( )(A) 8 (B) 7 (C) 10 (D) 9解 在排列14536287中,1排在首位,逆序数为0;4、5、6、8各数的前面没有比它们自身大的数,故这四个数的逆序数为0;3的前面比它大的数有2个(4、5),故逆序数为2; 2的前面比它大的数有4个(4、5、3、6),故逆序数为4;7的前面比它大的数有1个(8),故逆序数为1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B ).例1.2 下列排列中( )是偶排列.(A)54312 (B)51432 (C) 45312 (D) 654321解 按照例1的方法计算知:排列54312的逆序数为9;排列51432的逆序数为7;排列45312的逆序数为8;排列654321的逆序数为15;故正确答案为(C ).例1.3 下列各项中,为某五阶行列式中带正号的项是( ). (A) (B) (C)(D) 5541324413a a a a a 5415413221a a a a a 5214432531a a a a a 5344223115a a a a a 解 由行列式的定义知,每一项应取自不同行不同列的五个元素之积,因此(A)、(B)不是五阶行列式的项,但(C)应取负号,故正确答案为(D ).例1.4 行列式351232113,010101021=−=D D λλλ, 若21D D =,则λ的取值为( ) (A) 2, —1 (B) 1, —1 (C)0, 2 (D)0,1解 按三阶行列式的对角线法则得.若,则,于是0,)1)(1(221=−+=D D λλ21D D =0)1)(1(2=−+λλ1,1−=λ,故正确答案为(B ).例1.5 方程组有唯一解,则( ).⎪⎩⎪⎨⎧=++=++=++111321321321x x x x x x x x x λλλ(A)1−≠λ且2−≠λ (B) 1≠λ且2−≠λ (C) 1≠λ且2≠λ (D) 1−≠λ且2≠λ解 由克拉默法则知,当所给非齐次线性方程组的系数行列式不等于0时,该方程组有唯一解,于是令行列式0)1)(2(1111112≠−+=λλλλλ 即1≠λ且2−≠λ,故正确答案为(B ).例1.6 ==2006200420082006D ( ).分析 对于2、3阶行列式的计算,元素的数值较小时,可以直接采用对角线法则进行计算;但元素的数值较大时,一般不宜直接采用对角线法则进行计算,而是用行列式的性质进行计算.解 此题是一个2阶行列式,虽然可以直接用对角线法则计算,但因数值较大,计算较繁,因此要仔细观察分析,用行列式的性质求解.402221003200622008220062004200820061221=−−+−−−=c c c c D ,故答案为4.例1.7 ==3214214314324321D ( ). 分析 如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法) .解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 101230121012101111103214214314321111−−−−−−= 160400004001210111110=−−−=.例1.8设xx x x x x f 111123111212)(−=,则的系数为( ),的系数为( ). 4x 3x 分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦时,再考虑用行列式的计算方法进行计算.解 从的表达式和行列式的定义可知,当且仅当的主对角线的4个元素的)(x f )(x f积才能得出,其系数显然是2. 当第一行取4x )1(13=a 或)2(14=a ,则含或的行列式的项中是不出现,含的行列式的项中是不出现,于是含的项只能是含,,,的积,故的系数为13a 14a 3x )2(11x a =3x 3x 12a 21a 33a 44a 3x 1−.故答案为2 ,1−.例1.9 设0123411222641232211154321=D ,则(1)=++333231A A A ( ), (2)=+3534A A ( ), (3)=++++5554535251A A A A A ( ). 分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,充分利用按行(列)展开的计算方法来进行技巧计算.解 00123411222221112211154321)(23534333231==++++A A A A A (第2,3行相同) 即 =0. 同理 )(2)(3534333231A A A A A ++++)()(23534333231A A A A A ++++=0 于是 0, =++333231A A A =+3534A A 0.011111333336412322111543211111111222641232211154321245554535251=+=++++r r A A A A A 故答案为0,0,0.例1.10 2007000000002006000200500020001000L L L MM MM M M L =D .分析 当行列式中有较多零元素时,一般可以采用行列式的定义或按行(列)展开来计算.解 此行列式刚好只有n 个非零元素,故非零项只有一项:nn n n n a a a a ,,,,112211−−−L nn n n n t a a a a 112211)1(−−−−L ,其中 2)2)(1(−−=n n t ,因此 !2007!2007)1(2)22007)(12007(−=−=−−D .此题也可以按行(列)展开来计算. 例1.11 计算n 阶行列式2111121111211112L M M M M L L L =n D解法1 (行(列)加法)因为这个行列式的每一行的n 个元素的和都为n+1, 所以将第2,3,…,n 列都加到第一列上,得),3,2(,2111121111211111)1(21111211112111111n i r r n n n n n D i n L L M M M ML L L L M M M M L L L =−+=++++=1101000101111)1(+=+n n L M M M M L L L解法2 (加边法))1,,3,2(211111211111211111210000111+=−==+n i c c D D i n n L L M M M M M LL L L11000101001010100011000011000101001001010001111111121+=++++−−−−+n n r r r n L M M M M M LL L L L L M M M M M L L L L . 解法3 (利用行列式的性质)101010100111112),,3,2(21111211112111121L M M M M L L L L L M M M M L L L −−−=−=n i r r D i n11000100010111121+=++++n n c c c n L M M M M L L L L .例 1.12 计算nn n n nn n y x y x y x y x y x y x y x y x y x D +++++++++=111111111212221212111L MM M L L . 解 当n=2时,))((11111212221221112y y x x y x y x y x y x D −−=++++=当n≥3时,111212112122111121111()()()0()()()n nn n n n x y x y x y x x y x x y x x y D x x y x x y x x y +++−−−==−−−L L M M M L n.例1.13 计算nn n n nn n n x x x x x x a a a a a x a D 1122112321100000000000−−−−−−−−+=L L M M M M M M LL其中.),,2,1(0n i x i L ≠≠解 因 )1(11111111x a x x a x a D +=+=+=, 1(221121212112x ax a x x x x a x a D ++=−+=, 归纳推得 )1(1121nn n n x a x a x x x D +++=L L . 用数学归纳法证明上式, 假设当k=n-1时结论成立,即)1(11111211−−−−+++=n n n n x a x a x x x D L L . 则当k=n 时,将按第n 列展开,得n D ))(())(()1(122111−−+−−−−−−+=n n n n n n n x x x x a D x D L 1221111)1()1(−−−+−−−+=n n n n n n n x x x x a D x Ln n nn n n n x a x x x x x D x 12211−−−+=L 1(1121nn n x a x ax x x +++=L L 即当k=n 时结论也成立,故对一切自然数结论都成立.例1.14 计算222111222333n nn nD n n n =L L L M M M L 解 (利用范德蒙行列式计算)1113213211111!−−−==n n n Tnn n n n D D L MMM M LL )]1([)2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L !2)!2()!1(!L −−=n n n .例 1.15 计算 βαβαβαβαβαβαβαβα+++++=L L MM M M ML LL 000000000000n D .解 按第一列把D n 分成两个行列式的和+++++=βαβαβαβαβαβαααL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαβ++++L L MM MM M LL L0000000000000n n n D D βαβαββαβαβα+=+=−−110000000000000000L L MM M M M L L L (1) +++++=βαβαβαβαβαβααβL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαα++++L L MM MM M LL L 00000000000000n n n D D αβαβααβαβαβ+=+=−−1100000000000000L L M MM M M L L L (2) (a) 当βα≠时 ,由(1)(2)得 =, 则n n D βα+−1nn D αβ+−1βαβα−−=−nn n D 1.于是 βαβα−−=++11n n n D .(b) 当βα=时,由(1)得 .n n n n n D D ααα)1(1+==+=−L例1.16 设, 证明:0>>>c b a 01222<++abca bc c b a cb a cabc ab . 