提高版4.分式方程和分式应用复习专题(二)(学生版)

合集下载

分式方程及应用复习教案

分式方程及应用复习教案

分式方程及应用复习教案一、教学目标1. 理解分式方程的概念和性质。

2. 掌握解分式方程的方法和技巧。

3. 能够应用分式方程解决实际问题。

二、教学内容1. 分式方程的概念和性质分式方程的定义分式方程的解法分式方程的解的性质2. 解分式方程的方法和技巧去分母法移项法合并同类项法化简法3. 分式方程的应用线性分式方程的应用非线性分式方程的应用分式方程在实际问题中的应用三、教学重点与难点1. 教学重点:分式方程的概念和性质解分式方程的方法和技巧分式方程的应用2. 教学难点:解分式方程的方法和技巧的灵活运用分式方程在实际问题中的应用四、教学方法与手段1. 教学方法:讲授法:讲解分式方程的概念和性质、解分式方程的方法和技巧、分式方程的应用案例分析法:分析实际问题中的分式方程练习法:让学生通过练习题来巩固所学知识和技巧2. 教学手段:投影仪:展示分式方程的图像和实际问题练习题:提供给学生进行练习和巩固五、教学安排1. 第一课时:分式方程的概念和性质讲解分式方程的定义讲解分式方程的解法讲解分式方程的解的性质2. 第二课时:解分式方程的方法和技巧讲解去分母法讲解移项法讲解合并同类项法讲解化简法3. 第三课时:分式方程的应用讲解线性分式方程的应用讲解非线性分式方程的应用讲解分式方程在实际问题中的应用4. 第四课时:练习题讲解和总结讲解练习题总结分式方程的概念、方法和应用5. 第五课时:综合练习和拓展提供综合练习题给学生进行练习讲解拓展问题,引导学生思考分式方程在其他领域的应用六、教学评价1. 课堂参与度评价:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。

2. 练习题完成情况评价:评估学生在练习题中的表现,包括解题的正确性、速度和思路。

3. 小组讨论评价:评估学生在小组讨论中的参与程度和合作能力,以及对分式方程的理解和应用。

4. 课后作业评价:评估学生课后作业的完成质量,包括解题的正确性、思路和书写规范。

七、教学反思在教学过程中,教师应不断反思自己的教学方法和效果,根据学生的反馈和表现调整教学策略,以提高教学效果。

提高版4.分式方程和分式应用复习专题(二)(教师版)

提高版4.分式方程和分式应用复习专题(二)(教师版)

课题:分式方程和分式应用专题(二)个性化教学辅导教案 组长签名:________教学目标3.掌握分式方程的实际应用-工程问题;4.掌握分式的实际应用-行程问题与销售问题。

教学过程 教师活动学生活动1.下列计算结果等于x 2﹣9的是( )A .(3﹣x )(3+x )B .(x ﹣3)2C .(x +3)(x ﹣3)D .(x +3)2【考点】4F :平方差公式;4C :完全平方公式. 【解答】解:x 2﹣9=(x +3)(x ﹣3). 故选:C .2.如果多项式2x 2﹣3kx +1能分解因式,其结果是(2x +1)(x +1),则k = . 【考点】57:因式分解﹣十字相乘法等. 【解答】解:2x 2﹣3kx +1=(2x +1)(x +1), (2x +1)(x +1)=2x 2+3x +1=2x 2﹣3kx +1, ﹣3k =3, 解得k =﹣1, 故答案为:﹣1.3.分式﹣和的最简公分母是 .【考点】69:最简公分母. 【解答】解:分式﹣和的最简公分母是:a (a +b ).故答案是:a (a +b ).4.计算:()0﹣()﹣2= .【考点】6F:负整数指数幂;6E:零指数幂.【解答】解:原式=1﹣4=﹣3,故答案为:﹣3.5.先化简,再求值:(x﹣y)2﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.【考点】4J:整式的混合运算—化简求值.【解答】解:原式=﹣2xy+y2+x2+y2﹣x2+x2+2xy+y2=x2+3y2,当x=3,y=﹣时,原式=9.问题1分式方程1.若关于x的分式方程﹣1=无解,则m的值为()A.﹣B.1C.或2D.﹣或﹣【考点】B2:分式方程的解.【解答】解:x(2m+x)﹣x(x﹣3)=2(x﹣3)2mx+x2﹣x2+3x=2x﹣62mx+x=﹣6当2m+1≠0时,∴x=,∵该分式方程无解,∴将x=代入x(x﹣3)=0,∴(﹣3)=0,∴解得:m=﹣当2m+1=0时,∴m=﹣,此时分式方程无解,符合题意,故选(D)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.问题2分式的应用2.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.问题1分式的方程对应知识点:(1)解分式方程;(2)分式方程的解;问题2 分式的应用对应知识点:(1)分式方程的应用;【基础知识重温】(一)解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.(二)分式的实际应用(1)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(2)行程问题(路程=速度×时间);(3)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(4)销售问题(利润=售价﹣进价,利润率=利润进价×100%)【精准突破1】分式方程【例题精讲】【例题1-1】下列方程是分式方程的是()A.(a,b为常数)B.x=c(c为常数)C.x=5(b为常数)D.【考点】B1:分式方程的定义.【解答】解:A、=2﹣(a,b为常数),是整式方程,不合题意;B、x=c(c为常数),是分式方程,符合题意;C、x=5(b为常数),是整式方程,不合题意;由于该分式方程有解,令x=代入x﹣3≠0,∵该方程的解是非负数解,∴≥0,∴a≥1,的范围为:a≥1且a≠9,故选(C)】如果解关于x的分式方程﹣=1时出现增根,那么m的值为()B.2C.4D.﹣4:分式方程的增根.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,m+4=2﹣2,m=﹣4,故选D.】解分式方程:.:解分式方程.【解答】解:方程两边同乘(x2﹣4),得x2﹣4,x2+2x=x2﹣4,:由实际问题抽象出分式方程.【解答】解:设江水的流速为vkm/h,根据题意得:=,】A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.:分式方程的应用.【解答】解:设乙车的速度为xkm/h,,,是原分式方程的根,×60=72,72.】甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.)求甲、乙两个工程队每天各修路多少千米?)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【巩固一】分式的方程1.已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1B.0C.1D.2【考点】B2:分式方程的解.【解答】解:将x=3代入﹣=2,∴,解得:k=2,故选(D)2.解分式方程:﹣= .【考点】B3:解分式方程.【解答】解:去分母得:6x﹣3﹣4x﹣2=x+1,解得:x=6,经检验x=6是分式方程的解.【巩固二】分式的应用某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果售出后,最后的600千克按原售价的7折售完.超市两次销售这种干果共盈利元.:分式方程的应用.解:设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/根据题意得:2×+300=,,5是原方程的解,600,==1500.600×9×0.7﹣3000﹣9000=5280(元).答:超市两次销售这种干果共盈利5280元.某地区两个城市之间,可乘坐普通列车或高铁.已知高铁行驶线路的路程是400千米,普通列车行驶线路的路程是高铁行驶路程的1.3倍;高铁的平均速度是普通列车平均速度倍.如果乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速在哈市地铁一号线施工建设中,安排甲、乙两个工程队完成大连北路至新疆大街路段的铁轨铺设任务,该路段全长3600米.已知甲队每天铺设铁轨的米数是乙队每天铺设铁轨倍,并且甲、乙两队分别单独完成600米长度路段时,甲队比乙队少用10天.)求甲、乙两个工程队每天各能铺设铁轨多少米?)