人教A版高中数学必修三3-3-2《两点间的距离》word学案

合集下载

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册
为AC,另一条小路过点D,问:是否在BC上存在一点M,使得
两条小路AC与DM相互垂直?若存在,求出小路DM的长.
解:以B 为坐标原点,BC,BA 所在直线分别为 x 轴 、y 轴建立如图所示的 平面直角坐标系.
因为 |AD|=5 m,|AB|=3 m,所 以C(5,0),D(5,3),A(0,3). 设点M 的坐标为(x,0),
解得
5.光线从点A(-3,4)射到x轴上,经反射后经过点B(4,10),则反 射光线所在直线的方程为 2x-y+2=0 ,光线从A到B的路线长 度为7√5 解析:由题意知,反射光线过(-3,-4)和(4,10)两点,故斜率为
所以反射光线为 y+4=2(x+3),整理得2x-y+2=0,
光线从A到 B 的路线长度,即为(-3,-4)与(4,10)间的距离,所
[例2] 已知点A(3,6), 在x轴上的点P与点A的距离等于 10,则点P的坐标为(-5,0)或(11,0) 解析:设点P 的坐标为(x,0),
由 |PA|=10得
解得x=11 或x=-5. 所以点P 的坐标为(-5,0)或(11,0).
解 :法一 因 为
所以|AB|=|AC|,且 |AB|²+|AC|²=|BC|²,所以△ABC是等腰直角三角形.
法二 因 为 所以kAc ·kAB=-1.所以AC⊥AB.
所以|AC|=|AB|.所以△ABC是等腰直角三角形.
方法 总 结
利用两点间距离公式判断三角形形状的方法 已知三个顶点的坐标判断三角形的形状时,利用两点间的距离公式 求三边长,从边长间的关系入手,如果边长相等,则可能是等腰或等 边三角形;如果满足勾股定理,则是直角三角形.
C.直角三角形 D.以上都不是

高中数学 4.3.2空间两点间的距离公式学案 新人教A版必修2

高中数学 4.3.2空间两点间的距离公式学案 新人教A版必修2

甘肃省永昌县第一中学高中数学 4.3.2空间两点间的距离公式学案 新人教A版必修2学习目标:1.掌握空间两点的距离公式的推导及应用2.能用空间两点间的距离公式解决简单问题。

学习重点、难点:重点: 空间两点间的距离公式.难点: 空间两点间的距离公式的推导。

学习过程一、展示目标二、自主学习1.先阅读教材136—137页,认真思考、独立规范作答,认真完成每一个问题,每一道习题,不会的先绕过,做好记号。

2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。

(尤其空间两点间的距离公式牢记)三、交流互动问题1:在平面上任意两点A ),(11y x ,B ),(22y x 之间距离的公式为|AB|=221221)()(y y x x -+-,那么对于空间中任意两点A ),,(111z y x ,B ),,(222z y x 之间距离的公式会是怎样呢?你猜猜?. 问题2:空间中任意一点P ),,(z y x 到原点之间的距离公式会是怎样呢?问题3:如果是空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式会是怎样呢?探究:如果OP 是定长r,那么2222r z y x =++表示什么图形?四、达标检测1.138页 练习 1、2、4 2.已知三角形的顶点为A (1,2,3),B (7,10,3)和C (-1,3,1)。

试证明A 角为钝角。

3、在z 轴上,求与A (-4,1,7)和B(3,5,-2)两点等距离的点。

五、归纳总结空间两点间的距离公式212212212)()()(z z y y x x d -+-+-=;六、作业布置课本138B 组 第1题,练习3题七、课后反思2543:=-+y x l。

人教A版高中同步学案数学选择性必修第一册精品课件 第2章直线和圆的方程 2.3.2 两点间的距离公式

人教A版高中同步学案数学选择性必修第一册精品课件 第2章直线和圆的方程 2.3.2 两点间的距离公式
3-1
=
-4
,
3-4
化为一般式方程为 2x+y-9=0.
2 + -9 = 0,
= 2,

解得
所以 M(2,5),

=
5,
3--1 = 0,
此时|MA|-|MB|最大值为|AC|= (4-3)2 + (1-3)2 = 5.
(2)如图,要使|MA|+|MB|取最小值,只要A,B,M共线,
即|AB|2+|BC|2=|CA|2,所以△ABC 是直角三角形.
(2)因为 BC 的中点 D 的横坐标
1+3
x= 2 =2,纵坐标
2+(-4)
y= 2 =-1,即
所以 BC 边上中线的长|AD|= (2-4)2 + (-1-3)2 =2 5.
D(2,-1),
规律方法 两点间距离公式的应用
两点间的距离公式是解析几何的重要公式之一,它主要解决线段的长度问
(1)
(2)以△ABC的顶点A为原点,AB所在直线为x轴,建立平面直角坐标系如图
(2).
设 B(a,0),a≠0,C(b,c),则 BC 的中点 D
+
,
2
2
,
由|CD|=|DB|=|DA|,

2
+
-
2
=
+ 2
2
+
+
2

-
2
2
,所以
2
=
2
+
-
2
+
2
2
ab=0.
(2)
自主诊断
利用坐标法证明直角三角形斜边上的中线等于斜边的一半.

人教版数学高一-两点间的距离 同步导学案

人教版数学高一-两点间的距离 同步导学案

摘要:两点间的距离同步学案,主要有学习目标、重难点,学法指导,新知预习,学习探究,要点导学,活学巧用,巩固练习,整体感知关键词:新课标人教A 版、必修二、两点间的距离 学案新课标人教A 版高一必修二3、3、2两点间的距离同步学案【学习目标】1、理解平面内两点间的距离公式的推导过程 ,掌握两点间距离公式及其简单应用,会用坐标法证明一些简单的几何问题;2、通过由特殊到一般的归纳,培养探索问题的能力【重点与难点】重点:两点间的距离公式和它的简单应用难点:用坐标法解决平面几何问题【学法指导】本节是利用勾股定理推导出两点间的距离公式,并由此用坐标法推证其它问题。

在推导过程中,要注意数形结合的数学思想的运用。

【新知预习】1.设111222(,),(,)P x y P x y ,则12PP = 。

特殊地:(,)P x y 与原点的距离为OP = ;当所在直线与x 轴平行时,12PP = ;当12,P P 所在直线与y 轴平行时,12PP = ;当12,P P 在直线y kx b =+上时,12PP = .2. 设111222(,),(,)P x y P x y ,则线段12P P 的中点坐标__________3. 用坐标法解(证)题的步骤:(1) 。

(2)(3)(4)【学习探究】1、已知数轴上两点 A, B ,怎么求 A, B 的距离?2、用坐标法解(证)题的步骤?221M M =解得1x =,所以(1,0)p ,则PA =22)20()11(22=-++。

归纳总结:两点间的距离公式:所以设111222(,),(,)P x y P x y ,当12,P P 所在直线与x 轴平行时,1212PP x x =-;当12,PP 所在直线与y 轴平行时,1212PP y y =-;当12,P P 不与坐标轴平行时,121212()()PP x x y y =-+-。

变式探究:1、 在直线40x y -+=上求一点p ,使p 点到点(2,4),(4,6)M N --的距离相等。

两点间的距离公式(同步课件)-2024-2025学年高二数学(人教A版2019选择性必修第一册)

两点间的距离公式(同步课件)-2024-2025学年高二数学(人教A版2019选择性必修第一册)

(1 + 3)2 +(7 − 1)2 = 52 = 2 13,
|BC| =
(1 − 3)2 +(7 + 3)2 = 104 = 2 26.
∴|AB|2 + |AC|2 = |BC|2 ,且|AB| = |AC|,∴∆ABC是等腰直角三角形.
(2)∵S∆ABC =
1
|AC|
2
1
2
∙ |AB| = × ( 52)2 = 26,
第二章
直线和圆的方程
2.3.2两点间的距离公式
复习导入
直线的方程
点斜式
直线方程
已知条件
适用条件
斜截式
两点式
截距式
一般式
− 0 = ( − 0 )
= +
− 1
− 1
=
2 − 1 2 − 1

+ =1

Ax+By+C=0
(A,B不同时为0)
直线上一定点
y
y
P2 (x2,y2)
y
P1 (x1,y1)
P2 (x2,y2)
P1 (x1,y1)
O

P1 (x1,y1)
x
|1 2| = |2 − 1 |
O
x

|1 2| = |2 − 1 |
两点间的距离公式:|1 2 | =
Q (x2,y1)
P2 (x2,y2)
O
|1 2 | =

x
练习巩固
练习2:试在∆ABC中,AD是边BC上的中线.求证:|AB|2 + |AC|2 = 2(|AD|2 + |DC|2 ).

