100T转炉物料平衡及热平衡计算

合集下载

转炉车间炼钢物料平衡热平衡计算

转炉车间炼钢物料平衡热平衡计算

转炉车间炼钢物料平衡热平衡计算转炉车间是炼钢过程中的重要环节,需要进行炼钢物料平衡和热平衡计算,以确保生产过程的稳定和高效。

本文将对转炉车间的炼钢物料平衡和热平衡计算进行详细介绍。

炼钢物料平衡是指通过对转炉车间中的原料投入和产出物料进行测量和计算,从而得到物料平衡的结果。

炼钢物料平衡的目的是确保转炉车间原料的投入和产出物料的稳定性,避免资源的浪费和环境的污染。

物料平衡的计算主要包括原料质量平衡和物料流量平衡两个方面。

原料质量平衡是指对转炉车间中原料的质量进行计算和比较。

首先,需要测量和记录转炉车间中原料的投入量和产出量,包括铁矿石、废钢、废铁、石灰石等原料。

然后,根据原料的化学成分和质量比例,计算不同原料的质量,并与实际投入和产出物料进行比较。

如果投入和产出物料的质量不平衡,就需要调整原料的配比和使用,以达到物料平衡的要求。

物料流量平衡是指对转炉车间中物料流动的计算和分析。

首先,需要测量和记录转炉车间中不同物料的流量和速度,包括氧气、燃烧剂、炉渣、煤粉等。

然后,根据物料流动的速度和体积,计算不同物料在转炉车间中的流量,并与实际测量结果进行比较。

如果物料的流量不平衡,就需要调整物料的供给和流动方式,以保持物料平衡的状态。

炼钢热平衡计算是指通过对转炉车间中的热能输入和输出进行测量和计算,从而得到热平衡的结果。

炼钢热平衡计算的目的是确保转炉车间热能的合理利用和能量的平衡。

热平衡的计算主要包括燃烧热平衡和传热平衡两个方面。

燃烧热平衡是指对转炉车间中燃料的燃烧过程进行计算和分析。

首先,需要测量和记录转炉车间中燃料的消耗量和燃烧产物的产生量,包括煤粉、燃气、燃油等。

然后,根据燃料的能量含量和燃烧反应的热效率,计算燃料的热值和燃烧产生的热能,并与实际产生的热能进行比较。

如果燃烧过程的热能不平衡,就需要调整燃料的供给和燃烧方式,以达到热平衡的要求。

传热平衡是指对转炉车间中传热过程的计算和分析。

首先,需要测量和记录转炉车间中不同部位的温度和热能输入输出,包括炉渣的温度、冷却水的流量和温度、炉气的温度等。

转炉炼钢物料平衡和热平衡计算 模板-

转炉炼钢物料平衡和热平衡计算 模板-

第二章、转炉物料平衡和热平衡计算1、低磷生铁吹炼(单渣法)一、原始数据(一)铁水成分及温度(二)原材料成分(三)冶炼钢种及成分(四)平均比热(五)冷却剂用废钢做冷却剂,其成分与冶炼钢种中限相同。

(六)反应热效应反应热效应通常采用25℃为参考温度,比较常用的反应数据见表2-1-5(七)根据国内转炉实测数据选取1、渣中铁珠量为渣量的2.5%;2、金属中[C]假定85%氧化成CO,15%氧化成CO2;3、喷溅铁损为铁水量的0.3%;4、取炉气平均温度1450℃,自由氧含量0.5%,烟尘量为铁水量的1.8%,其中FeO=75%,Fe203=22%;5、炉衬侵蚀量为铁水量的0.15%;6、氧气成分为98.9% O2,1.5% N2。

根据铁水成分,渣料质量,采用单渣不留渣操作。

先以100公斤铁水为计算基础。

(一)炉渣及其成分的计算1、铁水中各元素氧化量表2-1-6成分,kgC Si Mn P S 合计项目铁水 4.36 0.57 0.62 0.07 0.05终点钢水0.13 痕迹0.13 0.008 0.019氧化量 4.23 0.57 0.49 0.062 0.031 5.308 [C]:取终点钢水含碳量0.15%;[Si]:在碱性氧气转炉炼钢中,铁水中的Si几乎全部被氧化;[Mn]:顶底复吹转炉残锰量取60%;[P]:采用低磷铁水吹炼,铁水中磷90%进入炉渣,10%留在钢中;[S]:氧气转炉去硫率不高,取40%。

2、各元素氧化量,耗氧量及其氧化产物量见表2-1-73、造渣剂成分及数量根据国内同类转炉有关数据选取1)矿石加入量及成分矿石加入量为1.00公斤/100公斤铁水,成分及重量见表2-1-82)萤石加入量及成分萤石加入量为0.30kg/kg铁水,其成分及重量见表2-1-93)炉衬侵蚀量为0.200公斤/100公斤铁水,其成分及重量见2-1-104)生白云石加入量及成分加入的白云石后,须保证渣中(MgO)含量在6—8%之间,经试算后取轻烧白云石加入量为1.2公斤/100公斤铁水。