证明 将行列式的第1行)(c b a ++×,第2行)1(−×,然后加到第3行,得ca bc ab ca bc ab ca bc ab c b a c b a ab ca bc c b a c b a ++++++=222222 222222111)(111)(c b a c b a ca bc ab c b a c b aca bc ab ++=++= ))()()((a b b c a c ca bc ab −−−++=于是,不等式的左边=))()((a b b c a c −−−.由于,从而,0>>>c b a 0)(<−a c 0)(,0)(<−<−a b b c ,因此,当时,0>>>c b a 01222<++abca bc c b a cb a cabc ab .例 1.17 设在上连续,在内可导,试证:至少存在一个)(),(),(x h x g x f ],[b a ),(b a ),(b a ∈ξ,使得0)(=′ξH .其中 )()()()()()()()()()(x h x g x f b h b g b f a h a g a f x H =.证明 由题设知在上连续,在内可导,又由行列式的性质可知,于是由洛尔中值定理可知,至少存在一个)(x H ],[b a ),(b a 0)()(==b H a H ),(b a ∈ξ,使得0)(=′ξH .1.4 独立作业1.4.1 基础训练1.设ij a D =为阶行列式,则在行列式中的符号为( ) . n 11342312n n n a a a a a −L (A) 正 (B) 负 (C) (D) 1)1(−−n 2)1()1(−−n n2.行列式为0的充分条件是( ).n D(A) 零元素的个数大于n; (B) 中各行元素的和为零; n D (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式不为零,利用行列式的性质对进行变换后,行列式的值( ). n D n D (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=−−x x x的根为 ( ).(A) 1,2,2− (B)1,2,3 (C)1,1−,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=−−−−−−=33323331232223211312131********a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.ab b a log 11log = ( ).8.行列式c b d c a b cb a , 则=++312111A A A ( ).9.函数x x x x x f 121312)(−=中,的系数为( ).3x 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.00000000x y y x y x x y D = 13.20000120000001301200101−−=D , 14.xyz zx yyz x 111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000−−−−−L M M M M M LL L ,(其中),,2,1(,0n i a i L =≠) 18.n x x x D L M M M M LL L 01001001111021= (),,2,1,0n i x i L =≠ 19.43211111111111111111x x x x ++++, 20.nL M M M ML L L 22223222222222121.211121112L L L L L L =n D .22.当μ取何值时,齐次线性方程组有非零解?⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明αααααααsin )1sin(cos 210001cos 200000cos 210001cos 210001cos 2+=n L L M MM M M LL L (其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,为*A A 的伴随矩阵,则*A A 为( ) (A) 2A (B) 12−n A(C) nA2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00A B( ). (A)B A − (B) B A (C) B A mn )1(− (D) B A n m +−)1(3.若xxx x x x g 171341073221)(−−−−=,则的系数为( ). 2x (A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212−−−−−−−−−−−−−−−=x x x x x x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当( )时,方程组只有零解.≠a ⎪⎩⎪⎨⎧=+−=++=+02020z y ax z ax x z ax (A)-1 (B) 0 (C) -2 (D) 26.排列可经过( )次对换后变为排列. n r r r r L 321121r r r r n n n L −−7.四阶行列式中带负号且含有因子和的项为( ).12a 21a 8.设y x ,为实数,则当=x ( ),=y ( )时,010100=−−−x yy x . 9.设A 为4阶方阵,B 为5阶方阵,且,2,2−==B A 则 =−A B ( ),=−B A ( ).10.设A ,B 为n 阶方阵,且,2,3−==B A 则 =−1*3B A ( ). 11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A =+−12A E ( ).13.解方程组011112222212112=nnnnnnn b b b b b b b b b x x x L M M M M L L L ,其中为各不相同的常数. n b b b b ,,,,321L 14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n L M M M L L =∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LM M M L M M M L 15.设xx x x x x x g 620321)(332=,求)(x g ′.16.设17131231533111)(85222−−−−−−=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(=′ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151−=A ,计算44434241A A A A +++的值,其中是)4,3,2,1(4=i A i A 的代数余子式.20.利用克莱默法则求解方程组.⎪⎩⎪⎨⎧=+−=+−=−+3232222321321321x x x x x x x x x 21.求极限111cos sin 3212sin 1231lim23x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B)6.解=×==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c a cb A A A ,故答案为09.解 因为在此行列式的展开式中,含有的只有主对角线上的元素的积,故答案为 10.解 由范德蒙行列式得行列式的值为2883x 2−11.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 x y x y x x xyy yxy xyyx y xxy D 0000000000000000−−==22222)(y x xyyx x x yy x y −−=−= 13.解 0131201014200013120101220000120000001301200101−×−=−×−=−−=D 20311243131200014=−−×−=−−×−=14.解 yzx z x y x z y x z x y z x y yzx xy zzx yyz x−−−−=−−−−−−=11))(()(0)(01111=))()((x z z y y x −−−15.解 520003520003520003500003352000352000352000352000325200035200035200035200035+= =5203520035200353252000352000352000350000332000320000320000320000325+=+==L 665 16.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x −−−+−−−+−−−+−−−+=++++++++++++++++=017.解132111322113210000000)1(00000000−+−−−−−−×−=−−−=n n n n n n n n a a a a b a a a a a a b b b b b D L MMM M MLL L L M M M M M M L L L=−−×+−−−−12221122100n n n n n a a a a a b b b b a L MMM M M LL L ==+−L L 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a L18.解 由第()列的i n i ,,2,1L =ix 1−倍加到第一列上去. nni inx x x x x x x D L MM M ML L LL MM M M LL L 0000000011111001001111021121∑=−===)1(121∑=−n i i n x x x x L19.解43211114321100100111111111111111111x x x x x x x x x x x −−−+=++++432111413121100000001x x x x x x x x x x x x x −−−++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221−−=n nL MM M M LL L L M M M M L L L 20212002−−=n L M M M ML L =)!2(2−−n 21.解 211121111)1(211121111211121112L LL L L L L L L L L L L L L L L L +=+++==n n n n D n 1101011001)1(+=+=n n L L L L L L22.