高中数学 3.3.2两点间的距离公式练习 新人教A版必修2-新人教A版高一必修2数学试题

高中数学 3.3.2两点间的距离公式练习 新人教A版必修2-新人教A版高一必修2数学试题

【成才之路】2015-2016学年高中数学两点间的距离公式练习新人教A版必修2基础巩固一、选择题1.点M(1,2)关于y轴的对称点N到原点的距离为( )A.2 B.1C. 5 D.5[答案] C[解析] N(-1,2),|ON|=-12+22= 5.故选C.2.已知A(2,1),B(-1,b),|AB|=5,则b等于( )A.-3 B.5C.-3或5 D.-1或-3[答案] C[解析] 由两点间的距离公式知|AB|=-1-22+b-12=b2-2b+10,由5=b2-2b+10,解得b=-3或b=5.3.一条平行于x轴的线段长是5个单位,它的一个端点是A(2,1),则它的另一个端点B的坐标为( )A.(-3,1)或(7,1)B.(2,-2)或(2,7)C.(-3,1)或(5,1)D.(2,-3)或(2,5)[答案] A[解析] ∵AB∥x轴,∴设B(a,1),又|AB|=5,∴a=-3或7.4.设点A在x轴上,点B在y轴上,AB的中点是P(2,-1),则|AB|等于( ) A.5 B.4 2C.2 5 D.210[答案] C[解析] 设A(x,0)、B(0,y),由中点公式得x=4,y=-2,则由两点间的距离公式得|AB|=0-42+-2-02=20=2 5.5.△ABC三个顶点的坐标分别为A(-4,-4)、B(2,2)、C(4,-2),则三角形AB边上的中线长为( )A.26 B.65C .29D .13[答案] A[解析] AB 的中点D 的坐标为D (-1,-1). ∴|CD |=-1-42+-1--22=26;故选A .6.已知三点A (3,2),B (0,5),C (4,6),则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形[答案] C [解析] |AB |=3-02+2-52=32,|BC |=0-42+5-62=17, |AC |=3-42+2-62=17,∴|AC |=|BC |≠|AB |, 且|AB |2≠|AC |2+|BC |2.∴△ABC 是等腰三角形,不是直角三角形,也不是等边三角形. 二、填空题7.已知点M (m ,-1),N (5,m ),且|MN |=25,则实数m =_________. [答案] 1或3 [解析] 由题意得m -52+-1-m2=25,解得m =1或m =3.8.已知A (1,-1),B (a,3),C (4,5),且|AB |=|BC |,则a =_________. [答案] 12[解析] a -12+3+12=4-a2+5-32,解得a =12.三、解答题9.求证:等腰梯形的对角线相等. [证明] 已知:等腰梯形ABCD . 求证:AC =BD .证明:以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图平面直角坐标系.设A (-a,0)、D (b ,c ),由等腰梯形的性质知B (a,0),C (-b ,c ). 则|AC |=-b +a2+c -02=a -b2+c 2,|BD |=b -a2+0-c2=a -b 2+c 2,∴|AC |=|BD |.即:等腰梯形的对角线相等.10.已知直线l 1:2x +y -6=0和A (1,-1),过点A 作直线l 2与已知直线交于点B 且|AB |=5,求直线l 2的方程.[解析] 当直线l 2的斜率存在时,设其为k ,则⎭⎪⎬⎪⎫l 2:y +1=k x -1又由2x +y -6=0⇒(k +2)x =k +7,而k ≠-2,故解得x =k +7k +2,所以B (k +7k +2,4k -2k +2), 又由|AB |=5,利用两点间距离公式得k +7k +2-12+4k -2k +2+12=5⇒k =-34,此时l 2的方程为3x +4y +1=0.而当l 2的斜率不存在时,l 2的方程为x =1.此时点B 坐标为(1,4),则|AB |=|4-(-1)|=5,也满足条件综上,l 2的方程为3x +4y +1=0或x =1.能力提升一、选择题1.已知点A (2,3)和B (-4,1),则线段AB 的长及中点坐标分别是( ) A .210,(1,2) B .210,(-1,-2) C .210,(-1,2) D .210,(1,-2)[答案] C [解析] |AB |=-4-22+1-32=210,中点坐标为(2-42,3+12),即(-1,2),故选C .2.已知两点P (m,1)和Q (1,2m )之间的距离大于10,则实数m 的X 围是( ) A .-45<m <2B .m <-45或m >2C .m <-2或m >45D .-2<m <45[答案] B[解析] 根据两点间的距离公式|PQ |=m -12+1-2m2=5m 2-6m +2>10⇒5m 2-6m -8>0⇒m <-45或m >2.3.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A 、B ,则|AB |等于( ) A .895B .175C .135D .115[答案] C[解析] 易得A (0,-2),B (-1,25).∴|AB |=-1-02+25+22=135. 4.在直线2x -3y +5=0上求点P ,使P 点到A (2,3)距离为13,则P 点坐标是( ) A .(5,5)B .(-1,1)C .(5,5)或(-1,1)D .(5,5)或(1,-1)[答案] C[解析] 设点P (x ,y ),则y =2x +53,由|PA |=13得(x -2)2+(2x +53-3)2=13,即(x -2)2=9,解得x =-1或x =5, 当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或(5,5). 二、填空题5.已知点A (5,2a -1),B (a +1,a -4),若|AB |取得最小值,则实数a 的值是_________. [答案] 12[解析] 由题意得|AB |=5-a -12+2a -1-a +42=2a 2-2a +25=2a -122+492,所以当a =12时,|AB |取得最小值.6.已知点A (4,12),在x 轴上的点P 与点A 的距离等于13,则点P 的坐标为_________. [答案] (9,0)或(-1,0) [解析] 设P (a,0),则a -42+122=13,解得a =9或a =-1,∴点P 的坐标为(9,0)或(-1,0).三、解答题7.用坐标法证明定理:若四边形ABCD是长方形,则对平面内任一点M,等式AM2+CM2=BM2+DM2成立.[解析] 以一个直角所在的两边为坐标轴,建立直角坐标系.证明:如图,取长方形ABCD的两条边AB、AD所在的直线分别为x轴、y轴建立直角坐标系.设长方形ABCD的四个顶点分别为A(0,0)、B(a,0)、C(a,b)、D(0,b).在平面上任取一点M(m,n),则有AM2+CM2=m2+n2+(m-a)2+(n-b)2,BM2+DM2=(m-a)2+n2+m2+(n-b)2,∴AM2+CM2=BM2+DM2.8.如下图所示,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园的长AD=5 m,宽AB=3 m,其中一条小路定为AC,另一条小路过点D,问是否在BC上存在一点M,使得两条小路AC与DM相互垂直?若存在,则求出小路DM的长.[分析] 建立适当的坐标系,转几何问题为代数运算.[解析] 以B为坐标原点,BC、BA所在直线为x、y轴建立如图所示的平面直角坐标系.因为AD=5 m,AB=3 m,所以C(5,0),D(5,3),A(0,3).设点M的坐标为(x,0),因为AC⊥DM,所以k AC·k DM=-1,即3-00-5·3-05-x=-1.所以x=3.2,即BM=3.2,即点M 的坐标为(3.2,0)时,两条小路AC 与DM 相互垂直. 故在BC 上存在一点M (3.2,0)满足题意. 由两点间距离公式得DM =5-3.22+3-02=3534.。

中学高中数学 332约会型概率问题的求解学案 新人教A版

中学高中数学 332约会型概率问题的求解学案 新人教A版

"山西省芮城县风陵渡中学高一数学 3.3.2约会型概率问题的求解学案 新人教A 版必修3 "一、自学要求:由两个量决定的概率问题,求解时通过坐标系,借助于纵、横两轴产生公共区域的面积,结合面积产生问题的结论,我们称此类问题为“约会型”概率问题;“约会型”概率问题的求解,关键在于合理、恰当引入变量,再将具体问题“数学化”,透过数学模型,产生结论二、自学过程:几何概型求事件A 的概率公式:P(A)=三.课堂展示例1、小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点到七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少?(参考课本P137例2)例2、水池的容积是320m ,向水池注水的水龙头A 和水龙头B 水的流速都是31m /小时,它们在一昼夜内随机开24~0小时,求水池不溢出水的概率。

例3、甲、乙两人约定在晚上7时到8时之间在公园门口会面,并约定先到者应等候另一个人一刻钟,这时即可离去,那么两人见面的概率是多少?四、课堂小结:五、课堂检测:1、两人相约8点到9点在某地会面,先到者等候后到者20分钟,过时就可离开,求这两人能会面的概率。

2、A、B两列火车都要在同一车站的同一停车位停车10分钟,假设它们在下午一时与下午二时随机到达,求这两列火车必须等待的概率;3、某同学到公共汽车站等车上学,可乘坐8路、23路,8路车10分钟一班,23路车15分钟一班,求这位同学等车不超过8分钟的概率。

4、在一条长为2的线段上,(1)任取两点,求它们到中点距离平方和小于1的概率;(2)任取三点,求它们到中点距离平方和小于1的概率;5.甲乙两艘船在驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊的时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.。

人教A版高中同步学案数学选择性必修第一册精品习题课件 第二章 两点间的距离公式 点到直线的距离公式

人教A版高中同步学案数学选择性必修第一册精品习题课件 第二章 两点间的距离公式 点到直线的距离公式
所以,的中点坐标为(, −),
所以 =
−−





= ,故直线的斜率为 或−.
−−
+
= −;
7.如图,已知直线1 : + − 1 = 0,现将直线1 向上平移到直线2 的位置,若2 ,1 和坐标轴
+−3=0
围成的梯形面积为4,则2 的方

6.已知点(−1,1),(3, −3),且过点(3,0)的直线分别到点,的距离相等,则直线的
1
或−1
斜率为_______.
2
[解析]根据题意,分2种情况讨论:
①直线与直线平行时,直线与点,的距离相等,所以 = =
②直线经过,的中点时,直线与点,的距离相等,
[解析]由题意知
|−+|
+(−)
= ,即|| = ,∴ = ± .
3.点(, 0)到直线3 + 4 − 6 = 0的距离大于3,则实数的取值范围为() C
A.(7, +∞)B.(−∞, −3)
C.(−∞, −3) ∪ (7, +∞)D.(−3,7)
[解析]由题意得
的“相关直线”;点到直线 = 的距离 = | − | = < ,即点与该直线上的点的
距离的最小值小于4,所以该直线上存在点,使|| = ,故B中的直线是点的“相关
直线”;点到直线 − = 的距离 =
|×−×|
+(−)
= ,所以该直线上存在点,使
= ,∴ = ,∴ = ±.
又 > ,∴ = .
从而得到直线 的方程是 + − = .
8.求过点(0,2)且与点(1,1),(−3,1)等距离的直线的方程.