转炉车间炼钢物料平衡热平衡计算

转炉车间炼钢物料平衡热平衡计算

表13,加入废钢的物料平衡表(以100kg铁水为基础) 收入 支出 质量 质量 项目 % 项目 91.63+16.816= 铁水 100.00 76.51 钢水 7.10+0.446= 废钢 17.13 13.11 炉渣 11.19+0.051= 石灰 2.07 1.58 炉气 石灰石 1.40 1.07 喷溅 轻烧白云石 2.00 1.53 烟尘 炉衬 0.20 0.15 渣中铁珠 7.720+0.18= 7.902 氧气 6.05 130.70 130.29 合计 100 合计 表14,加入废钢的物料平衡表(以100kg(铁水+废钢)为基础) 收入 支出 项目 质量 % 项目 质量 % 铁水 85.37 76.51 钢水 92.58 83.23 废钢 14.63 13.11 炉渣 6.44 5.79 石灰 1.76 1.58 炉气 9.59 8.62 硅锰加入量 WMn= 石灰石 1.20 1.07 喷溅 0.85 0.77 轻烧白云石 1.71 1.53 烟尘 1.28 1.15 硅铁加入量 Wsi= 炉衬 0.17 0.15 渣中铁珠 0.48 0.44 氧气 6.75 6.05 合计 111.58 100 合计 111.24 100 表15,铁合金中元素烧损量及产物量 烧损量 类别 元素 脱氧量 成渣量 炉气量 1.91x1.80%x10%= 0.003 C 0.009 0.013 1.91x68.00%x10%= 0.130 Mn 0.038 0.167 1.91x18.00%x25%= 0.086 Si 0.098 0.184 硅锰合金 P S Fe 0.219 合计 0.145 0.351 0.013 0.30x2.50%x100%= 0.007 Al 0.007 0.014 0.30x0.50%x20%= 0.0003 Mn 0.0001 0.0004 0.30x75.00%x25%= 0.0559 Si 0.064 0.120 硅铁 P S Fe 0.064 合计 0.071 0.134 总计 0.282 0.216 0.485 0.013 附表,脱氧合金化后的钢水成分 0.031 (0.10%+ x100%)= 0.133% 94.70 0.257+0.168 x100%= 0.449% 94.70 1.167+0.001 (0.140%+ x100%)= 1.373% 94.70 0.004 (0.025%+ x100%)= 0.030% 94.70 0.001 (0.025%+ x100%)= 0.026% 94.70 表16,总物料平衡表 收入 质量 % 项目

转炉物料平衡与热平衡计算

转炉物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。

它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。

通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。

对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。

由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。

物料平衡和热平衡计算,一般可分为两面种方案。

第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。

本计算是采用第一种方案。

目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0.40%)和中磷的(0.40~1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。

因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。

1.1原始数据1.1.1铁水成分及温度表1-1-11.1.2原材料成分表1-1-2 原材料成分表2-1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD3钢考虑,其成分见表2-1-321.1.4平均比热表1-1-41.1.5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。

(见表1-1-3)1.1.6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法。

物料平衡与热平衡计算

物料平衡与热平衡计算

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。

它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。

通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。

对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。

由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。

物料平衡和热平衡计算,一般可分为两面种方案。

第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。

本计算是采用第一种方案。

目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10〜0.40%)和中磷的(0.40〜1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。

因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。

1.1原始数据表 1-1-1表1-1-2原材料成分表2-1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD3钢考虑,其成分见表2-1-31-1-4用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。

(见表1-1-3)虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25 C作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法。

电炉炼钢设计(物料平衡+热平衡)

电炉炼钢设计(物料平衡+热平衡)

炼钢过程的物料平衡与热平衡计算是建立在物质
生铁
锰铁硅铁
物料平衡计算前,必须确定冶炼设备和方法以及炉
现代电弧炉冶炼工艺与传统三段式有较大的变化
火砖块是浇铸系统的废弃品,它的
配碳比钢种规格中线高0.70%,焦炭的收得率按75%计(7-28)
熔化期脱碳量30%,
CO:CO2=7:3,下同
Fe含量见表7-29
余见注释
焦炭中C含量
烧损率为25%
石灰中的S含
量为0.06%
(3)确定炉渣量:炉渣源于炉料中Si、Mn、P、Fe等元素的氧化产物,炉顶和炉衬的蚀损,焦炭和电极中的灰分,以及加入的各种溶剂。

结果见表7-32.
(4)确定金属量:金属量Qi=金属炉料重+矿石带入的铁量-炉料中C、Si、Mn、P和Fe的烧损量+焦炭配入得碳量
炉顶、炉衬消耗
量见表7-28
烧损的Fe,其中20%进入渣中,其中75%为Fe2O3,25%为FeO
引起氧化期物料波动的因素有:扒除熔化渣,造新渣;金属中
还原期采用白渣操作,引起该期物料变化的因素有:。

转炉物料平衡与热平衡计算.