解 由齐次线性方程组有非零解的条件可知0111213142=−−−−−−μμμ 解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组有非零解.⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明 (1)当时,结论显然成立, (2)假设当1=n k n ≤时,结论成立, (3)当时1+=k n11cos 2101cos 200000cos 210001cos 210001cos 2++=k k D αααααL L M M M M ML L Lkk D ααααcos 21010000cos 210001cos 2100001)1(cos 23L M M M M M LL L L −+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=−=−+=−k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(−n n , 7. 44332112a a a a 8.0, 0, 9.32, 64 , 10.2312−−n , 11.277, 12.6 13.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1L =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n L L M M ML L L ∑−== ))())(()()()1((111)(12211x a x a dx d x a x a n i n p p p p p p p tL L L ∑−=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LMM M L M M M L15.利用(14)的结论进行计算便可得结果,答案为6.2x 16.(用罗尔中值定理证)证明 (1)显然是多项式,故在上连续,在()(x g )(x g ]1,0[)1,0内可导,且 ,从而由罗尔中值定理知,存在0)1()0(==g g )1,0(∈ξ,使得0)(=′ξg . 17.用行列式的性质3的推论(同济四版)18.证明 33333333333301111x z xy xz xy x z x y x x z x y x z y x z y x−−−−=−−−−=0))()()((11))((2222=++−−−=++++−−=z y x y z x z x y xxz z x xy y x z x y 由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 6111132114311315144434241=−=+++A A A A , 20. 11=x ,, 22=x 33=x 21.解 (用罗必塔法则求解)11100013212001230000111231001100sin cos 3212sin 123230cos 11231lim1101cos sin 3212sin 1231lim223230=+=−+=→→x x x x x x x x x x x x x x x x x。
(完整版)线性代数习题集带答案
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数1行列式
线性代数1⾏列式⼆阶⾏列式所谓⼆阶⾏列式,是由四个数,如a11,a12,a21,a22排列成含有两⾏两列形如a11a12a21a22的式⼦,它表⽰⼀个数值,其展开式为a11a12a21a22=a11a22−a12a21三阶⾏列式所谓三阶⾏列式,是由九个数,如a11,a12,a13,a21,a22,a23,a31,a32,a33排列成含有三⾏三列形如a11a12a13a21a22a23a31a32a33的式⼦,它表⽰⼀个数值,其展开式为a11a12a13a21a22a23 a31a32a33=a11a22a23a32a33−a12a21a23a31a33+a13a21a22a31a32n阶⾏列式我们观察⼆、三阶⾏列式的定义,顺便定义⼀下⼀阶⾏列式:(⼏乎全是复制)所谓⼀阶⾏列式,是由⼀个数,如a11排列成含有⼀⾏⼀列形如a11的式⼦,它表⽰⼀个数值,其展开式为a11=a11有了⼀阶⾏列式的定义,我们考虑像三阶⾏列式⼀样递归的定义⼆阶⾏列式:a11a12a21a22=a11a22−a12a21⾄此,n阶⾏列式的定义⼏乎呼之欲出了:所谓n阶⾏列式,是由n2个数,如a11,a12,⋯,a nn排列成含有n⾏n列形如a11⋯a1n⋯⋱⋯a n1⋯a nn的式⼦,它表⽰⼀个数值,其展开式为a11⋯a1n⋯⋱⋯a n1⋯a nn =n∑i=1(−1)i+1a1ia21⋯a2 i−1a2 i+1⋯a2n⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯a n1⋯a n i−1a n i+1⋯a nn(其实就是对于第⼀⾏的每个元素,⽤它乘除了它同⾏同列的剩下来数构成的⼦⾏列式。
)上式中令M1i=a21⋯a2 i−1a2 i+1⋯a2n⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯a n1⋯a n i−1a n i+1⋯a nn$$,称为元素$a1i$的∗∗余⼦式∗∗。
令A_{1i}=(-1)^{i+1}M_{1i}$$,称为元素a1j的代数余⼦式。
线性代数第一章行列式试题及答案
线性代数第一章行列式试题及答案如何复习线形代数线性代数这门课的特点主要有两个:一就是试题的计算量偏大,无论就是行列式、矩阵、线性方程组的求解,还就是特征值、特征向量与二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二就是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系、在掌握好基本概念、基本原理与基本方法的前提下,下面谈谈在复习过程中应注意的一些问题、一、加强计算能力训练,切实提高计算的准确性二、扩展公式结论蕴涵,努力探索灵活解题途径三、注重前后知识联系,努力培养综合思维能力线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查四、加强综合题型训练,全面系统地掌握好知识计算能力的提高不就是一朝一夕的事,除了要不断归纳总结一些重要公式与结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不就是一件困难的事、而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习,第一章行列式一、概念复习1、形式与意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12 (1)a21 a22 (2)………、a n1 a n2… a nn如果行列式的列向量组为α1, α2, …,αn,则此行列式可表示为|α1, α2, … ,αn|、意义:就是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值、请注意行列式与矩阵在形式上与意义上的区别、当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同、)每个n阶矩阵A对应一个n阶行列式,记作|A|、行列式这一讲的的核心问题就是值的计算,以及判断一个行列式的值就是否为0、2、定义(完全展开式)一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2… a nn的值就是许多项的代数与,每一项都就是取自不同行,不同列的n个元素的乘积,其一般形式为:nnjjjaaaΛ2121,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…jn构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值就是n!项的代数与。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
行列式典型例题
第二讲 行列式综合训练第一部分例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零.n D =11aa解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式.n D 11c nc a-⋅=101a aaa-=11()n a a a--=n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式.n D n 1r r -=111a aa --1nc c +=111a aa +-=na -2n a-方法3 利用展开定理,将行列式化成对角行列式.n D 1c 展开=1n aaa -+11001(1)0n n a a +--而 11001(1)0n n a a+--最后列展开=21(1)n +-2n aa -=2n a--n D =1n a a -⋅-2n a -=n a -2n a -方法4 利用公式A O OB=A B .将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.n D =2(2)(1)n --11a aa=11a a2n aa -=na -2n a-方法5 利用公式A O OB=A B .例2.2 计算n 阶行列式:11212212n n n n na b a a a a b a D a a a b ++=+ (120n b b b ≠)解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素.1211212212100n n n n n na a a ab a a D a a b a a a a b +=++升阶213111n r r r r r r +---=121211001010n na a ab b b --- 1112,,1jj c c b j n -+=+=111211121000000000n na a a a ab b b b b +++=1121(1)nn na ab b b b b +++这个题的特殊情形是121212n n n n a x a a a a x a D a a a x++=+=11()nn i i xx a -=+∑可作为公式记下来.例2.3 计算n 阶行列式:12111111111n na a Da ++=+其中120n a a a ≠.解 这道题有多种解法. 