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修
A.x+3y=0

2

3
C. + =1
答案:C
1
3
1
D.y=- x+4
3
B.y=- x-12
)
S 随堂练习
UITANG LIANXI
首 页
1
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2
2.两点间的距离公式
已知平面上两点 P1(x1,y1),P2(x2,y2)间的距离为|P1P2|,则
-1
2-1
=
-(-3)
,
2-(-3)
首 页
探究一
探究二
探究三
探究四
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究五
探究四坐标法的应用
将几何问题代数化,即用代数的语言描述几何要素及其关系,并最终解决几
何问题,这种处理问题的方法叫作坐标法(或解析法),通过这种方法,把点与
坐标、曲线与方程联系起来,实现空间形式与数量关系的结合.
坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.
坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有
两点:
①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相
垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑
ICHU ZHISHI
HONGDIAN NANDIAN
探究五
解:(1)设所求直线方程为 x+2y-2+λ(3x-2y+2)=0.

高中数学第三章3.2.2直线的两点式方程3.2.3直线的一般式方程学案含解析新人教A版必修0

高中数学第三章3.2.2直线的两点式方程3.2.3直线的一般式方程学案含解析新人教A版必修0

3.2.2 & 3.2.3 直线的两点式方程直线的一般式方程两点式、截距式[提出问题]某区商业中心O有通往东、西、南、北的四条大街,某公园位于东大街北侧、北大街东P处,如图所示.公园到东大街、北大街的垂直距离分别为1 km和4 km.现在要在公园前修建一条直线大道分别与东大街、北大街交汇于A,B两处,并使区商业中心O到A,B两处的距离之和最短.问题1:在上述问题中,实际上解题关键是确定直线AB,那么直线AB的方程确定后,点A,B能否确定?提示:可以确定.问题2:根据上图知建立平面坐标系后,A,B两点的坐标值相当于在x轴、y轴上的什么量?提示:在x轴、y轴上的截距.问题3:那么若已知直线在坐标轴的截距可以确定直线方程吗?提示:可以.[导入新知]直线的两点式与截距式方程两点式截距式条件P1(x1,y1)和P2(x2,y2),其中x1≠x2,y1≠y2在x轴上截距a,在y轴上截距b图形方程y-y1y2-y1=x-x1x2-x1xa+yb=1适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线1.要注意方程y -y 1y 2-y 1=x -x 1x 2-x 1和方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)形式不同,适用范围也不同.前者为分式形式方程,形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式方程,适用于过任何两点的直线方程.2.直线方程的截距式为x a +yb=1,x 项对应的分母是直线在x 轴上的截距,y 项对应的分母是直线在y 轴上的截距,中间以“+”相连,等式的另一端是1,由方程可以直接读出直线在两轴上的截距,如x 3-y 4=1,x 3+y4=-1就不是直线的截距式方程.直线方程的一般式[提出问题]观察下列直线方程: 直线l 1:y -2=3(x -1); 直线l 2:y =3x +2;直线l 3:y -23-2=x -14-1;直线l 4:x 4+y3=1.问题1:上述直线方程的形式分别是什么? 提示:点斜式、斜截式、两点式、截距式.问题2:上述形式的直线方程能化成二元一次方程Ax +By +C =0的形式吗? 提示:能.问题3:二元一次方程Ax +By +C =0都能表示直线吗? 提示:能. [导入新知]1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 2.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[化解疑难]1.求直线的一般式方程的策略(1)当A ≠0时,方程可化为x+BA y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A Bx +y+C B =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程. (2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.2.直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -C B.(2)一般式化为截距式的步骤①把常数项移到方程右边,得Ax +By =-C ; ②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.利用两点式求直线方程[例1] 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程. [解] 由两点式,直线AB 所在直线方程为y --10--1=x -3-1-3,即x +4y +1=0. 同理,直线BC 所在直线方程为y -3-1-3=x -13-1,即2x +y -5=0.直线AC 所在直线方程为y -30-3=x -1-1-1,即3x -2y +3=0. [类题通法]求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[活学活用]1.已知直线经过点A (-3,-1)和点B (3,7),则它在y 轴上的截距是________. 答案:32.若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________. 答案:- 2直线的截距式方程及应用[例2] 直线l 过点P ⎝ ⎛⎭⎪3,2,且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程. [解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12.又因为直线l 过点P ⎝ ⎛⎭⎪⎫43,2,所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎨⎧a 1=4,b 1=3或⎩⎪⎨⎪⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0或15x +8y -36=0.(2)设直线l 的方程为x a +y b=1(a >0,b >0), 由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎨⎧ a 1=4,b 1=3或⎩⎨⎧a 2=2,b 2=6,所以直线l 的方程为3x +4y -12=0或3x +y -6=0. [类题通法]用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.(3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.[活学活用]求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a ,b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +y b=1.∵直线过点(-2,2),代入直线方程得-2a +2b=1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解; 当2a 2a +2=2时,化简得a 2-a -2=0,解得⎩⎨⎧ a =-1,b =-2,或⎩⎨⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.直线方程的一般式应用[例3] (1)12m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0,①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2,∴m 的值为2或-3. (2)法一:由题意,l 1⊥l 2, ①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-a +21-a ·⎝ ⎛⎭⎪⎫-a -12a +3=-1,所以a =-1. 综上可知,当a =1或a =-1时,l 1⊥l 2. 法二:由l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. [类题通法]1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0. (1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.[活学活用](1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1,∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.3.探究直线在坐标轴上的截距问题[典例] 求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程.[解] 当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意.此时,直线的斜率为12,所以直线方程为y =12x . 当直线不过原点时,由题意可设直线方程为x a +y b=1,又过点A ,所以4a +2b=1①.因为直线在两坐标轴上的截距的绝对值相等,所以|a |=|b |②.由①②联立方程组,解得⎩⎨⎧a =6,b =6,或⎩⎨⎧a =2,b =-2.所以所求直线的方程为x 6+y 6=1或x2+y-2=1, 化简得直线l 的方程为x +y =6或x -y =2. 综上,直线l 的方程为y =12x 或x +y =6或x -y =2.[多维探究] 1.截距相等问题求过点A (4,2)且在两坐标轴上截距相等的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a +ya=1,又过A (4,2), ∴a =6,∴方程为x +y -6=0.综上,直线方程为y =12x 或x +y -6=0.2.截距和为零问题求过点A (4,2)且在两坐标轴上截距互为相反数的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a -ya=1.又过A (4,2),∴4-2a=1,即a =2,∴x -y =2.综上,直线l 的方程为y =12x 或x -y =2.3.截距成倍数问题求过点A (4,2)且在x 轴上截距是在y 轴上截距的3倍,求直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x 3a +y a =1,又直线过A (4,2),所以43a +2a=1,解得a =103,方程为x +3y -10=0.综上,所求直线方程为y =12x 或x +3y -10=0.4.截距和是定数问题求过点A (4,2)且在两坐标轴上截距之和为12的直线l 的方程.解:设直线l 的方程为x a +yb=1,由题意得⎩⎨⎧4a +2b=1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ), ∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎨⎧ a =6,b =6,或⎩⎨⎧a =8,b =4.∴所求直线l 的方程为x +y -6=0或x +2y -8=0. [方法感悟]如果题目中出现直线在两坐标轴上的“截距相等”“截距的绝对值相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,可采用截距式求直线方程,但一定要注意考虑“零截距”的情况.[随堂即时演练]1.直线x 3-y4=1在两坐标轴上的截距之和为( ) A .1 B .-1 C .7 D .-7答案:B2.直线5x -2y -10=0在x 轴上的截距为a ,在y 轴上的截距为b ,则有( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 答案:B3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________.答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:直线AB 的方程为8x +3y +15=0,直线AC 的方程为5x -2y -10=0.[课时达标检测]一、选择题1.平面直角坐标系中,直线x +3y +2=0的斜率为( )A.33 B .-33C. 3 D .- 3答案:B2.直线ax +by =1(a ,b 均不为0)与两坐标轴围成的三角形的面积为( )A.12ab B.12|ab |C.12ab D.12|ab |答案:D3.已知直线ax +by +c =0的图象如图,则( )A .若c >0,则a >0,b >0B .若c >0,则a <0,b >0C .若c <0,则a >0,b <0D .若c <0,则a >0,b >0答案:D4.已知直线l :Ax +By +C =0(A ,B 不同时为0),点P (x 0,y 0)在l 上,则l 的方程可化为()A .A (x +x 0)+B (y +y 0)+C =0B .A (x +x 0)+B (y +y 0)=0C .A (x -x 0)+B (y -y 0)+C =0D .A (x -x 0)+B (y -y 0)=0答案:D5.若直线x +2ay -1=0与(a -1)x -ay +1=0平行,则a 的值为( )A.12B.12或0 C .0D .-2 答案:A二、填空题6.若直线l 1:ax +(1-a )y =3与l 2:(a -1)x +(2a +3)y =2互相垂直,则实数a =________. 答案:1或-37.垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.答案:3或-38.过点P (2,-1),在x 轴、y 轴上的截距分别为a ,b ,且满足a =3b 的直线方程为____________.答案:x +3y +1=0或x +2y =0三、解答题9.已知在△ABC 中,点A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求直线MN 的方程.解:(1)设点C (m ,n ),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,由中点坐标公式得⎩⎪⎨⎪⎧ m -12=0,n +32=0,解得⎩⎨⎧m =1,n =-3.∴点C 的坐标为(1,-3).(2)由(1)知,点M ,N 的坐标分别为M 0,-12,N 52,0, 由直线方程的截距式,得直线MN 的方程是x 52+y-12=1,即y =15x -12.10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解:(1)当a =-1时,直线l 的方程为y +3=0,不符合题意; 当a ≠-1时,直线l 在x 轴上的截距为a -2a +1,在y 轴上的截距为a -2,因为l 在两坐标轴上的截距相等,所以a -2a +1=a -2,解得a =2或a =0, 所以直线l 的方程为3x +y =0或x +y +2=0.(2)将直线l 的方程化为y =-(a +1)x +a -2,所以⎩⎨⎧ -a +1>0,a -2≤0或⎩⎨⎧-a +1=0,a -2≤0,解得a ≤-1.综上所述,实数a 的取值范围是{a |a ≤-1}.。

