八年级数学下册第五章分式与分式方程3分式的加减法教案(新版)北师大版

合集下载

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

【优选整合】北师大版八年级下册数学 5.3.3分式的加减法 教案

【优选整合】北师大版八年级下册数学 5.3.3分式的加减法 教案

第五章 分式与分式方程3.分式的加减法(三)一、学生起点分析学生知识技能基础:学生在前两节课已经学习同分母分式、异分母分式的加减运算及法则。

在第四章学习了因式分解,对这节课异分母分式相加减和分式求值及应用内容的学习都有了充分的铺垫。

学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。

同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。

二、教学任务分析分式的加减法是代数变形的基础之一,分式的化简求值又是代数运算的主要内容,运用所学知识解决实际问题是学习的最终目的。

教科书在原有两节课时的基础上,改编成三节课时,本节课将重点放在运用分式的加减法。

因此本节课的教学目标为:1、 会进行分母是多项式的异分母分式的加减法运算及分式与整式的加减法运算;2、 提高学生对代数式化简变形的能力;3、 能进行分式的混合运算及较复杂的分式化简求值;4、 会运用分式建立数学模型,从而解决实际问题,增强学生用数学的意思。

‘三、教学过程设计第一环节 温故知新活动内容问一问同分母分式是怎样进行加减运算的?异分母分式呢?练一练a a14)1(2+; 111)2(+--a a a ; bc c b ab b a +-+)3(. 活动目的:通过回忆同分母分式、异分母分式的加减法运算法则,来加深学生对所学知识的认识,也为这节课铺下理论基础。

同时又通过练一练的三道题,检查学生对法则的运用情况,加强对法则的理解应用,为本节课的学习扫平障碍。

活动的注意事项:学生回答时应视情况帮助辅正,并对法则作再次的解释,让学生真正理解法则。

对于练一练就根据学生的解答(采取演板形式)情况,对运算中一些问题作再一次的重申,如分子添括号啊,结果约分等。

第二环节 导学释疑活动内容例5 xxy x xy y -++1)1(; 11)2(2+-+x x x ; 31913)3(2+---+-a a a a a . 活动目的:这三道题从难度上较上节课有一点攀升,涵盖了分母是多项式要先分解再通分、分式与整式的且有整体思想的混合运算、多项但分母间分解后就有公分母的运算,所以作为例题来讲解,也是本节课所要达到的能力目标之一,是教科书的基本素材,同时又能巩固异分母分式加减运算的能力,应该认真讲解。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》教案_0

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》教案_0
重点
难点
重 点:会找最简公分母,能进行分式的通分;理解并掌握异分母分式加减法的法则;难 点:会找最简公分母,能进行分式的通分。
教法
选择
小组合作探究
课型
新授课
课前准备
课件
是否采用多媒体

教学
时数
3课时
教学
时数
第2课时
备课
总数
第49课时
课堂教学过程设计
教学内容
教师活动
学生活动
第一环节问题引入
问题1:同分母分式是怎样进行加减运算的?
独立完成后全班交流订正答案。
用自己的语言进行总结。
作业设置
P121知识技能1、2、3.




等级评价
(A/B/C/D)
检查
签阅
第周,应备课时实备课时,共课时
评价:时间:签查(盖章):
用式子表示为:
第三环节运用新知
1、出示例3
(1) ;(2) ;(3) .
2、小试牛刀
1、将下列各组分式通分:
; .
2、计算:

第四环节分式加减的应用
例4 小刚家和小丽家到学校的路程都是3km,其中小丽走的是平路,骑车速度2v km/h.小刚需要走1km的上坡路、2km的下坡路,在上坡路上的骑车速度为vkm/h,在下坡路上的骑车速度为3vkm/h.那么
教师总结。
布置自学任务(例3)。
对后面两个讲解。
布置练习题并提出具体要求。
引导学生小结。
.
小组内合作思考并回答。
结合异分母分数的加减法,类比得到分母不同时的分式的加减。
学生尝试完成并回答。
思考后发言,交流讨论结果。

八年级数学下册5.3.3分式的加减法教案(新版)北师大版【精品教案】

八年级数学下册5.3.3分式的加减法教案(新版)北师大版【精品教案】

第五章 分式与分式方程5.3.3 分式的加减法【教学内容】熟练进行分式的加减运算。

【教学目标】知识与技能熟练进行分式的加减运算, 异分母的分式加减运算,引导学生总结运算方法和技巧,提高运算能力.过程与方法引导学生总结运算方法和技巧,提高运算能力.通过观察、分析、发展学生的逻辑推理能力。