若甲队每天施工的费用为4万元,乙队每天施工的费用为3万元,要使甲、乙两队合作完成大连北路至新疆大街全长3600米的总费用不超过520万元,则至少应安排甲队施工多少天?:分式方程的应用;C9:一元一次不等式的应用.1)解:设乙工程队每天铺设铁轨x米,得﹣=10,,是原方程的解..5×20=30答:甲工程队每天铺设铁轨30米,乙工程队每天铺设铁轨20米;)解:设安排甲队施工a天×3≤520,,答:至少安排甲队施工40天.【查漏补缺】1.若分式有意义,且关于x的分式方程=3的解是负数,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】B2:分式方程的解;62:分式有意义的条件;C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【解答】解:∵分式有意义,∴m+1≠0,m≠﹣1,解方程=3得:x=﹣m﹣3,∵方程的解为负数,∴﹣m﹣3<0,∴m>﹣3,∵x+1≠0,∴x≠﹣1,把x=﹣1代入方程2x﹣m=3(x+1)得:m=﹣2,即m>﹣3且m≠﹣1、m≠﹣2,故选D.2.为抓住“足球走进校园”的商机,王杰到体育用品批发市场用1000元购进了一批足球,然后以每个90元的定价进行销售,很快售完,由于该品牌足球深受学生喜爱,十分畅销,他再次去购买同样品牌的足球时,发现其批发价格每个比原来增加了20元,结果他多花400元购进了与第一批相同数量的足球.当第二批足球按原定价销售了时,却出现了滞销,于是他才去以定价的5折促销方式并售完剩余的足球,王杰销售完这两批足球一共可赢利了元.【考点】B7:分式方程的应用.【解答】解:设第一次购进足球的单价为x元/个,【举一反三】的分式方程+=2有整数解,整数m的值是.:分式方程的解.【解答】解:去分母得:mx﹣1+1=2x﹣4,m﹣2)x=﹣4,,由分式方程有整数解,得到m﹣2=﹣1,1,﹣2,2,﹣4,4,且x﹣2≠0,,3,4,﹣2,6,1,3,4,﹣2,6某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,4年完成任务.)问实际每年绿化面积多少万平方米?)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360,解得:a≥45.答:则至少每年平均增加45万平方米.【方法总结】分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.3、列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.1.在下列方程①x2﹣x+;②﹣3=a+4;③+5x=6;④+=1中,是分式方程的有()A.1个B.2个C.3个D.4个【考点】B1:分式方程的定义.【解答】解:①x2﹣x+是代数式;②﹣3=a+4是分式方程;③+5x=6是一元一次方程;④+=1是分式方程,故选:B.2.方程的解为()A.x=B.x=C.x=﹣2D.无解【考点】B2:分式方程的解.购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()10 = B.+10 =﹣10 = D.+10 =:由实际问题抽象出分式方程.【解答】解:设第一批购进x件衬衫,则所列方程为:.解分式方程:.:解分式方程.【解答】解:两边同时乘x﹣3得2﹣x+4(x﹣3)=﹣1,,3是增根,舍去,所以原方程无解.12月28日举行了微山县南阳镇北、两城镇南跨湖高速的路线开工仪式,其中的A、B两工程队合作,120天可以完成;如果A,B两工程队单独完成此项工程,工程队所用时间是A工程队的1.5倍.B两工程队单独完成此项工程各需多少天?)在施工过程中,该总公司派一名技术人员在现场对施工质量进行全程监督,每天总公司补助技术人员100元,若由A工程队单独施工,平均每天A工程队的费用为0.5万元,现总公司选择了B工程队单独施工,要求总费用不能超过选择A工程队时的总费用,则平均每天B工程队的费用最多为多少?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设A单独完成需要x天,则B单独完成需要1.5x天,由题意得:+ = ,解得:x=200,经检验,x=200是原方程的解.则B单独完成需要天数:200×1.5=300(天).答:A单独完成需要200天,则B单独完成需要300天.(2)A工程队需要费用为:0.5×200+0.01×200=102(万元);设B工程队每天的施工费用为y万元,则:300y+300×0.01≤102,解得:y≤0.33,所以B工程队每天的施工费用为0.33万元.【第1,2天】当周完成一.选择题1.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=3【考点】B3:解分式方程.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A2.关于x的分式方程的解为正数,则m的取值范围是()A.m>2B.m>2且m≠3C.m<2D.m>3且m≠2【考点】B2:分式方程的解.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,根据题意得:m﹣2>0,且m﹣2≠1,解得:m>2且m≠3.故选B解分式方程:+1=.:解分式方程.【解答】解:去分母得:3+x2﹣x=x2,,是分式方程的解.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比50%,行驶时间缩短了2h,求汽车原来的平均速度.:分式方程的应用.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,70是原方程的解.答:汽车原来的平均速度70km/h.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.)求降价后每枝玫瑰的售价是多少元?)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?200.答:至少购进玫瑰200枝.年太原市地铁2号线一期工程建设如火如荼.预计2020年底投入运营.从此省城将进入立体大交通新时代.甲、乙两个工程队计划参与其中的一项工程建设,甲队单独施天完成该项工程的,这时乙队加入,两队还需同时施工8天才能完成该项工程.)若乙队单独施工,需要多少天才能完成该项工程?)若甲队参与该项工程施工的时间不超过45天,则乙队至少施工多少天才能完成该项:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工40天完成该项工程的,∴甲队单独施工60天完成该项工程,根据题意可得:+8×(+)=1,,40是原方程的根,答:乙队单独施工,需要40天才能完成该项工程;)设乙队参与施工y天才能完成该项工程,根据题意可得:×45+y≥1,10,答:乙队至少施工10天才能完成该项工程.是分式方程的增根,原方程无解.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()=4B.﹣=4=4D.﹣=4:由实际问题抽象出分式方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.【第15天】(同时放在下下讲的复习检查)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套倍.B两种品牌套装每套进价分别为多少元?品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的120元,则最少购进A品牌工具套装多少套?:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)根据题意得:(13﹣10)a+(9.5﹣7.5)(2a+4)>120,16,为正整数,取最小值17.答:最少购进A品牌工具套装17套.【第28天】(同时放在下下下一讲的复习检查)骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?两种型号车的进货和销售价格如表:A型车B型车110014002400今年的销售价格:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得:,1600,1600是方程的解.型车每辆2000元.21。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