转炉物料平衡与热平衡计算.

转炉物料平衡与热平衡计算简介转炉是冶金行业中常见的设备之一,主要用于高炉炼铁的后续工序。

转炉的工作原理是利用高温将铁水中的杂质进行氧化还原反应,从而得到高纯度的钢水。

为了确保炉内反应的正常进行,需进行物料平衡和热平衡的计算。

本文将介绍转炉物料平衡和热平衡的计算方法,并给出一个示例,以帮助读者更好地理解。

转炉物料平衡计算方法转炉物料平衡是指通过对转炉输入和输出物料的数量进行统计,计算转炉内的物料平衡情况。

物料平衡计算的基本原理是质量守恒定律,即输入物料的总质量必须等于输出物料的总质量。

物料平衡计算的步骤如下:1.确定转炉的输入物料,包括铁水、矿石、废钢等。

2.统计输入物料的质量。

3.确定转炉的输出物料,包括钢水、废气、炉渣等。

4.统计输出物料的质量。

5.比较输入物料的总质量和输出物料的总质量,若两者相等,则物料平衡成立;若不相等,则存在物料的损失或增加。

下面以一个具体的例子来说明转炉物料平衡的计算过程。

假设一个转炉的输入物料包括1000kg的铁水、200kg的矿石和100kg的废钢。

经过转炉反应后,得到800kg的钢水、400kg的废气和100kg的炉渣。

通过统计计算,我们可以得到输入物料的总质量为1000kg + 200kg + 100kg = 1300kg,输出物料的总质量为800kg + 400kg + 100kg = 1300kg。

两者相等,说明物料平衡成立。

转炉热平衡计算方法转炉热平衡是指通过对转炉内的能量输入和输出进行统计,计算转炉的热平衡情况。

热平衡计算的基本原理是能量守恒定律,即输入能量的总量必须等于输出能量的总量。

热平衡计算的步骤如下:1.确定转炉的输入能量,包括燃料的热值、还原剂的热值等。

2.统计输入能量的总量。

3.确定转炉的输出能量,包括钢水的热值、废气的热值等。

4.统计输出能量的总量。

5.比较输入能量的总量和输出能量的总量,若两者相等,则热平衡成立;若不相等,则存在能量的损失或增加。

转炉热平衡和物料平衡的计算

转炉热平衡和物料平衡的计算

第一部分转炉物料平衡和热平衡计算(一)原始数据(收集或给定)一、铁水成分和温度表1-1刚中[P、S]影响渣质,喷溅和炉容比,[Si]影响炼铁焦比和转炉废钢加入量(目前要求[Si]<0.80%)二、原材料成分(参[2] 、[4]、规程及[6]166)表1-2三、冶炼钢种和废钢成分表1-3四、平均比热表1-4五、反应热效率(认为25℃与炼铁温度下两者数值近似)表1-5*参氧气转换炉炼钢原理(美),冶金工业出版社74年版75页六、有关参数的选用1、渣中铁珠占渣重的8%;2、金属中90%[C] →CO 10%[C]→CO2;3、喷溅铁损占铁水量的1%;4、炉气平均温度1450℃;含自愿氧0.5%;烟尘量占铁水量的1.6% 其中有77%FeO和20%Fe2O3;(作课程设计时刻改为;烟尘量占铁水量的1.16%。

参[4]31)5、炉衬侵蚀占铁水量的0.5%;6、氧气成分为98.5%O2和1.5%N;(作课程设计时可改为:99.5%O2和0.5%N2,参[4]31)。

(二)物料平衡计算由铁水成分冶炼钢种可选用单渣发不留渣的操作。

为简化计算,物料平衡以100kg铁水为计算基础。

一、炉渣量及炉渣成分的计算炉渣来自元素的氧化,造渣材料和炉衬侵蚀等。

1.铁水中各元素的氧化量%表1-6说明:[Si]——碱性渣操作时终点[Si]量为痕迹;[P]——单渣发去磷约90%(±5%);[Mn]——终点余锰量约30~40%,这里实测为30%;[S]——转炉去硫约30~50%,这里取40%;[C]——终点碳与钢种及磷量有关,要求出钢后加铁合金增碳的量能满足钢的规格中限,即:[C]终点=[C]中限—[C]增碳这里取[C]终=0.15%,可满足去磷保碳与增碳两个条件。

