科学记数法导学案

合集下载

1.5.2科学记数法(导学案)

1.5.2科学记数法(导学案)
(5)-10000= ( 6)-12030000=
归纳:用科学记数法表示一个n位整数时,10的指数比原来的整数位______
【课堂练习】
1.课本45页练习1、2题
2.写出下列用科学记数法表示的原数:
(1)8.848×103=(2)3.021×102=
(3)3×106=(4)7.5×105=

学生展示
陡沟镇中心学校七年级数学导学案
课题:
1.5.2科学记数法
编号
013
时间
年级

主备人
代廷辉
审核人
数学组
学习目标:
1.能将一个有理数用科学记数法表示;
2.已知用科学记数法表示的数,写出原来的数;
3.懂得用科学记数法表示数的好处;
学习重点:
用科学记数法表示较大的数
学习难点:
用科学记数法表示较大的数
教学方法:

当堂测试
一.判断。
1.负数不能用科学记数法来表示。()
2.在科学记数法 中, 。()
3.在科学记数法 中, 。()
4.在科学记数法 中,n是大于1的整数。()
5. 100万用科学记数法可以写成 。()
6. 是156万。()
7.一个大数用科学记数法表示后就变小了。()
二.填空。
8.
9. 。
10. 6100000000中有___________位整数,6后面有___________位。
教师激励
1.用科学记数法表示下列各数:
(1)465000=(2)1200万=
(3)1000.001=(4)-789=
(5)308×106=(6)0.7805×1010=

学生探究

科学记数法导学案

科学记数法导学案

§ 1.10 科学记数法导学案制作人:樊庆虎【学习目标】(1)理解科学记数法的概念。

(2)会用科学记数法表示较大的数,并能正确写出a与n的值。

(3)通过科学记数法的学习,发展学生的数感,进一步培养学生自主探究的能力。

学习过程一、激情引趣,导入新课。

读一读(1)我国人口大约为1370000000人,(2)光的速度大约是300000000米/秒,(3)地球绕太阳转动的速度是110000000米/秒(4)2010年我国GDP为39800000000000元。

以上资料中的数字都非常大,书写不方便,有没有科学的办法方便的写出来呢?这就是我们这节课要学习的内容。

二、合作交流,探究新知1 填一填,并寻找规律。

102 = 103 = 105 = 107 =10n =100……0 (1后面有个0)2 借助10n的形式表示各数1370000000=1.37× =1.37×10()300000000=3× =3×10()39800000000000=3.98× =3.98×10()思考:右边三个式子有什么特点?3 科学记数法的概念一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。

使用科学记数法需谨记以下几点:(1)a是一个具有一位整数的数。

(2)n值得确定,法一:已知数的小数点向左移动几位,就乘10的几次方,例如把2300000写成科学记数法的形式,a取2.3,把2300000变成2.3,小数点向左移动了6位,所以2300000=2.3×106。

法二:查出已知数的整数的位数,整数位数减去1就等于10的次数,例如28562.35的整数位是5,则n=5-1=4,即28562.35=2.856235×104。

(3)科学记数法形式转化为原数例如8.30×107它的原数就有7+1=8位整数,整数不够用0来补,因此可写为830000004 例题用科学记数法表示下列数据(1)赤道长约为40000000m;(2)地球表面积约为510000000km2.三、应用迁移,巩固提高1、下列各数,属于科学记数法表示的是()A、53.7210×10×D、5.37310×C、5372×B、0.5374102、用科学记数法表示下列各数(1)1000000;(2)572000000;(3)123000 000000;(4)3862.32;(5)567000;3、下列用科学记数法写出的数,原数分别是什么数?710× 3.96410××9.505×7.045110× 4.5610104、第六次人口普查知山东省人口总数约为9297万人,用科学记数法表示是多少人?5、太阳直径约为6×千米,其原数为多少米?1.39210四、达标检测1 选择题(1)用科学记数法表示33080000,正确的是 ( )A .61008.33⨯B .810308.3⨯C .4103308⨯D .710308.3⨯(2)下列各数,属于科学记数法表示的是 ( ) A 、0.28210× B 、35.0410× C 、6.0210× D 、610257⨯(3)用科学记数法表示的数1001076.3⨯,它的原数的整数位数是 ( )A 、101B 、100C 、99D 、982 填空题(1)用科学记数法表示的数61005.8⨯,原来的数是 。

科学记数法导学案x

科学记数法导学案x

《科学记数法》导学案宁强县第一初级中学张素琴教学目标【知识与技能】理解科学记数法的概念,会用科学记数法表示一个较大的数。

【过程与方法】通过老师引导,学生探究,归纳总结得出科学记数法的概念。

【情感态度与价值观】通过列举生活中的实例,让学生感受到我们的生活离不开数学,数学来源于生活又服务与生活,从而提高数学学习兴趣。

【教学重点】掌握科学记数法的表示方法。

【教学难点】科学记数法中系数a及指数n的确定。

【教学方法】创设问题情境,尝试探究,引导启发,点拨释疑。

【教具准备】ppt课件【教学过程】一、导入新课1、出示生活中和数学有关的图片让学生欣赏(教师导语)我们的生活离不开数学,数学来源于生活又服务与生活,我们可以用学到的数学知识解决生活中的许多问题。

2、出示和本节课相关的一些生活图片,带领学生走进生活,走进数学。

(1)第五次人口普查时,中国人口约为1300 000 000人。

(2)太阳的半径约为696 000 000米(3)光的速度约为300 000 000米/秒3、提出问题:上面这些数都很大,你该怎样表示它们呢?有简单的方法吗?4、板书课题:科学记数法二、新知探究1、小明想知道计算器是怎样表示大数的,于是他输入1 000,连续地进行平方运算,两次平方后,发现计算器上出现了下图这样的显示,你知道它表示什么数吗? (自己动手试一试)教师点拨:1000x1000=10000001000000x1000000=1000000000000=1x10122、教师引导:计算器上对较大的数用了一种新的表示方法。