专题15.2 分式方程的应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章节复

专题15.2 分式方程的应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章节复

2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题15.2 分式方程的应用(专项拔高30题)考试时间:90分钟试卷满分:100分难度:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•磁县期末)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC路段,其中通过BC路段的速度是通过AB路段速度的1.2倍,则小敏通过AB 路段时的速度是()A.0.5米/秒B.1米/秒C.1.5米/秒D.2米/秒2.(2分)(2023春•衡山县期末)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的3.(2分)(2023•裕华区校级二模)某工厂计划生产1500个零件,但是在实际生产时,…,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“…”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成4.(2分)(2021秋•交口县期末)瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来将提高50%,行驶时间缩短2h,那么汽车原来的平均速度为()A.80km/h B.70km/h C.75km/h D.65km/h5.(2分)(2020秋•凉山州期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是()米/分.A.600 B.400 C.300 D.1506.(2分)(2023•巧家县校级三模)某市为了构建城市立体交通网络,决定修建一条轻轨铁路,为使工程提前半年完成,需将工作效率提高25%,则原计划完成这项工程需要()A.30个月B.25个月C.36个月D.24个月7.(2分)(2022秋•凤台县期末)甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m(AB上方),第二次相遇时离B点60m(AB下方),则圆形跑道的总长为()A.240m B.360m C.480m D.600m8.(2分)(2022秋•高邑县期中)甲、乙、丙三名打字员承担一项打字任务,已知如下信息信息一:甲单独完成任务所需时间比乙单独完成任务所需时间多5小时;信息二:甲4小时完成工作量与乙3小时完成的工作量相等;信息三:丙的工作效率是甲的工作效率的2倍.如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.小时B.小时C.小时D.小时9.(2分)(2022秋•晋州市期中)学校需采购部分课桌,现有A,B两个商家供货,A商家每张课桌的售价比B商家的优惠30元.若该校花费1800元采购款在A商家购买课桌的数量与花费2250元采购款在B 商家购买课桌的数量一样多,则A商家每张课桌的售价为()A.90元B.120元C.150元D.180元10.(2分)(2021秋•思明区校级期末)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A.B.C.D.评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•代县期末)甲乙两地相距50km,A骑自行车从甲地到乙地,出发3h20min后,B骑摩托车也从甲地去乙地,已知B的速度是A的速度的3倍,结果两人同时到达乙地,则A的速度是km/h.12.(2分)(2022秋•洪山区校级期末)要在规定的时间内加工一批机器零件,如果甲单独做,刚好在规定时间内完成,乙单独做则要超过3天才能完成.现在甲、乙两人合作2天后,再由乙单独做,正好按时完成,则规定时间是天.13.(2分)(2022秋•巨野县期中)甲、乙两人站在一条道路的两端同时出发相向而行,1.2小时相遇,若甲走完这条道路需2小时,则乙走完这条路需小时.14.(2分)(2021秋•宁远县校级月考)一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是,原来得两位数是.15.(2分)(2020秋•兖州区期末)某中学假期后勤中的一项工作是请30名木工制作200把椅子和100张课桌,已知一名工人在单位时间内可以制作10把椅子或7张课桌,将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.应分配人制作课桌,才能使完成此项工作的时间最短.16.(2分)(2022秋•海淀区校级月考)为了全力抗击新型冠状病毒感染肺炎,减少相互感染,每个人出门都必须带上口罩,所以KN95型的口罩需求量越来越大.某大型口罩工厂接到生产200万副KN95型口罩的生产任务,计划在若干天完成,由于情况疫情紧急,工厂全体员工不畏艰苦,工人全力以赴,每天比原计划多生产5万副口罩,结果只用了原计划时间的就圆满完成生产任务,则原计划每天生产万副口罩.17.(2分)(2022•铁岭模拟)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,甲工程队每天改造的道路长度是米.18.(2分)(2022春•大鹏新区期中)甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工套校服.19.(2分)(2022秋•江北区期末)“巩固脱贫成果,长兴乡村经济”,大力发展高山生态经济林是一重大举措.某村委会决定在红光、红旗、红锦三个村民小组种植高山脆李和晚熟香桃两种果树,初步预算这三个村民小组各需两种果树之和的比为4:5:6,其中需要高山脆李树的棵数分别为4千棵,3千棵和7千棵,并且红光、红旗两个村民小组所需晚熟香桃树之比为2:3.在购买这两种果树时,高山脆李树的价格比预算低了10%,晚熟香桃树的价格高了20%,晚熟香桃树购买数量减少了12.5%.结果发现购买两种果树的总费用与预算总费用相等,则实际购买高山脆李树的总费用与实际购买晚熟香桃树的总费用之比为.20.(2分)(2022秋•沂源县期中)甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需小时.甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5h;乙说:我3小时完成的工作量与甲4小时完成工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率×工作时间=工作总量.评卷人得分三.解答题(共10小题,满分60分,每小题6分)21.(6分)(2023春•天长市校级月考)某蔬菜超市两次去批发市场采购同一品种的辣椒,第一次用1700元购进了若干千克,很快卖完,第二次用3000元所购数量比第一次多80千克,且每千克的进价比第一次提高了20%.(1)求第一次购买辣椒的进价;(2)求第二次购买辣椒的数量;(3)该蔬菜超市按以下方案卖出第二次购买的辣椒:先以a元/千克的价格售出m千克,再以16元/千克的价格售出剩余的全部辣椒(不计损耗),共获利1800元,若a,m均为正整数,且a不超过第二次进价的2倍,求a和m的值.22.(6分)(2023春•金沙县期末)某校开展了主题为“粽叶飘香,自包米粽,共度端午,互赠祝福”活动,让住校生亲身体验包粽子的实践活动.学校决定用1800元购进包粽子的两种原材料,腊肉丁馅和绿豆花生馅的粽子,已知用来购买两种馅的费用一样,腊肉丁馅粽子比绿豆花生馅每个粽子成本价高20%,两次共包粽子1100个,求腊肉丁馅的粽子每个成本价是多少元?23.(6分)(2023•新泰市一模)某超市准备购进甲、乙两种绿色袋装食品,它们的进价和售价如下表所示.已知用2000元购进甲种绿色袋装食品的数量与用1600元购进乙种绿色袋装食品的数量相同.甲乙进价/(元/袋)m m﹣2售价/(元/袋)20 13(1)求m的值.(2)现在要购进甲、乙两种绿色袋装食品共800袋,且总利润不少于4800元,则该超市至少要购进甲种绿色袋装食品多少袋?24.(6分)(2022秋•丰都县期末)春节,即中国农历新年,俗称新春、新岁、岁旦等,口头上又称过年、过大年.春节历史悠久,由上古时代岁首祈岁祭祀演变而来.春节民俗经国务院批准列入第一批国家级非物质文化遗产名录.我国北方除夕夜多吃饺子,南方除夕一般是吃元宵和年糕.元宵又叫“汤圆”、“团子”、“圆子”,中间包糖为多,取全家团圆美满甜蜜之意,年糕由糯米做成,以谐音取“年高”之意,直到今天,北方过年包饺子、南方过年包汤圆的习俗仍然极为普遍.今年春节前,某商店老板用450元购进一批年糕,又用800元购进了饺子,所购年糕数量是饺子数量的75%,且年糕每袋进价比饺子进价每袋少1元.(1)求年糕和饺子每袋的进价;(2)除夕当天,老板分别以5元每袋、6元每袋的价格销售年糕和饺子.当年糕售出,饺子售出一半后,为了尽快售完,老板决定将剩下的年糕和饺子都以相同的折扣进行降价销售,很快就全部卖完.求老板最低打几折可以使获得的总利润不少于530元.25.(6分)(2023春•襄汾县月考)2022年第22届世界杯足球赛在卡塔尔举行,其官方吉祥物是一个外形酷似头巾的卡通人物,名字叫做拉伊卜,受到众人的热捧.某工厂计划加急生产一批该吉祥物,已知甲车间每天加工的数量是乙车间每天加工数量的2倍,两车间各加工3000个该吉祥物时,甲车间比乙车间少用5天.(1)求甲乙两车间每天各加工多少个吉祥物?(2)已知甲乙两车间加工该吉祥物每天的费用分别是1800元和600元,该工厂计划生产15000个这种吉祥物,如果总加工费用不超过39000元,那么乙车间至少要加工多少天?26.(6分)(2023春•铁西区月考)2022年第22届世界杯足球赛在卡塔尔举行,联营商场在世界杯开始之前,用6000元购进A,B两种世界杯吉祥物公仔和吉祥物手办共220个,且用于购买A种吉祥物公仔与购买B吉祥物手办的费用相同,且A种吉祥物公仔的单价是B种吉祥物手办的1.2倍.(1)求A,B两种吉祥物的单价各是多少元?(2)世界杯开始后,联营商场的吉祥物很快售罄,于是计划用不超过15000元的资金再次购进A,B两种吉祥物共300个,已知A,B两种吉祥物的进价不变,求A种吉祥物最多能购进多少个?27.(6分)(2023•宁化县模拟)“冰墩墩”和“雪容融”作为第24届北京冬奥会和残奥会的吉祥物深受大家喜爱,某文旅店订购“冰墩墩”花费6000元,订购“雪容融”花费3200元,其中“冰墩墩”的订购单价比“雪容融”的订购单价多20元,并且订购“冰墩墩”的数量是“雪容融”的1.25倍.(1)求文旅店订购“冰墩墩”和“雪容融”的数量分别是多少个;(请列分式方程作答)(2)该文旅店以100元和80元的单价销售“冰墩墩”和“雪容融”,在“冰墩墩”售出,“雪容融”售出后,文旅店为了尽快回笼资金,决定对剩余的“冰墩墩”每个打a折销售,对剩余的“雪容融”每个降价2a元销售,很快全部售完,若要保证文旅店总利润不低于6060元,求a的最小值.28.(6分)(2022秋•忻府区期末)某地对一段长达2400米的河堤进行加固.在加固800米后,采用新的加固模式,每天的工作效率比原来提高25%,用26天完成了全部加固任务.(1)原来每天加固河堤多少米?(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增加了20%,完成整个工程后承包商共支付工人工资多少元?29.(6分)(2022秋•河北区期末)为助力乡村振兴,某单位给结对帮扶的家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗每棵的价格比甲种树苗贵10元,用690元购买乙种树苗的棵数恰好是用460元购买甲种树苗的棵数的倍.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)二十天后,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的价格比第一次购买时降低了10%,乙种树苗的价格不变,如果再次购买两种树苗的总费用不超过2100元,那么这次他们最多可购买多少棵乙种树苗?30.(6分)(2022秋•日照期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?。

第二章4第3课时分式方程的应用(2)课堂练习题含2021中考题

第二章4第3课时分式方程的应用(2)课堂练习题含2021中考题

D.


=


+2
.
=
-2
.
A )
数学
2.(2022 莱州模拟)“绿水青山就是金山银山”,为了进一步优化河道环境,某工程队承担一条 4 800 m
长的河道整治任务,开工后,实际每天比原计划多整治 200 m,结果提前 4 天完成任务,若设原计划每天
整治 x m,那么所列方程正确的是( C
还有23 min,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车从家到学校
比他步行到学校少用20 min,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、
启动电瓶车等共用4 min.
(1)求李老师步行的平均速度;
解:(1)设李老师步行的平均速度为 x m/min,则他骑电瓶车的平均速度为 5x m/min.
件快件的时间,比20人用传统方式分拣同样数量的快件节省4 h.
(1)使用智能分拣设备后,每人每小时可分拣快件多少件?
解:(1)设使用传统分拣方式,每人每小时可分拣快件 x 件,则使用智能分拣设备后,每人每小时可分
拣快件 25x 件,

依题意,得

-
×
=4,
解得 x=84,

(1)求甲、乙两队单独完成此工程所需的时间.
解:(1)设乙队单独完成此工程所需的时间为 x 天.


根据题意,得 + = .解这个方程,得 x=30.