情感、态度与价值观 让学生经历操作、实验、发现、确认等数学活动,引导学生总结运算方法和技巧,提高运算能力.体会数学观点,培养学生的数学意识。

【教学重难点】 重点:引导学生总结运算方法和技巧,提高运算能力.难点:理解并掌握异分母分式的加减运算.【导学过程】【知识回顾】同分母分式相加减 。

异分母分式相加减 。

【情景导入】计算:(1)226132abc a - (最简公分母是____ ) 解:原式=- (通分:分母是最简公分母,写上分子) = (同分母的分式相加减)(2)yx y x -++11 (最简公分母是____ _) 解:原式= + (通分:分母是最简公分母,写上分子) = (同分母的分式相加减) = (注意化简运算结果为最简分式) 分式的混合运算题,要注意运算的顺序,先 ,后 ,有括号的要 。

【新知探究】探究一、合作探究11)1(2+-+y y y 计算: (2)4116142+---+-x x x x x探究二、已知的值。

求222,2yx y y x y y x x y x --+--=【知识梳理】1、异分母分式的加减法法则:异分母的分式相加减,先通分,化为______________的分式,然后再按同分母分式的加减法法则进行计算。

2、分式的混合运算: 与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘除,后算加减,遇有括号,先算括号内的。

3、确定最简公分母的一般步骤:①取各分母的_________的最小公倍数;②凡出现的字母(或含有字母的式子)的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取__________________的;④如果分母是多项式,一般应先__________________________________。