2、铁水中各元素的氧化量,耗氧量和氧化产物量的计算。

表1-73.造渣剂成分及数量:(选自国内有关生产炉)1)矿石成分及重量的计算(1.0kg矿石/100kg铁水)表1-8S*:反应式为[S]+( CaO)= (CaS)+[O]其中:(CaS)重为0.001×7232=0.002[㎏][S]消耗(CaO) 重为0.001×5632=0.002[㎏][O]微量,可不计。

物料平衡 热平衡 转炉

物料平衡 热平衡 转炉

物料平衡热平衡转炉物料平衡、热平衡和转炉是冶金工程领域中的重要概念。

本文将深入探讨这三个主题,从基本概念到实际应用进行逐步解析,并对其在转炉过程中的应用进行详细讲解。

一、物料平衡物料平衡是冶金工程中的一个重要概念,指的是在一个系统中输入和输出物料的总量必须保持平衡。

这个平衡关系可以通过以下公式表示:输入物料= 输出物料+ 增加物料- 减少物料其中,增加物料是系统内新增的物料量,减少物料是系统内减少的物料量。

物料平衡是冶金工程中进行计算和控制的基础。

通过对物料平衡的准确计算,可以确保系统正常运行,并保持稳定的生产状况。

在转炉过程中,物料平衡是非常重要的。

转炉是一种用于冶炼、精炼和合金化的设备,通过将原料和燃料加入到转炉中,利用高温和化学反应将原料转化为所需的金属产品。

在转炉中,物料平衡的准确控制和计算可以提高生产效率、降低能源消耗,并确保产品质量稳定。

二、热平衡热平衡是指系统中输入和输出的热量必须保持平衡。

一个系统中的热平衡可以通过以下公式表示:输入热量= 输出热量+ 产生热量- 消耗热量其中,产生热量是系统内产生的热量,消耗热量是系统内消耗的热量。

热平衡的准确计算和控制是保证系统正常运行和能量效率的关键。

在转炉过程中,热平衡是非常重要的。

在转炉内,燃料燃烧产生的热量被用于原料的冶炼、精炼和合金化。

同时,热量还会通过系统的一些其他途径(如散热、冷却等)被消耗。

通过准确计算和控制热平衡,可以提高能源利用率,降低能源消耗,确保系统高效稳定地运行。

三、转炉转炉是一种非常重要的冶金设备,广泛应用于钢铁和有色金属冶炼工业中。

通过转炉,原料和燃料被加入到设备中,利用高温和化学反应将原料转化为所需的产品。

在转炉过程中,物料平衡和热平衡是两个非常重要的概念。

通过准确计算和控制物料平衡,可以确保输入和输出物料的平衡,保证生产过程的稳定性和产品质量的一致性。

通过准确计算和控制热平衡,可以提高能源利用率,降低能源消耗,保证系统的高效运行。

物料平衡与热平衡计算

物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。

它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。

通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。

对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。

由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。

物料平衡和热平衡计算,一般可分为两面种方案。

第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。

本计算是采用第一种方案。

目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0.40%)和中磷的(0.40~1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。

因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。

1.1原始数据1.1.1铁水成分及温度表1-1-11.1.2原材料成分. . ...v .. ..表1-1-2 原材料成分表2-1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD 3钢考虑,其成分见表2-1-31.1.4平均比热表1-1-41.1.5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。

(见表1-1-3)1.1.6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法。

转炉物料平衡与热平衡计算

转炉物料平衡与热平衡计算

摘要现代炼钢工艺较为普遍的流程有两种,长流程即以氧气转炉炼钢工艺为中心的钢铁联合企业生产流程和以电炉炼钢工艺为中心的小钢厂生产流程的短流程。

本设计为具有代表性的转炉炼钢工艺,预计年生产能力为420万吨。

本设计以转炉物料平衡和热平衡计算为基础,综合考虑成本最低化,对炼钢车间主要设备的参数进行了设计、选型,完成了主体设备选择、炼钢生产工艺设计、主厂房工艺布置和设备布置。

根据国内外转炉炼钢技术的发展趋势,结合设计任务书的需要,选择了LF 炉外精炼设备,进行全连铸生产。

最终确定如下的的工艺流程:铁水预处理→转炉炼钢→LF精炼→连铸。

关键词:转炉;炼钢;成本最低化;生产工艺;工艺流程ABSTRACTThere are two main steel-making processes in Modern steelmaking process.long process that is short of oxygen steelmaking processes to process-centric production of iron and steel enterprises in electric steelmaking processes and technology-centric small steel production process. This design is representative of the steelmaking process, the estimated annual production capacity of 4.2 million tons. The design of the converter material balance and heat balance calculations, based on a comprehensive consideration of the lowest cost, the main parameters of the steelmaking plant equipment has been designed, the selection, the completion of the main equipment selection, steel production process design, process layout and main plant equipment layout.Depending on the development trend of steel-making process .LF refining is selected to fulfill continuous casting. Finally,the following process flow is choosed: Pretreatment→Converter→LF→CCKeywords:converter;steel making;the lowest cost;production;process第1章文献综述1.1 我国钢铁工业现状及发展钢铁工业是国民经济的重要支柱性产业,它是一个国家的重工业基础,也是国民经济生产中重要组成部分。