经检验,x=30 是所列方程的根. x= ×30=20.
∴甲队单独完成此工程所需时间为 20 天,乙队单独完成此工程所需的时间为 30 天.

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学:第5章《分式与分式方程》实际应用提高练习(三)1.清明时节“雨后绿初见,择艾作青团”.“元祖”推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的倍,4月份鲜花青团和芒果青团总计销售60000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.2.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?3.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?4.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?5.某车间加工24个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,求采用新工艺前每小时加工多少个零件?6.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时.现计划先由6个B型机器人搬运3小时,再增加若干个A型机器人一起搬运,请问至少要增加多少个A型机器人?7.为厉行节能减排,倡导绿色出行,我市推行“共享单车“公益活动某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B 型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不大于A类摊位数量的3倍,建造这90个摊位的总费用不超过10850元.则共有哪几种建造方案?(3)在(2)的条件下,哪种方案的总费用最少?最少费用是多少?10.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户外永久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?11.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?12.A、B两地距80千米,一辆公共汽车从A地去B地,15分钟后又从A地同方向开出一辆小汽车去B地,小汽车车速是公共汽车车速的2倍,结果小汽车比公共汽车早33分钟到达B地,求两车速度.13.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?14.12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.15.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运900件帐篷所用车辆与乙种货车装运600件帐篷所用车辆相等.求甲、乙两种货车每辆车可装多少件帐篷?参考答案1.解:(1)设每个芒果青团的售价为x元,则每个鲜花牛奶青团的售价为x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴x=10.答:每个鲜花牛奶青团的售价为10元,每个芒果青团的售价为8元.(2)设生产芒果青团m个,则生产鲜花牛奶青团(12000﹣m)个,依题意,得:,解得:7200≤m≤8000.设总销售额w元,则w=(10﹣3)(12000﹣m)+8m=m+84000.∵1>0,∴w随m的增大而增大,∴当m=8000时,w取得最大值,最大值为92000元.即生产芒果青团8000个、鲜花牛奶青团4000个,使总销售额最大,总销售额的最大值为92000.2.解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.3.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.5.解:设采用新工艺前每小时加工的零件数为x个,根据题意可知:﹣1=,解得:x=8,经检验,x=8是原方程的解.答:采用新工艺前每小时加工8个零件.6.解:(1)设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运1.5xkg 化工原料,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料.(2)设增加y个A型机器人,依题意,得:200×5×6+(5﹣3)×300y≥8000,解得:y≥,∵y为正整数,∴y的最小值为4.答:至少要增加4个A型机器人.7.解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,依题意,得:=×,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意.答:A型共享单车的成本单价是200元.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,依题意得:=×,解得:x=3,经检验,x=3是原方程的解,且符合题意,∴x+2=5.答:每个A类摊位的占地面积为5平方米,每个B类摊位的占地面积为3平方米.(2)设建造m个A类摊位,则建造(90﹣m)个B类摊位,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴共有3种建造方案,方案1:建造23个A类摊位,67个B类摊位;方案2:建造24个A类摊位,66个B类摊位;方案1:建造25个A类摊位,65个B类摊位.(3)方案1所需总费用为40×5×23+30×3×67=10630(元),方案2所需总费用为40×5×24+30×3×66=10740(元),方案3所需总费用为40×5×25+30×3×65=10850(元).∵10630<10740<10850,∴方案1的总费用最少,最少费用是10630元.10.解:设每个小号垃圾桶的价格是x元,则每个大号垃圾桶的价格是4x元,依题意,得:﹣=40,解得:x=45,经检验,x=45是原方程的解,且符合题意.答:每个小号垃圾桶的价格是45元.11.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.12.解:设公共汽车的速度为x千米/时,则小汽车的速度为2x千米/时,由题意的可得:,解得:x=50,经检验:x=50是原方程的解,∴当x=50时,2x=100(千米/时),答:公共汽车的速度为50千米/时,则小汽车的速度为100千米/时.13.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.14.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.15.解:设乙种货车每辆车可装x件帐篷,则甲种货车每辆车可装(x+20)件帐篷,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+20=60.答:甲种货车每辆车可装60件帐篷,乙种货车每辆车可装40件帐篷.。

分式方程及应用复习教案

分式方程及应用复习教案

分式方程及应用复习教案一、教学目标1. 理解分式方程的概念和性质2. 掌握解分式方程的基本方法3. 能够应用分式方程解决实际问题4. 提高学生的数学思维能力和解决问题的能力二、教学内容1. 分式方程的定义和性质2. 解分式方程的基本方法3. 分式方程的应用实例三、教学重点与难点1. 重点:分式方程的概念、性质和解法2. 难点:应用分式方程解决实际问题四、教学方法1. 讲授法:讲解分式方程的定义、性质和解法2. 案例分析法:分析分式方程的应用实例3. 练习法:让学生通过练习题巩固所学知识五、教学过程1. 引入:复习分式方程的概念和性质2. 讲解:讲解解分式方程的基本方法3. 案例分析:分析分式方程的应用实例4. 练习:让学生解答练习题5. 总结:回顾本节课所学内容,强调重点和难点教案内容待补充六、教学练习练习一:判断题1. 分式方程就是含有未知数的分式。

()2. 分式方程的解就是使分式等于零的未知数的值。

()3. 解分式方程时,可以直接将分式方程转化为整式方程。

()练习二:选择题A. 去分母B. 去括号C. 移项D. 合并同类项)2. 下列哪个方程不是分式方程?(A. 2x + 3 = 7B. (x + 1)/2 = 3C. 3(x 1) = 2(x + 2)D. (x 2)/3 = 4)七、应用拓展案例一:小明种苹果树和梨树,苹果树的数量是梨树的3倍。

如果小明一共种了24棵树,苹果树和梨树各有多少棵?案例二:一家工厂生产A产品和B产品,生产A产品需要2小时,生产B产品需要3小时。

如果工厂每天有8小时的生产时间,工厂一天可以生产多少A产品和B产品?八、教学总结本节课我们复习了分式方程的概念、性质和解法,重点掌握了如何解分式方程和应用分式方程解决实际问题。

通过练习和案例分析,希望大家能够巩固所学知识,提高解题能力。

在的学习中,我们将继续深入探讨分式方程的更多应用,希望大家能够积极参与。

九、课后作业1. 请总结分式方程的概念和性质,并简要说明解分式方程的基本方法。

北师大版八年级下册数学《分式方程》分式说课教学课件复习培优

北师大版八年级下册数学《分式方程》分式说课教学课件复习培优

解:设水流每小时流动x千米,
72 48 20 x 20 x
t
72 20 x
48 20 x
练习
想一想
甲、乙两人骑自行车各行28公里,甲比乙快 1
4
小时,已知甲与乙速度比为8:7,求两人速度。
解:设甲的速度8x千米/时, 乙的速度是7x千米/时。
28 28 1 7x 8x 4
vs t

8x 28
2 列分式方程
练一练:
世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自 此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在 峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种 网络的峰值率.设4G网络的峰值速率为每秒传输x兆数据,依题
意,可列方程是A( )
A. 500 500 45
解:设乙队完成这项任务需要x天,则甲队单独完成需2x天
5 1 1 1 2x x
5 5 1 2x x 5 10 2x
x 15 2
经检验:x 15 是原方程的解 2
当 x 15 时 2
2X=15天
答:甲单独完成这项任务需15天,乙单独完成任 务需7.5天。
2. 炎炎夏天,甲安装队为A小区安装66台空调,乙安 装队为B小区安装60台空调,两队同时开工恰好同时完 工,甲队比乙队每天多安装2台。乙队每天安装几台?
解:设乙队每天安装x台,则甲队每天安装x+2台
66 60 x2 x
方程两边同时乘以x(x 2) 66x 60(x 2) 66x - 60x 120 解得 x 20
经检验:x=20 是原方程的解
答:乙队每天安装20台。
3.小明和爸爸练习跑步,爸爸跑3600米时,小明正好 跑2400米,爸爸每分钟比小明多跑100米,问小明每分 钟跑多少米?