方法1 化为上三角行列式nD 12,,i r r i n-==1121111na a a a a +--112,,j ja c c a j n+==21100nb a a其中11211n i i b a a a ==++∑1111ni i a a =⎛⎫=+ ⎪⎝⎭∑,于是n D 12111nn i i a a a a =⎛⎫=+ ⎪⎝⎭∑.方法2 升阶(或加边)法121111011101110111n naD a a +=++升阶12,3,,1i r r i n -=+=121111100101na a a --- 11111121,2,,1121111111j jni jc c a nn j n i i na a a a a a a a +=+=-=+⎛⎫==+⎪⎝⎭∑∑方法3 递推法.将n D 改写为1211101110111n na a D a ++++=+n=按c 拆开12111111111a a +++1211011011na a a ++由于12111111111a a ++1,,1i n r r i n -=-=12111a a 121n a a a -=1211011011na a a ++n =按c 展开1n n a D -因此n D =1n n a D -121n a a a -+为递推公式,而111D a =+,于是n D =1n n a D -121n a a a -+=12n a a a 11211n n n D a a a a --⎛⎫+ ⎪⎝⎭=12n a a a 2122111n n n n D a a a a a ---⎛⎫++ ⎪⎝⎭==12n a a a 11211n D a a a ⎛⎫+++⎪⎝⎭=12n a a a 121111n a a a ⎛⎫++++⎪⎝⎭例2.4 设343123211211)(------=x x x x x x x f ,证明存在),1,0(∈ζ使0)(='ζf . 证 因为()f x 是关于x 的二次多项式多项式,在[]1,0上连续,(0,1)内可导,且0331221111)0(=------=f ,101(1)1110121f =-=-由罗尔定理知,存在)1,0(∈ζ,使0)(='ζf .例2.5 计算D =222244441111ab c d a b c d a b c d . 解 这不是范得蒙行列式,但可借助求解范得蒙行列式进行求解.方法1 借助于求解范得蒙行列式的技巧进行求解:从下向上,逐行操作.D 2433221r a r r ar r ar ---=222222222111100()()()0()()()b ac ad ab b ac c ad d a b b a c c a d d a ---------1c 展开=()()()b ac ad a ---222111()()()b c d b b a c c a d d a +++ 3r 拆开=()()()b a c a d a ---(333111bc d b c d +222111a b c d b c d )其中333111b cd b c d 23221r b r r br --=222211100()()c bd b c c b d d b ---- =()()c bd b --11()()c c bd d b ++=()()c b d b --[()()]d d b c c b +-+由于222111bcd b c d 是范德蒙行列式,故222111b c d b c d =()()()c b d b d c --- D =()a b c d +++()()()b a c a d a ---()()()c b d b d c --- 方法2 D 213141c c c c c c ---=222222244444441000ab ac ad aa b a c a d a a b a c a d a --------- 1r 展开=()()()b ac ad a ---222222111()()()()()()b ac ad a b a b a c a c a d a d a +++++++++ 2131c c c c --=()()()b ac ad a ---221()()b a c b d b b a b a x y+--++ 1c 展开=()()()b ac ad a ---c b d b xy--其中222()()x c b a b c ac bc ab =-+++++,222()()y d b a b c ad bd ab =-+++++D =()a b c d +++()()()b a c a d a ---()()()c b d b d c ---=()a b c d +++()()()a b a c a d ---()()()b c b d c d ---方法3 用升阶法.由于行列式中各列元素缺乏3次幂的元素,在D 中添加3次幂的一 行元素,再添加一列构成5阶范得蒙行列式:5D =22222333334444411111a b c d x a b c d x a b c d x a b c d x 5D 按第5列展开得到的是x 的4次多项式,且3x 的系数为4545(1)A D D +=-=-又利用计算范得蒙行列式的公式得5D =()()()()b a c a d a x a ----()()()c b d b x b ---()()()d c x c x d ---=()()()b a c a d a ---()()c b d b --()d c -[()()()()]x a x b x c x d ----=()()()b a c a d a ---()()c b d b --()d c -43[()]x a b c d x -++++其中3x 的系数为()()()b a c a d a ----()()c b d b --()d c -()a b c d +++由3x 的系数相等得:D =()a b c d +++()()()b a c a d a ---()()()c b d b d c --- 例2.6 设4322321143113151||-=A ,计算A 41 + A 42 + A 43 + A 44 = ? 其中A 4j (j= 1, 2, 3, 4)是|A |中元素a 4j 的代数余子式.解 直接求代数余子式的和工作量大.可将414243A A A A +++改写为4142431111A A AA ⋅+⋅+⋅+⋅,故A 41 + A 42 + A 43 + A 44 1111321143113151-=1602102310121000-==41602(1)023012+--=62100320261=-- 例2.7 求解方程:11111111()01121111(1)x f x x nx-==---解 方法1()f x 12,,i r r i n-==111100000100(2)x xn x-=---=)2()1()1(1+----n x x x n由题设知0)2()1()1()(1=+---=-n x x x x f n所以2,,1,0121-===-n x x x n 是原方程的解.方法2 由题设知,当2,,2,1,0-=n x 时,由于行列式中有两列对应元素相同,行列式值为零,因此)(x f 可写成)2()1()(+--=n x x Ax x f于是原方程0)2()1()(=+--=n x x Ax x f 的解为:2,,1,0121-===-n x x x n例2.8 计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-,故01110212n n n D n n --=--1,1,,2i i r r i n n --=-=11111111n ----1,,1j n c c j n +=-=1211021(1)2(1)20001n n n n n n ------=----其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.方法2 011102120n n n D n n --=--11,2,,111111112i i r r i n n n +-=----=--12,,1001201231j c c j nn n n +=---=---=12(1)2(1)n n n ----例2.9 计算行列式221111220000000b d b d c a c a D =. 解 方法1 按第一列展开:1121120000a c D a d b b =-0000111122b d c a c d =111122b d c ab a -111122b d c a c d=(22b a -111122b d c a c d )=(22b a -)22c d (11b a -)11c d方法2 本题也可利用拉普拉斯展开定理进行计算,选定第2、3行,有:11232311(1)a c D d b +++=-2222a c db =(11b a 11dc -)(22b a 22d c -)例2.10 计算2n D =1111nnnna b a b c d c d ,其中未写出的元素都是0.解 方法1 利用公式A O OB=A B .采用逐行操作,将最后一行逐行和上行进行对换,直到换到第2行(作22n -次相邻对换);最后一列逐列和上列换,换到第2列(作22n -次相邻对换),得到2n D =2(22)(1)n --1111111100000n n n n n n n n a b c d a b a b c d c d ----=2D 2(1)n D -=()n n n n a d b c -2(1)n D -=()n n n n a d b c -1111()n n n n a d b c -----2(2)n D -==()n n n n a d b c -1111()n n n n a d b c -----1111()a d b c -=1()ni i i i i a d b c =-∏方法2 利用行列式展开定理进行求解.2n D 1r 展开=11111111n n nn n na b a b a c d c d d ----+12(1)n n b +-111111110n n n n na b a b c d c d c ----上面第1个行列式是A O OB的形式,而第2个行列式按第1列展开,所以2n D =2112222(1)n n n n n n n a d D b c D -+---- =()n n n n a d b c -2(1)n D - ==1()ni i i i i a d b c =-∏例2.11 计算5100011000110001100011a a aa D a a a a a ---=------. 