八年级数学下册第五章分式与分式方程3分式的加减法教案(新版)北师大版

八年级数学下册第五章分式与分式方程3分式的加减法教案(新版)北师大版

八年级数学下册第五章分式与分式方程3分式的加减法教案(新版)北师大版3 分式的加减法第1课时一、教学目标1.知识与技能(1)同分母的分式的加减法的运算法则及其应用;(2)简单的异分母的分式相加减的运算.2.过程与方法(1)经历用字母表示数量关系的过程,发展符号感;(2)会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.3.情感态度及价值观(1)从现实情境中提出问题,提高“用数学”的意识;(2)结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.二、教学重点、难点重点:(1)同分母的分式加减法;(2)简单的异分母的分式加减法.难点:当分式的分子是多项式时的分式的减法.三、教具准备课件.四、教学过程(一)创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:问题1:从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路,2 km的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题2:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?[师]问题1,根据题意可得如图3-1的线段图.图3-1(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出. [生1]如果要比较(v 1+v 32)与v 23的大小,就比较难了,因为它们的分母中都含有字母. [生2]比较两个数的大小,我们可以用作差法.例如有两个数a ,b .如果a -b >0,则a >b ;如果a -b =0,则a =b ;如果a -b <0,则a <b . [师]这位同学想的方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生3]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢? [师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题).我们再来看一下问题2.[师]问题2中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000,a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题1中加减法比较一下,你会发现什么?[生]问题1中的是异分母的分式相加减,而问题2是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.(二)讲授新课1.同分母的加减法[师]我们接着看下面的问题:想一想:(1)同分母的分数如何加减?你能举例说明吗?(2)你认为分母相同的分式应该如何加减?做一做:(1)a 1+a2=____________. (2)22-x x -24-x =____________. (3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着上台板演“做一做”中的三个小题.[生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ; [生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x =12+-x x . [师]我们一块来讲评一下这三位同学的运算过程.[生4]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2.[师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生5]第(3)小题,我认为有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生3]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x =1312+-++-+x x x x =1+x x . [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则:同分母的分式相加减,分母不变,把分子相加减.用式子表示是:c a ±cb =c b a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面“问题2”现在可以完成了吧!大胆地试一试. [生]a 3000-a 1000=a10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a 2000个小时.2.简单的异分母的分式相加减[生]问题1还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法.[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减. 小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a 3+a 41=a a a 443⋅⋅+a a a ⋅4=2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a 41=a 412+a 41=a 413. 你对这两种做法有何评论?与同伴交流.[生1]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41. 如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生2]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a 41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[例]计算:(1)a 3+a a 515-;(2)12-x +x x --11.[生3]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生4]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.(1)中一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a515即可.解:(1)a 3+a a 515-=a 515+aa 515- =aa 5)15(15-+=a a 5=51; [生5]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把x x --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x .所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x .[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题1可以计算出结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35(h ). (2)小丽走第一条路所用的时间为v23h . 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h . (三)即时练习1.计算:(1)xb 3-x b ;(2)a 1+a 21;(3)b a a --a b a -. 2.计算:m n n m -+2+n m n --m n n -2. (四)课堂小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.(五)教学反思第2课时一、教学目标1.知识与技能(1)异分母的分式加减法的法则;(2)分式的通分.2.过程与方法(1)经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力;(2)进一步通过实例发展学生的符号感.3.情感态度及价值观在学生已有数学经验的基础上,探求新知,从而获得成功的快乐;提高学生“用数学”意识.二、教学重点、难点重点:(1)掌握异分母的分式加减运算.(2)理解通分的意义.难点:(1)化异分母分式为同分母分式的过程.(2)符号法则、去括号法则的应用.三、教具准备课件.四、教学过程(一)创设问题情境,类比异分母分数的加减法引入新课[师]大家知道,对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.上一节课,我们讨论较简单的异分母的分式加减法.下面我们再来看几个异分母的加减法. 做一做:尝试完成下列各题:(1)24a -a 1=____________; (2)a 1+b1=____________; (3)ab b a +-bcc b +=____________; (4)a b 3+b a 2=____________. [生]我们已学过分式的一些知识,如分式的概念,分式的约分以及分式的乘除法等.这些知识,都是在与分数类比中得到的.我想异分母的分式的加减法也可类比分数的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法.[师]你的想法很好.在分数的加减法中,我们把异分母的分数化成同分母分数的过程叫做通分.[生]老师,我知道啦,在分式的加减法中,把异分母的分式化成同分母分式的过程也叫做通分.“做一做”中的几个异分母的分式加减法就需要先通分.(二)讲授新课[师]下面可尝试用分式的基本性质,将“做一做”中的异分母分式的加减法通分化成同分母的分式加减法,计算并化简.[生]解:(1)24a -a 1=24a -a a a ⨯⨯1=24a -2aa =24a a -; (2)a 1+b 1=b a b ⨯⨯1+b a a ⨯⨯1=ab b +ab a =abb a +; (3)ab b a +-bc c b +=c ab c b a ⋅+)(-bc a c b a ⋅+)( =abc bc ac +-abc ac ab +=abc ac ab bc ac )()(+-+ =abc ac ab bc ac --+=abc a c b )(-=ac a c -; (4)a b 3+b a 2=b a b b 232⋅⋅+b a a a 233⋅⋅=ab b 622+aba 632=ab a b 63222+ (让同学们分组讨论交流完成,教师可巡视发现问题并解决问题).[师]把异分母的分式加减法,通过通分,每个分式都化成同分母的加减法.你是怎样通分,把异分母的分式化成同分母的?同学们可根据“做一做”的每个步骤,总结你是怎样通分的?(小组讨论完成)[生]我认为通分的关键是几个分式的公分母,从而确定各分式的分子、分母同乘什么样的“适当整式”,才能化成同分母.[生]确定公分母的方法:系数取每个分式的分母的系数的最小公倍数,再取各分母所有因式的最高次幂的积,一起作为几个分式的公分母.[师]同学们概括得很好.下面我们来看一个例题:[例1]通分:(1)x y 2,23y x ,xy 41;(2)y x -5,2)(3x y -; (3)31+x ,31-x ;(4)412-a ,21-a分析:通分时,应先确定各个分式的分母的公分母:先确定公分母的系数,取各个分母系数的最小公倍数;再取各分母所有因式的最高次幂的积.学生独立解答,教师巡视、指导.[师]我们再来看一个例题:[例2]计算:(1)31-x -31+x ;(2)412-a -21-a ; (3)用两种方法计算: (23-x x -2+x x )·x x 42-. (可由学生板演,学生之间互查互纠).[例3]甲、乙两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?[师生共析]由于两次购买饲料的单价有所变化,可设第一次购买的饲料的单价为m 元/千克,第二次购买的饲料的单价为n 元/千克,甲、乙所购买饲料的平均单价应为两次饲料的总价除以两次所买饲料的总质量.在第(2)题中,比较甲、乙所购饲料的平均单价,谁的平均单价低谁的购货方式就更合算,可以用作差法比较平均单价.(三)课堂练习计算:(1)11-a -212a -;(2)9122-m +m -32;(3)a +2-a -24. (四)课堂小结这节课我们学习了异分母的分式加减法,使我们提高了分式运算的能力.(五)教学反思。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》教案_4

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》教案_4

第五章 分式与分式方程3.分式的加减法(二)一、学生掌握的知识情况分析:1、基础:学生在上节课已经学习过同分母的分式相加减及分母互为相反式分式的加减运算。

在第四章又学习了因式分解,回忆了分数的基本性质,学习了分式的基本性质、分式的约分及分式的乘除等。

对这节课异分母分式相加减内容的学习都有了充分的铺垫。

学生经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。

同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。

二、教学情况分析分式的加减法是代数变形的基础之一,在学习完同分母分式的加减法法则后必将谈到异分母分式的加减法,教科书安排了三节课的教学,就是不让难度突然加大,而是循序渐进的去接受,允许学生经过一定时间的学习时间达到目标,应把教学重点放在落实和理解上。