【导学案】3 分式方程的应用(2)导学案及答案

【导学案】3 分式方程的应用(2)导学案及答案

4 分式方程第3课时分式方程的应用(二)【学习目标】1.能将实际问题中的相等关系用分式方程表示,并进行方法总结.2.通过日常生活中的情境创设,经历探索分式方程应用的过程,提高学生运用方程思想解决问题的能力和思维水平.3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值.【学习策略】让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,关键是引导学生寻找问题中的等量关系,发展学生分析问题、解决问题的能力。

【学习过程】一、情境导入:1.列一元一次方程解应用题的一般步骤分哪几步?2.问题:自从上次龟兔赛跑乌龟大胜兔子以后,它就成了动物界的体育明星,可是偏偏有一只蚂蚁不服气,于是它给乌龟下了一封挑战书.比赛结束后,蚂蚁并没有取胜,已知乌龟的速度是蚂蚁的1.2倍,提前1分钟跑到终点.请你算算它们各自的速度.二.新课学习:例1. 某列车现平均速度v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?例2. 轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?三.尝试应用:1.抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合做2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?四、课堂小结列分式方程解应用题的一般步骤1).审:分析题意,找出研究对象,建立等量关系.2).设:选择恰当的未知数,注意单位.3).列:根据等量关系正确列出方程.4).解:认真仔细.5).验:有三种方法检验.6).答:不要忘记写答.五.达标测试一.选择题(共3小题)1. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走半小时后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 ( )A .2115315+=x xB .x x 1521315=-C .2115315-=x xD .2115315⨯=x x 2父子两人沿周长为a 的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v ,则父亲的速度为( )A .1.1vB .1.2vC .1.3vD .1.4v3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 ( )A.215.210210+=+x xB.5.02105.210-=-xx C.5.025.21010-=-x x D.5.025.21010+=-x x 二.填空题(共3小题)4.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是 .5. 某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .6.A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度.根据题意,可列方程 .三.解答题(共3小题)7.甲、乙两座城市的中心火车站A ,B 两站相距360km .一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km /h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少?8.吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.9.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?参考答案4 分式方程第3课时尝试应用:1.解:设甲队单独完成全部工程需x 小时,则乙队单独完成全部工程需(x+3)小时,根据题意,得: 13232x 2=+-+++x x x 解得:x=6,经检验得:x =6是这个分式方程的解.x+3=9答:甲队单独完成全部工程需6小时,则乙队单独完成全部工程需9小时.2.解:(1)400×1.3=520(千米)(2)设普通列车平均速度为x 千米/时,则高铁的平均速度为2.5x 千米/时,由题意,得:35.2400520=-xx 解得:x=120,经检验得:x =120是这个分式方程的解.2.5x=300答:高铁的平均速度为300千米/时.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?解:设乙每小时骑x 千米,则甲每小时骑(x+6)千米,根据题意得x606x 90=+ 解得:x=12,经检验得:x =12是这个分式方程的解.x+6=18答:乙每小时骑12千米,甲每小时骑18千米.达标测试答案:一、选择题1.C2.【解析】:选B .设父亲的速度为x ,根据题意得出:=,解得:x=1.2V .3.C二.填空题(共3小题) 4.6 解析: 根据题意,得到甲、乙的工效都是 1x.根据结果提前两天完成任务,知:整个过程中,甲做了(x-2) 天,乙做了(x-4)天.再根据甲、乙做的工作量等于1,列方程求解.5.22402240220x x-=- 解析: 求的是原计划的工效,工作总量题中已有,那么一定是根据工作时间来列的等量关系.本题的等量关系为:原计划时间-实际用时=2. 6.x 38060203x 80=+- 三.解析题(共3小题)7.解:设特快列车的平均速度为xkm /h ,则动车的速度为(x +54)km /h , 由题意,得:=,解得:x =90, 经检验得:x =90是这个分式方程的解. x +54=144.答:设特快列车的平均速度为90km /h ,则动车的速度为144km /h .8. 【解析】:设骑自行车学生的速度是x 千米/时,由题意得:9. ﹣=,解得:x=20,经检验:x=20是原分式方程的解,答:骑自行车学生的速度是20千米/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程要进行检验,这是同学们最容易出错的地方.9. 【解析】:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒,根据题意,得,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.∴甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,∴乙同学获胜.答:乙同学获胜.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.。

分式方程及应用压轴(解析版)

分式方程及应用压轴(解析版)