解 方法1 采用递推的方法进行求解.5D 125c c c ++=1000010001100011011a a aa a a aaa-------- 1c 展开=1001100110011a a a a a a a -------+51000100()(1)110011a a a a a a aa+------- 即 51454()(1)D D a a +=+--, 41343()(1)D D a a +=+--,31232()(1)D D a a +=+--, 221D a a =-+故 234551D a a a a a =-+-+-方法2 采用降阶的方法进行求解.5D 12(1)r a r +-=2210011000110001100011a a a a a a a a a a a -+---------213(1)r a a r +-+=232301011000110001100011a a a a a a a a a a a a a-+--+--------2314(1)r a a a r +-+-=23423400111000110001100011a a a a a a a a a a a a a a a-+-+-+---------23415(1)r a a a a r +-+-+=23450001110001100011011a a a a a a a a aa a a-+-+---------1r 展开=2345514(1)(1)(1)a a a a a +-+-+-⋅--=23451a a a a a -+-+-例2.12 证明D n =121100010nn n xxa a a xa ----+=111n n n n x a x a x a --++++证 方法1 递推法 按第1列展开,有D n = x D 1-n +(-1)1+n a n11111n xxx-----= x D 1-n + a n由于D 1= x + a 1,2211x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2D 2-n + a 1-n x + a n== x1-n D 1+ a 2x2-n + + a 1-n x + a n =111n n n n x a x a x a --++++方法2 第2列的x 倍,第3列的x 2倍, ,第n 列的x1-n 倍分别加到第1列上12c xc n D +=2112101001000n n n n x x xa xa a a xa -----++213c x c +=3212123110000100010n n n n n n x xx a xa x a a a a x a--------+++==111x fx---n r =按展开1(1)n f+-1111n xxx----=f其中111n n n n f a a x a x x --=++++或 D n21123n nc xc x c x c -++++=122110000100001n n x x fa a ax a -----+1=按c 展开1(1)n f +-1111n x xx----=11(1)(1)n n f +---=f其中111n n n n f a a x a x x --=++++方法3 利用性质,将行列式化为上三角行列式.D n21321111n n c c x c c xc c x-+++=112200000000n n nnn n nx x x a a a a a a k xx x---+++n =按c 展开x1-n k n = x1-n (1-n n x a + 21--n n x a + +x a 2+a 1+x)=111n n n n a a x a x x --++++ 方法4n r nD =按展开1(1)n na +-1000101x x ---+21(1)n n a +--000010001x x --+ +212(1)n a --1000001x x --+21(1)()n a x -+10000000x x x-=(-1)1+n (-1)1-n a n +(-1)2+n (-1)2-n a 1-n x+ +(-1)12-n (-1)a 2x2-n +(-1)n2( a 1+x) x1-n= 111n n n n a a x a x x --++++例2.13 计算n阶“三对角”行列式Dn=001000101αβαβαβαβαβαβ++++解 方法1 递推法.D n1=按c 展开()αβ+D 1-n —(1)0000101n αβαβαβαβ-++1=按r 展开()αβ+D 1-n -αβD 2-n即有递推关系式 D n =()αβ+D 1-n -αβD 2-n (n ≥3) 故 1n n D D α--=12()n n D D βα---递推得到 1n n D D α--=12()n n D D βα---=223()n n D D βα---==221()n D D βα--而1()D αβ=+,2D =β+α1αββ+α=22ααββ++,代入上式得1n n n D D αβ--=1n n n D D αβ-=+ (2.1)由递推公式得1n n n D D αβ-=+=12()n n n D ααββ--++=α2D2-n +1n n αββ-+==n α+1n αβ-+ +1n nαββ-+=时=,当时,当--βαβα1)α(n αβαβ111≠⎪⎩⎪⎨⎧++++n n n方法2 把D n 按第1列拆成2个n 阶行列式D n =000100010001ααβαβαβαβαβ++++00010001000001βαβαβαβαβαβαβαβ+++上式右端第一个行列式等于αD 1-n ,而第二个行列式00010001000001βαβαβαβαβαβαβαβ+++12,,i i c ac i n--==00010000101ββββ=βn于是得递推公式1n n n D D αβ-=+,已与(2.1)式相同.方法3 在方法1中得递推公式D n =()αβ+D 1-n -αβD 2-n又因为当αβ+时 D 1=αβ+=βαβα--2221D αβαβαβ+=+=2()αβ+-αβ=22ααββ++=βαβα--33 D 3=βααββααββα+++110=3()αβ+-2αβ()αβ+ = ()αβ+22()αβ+=βαβα--44于是猜想11n n n D αβαβ++-=-,下面用数学归纳法证明.当n=1时,等式成立,假设当n ≤k 时成立. 当n=k+1是,由递推公式得D 1+k =()αβ+D k -αβD 1-k=()αβ+βαβα--++11k k —αββαβα--k k =βαβα--++22k k所以对于n ∈N +,等式都成立.第二部分这一部分的题是与矩阵、向量、特征值等后续内容有关的题,感觉困难的同学可以放到相关内容学习后再看.但应注意考研题中关于行列式内容的出题,往往与后续内容联系较多.例2.14 设A 为3×3矩阵, |A | =-2, 把A 按行分块为123A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 其中(1,2,3)i A i =是A 的第i 行, 则行列式312122A A A A -=______.解312122A A A A -=312122A A A A -=3212A A A =12322||4A A A A -=-=例2.15 判断题(1) 若B A ,是可乘矩阵,则=AB B A . ( ) (2) 若B A ,均为n 阶方阵,则A B A B -=-. ( )解 (1) 错误,因为B A ,不一定是方阵,即不一定有对应的行列式.(2) 错误,例如取3003A ⎛⎫= ⎪⎝⎭,2002B ⎛⎫= ⎪⎝⎭,15A B A B -=≠-=.例2.16 证明:奇数阶反对称矩阵的行列式为零.证 ||||)1(||||||,A A A A A A A n T T -=-=-==-=(n 为奇数). 所以|A | = 0.例2.17 (数四,01,3分)设矩阵111111111111kk A k k ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,且秩()R A =3,则k = 解 由于111111111111k k A k k =124r r r ++=3333111111111k k k k k k k++++=1111111(3)111111k k k k +=11110100(3)00100001k k k k -+-- =3(3)(1)k k +-由()R A =3,知A =0,而1k =时,()R A =1,故必有3k =-.例2.18 若B A ,,C 均为3阶可逆方阵,1-=A ,2=B ,计算C B A C T 211)(2--.解 C B A C T 211)(2--=23112T C A BC -- =223112TC A BC-=22312A B=2例2.19 设3阶方阵B A ,满足方程 E B A B A =--2,试求矩阵B 以及行列式B ,其中101020201A ⎛⎫⎪= ⎪ ⎪-⎝⎭. 解 由E B A B A =--2,得E A B E A +=-)(2,即 ()()A E A E B A E +-=+由于 201030202A E ⎛⎫⎪+= ⎪ ⎪-⎝⎭,180A E +=≠ 001010200A E ⎛⎫ ⎪-= ⎪ ⎪-⎝⎭,20A E -=≠ 111()()()()B A E A E A E A E ---=-++=-1001001/2010010200100--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭所以2/1||=B .例2.20 设A 为3阶方阵,A =2,求1*1()32A A --的值. 解 方法1 化为关于*A 的形式进行计算.利用公式111()A A λλ--=,*1A A A-=,1n A A -*=有1*1()32A A --=1*23A A --=**23A A A -=**3A A -=*2A -=3*(2)A -=23(2)A -=32-方法2 化为关于1A -的形式计算. 利用公式111()A A λλ--=,*1A A A -=,1A -=1A,有 1*1()32A A --=1123A A A ---=14A --=3(4)-1A=32- 例2.21 (数四,98,3分)设B A ,均为n 阶方阵,A =2,B =-3,求1*2-B A 的值.解 1*2-BA =1*2-BA n =n21-n AB1⋅=n 212-n 31-=3212--n 例 2.22 若21321,,,,ββααα都是4维列向量,且4阶行列式n =3221,,,αβαα,m =1321,,,βααα,计算4阶行列式32112,,,αααββ+的值.