本节内容教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,在观察、类比、猜想等一系列思维活动中,发现法则、理解法则、应用法则。

本节课的教学目标为:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。

4、培养学生在学习中转化未知问题为已知问题的能力和意识。

三、教学过程设计问题引入——学习新知——运用新知——自主探究——拓展提高——课堂小结。

第一环节 问题引入问题1:同分母分式是怎样进行加减运算的?问题2:异分母分数又是如何进行加减?问题3:那么=+aa 413?你是怎么做的? 目的:通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时又对问题3点明了类比的思想方法。

注意事项:学生回答时应帮助辅正,从而转入到异分母分式的加减法学习,学生在回答问题时应耐心听学生的想法,教学有的放矢。

第二环节 学习新知活动内容(1)议一议 小明:a aa a a a a a a a a a a a a 41341344124443413222==+=⨯+⨯⨯=+ 小亮:a a a a a a a 4134141241443413=+=+⨯⨯=+ 你对这两种做法有何评论?与同伴交流。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》教案_9

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》教案_9

分式的加减法教学设计
一、课时安排分析:
本节内容由分数加减法运算,延续到分式加减法运算;由同分母分式加减运算提升到异分母分式加减运算,再提升到分母互为相反式、分母有公因式的分式加减运算。

这样安排,给学生一个简单到复杂的认识过程,使学生对分式加减法的掌握并不觉得难。

本节对于分式的学习有着至关重要的作用,是后面根据实际生活问题列出分式或分式方程,并求出正确答案的基本功,教学时必须踏踏实实。

二、本节课的教学目标:
1.理解并掌握同分母分式、异分母分式加减法的法则;
2.会找最简公分母,能进行分式的通分;
3.在学习活动中训练学生的分式加减运算能力。

三、教学过程设计(详细内容参考预学案)
第一环节课堂预习
设计目的:知道分式加减可以延用分数加减的法则进行计算,知道通分的方法和依据,并会进行简单的分式加减运算。

第二环节评改、练习活动
设计目的:通过由易到难的四个评改、练习的活动环节,让学生掌握和提升分式加减运算能力。

第三环节例题教学
设计目的:例题分母具备分母含有公因式和互为相反式的特征,难度比较多,通过例题教学减轻学生学习难度。

第四环节提升练习
设计目的:针对例题配备同样特征的题型,了解学生的掌握情况。

第五环节课堂小结与巩固练习
设计目的:回顾运算法则、归纳注意问题,巩固练习为机动教学内容。

第六环节作业布置。

八年级数学下册 5.3.1 分式的加减法教案 (新版)北师大版

八年级数学下册 5.3.1 分式的加减法教案 (新版)北师大版

第五章 分式与分式方程5.3.1 分式的加减法【教学内容】同分母分式的加减运算。

【教学目标】知识与技能会进行同分母分式的加减运算,具有一定的代数化归能力;能解决一些简单的实际问题,进一步体会分式的模型作用。

过程与方法结合已有数学经验,解决新问题,获得成就感以及克服困难的方法和勇气。

情感、态度与价值观让学生经历实验、发现、确认等数学活动,结合已有数学经验,解决新问题,获得成就感以及克服困难的方法和勇气,体会数学观点,培养学生的数学意识。

【教学重难点】 重点:同分母分式的加减运算。

难点:同分母分式的加减运算。

【导学过程】【知识回顾】1、填空: ①15与35的 相同,称为 分数,15+35= ,法则是 ; ②12与23的 不同,称为 分数,12+23= ,•运算方法为 ; 2、b a 与c a 的相同,称为 分式;m a 与n b 的 不同,称为 分式. 【情景导入】1. 同分母分数相加减:(1)法则:同分母的分数相加减, 不变,把 相加减。

(2)注意:①字母表示为:a c a c b b b±±=。

②“分子相加减”是各个分式的“分子整体”相加减,即各个分子都应有括号。

当分子为单项式时,括号可以省略;当分子为多项式时,括号不能省略。

③运算的结果,必须化为最简分数。

2.怎样计算同分母分数相加减?【新知探究】探究一、进一步理解同分母的分式相加减的法则:2222246342239311xy y x y x x y x x x --+-----) () 计算:(例 分析:(1)同分母分式相加减,分母不变,分子相加减,结果要化成最简分式或整式;(2)因为)4(42222y x x y --=-,把分式化成同分母后,依同分母分式加减法法则运算。