3、尝试探究:问题1、回顾有理数的乘方运算,算一算:102=100 103=1000 104=10000 105=100000 106=1000000观察思考:0的个数与幂指数有何联系?问题2、把下列各数写成10的幂的形式:100=1021000=10310000=10410000=1051000000=106观察思考:幂指数与原数位数有何联系?问题3、按要求填空(1)3.36x103= (2)3360=3.36x---------(3)2.58x105= (4)258000=2.58x----------4、小结归纳:像上面100000=1051000000=1063360=3.36x103258000=2.58x105这样,把一个大于10的数记作a×10n的形式,其中1≤a<10, n是正整数,这种记数方法叫做科学记数法。

科学记数法导学案

科学记数法导学案

第二章有理数及其运算10.科学记数法一、教学目标:①理解科学记数法的意义,学会用科学记数法表示大数,对用科学记数法表示的数进行简单的运算;②积累数学活动经验,发展数感;学会与人合作、与人交流。

感受数学与生活的密切联系,开拓学生视野,激发学生学习数学的热情;③感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性。

二、教学过程第一环节自主收集,课前欣赏内容:请学生课前收集生活中的大数据,可以来源于报刊网络,也可以自己调查或请父母帮助提供工作中涉及的大数据。

通过收集你觉得身边的大数据多吗?这些大数据在读写上有什么困难没有?你觉得采取什么方法表示这些大数据比较合适?下面是学生收集的部分资料的展示:宜昌2011年种烟草种植情况:宜昌市现有4个种烟区域,分布在兴山、五峰、长阳和兴山,涉及烤烟、白肋烟和马里兰烟3个烟叶类型,常年种植烟叶11万亩,年产量30万担,其中马里兰烟是中国唯一的种植产区,世界最大产区。

2011年,全市共种植烟叶120 000亩,其中烤烟50 000亩、白肋烟20 000亩、马里兰烟50 000亩。

年产量30. 8万担,其中烤烟15万担、白肋烟5.8万担、马里兰烟11万担。

种烟农户14 103户,涉烟农民人数56 412人。

年实现烟农收入2.2亿元,创税50 000 000元。

烟农户平收入16000元,人平收入4000元。

三峡大坝发电情况调查:三峡电厂对工程枢纽的运行管理包含左、右岸两座电站。

水电站厂房位于泄洪坝段左、右两侧,共装机26台,单机容量700 000千瓦,其中左岸电站14台、右岸电站12台,总容量18 200 000千瓦,年均发电量84 700 000 000度。

2003年7月10日和16日,三峡左岸电站首批发电的两台机组2号机和5号机分别正式移交三峡电厂运行管理;2003年共接管6台机组,创造了电厂半年内接机数量和接机总容量最大的世界纪录,当年发电量8 620 000 000度;2005年9月16日,左岸电站9号机组正式投入运行,三峡电厂提前一年接管左岸全部14台机组。

科学计数法

科学计数法

科学记数法导学案主备人:张凤芝审核:七年级数学组时间学习目标:借助身边熟悉的事物进一步体会大数,了解科学记数法的意义,并会用科学记数法表示大数。

学习重点:能用科学记数法表示大数。

学习难点:理解科学记数法。

学习过程:一、情境引入在日常生活中,我们经常遇到许多与现实生活息息相关的数据,如全世界人口大约是6 100 000 000,光速大约是300 000 000米/秒,中国的国土面积大约是960万平方千米等等,读了这些数据你有什么想法?二、自主探索(1)提出以下问题。

问题1、回顾有理数的乘方运算,算一算:102= 104= 108= 1010=请学生讨论回答(1)1021表示什么?(2)指数与运算结果中的0的个数有什么关系?(3)指数与运算结果的数位有什么关系?发现:一般地,10的n(n为正整数)次幂,在1的后面有个0。

运算结果的数位为课堂练习:把下列各数写成10的幂的形式:100 000=10 000 000= 1 000 000 000=【问题2】利用上面的结论,我们可以借助10的幂的形式把一个比10大的数用整数段位是一位数的数乘以10n的形式较简单的表示出来,试试看。

300=3×=3×10()3000=3×=3×10()30000=3×=3×10()请用这种记数方式表示下列各数:300000000= =________;9600000= =________;6100000000= =________.三、合作交流同学们讨论归纳:科学记数法:把一个大于10的数记成的形式,其中a是整数数位(即1≤a<10),n是,这种记数方法叫做。

想一想:用科学记数法表示一个大于10的数,10的次数n与原数的整数位数有何关系?用科学记数法记数有何优点?发现: 10的次数n等于例1、用科学记数法表示下列各数:(1)696000;(2)1000000;(3)58000思考:负数可以用科学记数法表示吗?如:-123000000=课堂练习一:1、试一试:你能把下列各数用科学记数法表示吗?(1)6 900=(2)57 000 000=(3)-123 000 000 000=2、练一练:你能把下列各数用科学记数法表示吗?(1)水星的半径为2 440 000米(2)木星的赤道半径约为71 400 000米(3)地球上的陆地面积约为149 000 000米(4)地球上海洋面积大约为361 000 000平方千米(5)地球质量为5 976 000 000 000 000 000 000吨(6)地球的表面积大约为510 000 000平方千米例2、下列科学记数法表示的数的原数是什么?(1)3.4×104= (2)6×105=(3)5.007 ×710=注意:原数的整数位数与10的次数n有什么关系?课堂练习二:1、下列用科学记数法表示的数,原来各是什么数?(1)山东省面积大约为1.5×105平方千米;(2)人体中大约有2.5×1013个红细胞;(3)中国的森林面积大约为1.286×108公顷;(4)北京故宫的占地面积大约为7.2×105平方米;(5)全球每年大约有5.77×1014立方米的水从海洋和陆地转化为大气中的水蒸汽;四、实践运用1、用科学记数法表示下列各数:1000000= ; 572000000= ;123000000000= ;-235000= .2、下列是科学记数法写出来的数,请你分别写出原数.7⨯;4-⨯3.96107.0410110⨯;68.510⨯;5五、自主检测1.下列各数,属于科学记数法表示的是()A.53.7210⨯10⨯ D.5.37310⨯ C.5372⨯ B.0.5374102.用科学记数法表示的数3.76100⨯的位数是()位10A.98; B.99; C.100; D.1013.用科学记数法的数8.056⨯,原来的数是.104.地球离太阳约有一亿五千万千米,用科学记数法表示为__________千米。