解 如果行列式的列向量组为n ααα,,,21 ,则此行列式可表示为n ααα,,,21 ,利用行列式的性质,有=+21123,,,ββααα3211,,,αααβ+3212,,,αααβ=1231,,,αααβ--3221,,,ααβα=1231,,,αααβ-+1223,,,ααβα=n m -例2.23 计算行列式OB AO B A ,,||||,其中12112(1)121121n n x n x n A x n n x n n -+⎛⎫⎪-+ ⎪⎪=⎪+- ⎪ ⎪+-⎝⎭, 100002000010000B n n ⎛⎫⎪ ⎪⎪=⎪- ⎪ ⎪⎝⎭ 解 ||A =12112(1)121121n n x n x nx n nx n n-+-++-+-12,,12100000ir ri nn n x x x x x x x-=-+-=--1,,1n j c c j n +=-=(1)12120000000n n n x x x x +-+这是逆对角的上三角行列式,所以(1)12(1)(1)()2n n n n n A x x --+=-+ 又!||n B =,故12)1(!)2)1(()1(2-+-++-=n n n n x n x n n O B A O .注 这里用了公式:若A 为m 阶方阵,B 为n 阶方阵,则O AB O=(1)mn -A B .例2.24 若A 为n 阶方阵,E 为单位矩阵,满足TAA E =,0A <,求 A E +. 解 方法1 由TAA E =有A E +=T A AA +=()T A E A +=()T A E A +=A ()TE A +=A E A +=A A E +即(1)A -A E +=0,而(1)A -0>,所以A E +=0.方法2 因为 ()T A E A +=T T AA A +=TE A +=A E +即 A E +A =A E +有(1)A -A E +=0,而(1)A -0>,所以A E +=0.方法 3 由TAA E =知矩阵A 为正交矩阵,即T AA =1,2A =1,又因为0A <,所以有1A =-,故A E +=A 1E A -+=T E A -+=E A -+即2A E +=0,A E +=0.例2.25 若A 为n 阶正定矩阵,E 为n 阶单位矩阵,证明A E +的行列式大于1. 证 方法1 因为A 为正定矩阵,因此所有的特征值大于零.设A 的n 个特征值为1,1,2,,i i n λ==,且0i λ>,由特征值的性质知,A E +的n 个特征值为1,1,2,,i i n λ+=,于是1(1)(1)1n λλ++>.方法2 因为正定矩阵是对称矩阵,因此A 可对角阵,且所有的特征值大于零,故存在可逆阵P 有11n P AP λλ-⎛⎫⎪=⎪⎪⎝⎭ (0,1,2,,i i n λ>=)即 11n A P P λλ-⎛⎫⎪= ⎪ ⎪⎝⎭111n A E P P PP λλ--⎛⎫ ⎪+=+⎪ ⎪⎝⎭=1111n P P λλ-+⎛⎫⎪ ⎪ ⎪+⎝⎭A E +=1111n PP λλ-++=1(1)(1)1n λλ++>例2.26 设11112222aa A nn n n a +⎛⎫⎪+⎪= ⎪⎪+⎝⎭,求A解 利用特征值法进行求解,即利用公式12n A λλλ=.11112222aa A nn n n a +⎛⎫ ⎪+⎪= ⎪⎪+⎝⎭=100000000a ⎛⎫⎪⎪ ⎪⎪⎝⎭+11112222a nn n n a ⎛⎫ ⎪+ ⎪ ⎪⎪+⎝⎭==11112222aE n n nn ⎛⎫ ⎪⎪+ ⎪⎪⎝⎭矩阵11112222n n n n⎛⎫⎪⎪⎪⎪⎝⎭的秩为1,由第十三讲的注意(7)知它特征值为11122nna a aλ=++=(1)2n n+,23nλλλ====0所以A特征值为(1),,,2n na a a++,故A=1(1)[]2nn na a-++.21。
《线性代数》第一章行列式精选习题及解答
a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
线性代数习题解答(一)行列式
线性代数习题解答习题一1.计算以下行列式 2223333223(1)(2)53(1)7.15cos sin (2)cos sin 1.sin cos log 1(3)log log 1110.1log 11(4)(1)(1)(1) 1.1113(5)2111123212.120273(6)5415670451201037a a b b b b a a a a a a a a a a a a αααααα-=-⨯-⨯-=---=+==-=-=+=+-+-=+-=-+--=-++-=---=-++-2222456178.0(7)00.01(8)112.1a ba c abc abcbc c b ca abc abc b a +-=--=-+=----=-+++2.解方程(1) 111121.16x x =解 221212281,230,(1)(3)0,1, 3.x x x x x x x x +--=--=+-==-= (2)221220110.12220,20,(2)(1)0.1, 2.x x xx x x x x x x x x -=-++-=+-=+-===- 3.解下面的线性方程组21221222222112123123123131133132(2)()()()(),.().,.235(3)35549521036, 2.424,0,22452x ax a x bx b a b a b x a b a b a b x a b x a a a b ab x ab x a b x x x x x x x x x x x x x x x x x x ⎧+=⎪⎨+=≠⎪⎩-=-=-+=+=-+=-=-⎧⎨=+⎩-+=⎧⎪+-=⎨⎪-+=⎩-=⎧==-==⎨-=⎩=-+解解13123354 1.210x x x x x -=-+=-=⎧⎪=-⎨⎪=⎩12312312320(4)3251324x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩ 解1231231231231233121220 (1) 325 1 (2)32 4 (3)(1)(3)32 4 (4)(4)(2)3219/4 (5)43,3/4.322/4 (6)19/4222/4313/413.327281322/413/28473x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩++-=-+=⎧==⎨+=⎩===-==123.281328472834x x x ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.求下列个排列的逆序数,并且说明它们的奇偶性: (1)4213 (2)542163(3)134782695 (4)(-1)(-2)21(1)(4213)1+2+1=4,(2)(542163)123039,(3)(134782695)42410,(4)((-1)(-2)21)12(1)(1)/2.4,4142,4n n n n n n n n n n k k n k k ττττ==++++==++==+++-=-=+=+ 解偶排列,3+5.确定i 和j 的值,使得9级排列(1) 1274i 56j 9成偶排列; (2)3972i 15j 4成奇排列.解(1) τ (127435689)=1+2+1+1=5,奇排列, 127485639为偶排列. (2) τ (397261584)=1+3+2+5+3+1+5=20, 397281564为奇排列.6.下列各项,哪些是五阶行列式||ij a 中的一项.若是,试决定该项的符号.132532415431124352244321351254(1)(2);(3)a a a a a a a a a a a a a a a解(1) 1325324154.a a a a a 行号按自然顺序排列,列号排列35214. τ (35214)=2+3+1=6,取正号.(2) 3112435224.a a a a a 列号2重复,不是行列式的项.(3) 43213512541221354354.a a a a a a a a a a =行号按自然序列,列号排列是21534. τ (21534)=1+1+1=3,取符号.7.根据行列式的定义计算下面的行列式:(2(1)1)112(1)2(1)2(1)(1)(1)121(1)/212(1)1010000002000(1)00000100000(1)!(1)!.00000(2)0(1).n n n n n n n n n n n n nn nnn n n n n n n n n a a a a a a a a a a a a a τ-----------=-=-=-((1)(2)1)(1)(2)/2000010000200(3)1000000000(1)!(1)!.n n n n n n nn n τ-----=-=-1111122222331542544455(4)000000.000000a b c d e a b c d e a b a b b a a b a b εε=+= 8.用行列式性质计算下列行列式32153320533205310032053(1)72284721847218410072184320533205310032053132053100721847218410072184172184100(7218432053)4013100.1(2)2()1112()02()0x y x y y x y y x y x x y x yx x yx y x y y x yx x y xy x y x yx+=+=+==-=+++=++++=+-=+--22332()()2().y x yxx y x xy y x y ---=+-+-=-+32222(3)2212()121212()00002().111100111100(4)11110011111111000011011101111()10a b c a b c b c ab ca c a ba b a b c b c ab ac a b a b a b c b c ac a b a b c x x y x x y y yyyyx y y xy y x yy x yxy xy xy xy y xy x y ++++++=++++++=++++++=+++--=+---=----=+=-+=-2.y9。
考研数学题库-第一章 行列式【圣才出品】
考研数学题库-第一章行列式【圣才出品】考研数学中,行列式是一个重要的基础概念,它在解决线性方程组、矩阵的特征值等问题中都有着广泛的应用。
在这一章中,我们将深入探讨行列式的相关知识。
行列式的定义看起来可能有些抽象,但其实质是一个数值。
对于一个二阶行列式,我们可以通过简单的交叉相乘再相减来计算。
例如,对于二阶行列式\ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \,其值为\(ad bc\)。
当扩展到三阶行列式时,计算就稍微复杂一些。
比如三阶行列式\\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} \,其值为\(a_{1}b_{2}c_{3} + a_{2}b_{3}c_{1} + a_{3}b_{1}c_{2}a_{3}b_{2}c_{1} a_{2}b_{1}c_{3} a_{1}b_{3}c_{2}\)。