2020-2021学年数学人教A版必修2学案:3.3.1两条直线的交点坐标3.3.2两点间的距离

2020-2021学年数学人教A版必修2学案:3.3.1两条直线的交点坐标3.3.2两点间的距离

3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离[目标] 1.会用解方程组的方法求两条相交直线的交点坐标;2.会用代数方法判定两直线的位置关系;3.记住两点间的距离公式并会应用.[重点] 求两直线的交点坐标、两点间的距离公式及应用.[难点] 方程组解的个数与两线相交、平行或重合的对应关系的理解.知识点一 两条直线的交点坐标[填一填]1.求法:两直线方程联立组成方程组,此方程组的解就是这两条直线的交点坐标,因此解方程组即可.2.应用:可以利用两直线的交点个数判断两直线的位置关系. 一般地,将直线l 1:A 1x +B 1y +C 1=0和直线l 2:A 2x +B 2y +C 2=0的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 当方程组有唯一解时,l 1和l 2相交,方程组的解就是交点坐标; 当方程组无解时,l 1与l 2平行;当方程组有无数组解时,l 1与l 2重合.[答一答]1.在下列直线中,与直线x +3y -4=0相交的直线为( C )A.x +3y =0B.y =-13x -12C.x 2+y 3=1D.y =-13x +4解析:A 、B 、D 选项的斜率都是-13,且与x +3y -4=0平行,C选项的斜率是-32,所以x 2+y 3=1与x +3y -4=0相交.2.若两直线的方程组成的方程组有解,两直线是否交于一点? 提示:不一定.两条直线是否交于一点,取决于联立两条直线方程所得的方程组是否有唯一解.若方程组有无穷多个解,则两条直线重合.知识点二 两点间的距离公式[填一填]1.公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.2.文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.名师点拨:坐标平面内两点间的距离公式是数轴上两点间距离公式的推广.[答一答]3.两点间的距离公式中点P 1,P 2的位置有先后之分么?提示:点P 1,P 2的位置没有先后之分,即距离公式也可以写为|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.4.对于两点P 1(x 1,y 1),P 2(x 2,y 2),当P 1P 2平行于x 轴时,如何求P 1,P 2的距离,当P 1P 2平行于y 轴时,如何求P 1,P 2的距离?提示:当P 1P 2平行于x 轴时,|P 1P 2|=|x 2-x 1|.当P 1P 2平行于y 轴时,|P 1P 2|=|y 1-y 2|.5.式子x 2+y 2的几何意义是什么?提示:x 2+y 2表示点(x ,y )与原点(0,0)的距离.类型一 求两条直线的交点[例1] (1)直线x +2y -4=0与直线2x -y +2=0的交点坐标是( )A.(2,0)B.(2,1)C.(0,2)D.(1,2) (2)两直线2x +3y -k =0与x -ky +12=0的交点在y 轴上,则k 的值为( )A.-24B.6C.±6D.24 [解析] (1)解方程组⎩⎨⎧ x +2y -4=0,2x -y +2=0,得⎩⎨⎧ x =0,y =2.即直线x +2y -4=0与直线2x -y +2=0的交点坐标是(0,2).(2)在2x +3y -k =0中,令x =0,得y =k 3,在x -ky +12=0中,令x =0,得y =12k ,所以12k =k 3,解得k =±6.[答案] (1)C (2)C解二元一次方程组的常用方法有代入消元法和加减消元法.(1)若一条直线的方程是斜截式,常常应用代入消元法解方程组.(2)若直线的方程都是一般式,常常应用加减消元法解方程组.[变式训练1] 判断下列各组直线的位置关系,如果相交,求出交点的坐标:(1)l 1:5x +4y -2=0,l 2:2x +y +2=0.(2)l 1:2x -6y +3=0,l 2:y =13x +12.(3)l 1:2x -6y =0,l 2:y =13x +12.解:(1)解方程组⎩⎨⎧5x +4y -2=0,2x +y +2=0,得⎩⎪⎨⎪⎧ x =-103,y =143. 所以l 1与l 2相交,且交点坐标为-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0. 因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧ 2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾. 方程组无解,所以两直线无公共点,l 1∥l 2.类型二 求过两条直线交点的直线方程[例2] 已知两直线l 1:3x +4y -2=0和l 2:2x +y +2=0.(1)求两直线的交点;(2)求过两直线的交点和坐标原点的直线l 的方程.[解] (1)由方程组⎩⎨⎧ 3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧ x =-2,y =2.即l 1与l 2的交点坐标为(-2,2).(2)解法1:∵直线过点(-2,2)和坐标原点,∴其斜率k =2-2=-1,∴直线方程为y =-x ,一般式为x +y =0.解法2:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0,将原点坐标(0,0)代入上式,解得λ=1,∴l 的方程为5x +5y =0,即x +y =0.解法2用到过两直线交点的直线系方程,避免了求两直线的交点.选择不同的方法求解题目,可以训练自己的解题思路,使思路更开阔.[变式训练2] 求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.解:方法1:由方程组⎩⎨⎧ 2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧ x =-35,y =-75.∵直线l 和直线3x +y -1=0平行, ∴直线l 的斜率k =-3.∴根据点斜式有y -(-75)=-3[x -(-35)],即所求直线方程为15x +5y +16=0.方法2:∵直线l 过两直线2x -3y -3=0和x +y +2=0的交点,∴设直线l 的方程为2x -3y -3+λ(x +y +2)=0,即(λ+2)x +(λ-3)y +2λ-3=0.∵直线l 与直线3x +y -1=0平行,∴λ+23=λ-31≠2λ-3-1,解得λ=112. 从而所求直线方程为15x +5y +16=0.类型三 两点间距离公式的应用[例3] 已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为________.[解析] 设P (x,2),∵点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,∴(x +2)2+(2-1)2=(x -1)2+(2+2)2,解得x =2.∴P (2,2).[答案] (2,2)已知所求点的相关信息及该点到某点的距离满足某些条件时,设出所求点的坐标,利用两点间距离公式建立关于所求点坐标的方程或方程组求解.[变式训练3] 已知点A (-1,2),B (1,3),P 在直线y =2x 上,求|P A |2+|PB |2取得最小值时点P 的坐标.解析:设P点坐标为(x,2x),∵|P A|2+|PB|2=(x+1)2+(2x-2)2+(x -1)2+(2x-3)2=10x2-20x+15=10(x-1)2+5,∴|P A|2+|PB|2≥5.(当且仅当x=1时取等号)∴当|P A|2+|PB|2取得最小值5时,点P的坐标为(1,2).类型四对称问题命题视角1:点关于点的对称问题[例4]已知不同的两点P(a,-b)与Q(b+1,a-1)关于点(3,4)对称,则ab=()A.-5B.14C.-14D.5[分析]利用中点坐标公式求解.[解析]由题意知⎩⎪⎨⎪⎧a+b+12=3,a-b-12=4,即⎩⎨⎧a+b=5,a-b=9,解得⎩⎨⎧a=7,b=-2,故ab=7×(-2)=-14.[答案] C点关于点的对称问题一般用中点坐标公式即可解决.[变式训练4]点(1,y)关于(-1,0)的对称点坐标是(x,2),则x=-3,y=-2.解析:由⎩⎪⎨⎪⎧ 1+x 2=-1,y +22=0得⎩⎨⎧ x =-3,y =-2.命题视角2:点关于线、线关于线的对称问题[例5] 已知直线l :y =3x +3,求(1)点P (4,5)关于直线l 的对称点的坐标;(2)直线l 1:y =x -2关于直线l 对称的直线l 2的方程.[解] (1)设点P 关于直线l 的对称点为P ′(x ′,y ′),则线段PP ′的中点M 在对称轴上,且直线PP ′垂直于对称轴,即⎩⎪⎨⎪⎧ y ′+52=3×x ′+42+3,y ′-5x ′-4×3=-1,解得⎩⎨⎧ x ′=-2,y ′=7.所以点P ′的坐标是(-2,7).(2)由题意,得l 1上任一点P 1(x 1,y 1)关于l 的对称点P 2(x 2,y 2)一定在l 2上,反之也成立.故⎩⎪⎨⎪⎧y 1+y 22=3×x 1+x 22+3,y 1-y 2x 1-x 2×3=-1, 解得⎩⎪⎨⎪⎧x 1=-45x 2+35y 2-95,y 1=35x 2+45y 2+35. 把(x 1,y 1)代入y =x -2,整理得7x 2+y 2+22=0,所以直线l 2的方程为7x +y+22=0.(1)点A (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由方程组⎩⎪⎨⎪⎧ y -y 0x -x 0·⎝ ⎛⎭⎪⎫-A B =-1(AB ≠0),A ·x +x 02+B ·y +y 02+C =0求得.(2)求直线l 1:A 1x +B 1y +C 1=0关于直线l :Ax +By +C =0对称的直线l 2的方程的方法:转化为点关于直线对称,在l 1上任取两点P 1和P 2,求出P 1,P 2关于l 的对称点,再用两点式可求出l 2的方程.[变式训练5] 已知两点A (3,-3),B (5,1),直线l :y =x ,在直线l 上求一点P 使|P A |+|PB |最小.解:如图,作点A 关于直线l 的对称点A ′,易知A ′(-3,3).连接BA ′交直线l 于点P ,则|P A |+|PB |=|P A ′|+|PB |=|A ′B |.又直线A ′B 的方程为x +4y -9=0,与y =x 联立解得P ⎝ ⎛⎭⎪⎫95,95.1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( C )A.(4,1)B.(1,4)C.⎝ ⎛⎭⎪⎫43,13D.⎝ ⎛⎭⎪⎫13,43 解析:由方程组⎩⎨⎧ x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧ x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13. 2.已知M (2,1),N (-1,5),则|MN |等于( A )A.5B.37C.13D.4 解析:|MN |=(2+1)2+(1-5)2=5.3.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( A )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=0解析:首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0.4.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是a ≠2.解析:l 1与l 2相交则有:a 4≠36,∴a ≠2.5.已知△ABC 的三个顶点的坐标是A (-3,1),B (3,-3),C (1,7).(1)判断△ABC 的形状;(2)求△ABC 的面积.解:(1)因为|AB |=(3+3)2+(-3-1)2=213,|AC|=(1+3)2+(7-1)2=213,又|BC|=(1-3)2+(7+3)2=226,所以|AB|2+|AC|2=|BC|2,且|AB|=|AC|,所以△ABC是等腰直角三角形.(2)△ABC的面积S△ABC=12|AC|·|AB|=12×213×213=26.——本课须掌握的两大问题1.过两条直线交点的直线系方程:过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程是A1x+B1y+C1+λ(A2x +B2y+C2)=0(λ∈R),但此方程中不含l2;一般形式是m(A1x+B1y+C1)+n(A2x+B2y+C2)=0(m2+n2≠0),是过l1与l2交点的所有直线方程.2.坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.。