分式方程及应用压轴考点一:解分式方程考点二:已知分式方程的解,求字母参数的值考点三:分式方程的特殊解问题考点四:分式方程的无解(增根)问题考点五:分式方程的应用问题【考点一:解分式方程】【典例1】(2023春•万源市校级期末)解方程:(1)1﹣=(2)﹣=.【答案】见试题解答内容【解答】解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【变式1-1】(2023•青秀区校级模拟)解方程:+=.【答案】见试题解答内容【解答】解:去分母得:2(x+1)+2x=5x,去括号得:2x+2+2x=5x,解得:x=2,经检验x=2是分式方程的解.【变式1-2】(2023秋•高邮市期末)解方程:(1)(2)﹣=1.【答案】见试题解答内容【解答】解:(1)去分母得:x﹣5=2x﹣5,移项合并得:x=0,经检验x=0是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【变式1-3】(2023秋•石河子校级期末)解方程:(1);(2).【答案】(1)x=2;(2)无解.【解答】解:(1)去分母得:2=5x﹣5,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:16+x2﹣4=x2+4x+4,解得:x=2,经检验x=2是增根,分式方程无解.【变式1-4】(2023秋•铁岭县期末)解方程:(1)(2).【答案】见试题解答内容【解答】解:(1)去分母得:15x﹣12+x﹣3=6x+5,移项合并得:10x=20,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【考点二:已知分式方程的解,求字母参数的值】(2023秋•绥中县期末)已知关于x的方程的解是x=1,则a的值为()【典例2】A.2B.1C.﹣1D.﹣2【答案】C【解答】解:∵关于x的方程的解是x=1,∴=,解得a=﹣1,经检验a=﹣1是方程的解.故选:C.【变式2-1】(2023秋•常德期末)已知关于x的分式方程的解为x=4,则a的值为()A.4B.3C.0D.﹣6【答案】D【解答】解:将x=4代入方程,得:,解得a=﹣6,故选:D.(2023•武侯区校级模拟)已知x=1是分式方程的解,则a的值为()【变式2-2】A.﹣1B.1C.3D.﹣3【答案】D【解答】解:把x=1代入分式方程得:=,去分母得:8a+12=3a﹣3,解得:a=﹣3,∵a﹣1=﹣4≠0,∴a的值为﹣3.故选:D.【变式2-3】(2023秋•平舆县期末)若分式方程的解为x=2,则a的值是()A.1B.2C.﹣1D.﹣2【答案】C【解答】解:∵分式方程的解为x=2,∴=,即=1,解得a=﹣1,经检验a=﹣1是方程的解,所以原方程的解为a=﹣1,故选:C.【变式2-4】(2023秋•绵阳期末)已知x=2是关于x的分式方程的解,则a =.【答案】.【解答】解:把x=2代入关于x的分式方程得:,,4a=1,,检验:当时,2a≠0,∴是分式方程的解,故答案为:【考点三:分式方程的特殊解问题】【典例3】(2023秋•南陵县期末)若关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3B.m<4C.m≠3D.m>4且m≠3【答案】A【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选:A.【变式3-1】(2023秋•陵城区期末)若关于x的分式方程的解为非负数,则a的取值范围是()A.a>1且a≠2B.a<1C.a≥1且a≠2D.a≤1且a≠﹣2【答案】C【解答】解:,方程两边同时乘2(x﹣2)得:2(x﹣a)=x﹣2,2x﹣2a=x﹣2,2x﹣x=2a﹣2,x=2a﹣2,∵关于x的分式方程的解为非负数,∴2a﹣2≥0,2a≥2,a≥1,∵分式的分母x﹣2≠0,∴x≠2,即2a﹣2≠2,解得:a≠2,∴a≥1且a≠2,故选:C.【变式3-2】(2023秋•重庆期末)若关于x的不等式组的解集为x≥3,且关于y的分式方程有非负数解,则满足条件的所有整数a的和为.【答案】5.【解答】解:,解不等式①,得x≥3,解不等式②,得x>a﹣2,∵原不等式组的解集为x≥3,∴a﹣2<3,∴a<5;解分式方程,得y=,∵y=1是原分式方程的增根,∴a≠4,∵≥0,∴a≥2;综上,2≤a<5,且a≠4,∴满足条件的整数a为2或3,2+3=5,故答案为:5.【考点四:分式方程的无解(增根)问题】(2023秋•滨州期末)若关于x的分式方程=1无解,则a的值为()【典例4】A.0B.1C.1或5D.5【答案】B【解答】解:+=1,方程两边同时乘以x﹣5得:2﹣(a+1)=x﹣5,去括号得,2﹣a﹣1=x﹣5,解得x=6﹣a,∵原分式方程无解,∴x=5,∴m=1,故选:B.【变式4-1】(2023秋•安顺期末)若关于x的分式方程无解,则k的取值是()A.﹣3B.﹣3或﹣5C.1D.1或﹣5【答案】B【解答】解:,去分母,得6x=x+3﹣k(x﹣1),∴(5+k)x=3+k,∵关于x的分式方程无解,∴分两种情况:当5+k=0时,k=﹣5,当x(x﹣1)=0时,x=0或1,当x=0时,0=3+k,∴k=﹣3,当x=1时,5+k=3+k,∴k不存在,故不符合题意,综上所述:k的值为:﹣3或﹣5.故选:B.【变式4-2】(2023秋•凉州区期末)若分式方程无解,则k的值为()A.±1B.2C.1或2D.﹣1或2【答案】C【解答】解:,去分母得:2(x﹣2)+1﹣kx=﹣1,2x﹣4+1﹣kx=﹣1,2x﹣kx=2,(2﹣k)x=2,∵分式方程无解,∴x﹣2=0,x=2,2﹣k=0,k=2,当k=1时,原方程为:,2(x﹣2)+1﹣x=﹣1,2x﹣4+1﹣x+1=0,x=2,检验:当x=2时,x﹣2=0,∴k=1时,原方程无解;综上可知:分式方程无解时,k的值为1或2,故选:C.【变式4-3】(2023秋•江汉区期末)若关于x的分式方程﹣=1无解,则m的值为.【答案】见试题解答内容【解答】解:去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或x==1,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【考点五:分式方程的应用问题】【典例5】(2023秋•信州区期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【答案】见试题解答内容【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【变式5-1】(2023秋•藁城区期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【变式5-2】(2023秋•商丘期末)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【答案】见试题解答内容【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.【变式5-3】(2023秋•恩施市期末)某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【答案】见试题解答内容【解答】解:(1)设乙工程队每天能完成绿化的面积是x平方米,则甲工程队每天能完成绿化的面积是1.5x平方米,依题意,得:﹣=3,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m天,则需安排乙队工作天,依题意,得:700m+500×≤14500,解得:m≥10.所以m最小值是10.答:至少应安排甲队工作10天.1.(2023秋•交口县期末)解方程,去分母后正确的是()A.3(x+1)=1﹣x(x﹣1)B.3(x+1)=(x+1)(x﹣1)﹣x(x﹣1)C.3(x+1)=(x+1)(x﹣1)﹣x(x+1)D.3(x﹣1)=1﹣x(x+1)【答案】B【解答】解:去分母得:3(x+1)=(x+1)(x﹣1)﹣x(x﹣1).故选:B.2.(2023秋•阳新县期末)已知一艘轮船顺水航行46千米和逆水航行34千米共用的时间,正好等于船在静水中航行80千米所用的时间,并且水流的速度是2千米/小时,求设轮船在静水中的速度为x千米/小时,是下列方程正确的是()A.B.C.D.【答案】B【解答】解:设船在静水中航行的速度为x千米/时(1分)则+=故选:B.3.(2023秋•广平县期末)甲、乙两人分别从相距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,设甲的速度为3x km/h.依题意,下面所列方程正确的是()A.B.C.D.【答案】D【解答】解:设甲的速度为3x/时,则乙的速度为4x千米/时.根据题意,得﹣=.故选:D.4.(2023秋•秦皇岛期末)已知关于x的分式方程的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由分式方程的解是非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3,故选:C.5.(2023秋•冠县期末)若解分式方程=﹣3产生增根,则k的值为()A.2B.1C.0D.任何数【答案】B【解答】解:=﹣3,去分母,得k=x﹣k﹣3(x﹣2).去括号,得k=x﹣k﹣3x+6.移项,得﹣x+3x=﹣k+6﹣k.合并同类项,得2x=6﹣2k.x的系数化为1,得x=3﹣k.∵分式方程=﹣3产生增根,∴3﹣k=2.∴k=1.故选:B.6.(2023秋•宜春期末)现定义一种新的运算:,例如:,若关于x的方程x⊕(2x﹣m)=3的解为非负数,则m的取值范围为()A.m≤8B.m≤8且m≠7C.m≥﹣2且m≠7D.m≥﹣2【答案】B【解答】解:∵x⊕(2x﹣m)=3,∴,解方程得:x=8﹣m;由于方程有解,则8﹣m≠1,即m≠7;由题意得:8﹣m≥0,解得:m≤8;综合起来,m的取值范围为m≤8且m≠7;故选:B.7.(2023秋•兰陵县期末)对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b 中较小的值,如min{2,4}=2,按照这个规定,方程min{,﹣}=的解为()A.﹣1或2B.2C.﹣1D.无解【答案】D【解答】解:①当x>0时,有>﹣,∴min{,﹣}=﹣,即﹣=,解得x=﹣1(不合题意舍去);②当x<0时,有<﹣,∴min{,﹣}=,即=,解得x=2(不合题意舍去);综上所述,方程min{,﹣}=无解,故选:D.8.(2023秋•崆峒区期末)分式与互为相反数,则x的值为()A.1B.﹣1C.﹣2D.﹣3【答案】C【解答】解:由题意得,去分母3x+2(1﹣x)=0,解得x=﹣2.经检验得x=﹣2是原方程的解.故选:C.9.(2023秋•罗山县期末)定义运算“※”:a※b=,若5※x=2,则x的值为()A.B.C.10D.或10【答案】D【解答】解:当5>x时,∵5※x=2,∴=2,解得x=.经检验,x=符合题意,是分式方程的解.当5<x时,∵5※x=2,∴=2.解得x=10.经检验,x=10符合题意,是分式方程的解.故选:D.10.(2023秋•开州区期末)若关于x的不等式组无解,且关于y的分式方程3﹣的解为正数,则所有满足条件的整数a的值的和为.【答案】13.【解答】解:,由①得,x≥﹣1,由②得,x<﹣a,∵不等式组无解,∴﹣a≤﹣1,即a≥1,3﹣,3(y﹣2)+a=y,3y﹣6+a=y,解得y=3﹣a,∵分式方程的解为正数,∴3﹣a>0且3﹣a≠2,解得a<6且a≠2,∴a的取值为1≤a<6且a≠2,∴所有满足条件的整数a的值的和为1+3+4+5=13,故答案为:13.11.(2023秋•虹口区校级期末)若关于x的方程的解为负数,则a 的取值范围是.【答案】a<﹣13或﹣13<a<﹣10.【解答】解:+=,去分母,得(x﹣1)(x+1)+(3﹣x)(x﹣3)=3x+a,去括号、合并同类项,得3x=a+10,等号两边同除以3,得x=(x≠3,且x≠﹣1),∵x=3或x=﹣1是原分式方程的增根,∴a≠﹣1,且a≠﹣13,∵<0,∴a<﹣10,∴a<﹣13或﹣13<a<﹣10,故答案为:a<﹣13或﹣13<a<﹣10.12.(2022秋•宁远县期末)若关于x的方程=+1无解,则a的值是3或1.【答案】见试题解答内容【解答】解:去分母,得:ax=3+x﹣1,整理,得:(a﹣1)x=2,当x=1时,分式方程无解,则a﹣1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.13.(2023秋•应城市期末)解下列分式方程.(1);(2).【答案】见试题解答内容【解答】解:(1)原方程变形得:,方程两边同乘以最简公分母(x﹣3)得:1=2(x﹣3)﹣x,整理的:1=2x﹣6﹣x,移项得:x=7,检验:当x=7时,x﹣3=7﹣3=4≠0,所以,x=7,是原方程的根,(2)方程两边同乘以最简公分母(x﹣1)(x+2)得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:x2+2x﹣x2﹣x+2=3,合并同类项得:x=1,检验:当x=1时,(x﹣1)(x+2)=(1﹣1)(1+2)=0,所以,x=1是原方程的增根,所以,原分式方程无解.14.(2023秋•南宁期末)为提高快递包裹分拣效率,物流公司引进了快递自动分拣流水线.一条某型号的自动分拣流水线的工作效率是一名工人工作效率的4倍,用这条自动分拣流水线分拣3000件包裹比一名工人分拣这些包裹要少用3小时.(1)这条自动分拣流水线每小时能分拣多少件包裹?(215000件,则至少应购买多少条该型号的自动分拣流水线,才能完成分拣任务?【答案】(1)条自动分拣流水线每小时能分拣3000件包裹;(2)至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.【解答】解:(1)设一名工人每小时能分拣x件包裹,则这条自动分拣流水线每小时能分拣4x件包裹,由题意得:﹣=3,解得:x=750,经检验,x=750是原方程的解,且符合题意,∴4x=4×750=3000,答:这条自动分拣流水线每小时能分拣3000件包裹;(2)应购买m条该型号的自动分拣流水线,才能完成分拣任务,由题意得:3000m≥15000,解得:m≥5,答:至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.15.(2022秋•洪山区校级期末)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?【答案】见试题解答内容【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200经检验,x=200是原方程的解,且符合题意,∴第一批箱装饮料每箱的进价是200元.(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.。