探究二、合作探究:计算:(1)、abn ab m - (2)、11-+-a n a m (3)、b a x b a b a ---+22235探究三、3134+-++m m m m (2).、32b a -32a a(3)【知识梳理1.同分母分式相加减:法则:同分母的分式相加减, 不变,把 相加减。

新北师大版八年级数学下册《五章分式与分式方程3.分式的加减法同分母分式的加减法》教案_11

新北师大版八年级数学下册《五章分式与分式方程3.分式的加减法同分母分式的加减法》教案_11

第五章分式与分式方程5.3 分式的加减法第1课时同分母的加减法教学目标【知识与技能】1.理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算;2.【过程与方法】类比同分数加减法的法则归纳出分式的加减法法则,【情感态度】通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母分式加减法的运算.【教学难点】同分母分式加减法的运算教学过程一.情景导入,初步认知1.做一做:.猜一猜你是怎么做的?【教学说明】通过做一做的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性,从而抛出同分母分式加减法的运算法则,点明本节课的主要内容。

二.思考探究,获取新知探究1:同分母分式的加减你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.用式子表示为:探究2:异分母分式的加减讨论:小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同:小明:小亮:你对这两种做法有何评论?与同伴交流.【教学说明】学生观察讨论,总结出异分母分式计算的法.【归纳结论】根据分式的基本性质,可以将异分母的分式化为同分母的分式,这个过程叫通分.为了方便计算,异分母的分式通分时,通常取最简单的公分母(最简公分母)作它们的共同公分母.异分母分式加减法的法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用式子表示为:三.运用新知,深化理解1.见教材P117-122例1~例62.计算:3.计算:【教学说明】通过演练巩固,让学生对分式的加减法有更好的认识与掌握.四.师生互动,课堂小结1.同分母分式加减法则是:同分母的分式相加减,分母不变,把分子相加减.2.学会用转化的思想将分母互为异分母的分式加减运算转化成同分母分式的加减法.3.分子是多项式时,一定记得添括号后再进行加减运算.4.类比方法很多时候是对的,学会用这种方法去分析和解决问题.5.确定最简公分母的一般步骤:①取各分母的_______的最小公倍数;②凡出现的字母(或含有字母的式子)的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取___________________的;④如果分母是多项式,一般应先___________.布置作业教材“习题 5.4”中第1、2 题.“习题5.5”中第1、2题.。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》教案_10

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》教案_10

分式的加减法(二)一、教学目标:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。

二、重难点1、重点:寻找最简公分母,并通分把异分母转变成同分母分式相加减2、难点:寻找最简公分母并通分三、教学过程(一)问题引入1、异分母分数又是如何进行加减?异分母分数加减的法则是什么?3+1= 2、=+aa 413?你是怎么做的?法则是什么? (二) 学习新知1、异分母分式加减法的法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用式子表示为:ac adbc ac ad ac bc c d a b ±=±=± 2、想一想小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。

小亮同意小明的这种看法,但他俩的具体做法不同:小明:a a a a a a a a a a a a a a a 41341344124443413222==+=⨯+⨯⨯=+ 小亮:aa a a a a a 4134141241443413=+=+⨯⨯=+ 你对这两种做法有何评论?与同伴交流。

3、如何寻找最简公分母?.(三)例题分析 例1、把下列各式通分例2、计算 例3计算 (四)练一练 1、填空:(1)3xy−5xy= (2)4x x−y+4yy−x=(3)34x,12x,56x的最简公分母是2、计算(五)这节课我学到了什么? (六)作业1、书121页知识技能1题(七)联系拓展 1、 用两种方法计算(3x x−2-xx+2).x 2−4x2、帮帮小说算算时间从从甲地到乙地有两条路,每一条路都是 3km. 其中第一条是平路,第二条有1km 的上坡路, 2km 的下坡路.小明在上坡路上的骑车速度为v km/h, 在平路上的骑车速度为2 vkm/h, 在下坡路上的骑车速度为3vkm/h, 那么: (1)当走第二条路时, 他从甲地到乙地需要多长时间? (2)他走哪条路花费时间少? 少用多长时间?;41,3,2)1(2x yy xx y;31,31)2(-+x x ;21,41)3(2--a a .)(3,5)4(2y x x y --xy y y x x -+-22m m -+-329122- -- y x x y x y- +- xy x y x x 2- - - yy x x 3 2- + + - + + 94 15 2 2 3 3 3 2 2 2 a a a a。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》教案_15