高一数学人教A版必修23-3-2两点间的距离公式课件

高一数学人教A版必修23-3-2两点间的距离公式课件

用坐标法证明:矩形的对角线相等.
[证明] 如图所示,以矩形ABCD的顶点A为原点,以AB 所在直线为x轴建立直角坐标系.
设|AB|=m,|AD|=n, 则A(0,0),B(m,0),C(m,n),D(0,n). ∴|AC|= m2+n2, |BD|= 0-m2+n-02= m2+n2. ∴|AC|=|BD|,即矩形的对角线相等.
[点评] 在建立坐标系时,适当的坐标系能使运算更加简 便(如本例以两直角边为坐标轴建立坐标系),故在建坐标系时 要有效地利用条件中的垂直、对称等关系.
课堂基础巩固
1.已知M(2,1),N(-1,5),则|MN|等于( ) A.5 B. 37 C. 13 D.4 [答案] A
[解析] |MN|= 2+12+1-52=5.
A.2 3 B.3+2 3 C.6+3 2 D.6+ 10
[答案] C
4.一条B的横坐标是-1,则点B的纵坐标是( )
A.-3
B.5
C.-1或-3 D.-3或5
[答案] D
5.若x轴上的点M到原点的距离与到点N(5,-3)的距离 相等,则M点的坐标是( )
规律总结:解决本题的关键是建立适当的坐标系,以及 转化为代数问题,即转化为距离大小和斜率相等问题.
已知Rt△ABC,∠B为直角,AB=a,BC=b,建立适当 的坐标系,写出顶点A,B,C的坐标,并求证斜边AC的中点 M到三个顶点的距离相等.
[分析] 取直角边所在的直线为坐标轴建立坐标系,再写 出各顶点坐标,给出证明.
B.平行
C.垂直
D.相交但不垂直
[答案] A
5.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的
值是( )
A.1 B.-23

2.3.2两点间的距离公式教学设计-2023学年高二上学期数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式教学设计-2023学年高二上学期数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式教学设计一、教材分析本节课是人教A版高中数学(2019)选修一第二章第二节课2.3.2-两点间的距离公式.本节课是在学习了直线的倾斜角和斜率、直线的方程以及两直线的交点坐标之后进行的,是对前面学习内容的延续与深入,也是后续学习点到直线的距离、圆与圆的位置关系等知识的基础.本节课通过构造直角三角形,使用勾股定理推导两点间距离公式,并应用公式解决简单的平面几何问题,是对学生应用“坐标法”解决几何问题的一次很好的训练.二、学情分析学生对勾股定理十分熟悉,可引导学生构造直角三角形,利用勾股定理推导两点间的距离公式,体会数形结合思想的运用.学生已经初步了解“坐标法”,可引导学生建立平面直角坐标系,用代数的方法解决简单的平面几何问题.三、教学目标1、知识与技能(1)能推导两点间的距离公式并会简单应用.(2)会用代数的方法证明简单的平面几何问题.2、过程与方法(1)通过由特殊到一般的方法引导学生推导两点间的距离公式,使学生体会数形结合的思想方法.(2)引导学生建立平面直角坐标系,将几何问题转化为代数问题求解,体验转化与化归的数学思想.3、情感态度价值观(1)通过实际问题引入,激发学生学习兴趣.(2)在知识生成过程中,培养学生发散思维,多角度思考问题的能力.(3)培养学生主动探索未知世界的意识及对待新知识的良好情感态度.四、教学重难点1、教学重点:两点间距离公式的推导过程及运用.2、教学难点:使学生明白推导两点之间距离公式时辅助线的构造,运用勾股定理推导两点间距离公式,使学生明白从特殊到一般的思想,以及两点间距离公式的灵活运用.五、教学过程(一)创设情景,引入课题师:我们在初中的时候学过数轴上两点间的距离公式,大家回忆一下怎样求数轴上两点间的距离.问题一:如图,设数轴x上的两点分别为A、B,怎样求|AB|?生:|AB|=|a-b|.师:那么怎样求直角坐标系中两点间的距离呢?这节课我们就来探讨一下直角坐标系中两点间的距离的求法.(在黑板上书写课题)(二)探究新知师:首先我们在直角坐标系中给定两点,看看怎样求它们之间的距离.(师生研讨) 请同学们解决以下问题:问题2:如图,在直角坐标系中,点C (4,3),D (4,0), E (0,3),如何求C 、D 间的距离|CD|,C 、E 间的距离|CE|及原点0与C 的距离|0C|? (让学生思考一分钟,请学生回答) 生: |CD|=|3-0|=3. |CE|=|4-0|=4在直角三角形CDO 中,用勾股定理解得: |OC|=54322=+ 师:那么,同学们能否用以前所学知识解,决以下问题:问题3:对于直角坐标系中的任意两点P(x1,y1)、P(x2,y2),如何求P 、P1的距离|P1P2|? 从p1、p 2这两点的位置来看,我们用以前所学的知识很难解决这个问题师:根据问题2中求原点0到C的距离|OC|,构造直角三角形,再用勾股定理计算的方法,我们想求解问题3是不是也可以构造一个直角三角形.如右图,过点P1分别向轴x和y轴作垂线P1M1和P1N1,垂足分别为M (x,0)和N(0, y1),过点P2分别向轴x和y轴作垂线时PM和PN,垂足为M2(x2, 0)和N2 (0,y2),延长直线P1N1与P2M2相交于点Q,则三角形P1QP2是直角三角形.在直角三角形P1QP2中,由勾股定理可以得到,|P1P|^2 =|P1Q|^2+| QP2|^2.要求|P1P2|,必须知道|P1Q|和|QP2|的值.为了计算|P1Q|和|QP2|,就要求Q的坐标,而点Q的横坐标与P2的横坐标相同,纵坐标与P1的纵坐标相同,则Q的坐标为(x2,y1).于是有:|P1Q|=|x2-x2|, |QP2| =|y2-y1|,所以|P1P2|^2=|x2-x1|^2+|y2-y1|^2,则|P1P2|=√|x2−x1|2+|y2−y1|2,这就是我们今天所要学习的两点间的距离公式.(三)讲授新课两点P (x, y)、R (x2, y2) 间的距离公式:|P1P2|=√|x2−x1|2+|y2−y1|2两点间的距离公式在以后的学习中运用很广泛,其中有一种很常见的情况大家一定要注意,那就是原点O(0,0)与任一点p(x,y)距离:|OP|=√x2+y2(四)基础练习练习:求下列两点间的距离:(1)A(6,0),B(-2,0)(2)C(0,-4),D(0,-2)由学生回答:(1)|AB|=√(−2−6)2+(0−0)2=8(2)|CD|=√(0−0)2+(−2−(−4))2=2(五)巩固练习通过对这个例题的求解,同学们对两件距,离公式的应用有了初步的了解,下面请同学们独立完成一个练习,看大家能不能做,得又快又准.练习:已知A (1,2),B(5,2) ,若|P4|=√10,|PB|=√2,求点P的坐标.(请一个学生到黑板.上完成,其余学生独立完成,完成后教师讲解)分析:先设P点的坐标为(x,y) .然后用两点间的距离公式表示出|P4|=√10,|PB|=√2,可以得到两个关于x,y的方程,联立方程求解出x,y的值,P点的坐标就求出来了.解:设点p的坐标为(x,y) ,则有:(x-1)^2+(y-2)^2=10;(x-5)^2+(y-2)^2=2解之得: x=4,y=1或3所以,点p的坐标为(4,1)或(4,3)(六)课时小结这节课的内容就是这些,最后我们来回顾一下这节课的内容.同学们总结一一下,这节课学习了什么?(师生一起总结)首先我们用勾股定理推导了直角坐标系中.任意两点间的距离公式,即两点P (x1,y1)、P (x2,y2)间的距离公式: |P1P2|=√|x2−x1|2+|y2−y1|2其次同学们要注意一种特殊的情况:原点o(0,0)与任一点P (x,y)的距离: |OP|=√x2+y2同学们要学会用两点间的距离公式求直角坐标系中两点间的距离,并要掌握它的一些应用. (七)课后作业学案练习 1、2题。