人教版-数学-七年级上册-1.5.2科学记数法 导学案

人教版-数学-七年级上册-1.5.2科学记数法 导学案

七年级(上)数学导学案班级 姓名学习目标 1.理解掌握科学记数法的意义,并会用科学记数法表示绝对值大于10的数. 2.高效自学,合作探究,探索科学记数法的使用范围及方法. 3.激情投入,全力以赴,从多种角度感受大数,进一步发展数感. 学习重点:正确运用科学记数法表示绝对值大于10的数. 学习难点:正确掌握10n 的特征. 学法指导:教师主导,学生自主探究,归纳小结掌握所学知识,培养独力思考,自主学习的能力回顾有理数的乘方运算,根据乘方运算得到:10×l0×10×10=104,由乘法法则得到10×10×10×10=10 000,所以104=10 000.1.什么是科学记数法?2.你能将光的传播速度300 000 000(单位:米/秒)用科学记数法表示吗?1.用科学记数法表示下列各数:(1) 12= ; (2) 45 000= ;(3) 12 000 000 000 000 = ; (4) 205 000 000= ;(5) 27800 000 000= ;2.红红从图书馆查了一些资料,请你把其中的数据用科学记数法表示出来.(1)人的大脑约有14 000 000 000个细胞;(2)截至2005年6月,世界人口已经接近65亿;(3)光的传播速度为300 000 000米/秒;(4)20lO 年西藏森林面积为1462.65万公顷;(5)为迎接世界杯,南非投资13亿美元改善和建设交通系统.105=100 000,106=1 000 000,1010= 10 000 000 000。

观察10n的特点,你发现了什么规律?“先见闪电,后闻雷声”,这个现象的解释是:光的传播速度大约为300 000 000m /s ,而声音在常温下的传播速度大约为340 m /s .可见光的速度大大快于声音的速度.类似光的传播速度等这样都比较大的数据,读和写都比较困难,请同学们想一想,有没有更简单的方法来表示它们,使我们便于读和写这些比较大的数?这就是我们今天要学习的“科学记数法”.课前预习 一 二三1.用科学记数法可以表示怎样的数?任何数都能用科学记数法表示吗?2.用科学记数法表示的数中n是如何确定的?(一)基础知识探究探究点——科学记数法概念根据乘方的知识我们知道102=100,103=1000,104=10000,……问题1:105表示的数1后面有几个0?问题2:10的n次幂,n与10n中0的个数有什么关系?问题3:由以上问题得到:一个的数可以记作的形式,其中a满足 l≤a<10,n是,这样的记数法叫做科学记数法.问题4:判断下列数据的记数方法是不是科学记数法.(是的打“√”,不是的打“×”)(1) 2.3×103;( )(2) O.5×106;( )(3) 20.3×108;( )(4) 10×102.( )归纳总结:用科学记数法可以非常方便地表示大干10的有理数.(二)知识综合应用探究探究点一:用科学记数法表示数【例1】用科学记数法表示下列各数:(1)800 000;(2)20 300 000 000;(3)56 000 000.思考1:800 000是8与哪个数的积?思考2:用科学记数法表示的数a×10n中,a的值是如何确定的?【例2】下列用科学记数法表示的数,原来分别是什么数?(1)6.2×104;(2)2.35×105。

科学记数法导学案

科学记数法导学案

课题:科学记数法导学案科学记数法导学案设计人:张义存设计人:张义存 姓姓 名:名:名: 时时 间:间:学习目标:会用科学计数法表示小于1的数的数 学习重点、难点:会用科学计数法表示小于1的数的数. . 学习过程: 一、预习新知:一、预习新知:1、用科学计数法表示下列各数:我们已经学习了用科学记数法表示一些绝对值较大的数即利用10的正整数次幂,把一个绝对值大于10的数表式成10na ´的形式,其中n 是正整数,1≤a <10。

如用科学记数法表示下列各数:如用科学记数法表示下列各数:⑴989 989 ⑵⑵ -135200 135200 ((3)864000同样,也可以利用10的负整数次幂用科学计数法表示一些绝对值较小的数,将他们表示成10n a -´的形式。

其中n 是正整数,1≤a <10。

如用科学记数法表示下列各数:如用科学记数法表示下列各数:⑴ 0.000020.00002;; ⑵⑵ -0.000034 0.000034 ⑶⑶ 0.0234由此得出:由此得出:对于绝对值较小的数,对于绝对值较小的数,对于绝对值较小的数,用科学记数法表示时,用科学记数法表示时,用科学记数法表示时, a 只能是整数位为1,2,…,9的数,10nn-中的n 就是原数中第一个不为0的数字前面所有0的个数,包括小数点前面的零在内。

零在内。

2、探究:用科学记数法把一个数表式成10na ´(其中1≤a <1010,,n 为整数),n 有什么规律呢?规律呢?30000=30000= ()310´, 3000= 3000= ()310´, 300= 300= ()310´, 30= ()310´, 3= ()310´, 0.3= 0.3= ()310´, 0.03= ()310´, 0.003= 0.003= ()310´。

1-5-2 科学记数法(导学案)

1-5-2 科学记数法(导学案)