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》教案_15

第五章分式与分式方程3.异分母分式的加减法(二)教学目标1.学会确定几个分式的最简公分母并进行通分;(重点)2.能正确地运用分式的加、减、乘、除、乘方的运算法则进行混合运算.(重点,难点) 教学过程一、预习反馈1.分式的基本性质:一个分式的分子与分母同乘(或除以)一个________________,分式的值_______.2.什么叫约分?把一个分式的分子和分母的公因式约去,不改变分式的值,这种变形叫做分式的约分.3. 把下面分数通分:你认为异分母的分式应该如何加减?比如314a a,应该怎样计算?二、自主探究1.分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.2.通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母三、展示交流3.通分.(1)a2(a+1),1a2-a;(2)2mn4m2-9,3m4m2-6m+9.方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.4.计算:(1)xx2-4-2x2+4x+4;(2)a2-4a+2+a+2;(3)mm-n-nm+n+2mnm2-n2.方法总结:分母是多项式时,应先因式分解,目的是为了找最简公分母以便通分.对于整式与分式的加减运算,可以将整式的每一项的分母看成1,再通分,也可以把整式的分母整体看成1,再进行通分运算.5.计算:(1)(x 2-4x +4x 2-4-x x +2)÷x -1x +2;(2)a -52a -6÷(16a -3-a -3). 方法总结:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后加减,如果遇到括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法。

新北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 同分母分式的加减法》教案_15

新北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  同分母分式的加减法》教案_15

5.3 分式的加减法(一)一、教学目标:1、类比同分数加减法的法则归纳出同分母分式的加减法法则。

2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算。

3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。

二、教学过程:第一环节 情景引入 做一做:=+3231 =-7271 =+8381 =-125127 猜一猜:=+a a 21 =-x x 12 =+b b 2523 =-y y 3437(小组讨论)运算法则:同分母的分式相加减,分母不变,把分子相加减. 用式子表示为:a c b ac a b ±=± 第二环节 同分母加减学习了同分母分式加减法的法则,是否会用还得先讲再练: 例1(1)ab b a abb a -++; (2)2422---x x x ; (3)n m n m n m n m ++-+-42; (4)131112+-++--++x x x x x x .第三环节 练习巩固练一练(学生上黑板板演) (1)x m n x m -+-1; (2) b a b ab b a a ++++222; (3)y x y x y x y x -+---2722; 第四环节 拓展提高例2 计算(小组讨论)(1)y x y y x x -+-; (2)a a a a ----12112.练一练(学生上黑板板演)(1)a b b b a a 222-+-; (2)x x x --+-1112 (3)m n n n m n m n n m ---+-+22 第五环节 课堂小结1、同分母分式加减法则是:同分母的分式相加减。

分母不变,把分子相加减。

2、学会用转化的思想将分母互为相反式的分式加减运算转化成同分母分式的加减法。

(变号)3、分子是多项式时,一定记得添括号后再进行加减运算。

4、类比方法很多时候是对的,学会用这种方法去分析和解决问题。

北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 分式加减的综合练习》公开课教案_4

北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  分式加减的综合练习》公开课教案_4

《分式的加减法》教案第2课时教学目标1.会进行简单分式的加减运算,具有一定的代数化归能力.2.能解决一些简单的实际问题,进一步体会分式的模型思想.教学重难点教学重点:分式的加减运算.教学难点:解决一些简单的实际问题,进一步体会分式的模型思想.教学过程1.探索交流,发现规律做一做:尝试完成下列各题:(1)=-aa 142________________;(2)=+b a 11________________. 让学生再次经历异分母分式的加减运算,在此基础上归纳出异分母分式的加减法法则.这种安排容易被学生所接受,符合他们的认知结构.与异分母分数加减法的法则类似,异分母的分式加减法的法则是:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.2.巩固应用,拓展研究例1.计算:(1);3131+--x x (2)21422---a a a . 答案:(1);962-x (2)21+a . 例2.将下列各式通分:;b a 243;c b 265-221ac解:因为最简公分母是,22212c b a 所以;22222222129343343c b a bc bc b a bc b a =⨯⨯=;222222221210262565-c b a c a c a c b c a c b =⨯⨯-= 22222222126626121cb a ab ab ac ab ac =⨯⨯=. 例3.甲、乙两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格有变化,两位采购员的购货方式也不同,甲每次购买1000kg ,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?答案:(1)设两次购买的饲料单价分别m 元/kg 和n 元/kg (m 、n 是正数,且m ≠n ) 甲两次购买饲料的平均单价为:)(元kg n m n m /21000100010001000+=++ 乙两次购买饲料的平均单价为:)(元kg n m mn nm /2800800800800+=++ (2)甲、乙所购饲料的平均单价的差是:)(2)(222n m n m n m mn n m +-=+-+ 让学生充分得思考、讨论、交流.通过实例,提高学生的运算能力、代数推理能力和“数学化”的能力.3.回顾联系,形成结构异分母分式的加减法法则是什么?这节课你有什么收获?让学生自己总结本节所学内容,培养他们善于总结、归纳的能力.。