虽然直接按照定义计算行列式在阶数较低时是可行的,但当阶数较高时,这种方法就会变得非常繁琐。
因此,我们需要掌握一些行列式的性质和计算方法。
行列式具有一些重要的性质。
例如,行列式与它的转置行列式的值相等;若行列式的某一行(列)元素全为零,则行列式的值为零;若行列式的某两行(列)对应元素成比例,则行列式的值为零;将行列式的某一行(列)的倍数加到另一行(列)上,行列式的值不变。
利用这些性质,我们可以简化行列式的计算。
比如,通过将某一行(列)的倍数加到另一行(列)上,把行列式化为上三角行列式或下三角行列式,然后行列式的值就等于主对角线元素的乘积。
此外,还有一些特殊的行列式,如对角行列式、上三角行列式和下三角行列式。
对角行列式的值就是对角线上元素的乘积;上三角行列式和下三角行列式的值也都是主对角线元素的乘积。
在考研数学中,关于行列式的题目类型多样。
线性代数习题--行列式
行列式二阶、三阶行列式—对角线原理■计算下列二阶行列式2312; 22b a ba1log log 1ba ab ;θθθcos 1sin tan ;cos sin sin cos θθθθ-;1111121221212222a b a b a b a b ++++;1112111221222122a ab b a a b b +. 解22ba b a =22ba ab -; 1log log 1b aa b =-1a b log b a log 110=-=;θθθcos 1sin tan =0sin cos tan =-⋅θθθ;■计算下列三阶行列式(1)111111111--- (2)38114112---; (3)b a c a c b c b a (4)222111c b a c b a(5)00000d c ba (6)ed ba00000. (7)y x y x x y x y yx y x +++.解 111111111---=111(1)(1)(1)11111(1)⨯⨯+-⨯-⨯-+⨯⨯-⨯⨯-(1)111(1)1--⨯⨯-⨯-⨯1111114=-++++=381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8-0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1)=-24+8+16-4=-4.=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---==222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=00000d c b a =00000000000ac bd ab cd ⨯⨯+⋅+⋅-⨯⨯-⋅-⋅=; 0000ab c de=00000000abe c d b cda e abe acd ++---=-.yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3=-2(x 3+y 3).行列式的定义排列与逆序■计算以下各个排列的逆序数, 并指出它们的奇偶性: 1234 4132 2413314265 ;314265789; 542391786; 134785692 139782645987654321; 246813579;(1)21n n -.(4)13…)12(-n 24 …)2(n ; (5)13…)12(-n )2(n )22(-n … 2. (6)1(2)3(22)5(24)(21)2n n n n ---.解逆序数为0逆序数为4: 41, 43, 42, 32. 逆序数为3.(314265)2114τ=++= 偶排列(314265789)2114τ=++= 偶排列 (542391786)431141115τ=++++++= 奇排列 11; 17.(987654321)8765432136τ=+++++++= 偶排列 (246813579)123410τ=+++= 偶排列1((1)21)(1)(2)21(1)2n n n n n n τ-=-+-+++=-, 这表明该排列的逆序数与n 有关, 故要对n 进行讨论:当4,41n k k =+时1(1)2n n -为偶数,此时排列(1)21n n -.为偶排列;当42,43n k k =++时1(1)2n n -为奇数,此时排列(1)21n n -.为奇排列.(4)逆序数为2)1(-n n . 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(5)逆序数为)1(-n n .3 2(1个) 5 2, 54 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) (6)当n 为偶数时,2n k =,排列为143425212221223412k k k k k kk k --+++-[]1122(1)(1)t k k k =+++++-+-+L [](1)(2)21k k +-+-+++L()()()()()22(1)1313142n k k k k k k n 轾+++++++++-=-=-犏臌L 其中11(1)(1)k k +++-+-L 为1434252122k k k k --+的逆序数;k 为21k +与它前面数构成的逆序数;(1)(2)21k k -+-+++L 为23,25,,2(21)k k k k +++-L 与它们前面数构成的逆序数的和;()()()()()()113131k k k k ++++++++-L 为2k ,22,24,,2k k --L 与它们前面数构成的逆序数的和.当n 为奇数时,21n k =+,排列为142345212223225412k k k k k kk k ++++++()1122t k k =+++++++L [](1)21k k ++-+++L()()()2213323432n k k k k k k n +轾++++?+=+=-臌L其中1122k k ++++++L 为1423452122k k k k +++的逆序数;(1)21k k +-+++L 为23,25,,2(21)k k k k ++++L 与它们前面数构成的逆序数的和;()()()3323k k k k +++?+L为2,22,,2k k -L 与它们前面数构成的逆序数的和.■确定,i j ,使6元排列2316i j 为奇排列.■在由1, 2, 3, 4, 5, 6, 7, 8, 9组成的下述9阶排列中, 选择i j 与使得: (1)2147958i j 为偶排列; (2)1254896i j 为奇排列; (3)4125769i j 偶排列; (3)3142786i j 奇排列. 均要求说明理由.分析 排列1254896i j 中的两个未知数i j 与据排列的定义只能取3或7. 因而只有两种情况:1132574896与2172534896,然而我们只需计算上述的一个排列就可得知结果,因为1与2是3和7作一次对换得到的,而作一次对换必改变排列的奇偶性,也就是说若1为偶排列, 则2必为奇排列. 其余题解法也类似.解 (1)取3,6i j ==有(214739568)11226τ=+++=为偶排列, 符合题目要求.(2)取3,7i j ==有(132574896)112116τ=++++=为偶排列, 故取7,3i j ==时172534896为奇排列, 符合题目要求.(3)取3,8i j ==有(412357698)3115τ=++=为偶排列,符合题目要求.(4)取5,9i j ==有(531429786)42131112τ=+++++=为偶排列. 故取9,5i j ==时931425786为奇排列, 符合题目要求.■写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++故44322311a a a a -和42342311a a a a 为所求.■写出4阶行列式ij a 中包含因子4223a a 的项, 并指出正负号.解 4阶行列式ij a 中包含因子4223a a 的项有11233442a a a a 和14233142a a a a . 由于(1342)2τ=,故11233442a a a a 取正号; (4312)5τ=,故14233142a a a a 取负号.■当i =___, k =___时13242553i k a a a a a 成为5阶行列式ij a 中一个取负号的项,为什么?解 i 和k 只能取1,4或者4,1.不妨先假设1,4i k ==, 则13242553i k a a a a a =1132442553a a a a a , 这个项的符号就是(13425)(12453(1)(1)1ττ+-=-=+, 不符合要求. 那么当4,1i k ==时13242553i k a a a a a =1432412553a a a a a , 它和1132442553a a a a a 相比就是交换了列指标1和4的位置, 因(12453)τ与(42153)τ相比改变了奇偶性, 所以1432412553a a a a a 的符号为负. 故应填4,1i k ==.■若(415)(12345)41213455(1)k i k i a a a a a ττ+-是5阶行列式ij a 中的一项, 则当i =___, k =___时该项的符号为正, 当i =___, k =___时该项的符号为负, 为什么?解 此问和问题3类似, i 和k 只能取2,3或者3,2.不妨先假设2,3i k ==, 则符号为(43125)(12345)(1)ττ+-=5(1)(1)-=-, 所以取的是负号. 那么由问题3的分析可知当3,2i k ==时符号取正. 所以当3,2i k ==时该项的符号为正, 当2,3i k ==时该项的符号为负.■在6阶行列式ij a 中, 下列项应该取什么符号? 为什么?(1) 233142561465a a a a a a ; (2) 324354116625a a a a a a ; (3) 215316426534a a a a a a ; (4) 511332442665a a a a a a . 解 (1) 因(234516)(312645)448ττ+=+=, 所以取正号;另一种方法是: 233142561465a a a a a a =142331425665a a a a a a , 因(431265)τ6=, 所以取正号. (2), (3), (4) 也可这样做, 不再列出.(2) 因(345162)(234165)7411ττ+=+=, 所以取负号; (3) 因(251463)(136254)6511ττ+=+=, 所以取负号; (4) 因(513426)(132465)628ττ+=+=, 所以取正号.■按行列式定义, 计算下列行列式((4)中1n >, 并均要求写出计算过程):0001100000100100=D=D 000000000000a c db .