(部编版)2020学年高中数学第三章3.3.1两条直线的交点坐标3.3.2两点间的距离1学案含解析新人教A版必修0

(部编版)2020学年高中数学第三章3.3.1两条直线的交点坐标3.3.2两点间的距离1学案含解析新人教A版必修0

3.3.1 & 3.3.2 两条直线的交点坐标 两点间的距离第一课时 两条直线的交点坐标 两点间的距离[提出问题]已知二元一次方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0.问题1:二元一次方程组的解法有哪些? 提示:代入消元法、加减消元法.问题2:在方程组中,每一个方程都可表示为一直线,那么方程组的解说明什么? 提示:两直线的公共部分,即交点.问题3:若给出两直线y =x +1与y =3x -2,如何求其交点坐标? 提示:联立解方程组求方程组的解即可得. [导入新知]1.两直线的交点坐标2 [化解疑难] 两直线相交的条件(1)将两直线方程联立解方程组,依据解的个数判断两直线是否相交.当方程组只有一解时,两直线相交. (2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2相交的条件是A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2,B 2≠0).(3)设两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1与l 2相交⇔k 1≠k 2.[提出问题]数轴上已知两点A ,B .问题1:如何求A ,B 两点间的距离? 提示:|AB |=|x A -x B |.问题2:在平面直角坐标系中能否用数轴上两点间距离求出任意两点间距离? 提示:可以,构造直角三角形利用勾股定理求解. [导入新知] 两点间的距离公式(1)公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=x 1-x 22+y 1-y 22.(2)文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根. [化解疑难]两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P 1P 2|= x 2-x 12+y 2-y 12.(2)当直线P 1P 2平行于x 轴时,|P 1P 2|=|x 2-x 1|. 当直线P 1P 2平行于y 轴时,|P 1P 2|=|y 2-y 1|. 当点P 1,P 2中有一个是原点时,|P 1P 2|=x 2+y 2.[例1] (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.[解] (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-103,y =143.所以l 1与l 2相交,且交点坐标为⎝ ⎛⎭⎪⎫-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0, ①y =13x +12, ②②×6整理得2x -6y +3=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合. (3)解方程组⎩⎪⎨⎪⎧2x -6y =0, ①y =13x +12, ②②×6-①得3=0,矛盾.方程组无解,所以两直线无公共点,l 1∥l 2. [类题通法]判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值. (2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. [活学活用]直线y =kx +3与直线y =1kx -5的交点在直线y =x 上,求k 的值.解:由题意可知,三条直线y =kx +3,y =1k x -5,y =x 交于一点.由⎩⎪⎨⎪⎧y =kx +3,y =x ,得x =y =31-k,代入y=1k x -5,得31-k =1k ·31-k -5,解得k =1或k =35.因为直线y =kx +3与直线y =1k x -5相交,所以k ≠1k ,即k ≠1,故k =35.[例2] 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点. [解] 证明:法一:取m =1时,直线方程为y =-4;取m =12时,直线方程为x =9.两直线的交点为P (9,-4),将点P 的坐标代入原方程左边=(m -1)×9+(2m -1)×(-4)=m -5. 故不论m 取何实数,点P (9,-4)总在直线(m -1)x +(2m -1)y =m -5上,即直线恒过点P (9,-4). 法二:原方程化为(x +2y -1)m +(-x -y +5)=0.若对任意m 都成立, 则有⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得⎩⎪⎨⎪⎧x =9,y =-4.所以不论m 为何实数,所给直线都过定点P (9,-4). [类题通法]解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).[活学活用]求过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线方程.解:法一:设所求直线为l ,因为直线l 过已知两直线的交点,因此直线l 的方程可设为2x -3y -3+λ(x +y +2)=0(其中λ为常数),即(λ+2)x +(λ-3)y +2λ-3=0. ①又直线l 与直线3x +y -1=0平行,所以-λ+2λ-3=-3且λ+23≠2λ-3-1,解得λ=112.将λ=112代入①,整理,得15x +5y +16=0,即为所求.法二:解方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75,所以两直线的交点坐标为⎝ ⎛⎭⎪⎫-35,-75.又所求直线与直线3x +y -1=0平行,所以所求直线的斜率为-3.故所求直线方程为y +75=-3⎝ ⎛⎭⎪⎫x +35,即15x+5y +16=0.[例3] 已知点A (1,1),B (5,3),C (0,3),求证:△ABC 为直角三角形. [解] 证明:法一:∵|AB |=-2+-2=25,|AC |=-2+-2=5,又|BC |=-2+-2=5,∴|AB |2+|AC |2=|BC |2, ∴△ABC 为直角三角形.法二:∵k AB =3-15-1=12,k AC =3-10-1=-2,∴k AB ·k AC =-1,∴AB ⊥AC ,∴△ABC 是以A 为直角顶点的直角三角形.[类题通法]1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=x 2-x 12+y 2-y 12.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. [活学活用]若点A (-3,4)与坐标轴上的点P 的距离等于5,试确定点P 的坐标. 解:若点P 在x 轴上,设点P 的坐标为(x,0),由点P 与点A 之间的距离等于5,得x +2+-2=5,解得x =0或x =-6,所以点P 的坐标为(0,0)或(-6,0);若点P 在y 轴上,设点P 的坐标为(0,y ),由点P 与点A 之间的距离等于5,得+2+y -2=5,解得y =0或y =8,所以点P 的坐标为(0,0)或(0,8).故所求的点P 有3个,坐标分别为(-6,0),(0,0),(0,8).8.两条直线相交求参数中的误区[典例] 若三条直线l 1:ax +y +1=0,l 2:x +ay +1=0,l 3:x +y +a =0能构成三角形,则a 应满足的条件是( )A .a =1或a =-2B .a ≠±1C .a ≠1且a ≠-2D .a ≠±1且a ≠-2[解析] 为使三条直线能构成三角形,需三条直线两两相交且不共点. ①若三条直线交于一点,由⎩⎪⎨⎪⎧x +ay +1=0,x +y +a =0,解得⎩⎪⎨⎪⎧x =-a -1,y =1,将l 2,l 3的交点(-a -1,1)代入l 1的方程解得a =1或a =-2*; ②若l 1∥l 2,则由a ×a -1×1=0,得a =±1**, 当a =1时,l 1与l 2重合;③若l 2∥l 3,则由1×1-a ×1=0,得a =1,当a =1时,l 2与l 3重合;④若l 1∥l 3,则由a ×1-1×1=0,得a =1, 当a =1时,l 1与l 3重合. 综上,当a =1时,三条直线重合;当a =-1时,l 1∥l 2;当a =-2时,三条直线交于一点, 所以要使三条直线能构成三角形,需a ≠±1且a ≠-2. [答案] D [易错防范]*处,解题过程中,由a =1或a =-2得a ≠1且a ≠-2,此种错误是因只考虑了三条直线相交于一点不能构成三角形,而忽视了任意两条平行或重合的直线也不能构成三角形.**处,若得到a ≠±1,只考虑了直线的斜率不相等的条件,而忽视了三条直线相交于一点也不能构成三角形. 解答此类问题由条件不易直接求参数,可考虑从反面入手,同时考虑问题要全面,不要漏掉某些情形.[成功破障]若直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( ) A.12 B .-12C.23 D .-23答案:C[随堂即时演练]1.直线3x +2y +6=0和2x +5y -7=0的交点的坐标为( ) A .(-4,-3) B .(4,3) C .(-4,3) D .(3,4)答案:C2.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为( ) A .1 B .-5 C .1或-5 D .-1或5 答案:C3.若直线y =kx +3k -2与y =-14x +1的交点在第一象限,则k 的取值范围为________.答案:⎝ ⎛⎭⎪⎫27,14.若p ,q 满足p -2q =1,直线px +3y +q =0必过一个定点,该定点坐标为________.答案:⎝ ⎛⎭⎪⎫-12,16 5.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程. (1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0. 答案:(1)2x -y -1=0 (2)2x +3y -5=0[课时达标检测]一、选择题1.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,那么k 的值为( ) A .-24 B .6 C .±6 D .24答案:C2.一条平行于x 轴的线段长是5个单位,它的一个端点是A (2,1),则它的另一个端点是( ) A .(-3,1)或(7,1) B .(2,-3)或(2,7) C .(-3,1)或(5,1) D .(2,-3)或(2,5)答案:A3.过两直线3x +y -1=0与x +2y -7=0的交点且与第一条直线垂直的直线方程是( ) A .x -3y +7=0 B .x -3y +13=0 C .3x -y +7=0 D .3x -y -5=0答案:B4.过点A (4,a )和点B (5,b )的直线与y =x +m 平行,则|AB |的值为( ) A .6 B. 2 C .2 D .不能确定答案:B5.方程(a -1)x -y +2a +1=0(a ∈R)所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3)C .恒过点(-2,3)和点(2,3)D .都是平行直线 答案:A 二、填空题6.已知在△ABC 中,A (-3,1),B (3,-3),C (1,7),则△ABC 的形状为________. 答案:等腰直角三角形7.已知直线l 1:a 1x +b 1y +1=0和直线l 2:a 2x +b 2y +1=0都过点A (2,1),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程是____________.答案:2x +y +1=08.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为________.答案:⎝ ⎛⎭⎪⎫-32,52 三、解答题9.若三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0能构成一个三角形,求k 的取值范围. 解:①当l 1∥l 3时知k ≠0且有5k=1,所以有k =5.②当l 2∥l 3时知k ≠0且有5k=-1,所以有k =-5.③当l 1,l 2,l 3三线交于一点时,解方程组⎩⎪⎨⎪⎧x -y =0,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1,故直线l 1与l 2相交于点(1,1).又l 3过点(1,1),所以有5×1-k -15=0, 所以有k =-10.综上可知,要使三条直线构成一个三角形,需有k ≠±5且k ≠-10.10.已知点A (1,-1),B (2,2),点P 在直线y =12x 上,求|PA |2+|PB |2取得最小值时P 点的坐标.解:设P (2t ,t ),则|PA |2+|PB |2=(2t -1)2+(t +1)2+(2t -2)2+(t -2)2=10t 2-14t +10.当t =710时,|PA |2+|PB |2取得最小值,此时有P ⎝ ⎛⎭⎪⎫75,710,所以|PA |2+|PB |2取得最小值时P 点的坐标为⎝ ⎛⎭⎪⎫75,710.。