一元二次方程分式方程的解法及应用知识讲解(提高)含答案

一元二次方程分式方程的解法及应用知识讲解(提高)含答案

1,2=0;当m<0时,方程没有实数解.中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为ax2+bx+c=0(a≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成x2=m的形式,当m>0时,方程的解为x=±m;当m=0时,方程的解x(2)配方法:通过配方把一元二次方程 ax 2 + bx + c = 0 变形为 x + ⎪ =如果一元二次方程 ax 2 + bx + c = 0 (a ≠0)的两个根是 x 、x ,那么 x + x = - ,x ⋅ x = c .aa⎛ ⎝ b ⎫2 b 2 - 4ac 2a ⎭ 4a 2的形式,再利用直接开平方法求得方程的解.( 3 ) 公 式 法 : 对 于 一 元 二 次 方 程 ax 2 + bx + c = 0 , 当 b 2 - 4ac ≥ 0 时 , 它 的 解 为x = -b ± b 2 - 4ac 2a.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一 般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 a ≠ 0 .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化 1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为 ∆ = b 2 - 4ac .△>0 ⇔ 方程有两个不相等的实数根; △=0 ⇔ 方程有两个相等的实数根; △<0 ⇔ 方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.要点诠释:△≥0 ⇔ 方程有实数根.4.一元二次方程根与系数的关系b 121 212要点诠释:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分 解法,再考虑用公式法.(3)一元二次方程 a x 2 + bx + c = 0 (a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已 知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代 数式为根的一元二次方程.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0……①,解得y=1,y=4,12当y=1时,x2-1=1,∴x2=2,∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5,故原方程的解为x=2,1x=-2,x=5,x=-5.234解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x4-x2-6=0.2【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】(1)换元法;(2)设 x 2 = y ,那么原方程可化为 y 2 - y - 6 = 0解得 y = 3 ; y = -21 2当 y = 3 时, x 2 = 3 ;∴ x = ± 3当 y = -2 时, x 2 = -2 不符合题意,舍去.所以原方程的解为 x = 3 , x = - 3 .1 2【总结升华】应用换元法解方程,体现了转化的数学思想.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用 高清 ID 号: 405754 关联的位置名称(播放点名称):例 3】【变式】设 m 是实数,求关于 x 的方程 x 2 - mx - 3x + m + 2 = 0 的根. 【答案】x 1=1,x 2=m+2.2.已知关于 x 的一元二次方程 ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,ab 2求的值.(a - 2) 2 + b 2 - 4【思路点拨】由于这个方程有两个相等的实数根,因此⊿=b 2 - 4a = 0 ,可得出 a 、b 之间的关系,ab 2然后将化简后,用含 b 的代数式表示 a ,即可求出这个分式的值.(a - 2) 2 + b 2 - 4【答案与解析】∵ ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,∴⊿= b 2 - 4ac = 0 ,即 b 2 - 4a = 0 .ab 2ab 2ab 2 ab 2∵ = = =(a - 2) 2 + b 2 - 4 a 2 - 4a + 4 + b 2 - 4 a 2 - 4a + b 2 a 2∵ a ≠ 0 ,∴ ab 2 b 2 =a a= 4【总结升华】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能解得,x=3+522力,属于中等难度的试题,具有一定的区分度.举一反三:【变式】关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.【答案】(1)方程有两个不相等的实数根,∴(-3)2-4(-k)>0.即4k>-9,解得,k>-9 4.(2)若k是负整数,k只能为-1或-2.如果k=-1,原方程为x2-3x+1=0.3-5,x=.12(如果k=-2,原方程为x2-3x+2=0,解得,x=1,x=2.)12类型二、分式方程3.解方程:【思路点拨】把原方程右边化为【答案与解析】代入原方程求解较为简单.原方程变为经检验,【总结升华】是原方程的根.时,x 2 - 6x + 5 = -因为, ,所以最简公分母为:,若采用去分母的通常方法,运算量较大,可采用上面的方法较好.举一反三:【变式 1】解方程:【答案】原方程化为方程两边通分,得化简得 解得经检验:是原方程的根.【变式 2】 解方程:7 31 4- =-x 2 - 6x - 4 x 2 - 6x + 5 x 2 - 6x + 9【答案】设k = x 2 - 6x + 5,则原方程可化为:731 4 -=-k - 9kk + 4去分母化简得:20k 2 - 147k - 1116 = 0∴(k - 12)(20k + 93) = 0∴k = 12 ,k = -9320当k = 12时,x 2 - 6x - 7 = 0(x - 7)(x + 1) = 0解之得:x = -1,x = 712当k = - 93 9320 2020x 2 - 120x + 193 = 0解此方程此方程无解.经检验:x = -1,x = 7是原分式方程的根.124.m为何值时,关于x的方程会产生增根?【思路点拨】先把原方程化为整式方程,使分母为0的根是增根,代入整式方程求出m的值.【答案与解析】方程两边都乘以整理,得,得【总结升华】分式方程的增根,一定是使最简公分母为零的根.举一反三:【变式】当m为何值时,方程会产生增根()A.2B.-1C.3D.-3【答案】分式方程,去分母得,将增根代入,得m=3.所以,当m=3时,原分式方程会产生增根.故选C.类型三、一元二次方程、分式方程的应用5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【思路点拨】设规定日期是x天,则甲的工作效率为【答案与解析】设规定日期为x天根据题意,得解得经检验是原方程的根答:规定日期是6天.,乙的工作效率为,工作总量为1.由题意得1000【总结升华】工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量.它们之间的基本关系是:工作总量=每天的工作量×工作的天数.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用高清ID号:405754关联的位置名称(播放点名称):例4-例5】【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】设一片国槐树叶一年的平均滞尘量为x毫克,550=,2x-40x解得:x=22,经检验:x=22是原分式方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量为22毫克.6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.【思路点拨】第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少.【答案与解析】⑴设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意,得①×+②×+③×,得++=.④④-①×,得=,即z=30,④-②×,得=,即x=10,④-③×,得=,即y=15.经检验,x=10,y=15,z=30是原方程组的解.⑵设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元.所以,由甲队单独完成此工程花钱最少.【总结升华】这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为天,天,天,可列出分式方程组.在求解时,把整式方程组来解.,,分别看成一个整体,就可把分式方程组转化为。

人教版八年级上册数学试题:第十五章分式方程及应用-提高训练

人教版八年级上册数学试题:第十五章分式方程及应用-提高训练

分式方程及应用提高练习一、基础知识解分式方程的思路解与分式方程有关的应用题的一般步骤:(1)审题,理解题意;(2)设未知数;(3)找出相等关系,列方程;(4)解这个分式方程;(5)检验,看方程的解是否满足方程和符合题意;(6)写出答案.审;设;列;解;答.二、经典例题考点 分式方程例1、. m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根? 针对训练:分式方程0111=+--+-x x x k x x 有增根1=x ,求k 的值. 延伸训练:1、当a 为何值时,关于x 的方程53221+-=-+a a x x 的解等于零? 2、若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围. 例2 解方程:2213(1)411x x x x +++=++ 针对训练:2211231x x x x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭巩固练习:1、若0414=----xx x m 无解,则m 的值是 ( ) A.-2B.2C.3D.-3 2、对于分式方程,下列说法中,一定正确的是 ( )A .只要是分式方程,一定有增根;B .分式方程若有增根,增根代入最简公分母中,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根;D .分式方程化成整式方程,整式方程的解都是分式方程的解3、甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x 个零件,则根据题意列出的方程是 ( )A .57080+=x xB .x x 70580=-C .80705x x=+ D .57080-=x x 4、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 ( ) A .1a >- B .10a a >-≠且 C .1a <- D .12a a <-≠-且5、 某工程需要在规定日期内完成,如果甲工程队独做,恰好如期完成; 如果乙工作队独做,则超过规定日期3天,现在甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x 天,下面所列方程中错误的是 ( ) A.213x x x +=+; B.233x x =+; C.1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭; D.113x x x +=+ 6、如果ba =2,则2222b a b ab a ++-=_____ ____; 7、若x+x 1=3,则x 2+21x=_____ __. 若21x x x -+=7,则2421x x x ++=_________. 8、如果把分式yx xy +中的x 和y 都扩大2倍,即分式的值 ; 9、某厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用_ ____ 天。

2023中考复习——应用题(学生版)

2023中考复习——应用题(学生版)