1.5.2 科学记数法导学案了解科学记数法的意义,会用科学记数法表示绝对值大于10的数.★知识点1:对科学记数法的认识将一个绝对值较大(大于10)的数表示成a×10n的形式,即为科学记数法,要注意其中a与n的取值范围,1≤a<10,n为正整数,这种表示数的方法,不仅便于书写而且便于读数.★知识点2:用科学记数法表示数及还原的方法、规律将一个较大的数用科学记数法表示时,先确定a,取一位整数,再根据小数点移动的位数确定n,写成a×10n 的形式;还原数,直接将小数点向右移动n位即可.1. 把一个大于10的数表示成的形式,其中a是整数位只有的数,n是的数,这样的记数方法叫做科学记数法.2. 用科学记数法表示300000= .3. -1.6×103表示的数原来是.问题1:填空:(1)102= ;(2)103= ;(3)104= ;(4)105= ;(5)10n= ;追问:10的乘方有什么特点?像这样,把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n为正整数),使用的是科学记数法(scientific notation).用科学记数法也可以表示一个小于-10的数,只需要先写出它的相反数的形式,再添加负号就可以了.例1:用科学记数法表示下列各数:1 000 000,57 000 000,-123 000 000 000.问题2:在用科学记数法表示一个数的时候,怎样快速地确定出形式中的a和n呢?追问:下面的式子中,等号右边10的指数与等号左边整数的位数,它们存在什么关系?a×10n中10的指数总比整数的位数少1 .即:用科学记数法表示一个n位整数时,10的指数是n-1.1.下列各数是否用科学记数法表示的?为什么?2 400 000=0.24×107;2 400 000=2.4×106;3 100 000=31×105;3 100 000=3.1×106.2. 将下列大数用科学记数法表示地球表面积约为510 000 000 000 000 平方米,地球上陆地的面积大约为149 000 000 平方千米.例2:下列用科学记数法表示的数,原数是什么?(1)2003年10月15日,中国首次进行载人航天飞行,神舟五号飞船绕地球飞行了14圈,行程约为6×105千米;(2)一套《辞海》大约有1.7×107个字.(3)1972年3月发射的“先驱者十号”是人类发往太阳系外的第一艘人造太空探测器,至2003年2 月人们最后一次收到它发回的信号时,它离地球1.22×1011千米.【针对训练】1. 填空(1)6.74×105的原数有____位整数;(2)-3.251×107原数有____位整数;(3)9.6104×1012原数有____位整数.2.下列用科学记数法表示的数,原数是什么?3.2×104;6×103; 3.25×107.例3:(1)一个正常人的平均心跳速率约为每分70次,一年大约跳多少次?用科学记数法表示这一结果.(2)一个正常人一生心跳次数能达到1亿次吗?说明理由.1. 太平洋最深处是马里亚纳海沟,它的深度是海平面以下11034米,记为-11034米,用科学记数法表示为()A.1.1×104米B.1.1034×104米C.-11.034×104米D.-1.1034×104米2. 在以下各数中,最大的数为()A.7.2 × 105B.2.5 × 106C.9.9 × 105D.1 × 1073. 写出下列用科学记数法表示的数据的原数.(1)地球绕太阳公转的速度约是1.1×105千米/时;__________ .(2)一个正常人一年的心跳次数大约为3.679×107次;__________ .(3)世界文化遗产长城总长约6.7×106 m.__________ .4. 用科学记数法表示下列各数.80000 56000000 74000005. 下列用科学记数法表示的数,原来各是什么数?4×103 8.5×1067.04×105 3.96×1046. 已知光的传播速度为300000000 m/s,太阳光到达地球的时间大约是500 s,试计算太阳与地球的距离大约是多少千米.(结果用科学记数法表示)有关资料表明,在刷牙过程中如果一个水龙头一直打开,将浪费大约7杯水(每杯约250mL).某市人口除婴幼儿外,约有100万人口,如果所有的人在刷牙过程中都不关水龙头,则一次刷牙将浪费多少mL水?(用科学记数法表示)1.(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为()A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×10122.(2022•青海)习近平总书记指出“善于学习,就是善于进步”.“学习强国”平台上线的某天,全国大约有124600000人在平台上学习,将这个数据用科学记数法表示为.1. 本节课你学习了哪些知识?说说看.2. 用科学记数法表示绝对值大于10的数,应注意的方面有哪些?用科学记数法表示较大的数应注意以下两点:①1≤a <10②当大数是大于10的整数时,n 为整数位减去1.【参考答案】1. a ×10n ;一位;正整数;2. 3×105;3. -1600.问题1:(1)100;(2)1000;(3)10000;(4)100000;(5)01000n 个.例1:解:1 000 000 =106.57 000 000 =5.7×107.-123 000 000 000 =-1.23×1011.1. 不是;是;不是;是;2. 解:510 000 000 000 000=5.1×1014;149 000 000=1.49×108.例2:解:(1)6×105=600 000;(2)1.22×1011=122 000 000 000;(3)1.7×107=17 000 000.【针对训练】1. (1)6;(2)8;(3)13.2. 32 000;6 000;32 500 000例3:解:(1)因为1年=365天=365×24×60分,所以一年心跳次数约为365×24×60×70 = 36 792 000= 3.679 2×107(次).(2)因为心跳达到1亿次需要的时间是108÷(3.6792×107)≈2.7(年),所以一个正常人一生心跳次数能达到1亿次.1. D;2. D;3.(1)110000;(2)36790000;(3)670000;4. 8×104 ;5.6×107;7.4×106;5. 4000;8500000;704000;39600;6. 1.5×108 km.解:浪费的水为:250×7×1 000 000=1 750 000 000=1.75×109(mL).答:刷牙一次将浪费水1.75×109 mL.1.【解答】解:262883000000=2.62883×1011.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:124600000=1.246×108.故答案是:1.246×108.。