山东临清三中高中数学3.3.2《两点间的距离》教案(新人教A版必修2)

山东临清三中高中数学3.3.2《两点间的距离》教案(新人教A版必修2)

§ 3.3.2两点间的距离【教学目标】1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,能用代数方法解决几何问题.【重点难点】教学重点:①平面内两点间的距离公式.②如何建立适当的直角坐标系.教学难点:如何根据具体情况建立适当的直角坐标系来解决问题.【教学过程】一、导入新课、展示目标问题已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|?二、检查预习、交流展示核对课前预习中的答案。

1、(1,0);2、1并说出自己的疑惑处。

三、合作探究、精讲精练探究一平面内两点间的距离公式问题 (1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.教师①如果A、B是x轴上两点,C、D是y轴上两点,它们坐标分别是x A、x B、y C、y D,那么|AB|、|CD|怎样求?②求点B(3,4)到原点的距离.③已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|.④同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程).学生回答①|AB|=|x B-x A|,|CD|=|y C-y D|.②通过画简图,发现一个Rt△BMO,应用勾股定理得到点B到原点的距离是5.③图1在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1、P2分别向x轴和y轴作垂线P 1M 1、P 1N 1和P 2M 2、P 2N 2,垂足分别为M 1(x 1,0)、N 1(0,y 1)、M 2(x 2,0)、N 2(0,y 2),其中直线P 1N 1和P 2M 2相交于点Q.在Rt△P 1QP 2中,|P 1P 2|2=|P 1Q|2+|QP 2|2.因为|P 1Q|=|M 1M 2|=|x 2-x 1|,|QP 2|=|N 1N 2|=|y 2-y 1|,所以|P 1P 2|2=|x 2-x 1|2+|y 2-y 1|2.由此得到两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:|P 1P 2|=212212)()(y y x x -+-教师 ④(a)我们先计算在x 轴和y 轴两点间的距离.(b)又问了B(3,4)到原点的距离,发现了直角三角形.(c)猜想了任意两点间距离公式.(d)最后求平面上任意两点间的距离公式.这种由特殊到一般,由特殊猜测任意的思维方式是数学发现公式或定理到推导公式、证明定理经常应用的方法.同学们在做数学题时可以采用!应用示例例1 如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B 的纵坐标是3,求这个端点的横坐标.图2解:设B(x ,3),根据|AB|=13,即(x+4)2+(3-8)2=132,解得x=8或x=-16.点评:学生先找点,有可能找不全,丢掉点,而用代数解比较全面.也可以引至到A(-4,8)点距离等于13的点的轨迹(或集合)是以A 点为圆心、13为半径的圆上与y=3的交点,应交出两个点.变式训练1课本106页练习第一题例2 已知点A(-1,2),B(2),在x 轴上求一点,使|PA|=|PB|,并求|PA|的值. 解:设所求点P(x ,0),于是有2222)70()2()20()1(-+-=-++x x .由|PA|=|PB|,得x 2+2x+5=x 2-4x+11,解得x=1.即所求点为P(1,0),且|PA|=22)20()11(-++=22.点评:引导学生熟练设点及应用距离公式。

2019秋金版学案高中数学必修2(人教A版)练习:3.3-3.3.2第1课时两直线的交点坐标两点间的距离含解析

2019秋金版学案高中数学必修2(人教A版)练习:3.3-3.3.2第1课时两直线的交点坐标两点间的距离含解析

A 级 基础巩固一、选择题1.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,那么k 的值为( )A .-24B .6C .±6D .24解析:在2x +3y -k =0中,令x =0中得y =k 3,将⎝⎛⎭⎪⎫0,k 3代入x -ky +12=0,解得k =±6.答案:C2.已知点P (a ,2),A (-2,-3),B (1,1),且|PA |=|PB |,则a 的值为( ) A .-92B .-7C .-5D .4解析:由|PA |=|PB |,得(a +2)2+(2+3)2=(a -1)2+(2-1)2, 化简得6a =-27,解得a =-92.答案:A3.已知直角坐标平面上连接点(-2,5)和点M 的线段的中点是(1,0),那么点M 到原点的距离为( )A .41 B.41 C.39D .39解析:设点M (x ,y ),则⎩⎨⎧x -22=1,y +52=0,解得x =4且y =-5,故M (4,-5) 所以|OM |=42+(-5)2=41. 答案:B4.过两直线l 1:3x +y -1=0与l 2:x +2y -7=0的交点,并且与直线l 1垂直的直线方程是( )A .x -3y +7=0B .x -3y +13=0C .2x -y +7=0D .3x -y -5=0解析:直线l 1:3x +y -1=0与l 2:x +2y -7=0的交点为(-1,4),由与l 1垂直,得所求直线的斜率为13.再由点斜式得y -4=13[x -(-1)],即x -3y +13=0.答案:B5.方程(a -1)x -y +2a +1=0(a ∈R)所表示的直线( ) A .恒过定点(-2,3)B .恒过定点(2,3)C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:(a -1)x -y +2a +1=0化为ax -x -y +2a +1=0, 因此-x -y +1+a (x +2)=0.由⎩⎪⎨⎪⎧-x -y +1=0,x +2=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案:A 二、填空题6.无论m 为何值,直线l :(2m +1)x +(m +1)y -7m -4=0恒过一定点P ,则点P 的坐标为________.解析:将直线l 的方程整理得(2x +y -7)m +(x +y -4)=0,令⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,得⎩⎪⎨⎪⎧x =3,y =1,即点P 的坐标为(3,1). 答案:(3,1)7.已知△ABC 的顶点坐标为A (-1,5),B (-2,-1),C (2,3),则BC 边上的中线长为________.解析:由中点坐标公式得,BC 的中点坐标为(0,1),所以BC 边上的中线长为(0+1)2+(1-5)2=17.答案:178.经过两直线2x -3y -3=0和x +y +2=0的交点,且与直线3x +y -1=0平行的直线l 的方程为________.解析:解方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75,所以两条直线的交点为⎝⎛⎭⎪⎫-35,-75.因为直线l 和直线3x +y -1=0平行, 所以直线l 的斜率k =-3.所以y -⎝ ⎛⎭⎪⎫-75=-3⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-35, 即所求直线l 的方程为15x +5y +16=0. 答案:15x +5y +16=0 三、解答题9. 点A 在第四象限,点A 到x 轴的距离为3,到原点的距离为5,求点A 的坐标.解:点A 在第四象限,A 点到x 轴的距离为3,故设A (a ,-3),a >0,到原点的距离为5,所以(a -0)2+(-3-0)2=5,解得a =4,故点A 的坐标为(4,-3).10.已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程. (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点, k AB =1-34-2=-1, 所以E (3,2),且k CE =-1k AB=1, 所以CE 所在直线方程为y -2=x -3, 即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0得⎩⎪⎨⎪⎧x =4,y =3.所以C (4,3). 又因为A (2,3)B (4,1)所以|EC |=(4-3)2+(3-2)2=2, |AB |=(4-2)2+(1-3)2=22, 所以S △ABC =12|AB |·|EC |=2.B 级 能力提升1.已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足坐标为(1,p ),则m -n +p 为( )A .24B .-20C .0D .20解析:由两直线互相垂直,得-m 4×25=-1,解得m =10,又垂足坐标为(1,p ),代入直线10x +4y -2=0, 得p =-2.将(1,-2)代入直线2x -5y +n =0,得n =-12, 所以m -n +p =20. 答案:D2.等腰△ABC 的顶点是A (3,0),底边|BC |=4,BC 边的中点为D (5,4),则腰长为________.解析:|BD |=12|BC |=2,|AD |=(5-3)2+(4-0)2=25,在Rt △ADB 中,由勾股定理得腰长为|AB |=22+(25)2=2 6. 答案:2 63.已知点A (1,-1),B (2,2),点P 在直线y =12x 上,求|PA |2+|PB |2取最小值时点P 的坐标.解:设P (2t ,t ),则|PA |2+|PB |2=(2t -1)2+(t +1)2+(2t -2)2+(t -2)2=10t 2-14t +10.当t =710时,|PA |2+|PB |2取得最小值,此时有P ⎝ ⎛⎭⎪⎫75,710,所以|PA |2+|PB |2取得最小值时P 点的坐标为⎝⎛⎭⎪⎫75,710.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省岳池县第一中学高中数学必修三学案:3-3-2 两点间的距离 学习目标 1.掌握平面上两点间的距离公式,能运用两点间的距离公式解决一些简单问题;逐步提高用代数方法解决几何问题的能力。