转炉炼钢的物料平衡与热平衡

转炉炼钢的物料平衡与热平衡

4.6转炉炼钢的物料平衡及热平衡[5]炼钢过程的物料平衡和热平衡计算是建立在物质与能量守恒的基础上的。

其主要目的是比较整个冶炼过程中物料、能量的收入项和支出项,为改进操作工艺制度,确定合理的设计参数和提高炼钢技术经济指标提供某些定量依据。

应当指出,由于炼钢是复杂的高温物理化学过程,加上测试手段有限,目前尚难以做到精确取值和计算。

尽管如此,它对指导炼钢生产和设计仍有重要的意义。

转炉炼钢的过程是一个很复杂的物理化学变化过程,对其作完全定量的分析是不可能的,但是一些基本的规律和原理在该过程中仍然适用。

比如说转炉炼钢过程遵循物质不灭和能量守恒定律,在这个基础上建立了转炉炼钢过程中的物料平衡和热平衡计算。

用来研究转炉收入、支出的物质和能量在数量上的平衡关系,并用平衡方程式、平衡表或者物流及热流图表示出来。

通过物料平衡和热平衡的计算可以全面的掌握转炉的物料和能量的利用情况,了解转炉的工作能力和热效率,从而为改进工艺、实现转炉最佳操作探索途径,并为降低原材料消耗及合理利用能源和节能提供方向。

总的来说,物料平衡和热平衡的计算一方面可以指导车间或设备的设计,比如说转炉及其供氧设备,或者炼钢车间的设计;另一方面可以改善和校核已投产的转炉冶炼工艺参数、设备适应性能,比如说确定加入冷却剂的数量和时间,或者采用新技术等而由实测数据进行的计算,比如说设计一些自动控制模型时的计算。

4.6.1物料平衡[12]物料平衡是计算炼钢过程中加入炉内和参与炼钢过程的全部物料(铁水、废钢、氧气、冷却剂、渣料和耐材等)及炼钢过程中产物(钢液、炉渣、炉气及烟尘等)之间的平衡关系。

以下通过举例进行计算分析。

1.原材料成分表表2.其它假设条件(根据各类转炉生产实际过程假设):(1)炉渣中铁珠量为渣量的8%;(2)喷溅损失为铁水量的1%;(3)熔池中碳的氧化生成90%C0,10%C02;(4)烟尘量为铁水量的1.6%,其中烟尘中FeO=77%,FeO=20%;23(5)炉衬侵蚀量为铁水量的0.5%;(6)炉气温度取1450°C,炉气中自由氧含量为总炉气量的0.5%;(7)氧气成分:98.5%0,1.5%N。

转炉炼钢物料平衡与热平衡计算

转炉炼钢物料平衡与热平衡计算

资料来源:热动09-2班作业联盟转炉炼钢物料平衡与热平衡1.物料平衡:加入转炉的生铁成分含量:(选取100kg生铁)C:4.00% Si:1.30% Mn:1.00% P:0.06% S:0.05% 加入转炉铁水的温度1270°C,转炉炼钢必须练成含0.10%C的钢温度为1625°C。

(1)加入物料的损失计算:由转炉中金属含炭量与炉渣中FeO含量的关系曲线可知当金属中含0.10%C时炉渣中FeO含量为18.5%有炉渣中FeO与Mn总计50%,所以的含量为:50%-18.5%=31.5% 在金属池中温度为1625°C进行吹炼Si和Mn参加氧化还原反应。

Mn+FeO= MnO+Fe 反应的平衡常数K s Mn=[Mn][FeO]/[MnO] t=1625°C。

查表得K s Mn=0.097∴[ Mn]= [ MnO] K s Mn/[ FeO]=0.097*31.5/18.5=0.165%Si+2FeO=SiO2+2Fe 反应的平衡常数K s Si= [Si][FeO]2t=1625°C。

查表得K s Si=11.5∴[Si] =K s Si/[FeO]2=11.5/18.52=0.034%吹炼结果所得金属中下列成分含量:C:0.10% Mn:0.165% Si:0.034%由于炼钢液体钢的收得率为93%,(浸出物收得率E(%) =浸出物(kg)/ 投料总量(kg)×100%)各成分的损失:C:4.00-0.93×0.1=3.97kgMn:1.00-0.93×0.165=0.85kgSi:1.3-0.93×0.034=1.27kg由锰与氧化铁的还原反应铁的损失:Fe:Mn损×[ FeO]/[ MnO]=0.85×18.5/31.5=0.5 kg∴总的损失量为:M损=3.97+0.85+1.27+0.5=6.59(2)氧化还原反应消耗氧气量和产物的量:在不加入废钢和矿石时,约有1/9的C燃烧生成CO2氧的利用率为99%。