北师大版八年级数学下册《五章 分式与分式方程 3. 分式的加减法 异分母分式的加减法》公开课教案_7

北师大版八年级数学下册《五章 分式与分式方程  3. 分式的加减法  异分母分式的加减法》公开课教案_7

第五章 分式与分式方程分式的加减法(二)一、教学目标1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。

4、培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。

二、教学过程第一环节 问题引入问题1:同分母分式是怎样进行加减运算的?问题2:异分母分数又是如何进行加减?问题3:那么=+aa 413?你是怎么做的? 第二环节 学习新知(1)议一议小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。

小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a aa a a a a a a a a a a a a 41341344124443413222==+=⨯+⨯⨯=+ 小亮:a a a a a a a 4134141241443413=+=+⨯⨯=+ 你对这两种做法有何评论?与同伴交流。

(2)异分母分式加减法的法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. 用式子表示为:acad bc ac ad ac bc c d a b ±=±=±. 第三环节 运用新知例3(1)a a a 5153-+; (2)3131--+x x ; (3)21422---a a a . 第四环节 小试牛刀1、将下列各组分式通分:ax x x 2,31)1(2-; 962,91)2(22++-a a a ; xx x 24,41)3(2--. 2、计算: b a a b 23)1(+; 21211)2(a a ---; 第五环节 分式加减的应用例4 小刚家和小丽家到学校的路程都是3km ,其中小丽走的是平路,骑车速度2v km/h .小刚需要走1km 的上坡路、2km 的下坡路,在上坡路上的骑车速度为v km/h ,在下坡路上的骑车速度为3v km/h .那么(1)小刚从家到学校需要多长时间?(2)小刚和小丽谁在路上花费的时间少?少用多长时间?第六环节 拓展提高活动内容 用两种方法计算:xx x x x x 4)223(2-∙+--. 第七环节 课堂小结活动内容:1、异分母分式相加减的法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 分式的加减法第1课时一、教学目标1.知识与技能(1)同分母的分式的加减法的运算法则及其应用;(2)简单的异分母的分式相加减的运算.2.过程与方法(1)经历用字母表示数量关系的过程,发展符号感;(2)会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.3.情感态度及价值观(1)从现实情境中提出问题,提高“用数学”的意识;(2)结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.二、教学重点、难点重点:(1)同分母的分式加减法;(2)简单的异分母的分式加减法.难点:当分式的分子是多项式时的分式的减法.三、教具准备课件.四、教学过程(一)创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:问题1:从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路,2 km的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题2:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?[师]问题1,根据题意可得如图3-1的线段图.图3-1(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出. [生1]如果要比较(v 1+v 32)与v 23的大小,就比较难了,因为它们的分母中都含有字母. [生2]比较两个数的大小,我们可以用作差法.例如有两个数a ,b .如果a -b >0,则a >b ;如果a -b =0,则a =b ;如果a -b <0,则a <b . [师]这位同学想的方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生3]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢? [师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题). 我们再来看一下问题2.[师]问题2中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000,a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题1中加减法比较一下,你会发现什么?[生]问题1中的是异分母的分式相加减,而问题2是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.(二)讲授新课1.同分母的加减法[师]我们接着看下面的问题:想一想:(1)同分母的分数如何加减?你能举例说明吗?(2)你认为分母相同的分式应该如何加减?做一做:(1)a 1+a2=____________. (2)22-x x -24-x =____________. (3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着上台板演“做一做”中的三个小题.[生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ; [生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x =12+-x x . [师]我们一块来讲评一下这三位同学的运算过程.[生4]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2.[师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生5]第(3)小题,我认为有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生3]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x =1312+-++-+x x x x =1+x x .[师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则:同分母的分式相加减,分母不变,把分子相加减.用式子表示是:c a ±c b =cb a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面“问题2”现在可以完成了吧!大胆地试一试. [生]a 3000-a 1000=a10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a 2000个小时.2.简单的异分母的分式相加减[生]问题1还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法.