2022年 教学教材《科学记数法》导学案

2022年 教学教材《科学记数法》导学案

§1.6.3科学记数法学习目标:1了解科学记数法的意义;2会利用科学记数法表示比10大的数3通过科学记数法的学习,体会科学记数法所带来的方便学习重点:会利用科学记数法表示比10大的数学习难点:确定和的值学习流程一、知识回忆计算:,,,二、新知探究:〔阅读课本第41、42页有关内容,填写下面内容〕1定义:把一个大于10的数表示成的形式〔其中是整数数位只有的数,是正整数,即〕这种记数的方法叫做科学记数法。

2具体方法是:〔1〕确定:是整数数位只有的数;〔2〕确定:是正整数,等于3用科学记数法表示一个位整数,其中10的指数是三、稳固新知:1课本第43页练习1、2、3、4,第44页4、5、6、72用科学记数法表示以下各数:400380= ,-7563000= ,-8007万= ,00= ,61000= ,696000=3以下用科学记数法表示的数,原来各是什么数,,,,,四、例题讲解1填空:〔1〕据中新社报道2021年我国粮食产量将到达540 000 000 000千克,用科学记数法表示这个粮食产量为千克〔2〕太空探测器“先驱者10号〞从发射到人们收到它最后一次发回的信号时,它已飞离地球12 2021000 000千米,用科学记数法表示这个距离为千米〔3〕据有关资料显示,长江三峡工程电站的总装机容量为18 2021000千瓦用科学记数法记为千瓦〔4〕在比例尺为1:8000000的地图上,测得某市到北京的距离为厘米将实际距离用科学记数法表示为千米2选择:〔1〕光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,用科学记数法表示〔〕A mB mC mD m〔2〕据统计2021年某市实现旅游收入41亿,用科学记数法表示为〔〕A B C D〔3〕用科学记数法表示的数字中,的取值范围〔〕A B C D〔4〕一块长方形铁板,长是1200cm,宽是900cm,它的面积是〔〕A B C D〔5〕2006年5月18日,英美科学家公布了人类第一号染色体的基因测序图这个染色体是人类“生命之书〞中最长也是最后被破解的一章,据报道,第一号染色体中共有亿个碱基对,亿这个数用科学记数法可表示为〔〕A B C D〔6〕某市方案新增林地面积253万亩,253万亩用科学记数法表示为〔〕亩B亩 C 亩D亩3以下用科学记数法表示的数,原来分别是什么数?〔1〕〔2〕五、小结:我学会了;我的困惑是六、作业:1、3400=×10n,那么n等于〔〕A、2B、3C、4D、52、-000=,那么的值为〔〕A、72021B、-7.201C、-D、3、假设一个数等于×1021,那么这个数的整数位数是〔〕A、2021B、21C、22D、234、我国最长的河流长江全长约为6300千米,用科学记数法表示为〔〕A、63×102千米B、×102千米C、×103千米D、×104千米5、今年第一季度我国增值税、消费税比上年同期增收×1010元,也就是说增收了〔〕A、亿元B、307亿元C、亿元D、3070亿元6、×10175是位数,×1010是位数;7、把3900000用科学记数法表示为,把-1020210用科学记数法表示为;8、用科学记数法记出的数×104的原数是,×108的原数是;9、比拟大小:×104×103;×104×104;10、实施西部大开发战略是的重大决策,我国国土面积约为960万平方千米,而我国西部地区占我国国土面积的,用科学记数法表示我国西部地区的面积约为;11、计算〔1〕〔2〕七、学后反思:。

七年级数学上册 第二章 有理数及其运算2.12《科学记数法》导学案北师大版

七年级数学上册 第二章 有理数及其运算2.12《科学记数法》导学案北师大版

2.12科学计数法【学习目标】1.能将一个有理数用科学记数法表示;2. 已知用科学记数法表示的数,写出原来的数;3.懂得用科学记数法表示数的好处;【学习重点 】: 用科学记数法表示绝对值大于10的数;【学习难 点 】 正确使用科学记数法表示数学习过程一、知识链接根据乘方的意义,填写下表: 10的乘方表示的意义 运算结果 结果中的0的个数 102 10×10100 2 310410510二、阅读课本,基础自清1.我们知道:光的速度约为: 米/秒,全世界人口数大约是这些数非常大,写起来表较麻烦,能否用一个简单的方法来表示这两个数吗?300 000 000 3=×100 000 000 83=×107000 000 000= =2400=2.4× =2. 定义:把一个大于10的数表示成 的形式(其中a 是 只有一位的数,n 是整数),叫做科学记数法 。

3.填空① 208= × = (整数位有 个,指数n= )② 2000=2× = (整数位有 个,指数n= )③ 12000= × = (整数位有 个,指数n= )观察规律 :用科学计数法表示一个大于10的数,10的次数n 比原数的 整数位数4.用科学计数法表示下列个数⑴ 696 000 ⑵ 1000 000 ⑶ 58 0005.写出下列用科学记数法表示的原数:(1)8.848×410 (2)2.51×410 (3)3×610 (4)7.5×510三.拓展提升1.整数数位从个位起向左依次是 , , , , ,, ,亿, , 。

2. 10000=1万= 1亿=3. 5万科学计数法表示为4.下列各数,属于科学记数法表示的是 。

A 、53.7210×B 、0.537410×C 、537210×D 、5.37310×5. 你能把下列各数用科学记数法表示吗?(1)水星的半径为2 440 000米(2)木星的赤道半径约为71 400 000米(3)地球上的陆地面积约为149 000 000米(4)地球上海洋面积大约为361 000 000平方千米(5)地球质量为5 976 000 000 000 000 000 000吨(6)地球的表面积大约为510 000 000平方千米6、用科学记数法表示下列各数:3684.5 572 000 000; 30900000-; 2887.6-四.课堂检测(一)选择:1、用科学计数法表示正确的是( )(A) 300 000 000 =830 (B ) 9 600 000=9.6×610(C) 218.4亿=0.2184×1110 (D )293 000 000=2.93×9102、在“北京”奥运会国家体育场的“鸟巢“钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×810帕的原数为( ) (A). 4 600 000 ( B). 46 000 000(C). 460 000 000 (D). 4 600 000 0003、人类的遗传物质就是DNA, DNA 是很长的链状结构,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示( )(A). 3×108 (B). 3×107 ( C). 30×106 ( D) 0.3×106(二)、填空1、“5·12汶川大地震”发生后,电视台于5月18日承办了《爱的奉献》 晚会,共募善款约1 514 000 000元,这个数字用科学记数法表示为_________ _ 元。