【精品】物料平衡与热平衡计算

【精品】物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。

它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1—1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算.通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”.对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义.由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。

物料平衡和热平衡计算,一般可分为两面种方案.第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测.本计算是采用第一种方案。

目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0。

40%)和中磷的(0.40~1。

00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。

因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算.1.1原始数据1。

1.1铁水成分及温度表1—1—11.1.2原材料成分表1-1—2原材料成分2 / 563 / 563 / 56表2—1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD 3钢考虑,其成分见表2—1—31。

1。

4平均比热表1-1-41.1。

5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。

(见表1-1-3)1。

1。

6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法.但是,比较常用的反应热数据见表1-1—5。

100T转炉物料平衡及热平衡计算

100T转炉物料平衡及热平衡计算

100T顶底复吹转炉炼钢的物料平衡和热平衡计算5.1 物料平衡计算5.1.1 计算原始数据基本原始数据有:冶炼钢种及成分、铁水和废铁的成分、终点钢水成分;造渣用溶剂及炉衬等原材料成分;脱氧和合金化用铁合金的成分及回收率;其他工艺参数。

表5-2 原材料成分石灰中S自耗的CaO量表5-3 矿石加入量及成分矿石中S消耗CaO量=0.001*2/3*56/32=0.001kg5.1.2物料平衡的基本项目收入项有:铁水、废钢、溶剂(石灰、矿石、轻烧白云石)、氧气、炉衬蚀损、铁合金。

支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。

5.1.3 计算步骤以100㎏铁水为基础进行计算。

第一步:计算脱氧和合金化前的总渣量及其成分。

总渣量包括铁水中元素氧化,炉衬腐蚀和加入溶剂的成渣量。

其各项成渣量分别列于表5-5~表5-7。

总渣量及成分如表5-8所示:铁水中元素氧化量表5-5 铁水中元素的氧化产物及其成渣量①由CaO还原出的氧量;计算出铁水中S消耗CaO量=0.009×56/32=0.016㎏。

表5-6 炉衬腐蚀的成渣量表5-7 加入溶剂的成渣量①.石灰加入量:石灰加入量=()()有效CaO CaO R SiO %2∑∑-⨯=(1.171*3.2-0.657)/(88.0%-3.2×2.50%) =(3.747-0.657)/0.8 =3.09/0.8 =3.863kg∑(SiO 2)=铁水[Si]生成(SiO 2)+炉衬、矿石、白云石带入(SiO 2);=1.071+0.009+0.046+0.045=1.171㎏;∑(CaO )=白云石、矿石、炉衬带入(CaO )-铁水、矿石中S 消耗CaO 量;=0.66+0.01+0.004-0.001-0.016=0.657㎏;因设定终渣碱度R=3.2:%CaO 有效=石灰中(%CaO )-碱度R ×石灰中(% SiO 2)=88.0%-3.2×2.50%表5-8 总渣量及其成分渣Σω(FeO)=15%(表5-4),故总渣量为7.4/86.75%=7.4/86.75%=8.53㎏。

转炉热量及物料平衡计算和年度物料计划

转炉热量及物料平衡计算和年度物料计划

转炉热量及物料平衡计算和年度物料计划一、转炉热量及物料平衡计算1 计算的原始数1) 金属料成分和温度。

表1为金属料成分和温度。

表1金属料成分和温度项目化学成分%温度℃C Si Mn P S铁水 4.10 0.65 0.40 0.105 0.025 1300 废钢0.15 0.25 0.6 0.020 0.020 25 2) 原料成分。

表2为原料成分。

表2 原料成分项目化学成分%烧减% CaO SiO2MgO FeO烧碱Fe2O3石灰90 0.55 3.5 5 2.5 矿石8 5.5 10 70 轻烧白云石51.5 3.0 30.5 46.5炉衬 2.0 2.0 85生白云石32 1.5 203) 终点渣成分。

表3为终点渣成分。

表3 终点渣成分化学成分%碱度FeO Fe2O3 MgO3.5 10 7 84) 冶炼终点。

钢种化学成分%温度℃C Si Mn P S终点0.08 0 0.15 0.020 0.020 1650 5) 其它计算的条件各物质的质量热容见表5,炼钢温度下的反应热效应见表6。