=D 00000000000a b c d ;=D 0001002003004000;=D 1234512345121212000000000a a a a ab b b b bc cd de e ;=D 000100002000010n n -=D n n 000000100200100-=D 000101001001000----.=D 11121,1121222,11,11,21000n n n n n n a a a a a a a a a a ----.解001100000100100=D =1=D 000000000000a c db (1342)(1)abcd abcd t =-==D 00000000000a b c d根据定义44ija ⨯=123412341234()1234(1)j j j j j j j j j j j j a a a a τ-∑.在行列式的通项中, 只有11233244a a a a 这一项的因子中不含零, 所以=D (1324)11233244(1)a a a a τ-=11233244a a a a -=abcd -.=D 0001002003004000(4321)(1)2424t =-==D 1234512345121212000000000a a a a ab b b b bc cd de e 根据定义,55ijD a ⨯==123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑.在行列式D 的通项中每一个项1234512345j j j j j a a a a a 中最后三个因子345345,,j j j a a a 分别取值于行列式最后三行的不同列的三个数, 而行列式最后三行中均只有二个数不为零, 所以这三个因子中至少一个取零. 这样行列式的每一项中都含有因子零, 所以每项都为零, 从而0=D .=D 000100002000010 n n -所给行列式的展开式中只含有一个非零项1,12312n n n a a a a - ,它前面的符号应为()()()112311--=-n n τ ,所以D =()n n 11--!。
行列式考研真题
行列式考研真题行列式是高等数学中的一个重要概念,也是考研数学中常见的考点之一。
在考研数学中,行列式的相关知识点主要包括行列式的定义、行列式的性质、行列式的计算方法以及行列式的应用等方面。
下面我们将从这几个方面来探讨行列式考研真题。
首先,我们来了解一下行列式的定义。
行列式是一个方阵所对应的一个数值,它可以表示一个方阵的某种性质或者特征。
行列式的定义是通过对方阵的元素进行排列组合和加减运算得到的。
在考研数学中,通常使用拉普拉斯展开法或者初等变换法来计算行列式的值。
接下来,我们来看一下行列式的性质。
行列式有很多重要的性质,其中最重要的性质是行列式的值与方阵的行列式元素有关。
具体来说,行列式的值与方阵的行列式元素的排列顺序有关,行列式的值与方阵的行列式元素的大小有关,行列式的值与方阵的行列式元素的运算有关等等。
这些性质在行列式的计算和应用中起到了重要的作用。
然后,我们来讨论一下行列式的计算方法。
行列式的计算方法有很多种,其中比较常用的有拉普拉斯展开法和初等变换法。
拉普拉斯展开法是通过对方阵的某一行或某一列进行展开,然后利用代数余子式的概念进行计算。
初等变换法是通过对方阵进行一系列的基本变换,如行交换、行倍乘、行加减等,将方阵变换成简化形式,然后计算行列式的值。
这两种方法在行列式的计算中都有其独特的优势和适用范围。
最后,我们来谈一下行列式的应用。
行列式在数学中有着广泛的应用,尤其在线性代数和微积分中。
在线性代数中,行列式可以用来求解线性方程组的解、判断方阵的可逆性、求解矩阵的逆等问题。
在微积分中,行列式可以用来计算多元函数的偏导数、判断多元函数的极值点等问题。
行列式的应用不仅局限于数学领域,还涉及到物理学、工程学、计算机科学等其他领域。
综上所述,行列式是考研数学中的一个重要知识点,它涉及到行列式的定义、性质、计算方法和应用等方面。
对于考研数学的学习者来说,掌握行列式的相关知识对于解答数学题目和应对考试具有重要意义。
行列式练习题及答案
第1章行列式 (作业1)一、填空题1.设自然数从小到大为标准次序,则排列1 3 …2 4 …的逆序数为,排列1 3 ……2的逆序数为 .2.在6阶行列式中,这项的符号为 .3.所有n元排列中,奇排列的个数共个.二、选择题1.由定义计算行列式= ().(A)(B)(C)(D)2.在函数中,的系数是().(A)1 (B)-1 (C)2 (D)3 3.四阶行列式的展开式中含有因子的项,共有()个.(A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于,则此行列式的值等于多少?说明理由.第1章行列式 (作业2)一、填空题1.若D=2.方程=0的根为___________ .二、计算题1.2.3.4.5.计算n阶行列式。
第1章行列式 (作业3)一、填空题1.当n为奇数时,行列式=_________.2.行列式.二、选择题1.设D是n阶行列式,则下列各式中正确的是( ).[ 是D中的代数余子式].(A)(B)(C)(D)2.行列式结果等于的行列式是().(A);(B);(C);(D)三、计算题1.设,计算其中是中元素的代数余子式. 2.3.4.第1章行列式 (作业4)一、填空题1.已知关于变量的线性方程组,由克莱姆法则,当满足条件时,方程组有唯一解,且.2.齐次线性方程组的系数行列式为,那么是该行列式有非零解的条件.二、求解下列行列式1.2.,其中.三、问取何值时,齐次线性方程组有非零解?第1章行列式 (检测题)一、填空题1.若排列的逆序数为k,则排列的逆序数为 .2..3. n阶行列式= .4.= .二、选择题1.是互不相同得实数,则方程P(x)=0()。
(A)无实根;(B)根为 1,2,。
,n-1 ;(C)根为 -1,-2,。
,-(n-1);(D)根为0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明当 a1 , a2 , a3 , a4 各不相同时,方程组是无解的。 (可结合 Vandermonde 行列式和方程组有关的结论简 单推出结果)
13
试讨论 a1,a2,…,an 和 b 满足何种关系时, (1)方程组仅有零解. (2)方程组有非零解.并求其一个基础解系.
11
由归纳法可推出 Vandermonde 行列式的结果:
1 a1 Vn (a1 , a2 , an ) a a
1i j n
2 1
1 a2 a a
2 2
1 an a a
2 n
(a j ai )
n 1 1
n 1 2
n 1 n
12
x1 a1 x2 a12 x3 a13 2 3 x1 a2 x2 a2 x3 a2 A16: (94 三)已知方程组 , 2 3 x1 a3 x2 a3 x3 a3 x a x a 2 x a3 4 3 4 1 4 2
a1 b a2 a1 a2 b a1 a2 1 2 na
an an an b
--------------------------------------------------------------------------
A5:(04 一)
1 a 1 2 2a n n
4
x 0
1 x 0 an1
9
A13:设1, 2 , 3 , 1, 2 皆为 4 维列向量,且有: A (1, 2 , 3 , 1 ) m, B ( 3 , 2 , 2 , 1 ) n , 则 ( 2 , 3 , 1, 1 2 ) . ------------------------------------------------------------A14:设齐次线性方程组 ax bx bxn 0 2 1 bx1 ax2 bxn 0
2
0 a 0 A2'(14 年) c
a b 0 0 c d 0 0
0 b 0 d =
0 2 ,则第 4 行各元 0 2
3 0 4 A3: (01 四)行列式 D= 2 2 2 0 7 0 5 3 2
素的余子式之和的值为 . 思考:若此处“余子式”改为“代数余子式”该如何处理?
3
A4: (03 三)计算 Dn=
1
3 1 301 A1: 计算 D= 1 2 102 2 4 199
---------------------------------------------------------A2: 计算行列式
1 1 1 x 1 1 1 x 1 1 1 D= 1 x 1 1 x 1 1 1 1
b a,b 为何值时, 方程组仅有零解, 有无穷多解?
10
A15: (03 三)已知齐次线性方程组
(a1 b) x1 a2 x2 an xn 0 n a1 x1 (a2 b) x2 an xn 0 , ai 0 i 1 a1 x1 a2 x2 (an b) xn 0
.
------------------------------------------------------------
*A10:计算 Δn
O
O
8
很多场合,还有大量题目中行列式和矩阵、向量、 方程组等内容是紧密关联的。如以下常见题型: A11: (92 三) A 是 m 阶方阵,B 是 n 阶方阵, 且有|A| = a,|B| = b,则 O A =
0 1
0 0
A6: Dn=
0 an x a2
1 a1 x
----------------------------------------------------------1 x1 y1 1 x1 y2 1 x1 yn 1 x2 y1 1 x2 y2 1 x2 yn A7:计算 Dn=
B O
.
-------------------------------------------------------------------A12: (06 四)已知1 , 2 为 2 维列向量,矩阵 A (21 2 , 1 2 ) , B (1 , 2 ).若行列式 |A| = 6,则|B| = 。
第 1 章 行列式 [题型举例] 行列式的内容除了直接出现在客观题中外,主要是 用在其它内容的题目解题过程中,涉及的主要是行列式 的计算,所遇到的行列式不外乎低阶(具体阶数的)和高 阶(n 阶)的. 行列式的主要计算方法: 1.利用行列式的性质化为对角型或三角型行列式; 2.利用 Laplace 定理将行列式降阶; 3.利用递推、归纳、加边、拆项或直接用定义计算.
1 xn y1 1 xn y2 1 xn yn
5
A8: (01 一,某题解题过程中)
t1 t2 Dn= 0 0
0 t1 t2 0
0
t2 0 0
0
t2
t1
6
*A9(08,一)证明:
2a a Dn O
2
1 2a a
2
O 1 (n 1)a 1 a
2 n
2a
7
1 a a 0 0 0 1 1 a a 0 0 1 1 a a 0 A9(96,四) D5 0 0 0 1 1 a a 0 0 0 1 1 a