2.独立思考,合作探究,通过具体实例,学会运用两点间的距离公式和坐标法求有关距离、对称的问题以及简单的平面几何问题的方法。

3.激情投入,全力以赴,培养从特殊问题开始研究逐步过渡到研究一般问题的思维方式。

重点:两点间的距离公式和坐标法。

难点:运用坐标法证明平面几何问题。

预习案
使用说明&学法指导 1.思考并回答“相关知识”的4个问题,明确本课时所要探究的问题和方向;2.通过“教材助读”中的问题1,初步认识平面上两点的距离公式及其应用;通过问题2,初步了解用坐标法解题的思路和步骤;3.迅速完成预习自测题;4.预习案用时约15分钟,将预习中不能解决的问题标出,并写到后面“我的疑惑”处。

Ⅰ.相关知识
1.数轴上两点间的距离公式是怎样的?
2.已知两点坐标,如何求直线的斜率?
3.两条直线平行的条件是什么?
4.两条直线垂直的条件是什么?
Ⅱ.教材助读
1.阅读课本3.3.2~例3的内容,思考并完成下列问题:
(1)设1P (11,x y ),2P (22,x y ),观察课本上的图3.3-2知,在Rt △1P Q 2P 中,∣1P Q
∣=∣12M M ∣= ,∣2P Q ∣=∣12N N ∣= ,所以∣1P 2P ∣2= 。

(2)两点1P (11,x y ),2P (22,x y )间的距离公式:∣1P 2P ∣= 。

(3)原点O (0,0)与任一点P (,x y )的距离∣OP ∣= 。

(4)课本上例3的解题思路得什么?“由∣PA ∣=∣PB ∣知,P 点在线AB 的垂直平分线上,又P 点在x 轴上”。

若按上面的思路,例3该怎样解答?
2.阅读课本例4∽思考的内容,并回答下列问题:
(1)在课本上的例4中是怎样建立直角坐标系的?
(2)建系后,为什么设出B ,D 两点的坐标后不再设C 点的坐标?
(3)例4的计算主要运用了哪个公式?
(4)怎样概括例4解决问题的基本步骤?
Ⅲ.预习自测
1.式子2
2)2(1
-++b a )(可以理解为( ) A.两点(,a b )与(1,-2)间的距离
B.两点(,a b )与(-1,2)间的距离
C.两点(,a b )与(1,2)间的距离
D. 两点(,a b )与(-1,-2)间的距离
2.点A (1,3)关于点P (0,1)的对称点B 的坐标是( )
A.(1,5)
B.(-1,-1)
C.(
12
,2) D.(1,2)
3.已知点A (m ,0),B (1,AB ∣= 。

我的疑惑 请将预习中不能解决的问题写下来,供课堂解决。

探究案
Ⅰ.学始于疑——我思考,我收获
1.几种特殊位置的两点距离公式符合一般的距离公式吗?
2.怎样建立平面直角标系证明平面几何问题?
学习建议:用3分钟时间认真思考这个问题,并结合预习中自己的疑惑开始下面的探究学习。

Ⅱ.质疑探究——质疑解疑、合作探究
(一)基础知识探究
探究点一 平面上两点间的距离
问题1:平面上两点间的距离公式的几何意义是什么?它与两点的先后顺序有关吗?
问题2:当点1P 或2P 是一些特殊位置的点时,距离公式能简化吗?试列举。

问题3:斜率为k 的直线上的两点1P (11,x y ),2P (22,x y )的距离是多少?
问题4:若∣AB ∣+∣BC ∣=∣AC ∣,试说明点A ,B ,C 具有的位置关系。

归纳总结
探究点二 坐标法(解析法)
问题1:课本上例4用的方法是什么方法?
问题2:利用坐标法解决几何问题的基本步骤是什么?
问题3:怎样建立直角坐标系才能有利于解题?
归纳总结
(二)知识综合应用探究
探究点一 平面上两点间距离公式的应用(重点)
【例1】已知三角形的三个顶点分别为A (-1,0),B (1,0),C (
1,22
),试判断△ABC 的形状。

思考1:边AB 的长度是多少?AC ,BC 呢?
思考2:三角形的三条边长满足什么关系?
学习建议:建立独立思考后,谈谈你的解题思路。

规律方法总结
拓展提升已知点A(0,3),B(-1,0),C(3,0),试求D点的坐标,使四边形ABCD为等腰梯形。

思考1:如何说明四边形ABCD为等腰梯形?
思考2:D点的位置确定吗?应分几种情况讨论?
思考3:求出的解都符合题意吗?
学习建议:建立独立思考后,谈谈你的解题思路,想一下,为什么会出现多余的解?
探究点二利用坐标法解决几何问题(难点)
【例2】已知△ABC是直角三角形,斜边BC的中点为M,建立适当的直角坐标系,证明:
AM=1
2 BC。

思考1:如何建立直角坐标系使得各点的坐标表示比较简单?
思考2:线段AM、BC的长度各是多少?
学习建议:建立独立思考后,谈谈你的解题思路。

规律方法总结
拓展提升求证:等腰梯形的对角线相等。

思考1:该命题的条件和结论分别是什么?怎样写出已知和求证?思考2:应该怎样建立直角坐标系?怎样计算对角线的长?
学习建议:建立独立思考后,谈谈你的解题思路。

Ⅲ.
Ⅳ. 1.以A (3,-1),B (1,3)为端点的线段的垂直平分线的方程为( )
A.2x +y -5=0
B. 2x +y +6=0
C.x -2y =0
D. x -2y -8=0
2.在直角坐标系中,已知点P (1,2),P '(-1,-2),则∣P P '∣等于( )
A. D.3.已知斜率为-2的直线l 上有两点:A (4,1y ),B (-1,2y ),则∣AB ∣= 。

我的收获:反思静悟,体验成功
训练案
一、基础巩固题——把简单的事做好就叫不简单!
1、已知Q (1,2),若在x 轴上有一点P ,且∣PQ ∣=5,则点P 的坐标是( )
A.(0,0)或(2,0)
B.()
C.(1)
D.()或(1)
2.线段AB 与x 轴平行,且∣AB ∣=5,若点A 的坐标为(2,1),则点B 的坐标为( )
A.(2,-3)或(2,7)
B.(2,-3)或(2,5)
C.(-3,1)或(7,1)
D.(-3,1)或(5,1)
3.已知两点P (x ,-
25x ),Q (22,55
x x ),且∣PQ ∣=5,则x 的值为 。

4.直线2x +y +2=0与直线3x +4y -2=0,x -y =0分别交于A ,B 两点,则∣AB ∣= 。

二、综合应用题——挑战高手,我能行!
5. [★]已知两点A (,a b ),B (,c d ),且 02222=+-+d c b a ,则( )
A.原点一定是线段AB 的中点
B.A ,B 一定都与原点重合
C.原点一定在线段AB 上但不是中点
D.以上结论都不正确
6.[★]以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( )
A.锐角三角形
B.直角三角形
C.等腰三角形
D.等腰直角三角形
7.[★]已知△ABC 的顶点A (-1,5),B (-2,-1),C (4,7),则BC 边上的中线AD 的长为 。

8.[★](转化与化归思想)已知P 为直线x +y -1=0上的动点,则点P 到点Q (3,0)的距离的最小值为 ,此时点P 的坐标为 。

三、拓展探究题——战胜自我,成就自我!
9.【★★】(实际应用题)A ,B 两厂位于一条公路的同侧,且到这条公路的距离分别为
400m 和100m ,A ,B 两厂之间的距离为500m ,把公路看成一条直线,今欲在公路边上建一个车站,供A ,B 两厂职工上下班使用,要使车站到A ,B 两厂的路程之和最短,问车站应建在什么地方?车站到A ,B 两厂的路程之和至少为多少米?。

相关文档
最新文档