表5 铁、钢、炉渣、炉气和矿石的平均质量热容项目 固态平均质量热容kJ/(kg·℃) 熔化潜热 kJ/kg液态或气态平均质量热容 kJ/(kg·℃)铁水 0.745 218 0.837 钢水 0.669 272 0.837 炉渣 209 1.247 炉气1.141烟尘 209 0.996 矿石1.017209表6 炼钢温度下的反应热效应反应式△H kJ/kg)()(2CO21][气气=+O C11639 )(2)(2CO][气气=+O C34834)()(2MnO21]M [液气=+O n6594 )(2)(2SiO]S [液气=+O i29202 2P P2O5 18980P2O54CaOP2O54880 )(32)(2)(O Fe 232液气液=+O Fe 6460 )()(2)(FeO21液气液=+O Fe4250)(2)()(2SiOO C 2O C 2SiO固固固∙=+a a16206) 转炉冶炼的加料情况见表7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100T顶底复吹转炉炼钢的物料平衡和热平衡计算5.1 物料平衡计算5.1.1 计算原始数据基本原始数据有:冶炼钢种及成分、铁水和废铁的成分、终点钢水成分;造渣用溶剂及炉衬等原材料成分;脱氧和合金化用铁合金的成分及回收率;其他工艺参数。

表5-2 原材料成分石灰中S自耗的CaO量表5-3 矿石加入量及成分矿石中S消耗CaO量=0.001*2/3*56/32=0.001kg5.1.2物料平衡的基本项目收入项有:铁水、废钢、溶剂(石灰、矿石、轻烧白云石)、氧气、炉衬蚀损、铁合金。

支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。

5.1.3 计算步骤以100㎏铁水为基础进行计算。

第一步:计算脱氧和合金化前的总渣量及其成分。

总渣量包括铁水中元素氧化,炉衬腐蚀和加入溶剂的成渣量。

其各项成渣量分别列于表5-5~表5-7。

总渣量及成分如表5-8所示:铁水中元素氧化量表5-5 铁水中元素的氧化产物及其成渣量①由CaO还原出的氧量;计算出铁水中S消耗CaO量=0.009×56/32=0.016㎏。

表5-6 炉衬腐蚀的成渣量表5-7 加入溶剂的成渣量①.石灰加入量:石灰加入量=()()有效CaO CaO R SiO %2∑∑-⨯=(1.171*3.2-0.657)/(88.0%-3.2×2.50%) =(3.747-0.657)/0.8 =3.09/0.8 =3.863kg∑(SiO 2)=铁水[Si]生成(SiO 2)+炉衬、矿石、白云石带入(SiO 2);=1.071+0.009+0.046+0.045=1.171㎏;∑(CaO )=白云石、矿石、炉衬带入(CaO )-铁水、矿石中S 消耗CaO 量;=0.66+0.01+0.004-0.001-0.016=0.657㎏;因设定终渣碱度R=3.2:%CaO 有效=石灰中(%CaO )-碱度R ×石灰中(% SiO 2)=88.0%-3.2×2.50%表5-8 总渣量及其成分渣Σω(FeO)=15%(表5-4),故总渣量为7.4/86.75%=7.4/86.75%=8.53㎏。

②.ω(FeO)=8.53×8.25%=0.704㎏ ω(Fe 2O 3)=8.53×5%=0.427㎏。

由于矿石和白云石第二步:计算氧气消耗量。

氧气的实际消耗量系消耗项目与供入项目之差。

见表5-9表5-9 实际耗氧量第三步:计算炉气量及其成分。

炉气中含有CO 、CO 2、N 2、SO 2和H 2O.其中CO 、CO 2、SO 2和H 2O 可由表7-5~表7-7查得,O2和N2则由炉气总体积来确定。

现计算如下:炉气总体积V ΣV ∑=g V +0.5%V ∑+991 (%5.0324.22+s G V ∑-x V )=5.9832/4.22007.010.77.0998.79950.987.099⨯-⨯+⨯=-+Vx Gs Vg =8.089 m ³式中Vg ——CO 、CO 2、SO 2和H 2O 各组分总体积,m ³。

本计算中其值为:184.22015.0644.22010.0444.22659.2284.22278.8⨯+⨯+⨯+⨯=7.998m ³ Gs ——不计自由氧的氧气消耗量,㎏。

本计算中其值为:6.698+0.062+0.34=7.10㎏(见表5-9)Vx ——石灰中的S 和CaO 反应还原出的氧量(其质量为:0.002㎏,见表5-9),m ³。

0.5%——炉气中自由氧含量。

99——自由氧纯度为99%转换得来。

计算结果列于表5-10表5-10 炉气量及其成分②.炉气中N2的体积系炉气总体积与其他成分体积之差;质量为0.051*28/22.4=0.064㎏第四步:计算脱氧和合金化前的钢水量。