科学记数法导学案

科学记数法导学案

1.5.2科学记数法导学案使用者年级时间学习目标1、体会科学记数法;2、会用科学记数法表示比10大的数;3、发展数感,进一步培养学生自主探究的能力。

重点难点重点:进一步感受大数,用科学记数法表示大数难点:用科学记数法表示大数,提高学生归纳总结的能力学习过程一、复习回顾10= 1.计算:①210= ⑤610= ④510= ③410= ②3⑥710=10= ⑧910= ⑦8观察以上各式可以得到一个规律为:10n的结果就是在1后面加个0;二、问题探究1、下列各数可以简记为:100= ,1000= ,1000000= ,100000000000= ,2、下列各数可以简记为:2300=2.3×1000=2.3×,5000000=5×=5×,2500000000=2.5×=2.5×,36200000000=3.62×=3.62×,比较以上四个等式,在读和写的时候,等号左边的数读写方便还是等号右边的数读写方便?说明理由。

3、记一记像上面这样把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种记数的方法叫做科学记数法。

4、学一学例:用科学记数法表示下列各数:1 000 000 ,57 000 000 ,123 000 000 000解:1 000 000=106(或1×106);57 000 000=5.7×107;123000000000=1.23×1011;①.观察以上三式请你总结一下:等号前边整数的位数与等号后边的10的指数有怎样的关系?②.若一个整数有n位,则把这个整数写成科学记数法的形式10的指数为.三、目标检测1、看谁能把下列各数以最快的速度写成科学记数法的形式。

①12 000 000=;②362 000 000 000=;③10 000 000=;④356 400 000=;⑤-5 400 000 000 000 000= ;⑥320=;2、数学医院下列用科学记数法表示的数错在哪里?(1)25×105;(2)0.36×105;(3)108;(4)23000=2.3×105;(5)63000=6.3×103;3、把下列用科学记数法表示的数还原成原数。

-七年级数学上册 第一章 第19课时 科学记数法导学案 (新版)新人教版-(新版)新人教版初中七年级

-七年级数学上册 第一章 第19课时 科学记数法导学案 (新版)新人教版-(新版)新人教版初中七年级

第19课时科学记数法例题答案:【例1】(2014•某某)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.解答:解:350 000 000=3.5×108.故选:B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.【例2】﹣1.020×105表示的原数是﹣102000.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题数据“﹣1.020×105”中的a=﹣,指数n等于5,所以,需要把﹣的小数点向右移动5位,就得到原数.解答:解:﹣1.020×105表示的原数是﹣102000,故答案为:﹣102000.点评:此题主要考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.练习答案:练1.(﹣5)3×40000用科学记数法表示为()A.125×105B.﹣125×105C.﹣500×105D.﹣5×106分析:先把结果计算出来(﹣5)3×40000=﹣5000000.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于﹣5000000是7位整数,所以n=7﹣1=6.解答:解:(﹣5)3×40000=﹣5 000 000=﹣5×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.练2.光的速度近似为1.08×109千米/时,若光从太阳到地球要8分钟,则用科学记数法表示太阳到地球的距离为1.44×108千米.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:∵1.08×109×860=1.44×108(米),∴太阳到地球之间的距离为:1.44×108(千米).故答案为:1.44×108.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.练3.若a=6.3×106,则a的整数位数是()A.5B.6C.7D.8分析:科学记数法表示的数的整数位数是n+1位.把的小数点向右移6位就是原数,所以整数位数有7位.解答:解:6+1=7,则a的整数位数是7.故选C.点评:本题是考查把科学记数法表示的数还原.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.练4.下列用科学记数法写出的数,原来分别是什么数?1×106,3.2×105,﹣7.05×108分析:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.解答:解:1×106=1 000 000,3.2×105=320 000,﹣7.05×108=﹣705 000 000.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.课后小测答案:1.(2014•某某)据统计,2013年某某省旅游业总收入达到约亿元.若将亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13解:亿=3875 5000 0000=3.8755×1011,故选:B.2.(2014•贺州)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.3.(2014•资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克 B.50×109千克 C.5×109千克 D.0.5×1011千克解:500亿=50 000 000 000=5×1010.故选:A.4.1.20×108的原数是()A.120000000 B.1200000000 C.12000000 D.解:1.20×108=120000000.故选:A.5.若a=﹣3.826×105,则a可表示为()A.﹣38260 B.38260 C.﹣382600 D.382600解:a=﹣3.826×105=﹣382600.故选C.6.若将科学记数法2.468×109乘开,则其结果含0的个数是()A.9个 B.8个 C.7个 D.6个解:2.468×109=2 468 000 000,其结果含0的个数是6个.故选D.7.用科学记数法表示近似数:2.60×10×10×10×10×10=2.60×105..解:2.60×10×10×10×10×10=2.60×105.故答案为:2.60×105.8.中国人口大约是13亿5千万人,用科学记数法表示这个数为1.35×109人.解:将13亿5千万=1350000000用科学记数法表示为:1.35×109.故答案为:1.35×109.9.﹣1.020×105表示的原数是﹣102000.解:﹣1.020×105表示的原数是﹣102000,故答案为:﹣102000.10.2.73×1051是52位数.解:51+1=52,2.73×1051是52位数.11.若人均每天需吃千克粮,某市人口为万,则一年需要消耗粮食多少吨?(一年有365天,结果用科学记数法表示)解:4098000×0.5×365÷1000=747885,747885用科学记数法表示为:7.47885×105.12.计算:4×103+6×102+5×101+7×100.解:4×103+6×102+5×101+7×100=4000+600+50+7=4657.。