[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减. 小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a 3+a 41=a a a 443⋅⋅+a a a ⋅4=2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a 41=a 412+a 41=a 413. 你对这两种做法有何评论?与同伴交流.[生1]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41. 如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生2]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a 41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[例]计算:(1)a 3+a a 515-;(2)12-x +x x --11.[生3]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生4]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.(1)中一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a515即可.解:(1)a 3+a a 515-=a 515+aa 515- =aa 5)15(15-+=a a 5=51; [生5]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把x x --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x .所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x .[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题1可以计算出结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35(h ). (2)小丽走第一条路所用的时间为v23h . 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h . (三)即时练习1.计算:(1)xb 3-x b ;(2)a 1+a 21;(3)b a a --a b a -. 2.计算:m n n m -+2+n m n --m n n -2. (四)课堂小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.(五)教学反思第2课时一、教学目标1.知识与技能(1)异分母的分式加减法的法则;(2)分式的通分.2.过程与方法(1)经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力;(2)进一步通过实例发展学生的符号感.3.情感态度及价值观在学生已有数学经验的基础上,探求新知,从而获得成功的快乐;提高学生“用数学”意识.二、教学重点、难点重点:(1)掌握异分母的分式加减运算.(2)理解通分的意义.难点:(1)化异分母分式为同分母分式的过程.(2)符号法则、去括号法则的应用.三、教具准备课件.四、教学过程(一)创设问题情境,类比异分母分数的加减法引入新课[师]大家知道,对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.上一节课,我们讨论较简单的异分母的分式加减法.下面我们再来看几个异分母的加减法. 做一做:尝试完成下列各题:(1)24a -a 1=____________; (2)a 1+b1=____________; (3)ab b a +-bcc b +=____________; (4)a b 3+b a 2=____________. [生]我们已学过分式的一些知识,如分式的概念,分式的约分以及分式的乘除法等.这些知识,都是在与分数类比中得到的.我想异分母的分式的加减法也可类比分数的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法.[师]你的想法很好.在分数的加减法中,我们把异分母的分数化成同分母分数的过程叫做通分.[生]老师,我知道啦,在分式的加减法中,把异分母的分式化成同分母分式的过程也叫做通分.“做一做”中的几个异分母的分式加减法就需要先通分.(二)讲授新课[师]下面可尝试用分式的基本性质,将“做一做”中的异分母分式的加减法通分化成同分母的分式加减法,计算并化简.[生]解:(1)24a -a 1=24a -a a a ⨯⨯1=24a -2aa =24a a -; (2)a 1+b 1=b a b ⨯⨯1+b a a ⨯⨯1=ab b +ab a =abb a +; (3)ab b a +-bcc b +=c ab c b a ⋅+)(-bc a c b a ⋅+)( =abc bc ac +-abc ac ab +=abc ac ab bc ac )()(+-+ =abc ac ab bc ac --+=abc a c b )(-=ac a c -; (4)a b 3+b a 2=b a b b 232⋅⋅+b a a a 233⋅⋅=ab b 622+aba 632=ab a b 63222+ (让同学们分组讨论交流完成,教师可巡视发现问题并解决问题).[师]把异分母的分式加减法,通过通分,每个分式都化成同分母的加减法.你是怎样通分,把异分母的分式化成同分母的?同学们可根据“做一做”的每个步骤,总结你是怎样通分的?(小组讨论完成)[生]我认为通分的关键是几个分式的公分母,从而确定各分式的分子、分母同乘什么样的“适当整式”,才能化成同分母.[生]确定公分母的方法:系数取每个分式的分母的系数的最小公倍数,再取各分母所有因式的最高次幂的积,一起作为几个分式的公分母.[师]同学们概括得很好.下面我们来看一个例题:[例1]通分:(1)x y 2,23y x ,xy 41;(2)y x -5,2)(3x y -; (3)31+x ,31-x ;(4)412-a ,21-a分析:通分时,应先确定各个分式的分母的公分母:先确定公分母的系数,取各个分母系数的最小公倍数;再取各分母所有因式的最高次幂的积.学生独立解答,教师巡视、指导.[师]我们再来看一个例题:[例2]计算:(1)31-x -31+x ;(2)412-a -21-a ; (3)用两种方法计算: (23-x x -2+x x )·x x 42-. (可由学生板演,学生之间互查互纠).[例3]甲、乙两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?[师生共析]由于两次购买饲料的单价有所变化,可设第一次购买的饲料的单价为m 元/千克,第二次购买的饲料的单价为n 元/千克,甲、乙所购买饲料的平均单价应为两次饲料的总价除以两次所买饲料的总质量.在第(2)题中,比较甲、乙所购饲料的平均单价,谁的平均单价低谁的购货方式就更合算,可以用作差法比较平均单价.(三)课堂练习计算:(1)11-a -212a -;(2)9122-m +m -32;(3)a +2-a -24. (四)课堂小结这节课我们学习了异分母的分式加减法,使我们提高了分式运算的能力.(五)教学反思。

相关文档
最新文档