钢水量Qg =铁水量-铁水中元素的氧化量-烟尘、喷溅和渣中的铁损 =100-6.296-[1.50×(75%×56/72+20%×112/160)+1+12.955×8%] =90.583㎏由此可以编制出未加废钢、脱氧与合金化前的物料平衡表5-11表5-11 未加废钢时的物料平衡表5.2 热平衡计算5.2.1计算所需的原始数据计算所需的基本原始数据有:各种入炉料及产物的温度(表5-17);物料平均热熔(表5-18);反应热效应(表5-19);融入铁水的元素对铁水熔点的影响(表5-20)。

其他工艺参数参照物料平衡选取。

表5-17 入炉物料及产物的温度设定值表5-18 物料平均热熔元素对铁熔点的降低值5.2.2 计算步骤以100㎏铁水为基础第一步:计算热收入Qs。

热收入项包括:铁水物理热;元素氧化热及成渣热;烟尘氧化热;炉衬中碳的氧化热。

Q(1) 铁水物理热W先根据纯铁熔点(1536℃)、铁水成分以及溶入元素对铁熔点的降低值(见表5-17、表5-1和表5-20)计算铁水熔点T t,然后由铁水温度(1300℃)和生铁热容(见Q。

表5-17和表5-18)确定WT=1536-(4.0×100+0.5×8+0. 5×5+0.3×30+0.035×25)-6t=1536-(400+4+2.5+9+0.875)-6=1114 (℃)Q=铁水量*[C固*(T熔-T0)+λ熔+C液*(T出-T熔)]W=100 ×[0.745×(1114-25)+218+0.837×(1300-1114)]=100*(811.3+218+155.68)=118498.2 (KJ)Q(2) 元素氧化热及成渣热y由铁水中元素氧化量和反应热效应(见表5-19)可以算出,其结果列于表5-21。

(3) 烟尘氧化热C Q由表5-4中给出的烟尘量参数和反应热效 应计算可得。

(为铁量的1.5﹪(其中w(FeO)为75﹪,w(Fe 2O 3)的20﹪)C Q =1.5×(75%×56/72×4250+20%×112/160×6460)=5075.35kJ(4) 炉衬中碳的氧化热(为铁水量的0.3﹪,90﹪C 氧化成CO ,10﹪C 氧化成CO 2)1Q =0.3×14%×90%×11639+0.3×14%×10%×34834=586.25kJ故热收入总量为S Q =W Q +y Q +C Q +1Q =118498.2+82726.48+5075.35+586.25=206886.28kJ第二步:计算热支出Z Q 。

热支出项包括:钢水物理热;炉渣物理热;烟尘物理热;炉气物理热;渣中铁珠物理热;喷溅物(金属)物理热;轻烧白云石分解热;热损失;矿石分解吸热(1) 钢水物理热Q g先按求铁水熔点的方法确定钢水熔点T g ;再根据出钢和镇静时的实际温降(通常前者为40~80℃,后者约为3~5℃/min ,具体时间与盛钢桶大小和浇注条件有关)以及要求的过热度(一般为50~90℃)确定出钢温度T Z ;最后由钢水热容算出物理热。

T g =1536-(0.10×65+0.15×5+0.020×30+0.021×25)-6=1522℃ 式中,0.10、0.15、0.020和0.021分别为终点钢水中C 、Mn 、P 、S 的含量。

T Z =1522+60+28+70=1680℃式中,60、28、70分别为出钢过程中的温降、镇静及炉后处理过程中的温降和过热度。

Q g =钢水量*[C 固*(T 熔-T 0)+λ熔+C 液*(T 出-T 熔)] =90.583×[0.699×(1522-25)+272+0.837×(1680-1522)] =90.583×(1046.4+272+132.25) =131403.87kJ(2) 炉渣物理热Q r令终渣温度与钢水温度相同,则得:Q r =8.53×[1.248×(1680-25)+209]=19400.97kJ(3) 炉气、烟尘、铁珠和喷溅金属的物理热Q x 。

根据其数量、相应的温度和热容确定。

详见表5-22。

表5-22 某些物料的物理热(4) 矿石分解吸热Q b根据其用量、成分和表5-19所示的热效应计算的。

Q b =1.0×(29.4%×7256×4250+61.8%×160112×6460+209)=1*(971.833+2794.596+209) =3975.43kJ (5) 热损失Q q其他热损失带走的热量一般约占总热收入的3%~8%。

本计算开新炉第一炉取14%,则得Q q =206886.28×14%=29265.92kJ热平衡计算结果列于表5-23。

表5-23热平衡表应当指出,加入铁合金进行脱氧和合金化,会对热平衡数据产生一定的影响。

对转炉用一般生铁冶炼低碳钢来说,所用铁合金种类有限,数量也不多。

经计算,其热收入部分约占总热收入的0.8%~1.0%,热支出部分约占0.5%~0.8%,二者基本持平。

相关文档
最新文档