有理数科学计数法

有理数科学计数法
第2章第_10_节《科学记数法》导学案
课题
科学记数法
课型
新授课
班级
姓名
主备人
审核人
复备人
案序
学习目标
1.会用科学记数法表示大数;
2.会还原用科学记数法表示的大数;
3.体会大数,并能用科学记数法表示,发展应用意识。
重难点
1.用科学记数法表示大数;2.体会大数,并能用科学记数法表示,发展应用意识
前置学习(课前独学20分或30分钟)
时间____________________评价________________
(一)学生提出的问题:
(二)注意事项:(师生总结,学生整理)
2、分层训练(20分钟)
(一)双基过关
(二)能力提升
一棵生长了20年的大树,仅能制成5000-8000双一次性筷子,每人每天用一双一次性筷子,调查你所在地区的人口数,估计我们要砍多少棵这样的大树?(用科学记数法表示)如果是一个1000万人口的城市呢?
A.30.8亿元B.308亿元C.3.08亿元D.3080万元
3.用科学记数法表示下列各数.
(1) 3730000=;(2)-125.66=;
4.写出下列用科学记数法表示的数的原数:
(1)3.001×10 =;(2)-8.471×10 =;
选做题:
已知长方形的长为7×105m,宽为5×104m,求做1.6×10 个这样的长方形需要的材料的面积?
(3)-212000=;(4)-324.7=;
2.写出下列用科学记数法表示的数的原数:
(1) ;(2) ;
(3) (4) ;
3.一个正常人的心跳平均每分钟70次,一年大约跳多少次?用科学记数法表示这个结果。一个正常人一生心跳次数能达到1亿次吗?

科学记数法导学案

科学记数法导学案

2.12科学记数法导学案一、温故而知新 (一)情境问题 看下面几个数据1、光的速度大约是300 000 000米∕秒。

2、中国的国土面积约为9 600 000平方千米。

3、第五次人口普查时,中国人口约为1 300 000 000人。

4、地球离太阳约为有1亿5千万千米。

你能用一种简单的方法来表示这些读和写都显 得困难的数吗? (二)探究1、根据乘方的意义,填写下表用10的幂表示下列各数400 000=4× =4× ;7 000 000 000=7× =7× ; -1 200 000= -1.2× = -1.2× 。

3、知识讲解把一个绝对值大于10的数记成 a ×10n 的形式(其中 ,n 是正整数)叫做科学记数法。

注意:① a 是整数位数只有一位的数。

② n 是10的指数,且为正整数。

③ 科学记数法是一种记数方法,不改变数的性质和大小。

二、小试牛刀判断下列各数是科学记数法表示的数吗?(1)()53.2 (2)0.4×104; (3)18.1×104; (4)3.5 ×106101<≤a三、精讲精练例1 用科学记数法表示下列各数:(1)696 000;(2)-58 000 ;(3)350 000 000吨.变式练习:请用科学记数法表示“情境问题”中的各个数据.例2 把下列用科学记数法表示的数还原:(1)6×103;(2)1.05×105;(3)-1.8×106.变式练习:把下列用科学记数法表示的数还原:(1)5.18×103;(2)7.04×105;(3)-9.18×104.例3某种杂交水稻每亩产量为8.2×102,预计今年A地共有3×105亩农田种植这种水稻,预计今年A地这种杂交水稻的总产量为多少千克?变式练习:如果一只草覆虫每天吞食1.5×104个细菌,那么8×103只草覆虫每天能够吞食多少个细菌?2.12课外达标训练一.选择题 1、(2007.内江)内江市东桐路在某段时间内的车流量为30.6万辆,用科学记数法表示为( ) A .430.610⨯辆B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆2、(2010.内江)截止20XX 年4月20日23时35分,央视“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2 175 000 000元,用科学记数法表示捐款数应为( )A .102.17510⨯元 B. 92.17510⨯元 C. 821.7510⨯元 D. 7217.510⨯元3、(2013.内江)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为( )A .1.15×1010B .0.115×1011C .1.15×1011D .1.15×109 4、小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为( ) A .6.17×107 B .6.17×106 C .6.17×105 D .0.617×108 5、截止到20XX 年底,泸州市中心城区人口约为1120000人,将1120000用科学记数法表示为( ) A .51.1210⨯ B .61.1210⨯ C .71.1210⨯ D .81.1210⨯ 6、地球的表面积约为510000000km2,将510000000用科学记数法表示为( )A .0.51×109B .5.1×109C .5.1×108D .0.51×107二.填空题 7、(2009.内江)记者从5月7日上午四川省举行“5·12”抗震救灾周年新闻发布会上了解到,经过多方不懈努力,四川已帮助近1300000名受灾群众实现就业1300000用科学记数法表示为 .8、据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为 .9、某工业园区,今年第一季度新开工94个项目,总投资7429亿元.请将7429亿,用科学记数法表示为 .10、我国第一艘航母“辽宁舰”的最大排水量为68050吨,用科学记数法表示这个数字是 吨. 11、20XX 年我国国内生产总值约为636000亿元,用科学计数法表示20XX 年国内生产总值约为 亿元.12、中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为_________ .三.解答题13、把下列用科学记数法表示的数还原:(1)8.848×104 (2)2.51×105(3)3×107 (4) -7.5×106能力提升14、地球的质量为6×1013亿吨,太阳的质量是地球的3.3×105倍,那么太阳的质量是多少亿吨?15、已知(2×105)×(n ×103)=1.2×109, 求n 的值.16、拓展探究如果规定:1101011.0-==;210100101.0-==;31010001001.0-==. (1)你能用10的指数的形式表示0.0001,0.00001吗?(2)你能将0.000768表示成n a 10⨯的形式吗?(其中 ,n 为负整数)101<≤a。

科学记数法导学案

科学记数法导学案

科学记数法六年级 班 姓名 小组 评价学习目标:1.借助自己熟悉的事物,感受较小数。

2.通过分析、交流、合作,加深对较小数的认知,发展数感。

3.能用科学技术法表示绝对值较小的数。

重难点:能用科学技术法表示绝对值较小的数。

难点:通过分析、交流、合作,加深对较小数的认知,发展数感.课前预习案【使用说明与学法指导】1.用5分钟的时间完成已学知识回顾2.用8分钟的时间看课本。

3.用5分钟左右的时间完成教材助读的 1-3 题..4.用5分钟的时间完成预习自测5.不明白或有疑点的问题请在题号处标上“?” 一、已学知识回顾: 1.什么叫科学记数法?把一个大于10的数表示成____________的形式(其中a 是整数数位只有一位的数,n 是整数),叫做科学记数法“科学记数”谨记三点: (1)弄清a ×10n中的a 的取值范围 (2)正确确定a ×10n中的n 的值,当所记数大于10时,n 是________且等于所记数的整数位数________________。

2..把下列各数用科学记数法来表示:(1)2500000 (2)753000 (3)2050000003.下列用科学记数法写出的数,原数分别是什么数?7110× 4.5610× 7.04510× 3.96410× 7400 510×二、教材助读:1、你能量出一个本子的厚度吗?能测量出一张纸大约有多厚?2、1微米= 米3、任何一个绝对值小于1的非零数都可以用科学记数法表示为 的形式,其中a 的范围 ,n 为4、把一张纸的厚度转换成以微米为单位的量。

5、计算多少个直径为1微米的细胞首尾相连能达到1毫米。

三、预习自测一、用科学记数法表示: 1.0.000007834=________ 2. -0.0032=________3.人体内一种细胞的直径约为0.00000156米,表示为________4.人的头发的直径约为0.00007米,表示为________ 二、用小数表示:1、8×10-6= ____2、-1.2361×10-9= ____3、7.113×10-5米=_____三、大多数花粉的直径约为40微米到60微米,这相当于多少米?四、地球的体积约为1.1×1012立方千米,月球的体积约为2.2×1010立方千米,月球的体积约为地球的多少分之一?课内探究案一、提出质疑,合作探究、学法指导:1.组内交流时间为3分钟,班内集体交流时间为7分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.10 科学记数法导学案
北师大版七年级上册数学
芭蕉初级中学 黄华
一、学习目标:
1. 了解科学记数法的意义;
2. 会用科学记数法表示大数;
3. 对用科学记数法表示的数进行简单的运算。

二、学习重、难点:
重点:学会用科学记数法表示大数。

难点:探索归纳出科学记数法中指数与整数位数之间的关系。

三、课堂导学:
(一) 情景引入
1. 观察图片,感受生活中大数的存在;
2. 你能列举生活中的大数吗?
(二) 回顾旧知,探索新知
1.回顾旧知
10的乘方的特点:
102=103=104= 10n =(1的后面有个0)
2.自主探究
上面的等式反过来还成立吗?若成立,你能用10的幂的形式表示下列各数吗?动手试一试
1000=10000=100000== 3.合作探究
你能用上面的方法表示下列数字吗?
1.光的速度为300 000 000米/秒
2.太阳的半径约为696 000 000米
3.第六次人口普查时,中国人口约为1370 000 000人
与小伙伴一起交流,你们的表示方法相同吗?你觉得怎样表示最科学呢?展示一下你们的成果
4.导入新知
一般地,一个大于10的数可以表示成a ×10n 的形式(其中1≤a <10,n 是正整数),
这种记数方法叫做科学记数法。

5.解读新知(独立完成)
判断下列科学记数法的正误,并改正。

(1)5629000=5.629×106 ( ) (2)45000000=0.45×108( )
(3)9976000=9.976×106 ( )(4)10000000=10×106 ( )
(5)17070000=1.707×108( )
6.经验总结(小组合作)
a 如何确定?10的指数n 如何确定?
a 的确定方法:
n 的确定方法:
7.温习新知
用科学记数法表示引言部分的数据:
01000n

(1)青藏铁路建设用于环保的投资大约11亿元;
(2)牛郎星和织女星相距达16光年(约为150万亿㎞);
(3)月球的质量约为734万万亿吨。

解:(1)11亿元=1 100 000 000元=元;
(2)150万亿㎞=150 000 000 000 000㎞=㎞;
(3)734万万亿吨=7 340 000 000 000 000 000吨=吨。

小组活动一
小组内两人一组互相出题,其中一人写一个数据,另一人用科学记数法表示出来。

8.拓展训练
下面用科学记数法表示的数据,原数是什么?
(1)人体中约有2.5×1013个红细胞;
(2)1.67×105;
(3)1.23456789×104。

思路点拨:根据10的指数n确定原数的整数位数为n+1,再把a的小数点向右移动n位,位数不够的用0补上,即可得原数。

小组活动二
小组内两人一组互相出题,其中一人说一个用科学记数法表示的数据,另一人写出原数。

9.学以致用
有关资料表明, 在刷牙过程中如果一个水龙头一直打开,将浪费大约7杯(每杯约250mL)水.某市人口除婴幼儿外,约有100万人口,如果所有的人在刷牙过程中都不关水龙头,则一次刷牙将浪费多少mL水?(用科学记数法表示)
四、课堂小结:
1.本节课你学习了哪些知识?说说看.
2.用科学记数法表示绝对值大于10的数,应注意的方面有哪些?
五、课后思考:
今天学完科学记数法之后,请问:负数(如-300 000 000)可以用科学记数法表示吗?
六、布置作业:
教材习题 2.15 第1、2题。

相关文档
最新文档