应用题一、二元一次方程组1.(2014遂宁中考·19)(9分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比打折前少花多少钱?2.(2020遂宁中考·20)(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?二、分式方程1.(2011遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?2.(2012遂宁中考·20)(9分)经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于2012年5月9日全线通车.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和现在走高速公路的平均速度分别是多少?3.(2013遂宁中考·20)(9分)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?4.(2014遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?5.(2019遂宁中考·21)(9分)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3750元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于2460元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)三、一元二次方程的应用1.(2016遂宁中考·20)(9分)红旗连锁超市花2000购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?2.(2021遂宁中考·21)(9分)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?四、一次函数+不等式1.(2012遂宁中考·23)(10分)我市新都生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.品牌A B进价(元/箱)6549售价(元/箱)8062(1)求y关于x的函数关系式;(2)由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?(利润=售价﹣进价)2.(2013遂宁中考·23)(10分)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.五、综合1.(2017遂宁中考·21)(9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?2.(2022遂宁中考·19)(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。

分式与分式方程复习提高课件

分式与分式方程复习提高课件
分析:解分式方程的关键是去分母转化为整式方程
解: 2x(x 2) 3(x 2) 2(x 2 4)
2x2 4x 3x 6 2x2 8
7x 2
x 2 7
经检验:x 2 是原方程的解,
7
∴原方程的解为 x 2
7
归纳步骤
列分式方程解应用题的一般步骤
1.审: 分析题意,找出数量关系和相等关系. 2.设: 选择恰当的未知数,注意单位和语言完整.
考点5.分式方程的应用
某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨 9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,
购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价 是每千克多少元?
等量关系:第二次购进干果的数量=第一次购进干果的数量的2倍+300千克 第二次每千克的进价=第一次每千克的进价(1+20%)
3.列: 根据数量和相等关系,正确列出代数式和方程.
4.解: 认真仔细. 5.验: 有两次检验.
两次检验是: (1)是否是所列方程的解; (2)是否满足实际意义.
6.答: 注意单位和语言完整.且答案要生活化.
考点5.分式方程的应用
某超市用3000元购进某种干果销售, 由于销售状况良好,超市又调拨9000 元资金购进该种干果,但这次的进价 比第一次的进价提高了20%,购进干 果数量是第一次的2倍还多300千克, 求该种干果的第一次进价是每千克多 少元?
解:设该种干果的第一次进价是每千克x元,则第二次进价是每千
克(1+20%)x元,
由题意,得
9000 2 3000 300
(1 20%)x
x
解得
x=5,
经检验 x=5是原方程的解,且符合题意。

分式方程复习2

分式方程复习2
请同学依据上述等量关系列出方程.
答案:
方法1设这名学生骑车追上队伍需x小时,依题意列方程为
_____________________________________________
方法2设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为
___________________________
三、课堂练习
1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.
2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.
例2某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是
___________________________________
答案:
四、小结
课堂检测
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

第2章分式复习2(湘教版八年级下)

第2章分式复习2(湘教版八年级下)

第二章 分式 复习(2)--------可化为一元一次方程的分式方程教学目标1 使学生了解分式方程的概念,进一步掌握分式方程的解法;2 会列分式方程解应用题.重点:分式方程的解法和应用难点:分式方程的应用教学过程一 知识要点做一做:1解方程:()53122x x x x +=-- 解:两边同乘以x(x-2),得:5+3(x-2)=x去分母,得:5+3x-6=x移项,得: 2x=1所以,x=12检验:当x=12时,x(x-2)≠0,所以x=12是原方程的解. 思考:1 什么叫分式方程?分母里含有未知数的方程叫分式方程.2 解方式方程的思路是什么?有哪些步骤?解分式方程为什么会产生增根?解分式方程的思路:去分母化为整式方程.解分式方程的步骤:(1) 方程两边同乘以最简公分母去掉分母,化为整式方程;(2) 解整式方程(3) 检验(4) 下结论.解分式方程产生增根的原因:去分母后,方程中未知数的范围扩大了.2 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了两小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度分别是多少?解:设步行得速度是x 千米/时,则骑车的速度是4x/时 依题意得:719724x x-+= 两边同乘以4x ,得:28+12=8x所以,x=5,检验:当x=5时,4x ≠0,所以,x=5是原方程的解.4x=20答:步行速度是5千米/时,骑车的速度是20千米/时.思考:解分式方程有哪些步骤?(1) 设元-----注意带单位.(2) 解分式方程(3) 检验---既要检验是不是原方程的解,还要检验是否合题意.二 讲解例题例1 解方程:225103x x x x-=+- ()()51031x x x x -=+-解:方程化为:,两边同乘以x(x+3)(x-1),得:5(x-1)-(x+3)=0 去括号,得:5x-5-x-3=0,4x-8=0,4x=8,x=2,检验:当x=2时,x(x-1)(x+3)≠0,所以,x=2是原方程的解.例2 为了支援四川人民抗震救灾,某休闲用品公司主动承担了灾区生产2万顶帐篷的任务,计划10天完成.(1) 按此计划,该公司平均每天应生产帐篷______顶.(2) 生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的效率比原计划提高了25%,结果提前2天完成了任务,求该公司原计划安排多少名工人生产帐篷?解:(1)该公司原计划平均每天应生产:20000÷10=2000(顶)(2)设原来有x 名工人,每人每天生产:2000x , 依题意得:2 + 20000220002000(125%)(50)x x-⨯++=10-2, 或者:()()()20002000022000125%102250x x -⨯+=--+ 解得:x=750,经检验:x=750是原方程的解.答:该公司原计划安排750名工人生产帐篷.三 课堂练习1方程2133x m x x -=--的根为增根,则m 的值为( ) A 3 B 4 C 5 D 6解:方程两边同乘以x-3,得:2x-(x-3)=m, x=m-3因为方程的根为增根,所以,m-3=3,m=6 故选D.2 一列火车从车站开出,预计行程450千米,当它出发3小时后,因特殊情况而多停了一站,因此耽误了30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.解:设这列火车原来的速度为x 千米/时. 依题意,得:4503304503 1.260x x x-++= 解得:x=75,当x=75时,1.2x ≠0,所以,x=75是原方程的解. 答:这列火车原来的速度是75千米/时.四 反思小结,巩固提高这节课你有什么收获?这节课我们主要复习了分式方程的解法和应用.解分式方程时,应该主要检验.作业:P 64 复习题二 A 组:6,7 B 组:2。

八年级数学上册 第十五章 分式 15.3 分式方程 第2课时 分式方程的应用知能演练提升 新人教版

八年级数学上册 第十五章 分式 15.3 分式方程 第2课时 分式方程的应用知能演练提升 新人教版

第2课时分式方程的应用知能演练提升能力提升1.货车行驶25 km与小车行驶35 km所用时间一样,小车比货车每小时多行驶20 km,求两车的速度各为多少.设货车的速度为x km/h,依题意列方程正确的选项是().A. B.C. D.2.暑假期间,某中学“启明文学社〞的全体同学包租一辆面包车去某景点游览,面包车的租价为180元.出发时又增加了两名其他社团的同学,结果每名同学比原来少摊了3元车费.假设设“启明文学社〞有x人,那么所列方程为().A.=3B.=3C.=3D.=33.(xx·辽宁铁岭中考)某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6 000元购置小号的数量与用5 000元购置长笛的数量恰好一样,设小号的单价为x元,那么以下方程正确的选项是().A. B.C. D.4.(xx·广西南宁中考)一艘轮船在静水中的最大航速为35 km/h,它以最大航速沿江顺流航行120 km 所用时间与以最大航速逆流航行90 km所用时间相等.设江水的流速为v km/h,那么可列方程为().A. B.C. D.5.某工程公司承担了一段河底清淤任务,需清淤4万立方米,清淤1万立方米后,该公司为加快施工进度,又新增一批工程机械参与施工,工作效率提高到原来的2倍,共用25天完成任务,问该工程公司新增工程机械后,每天清淤多少万立方米?6.某校文印室为了践行绿色环保的理念,倡导每一个人都“双面打印,节约用纸〞.打印一份资料,如果用A4厚型纸单面打印,总质量为400 g,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160 g,假设每页薄型纸比厚型纸轻0.8 g,求A4薄型纸每页的质量.(墨的质量忽略不计)7.李明到离家2.1 km的学校参加联欢会,到学校时发现演出道具还放在家中,此时距联欢会开场还有42 min,于是他立即匀速步行回家,在家拿道具用了1 min,然后立即匀速骑自行车返回学校.李明骑自行车到学校比他从学校步行到家用时少20 min,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:m/min)是多少?(2)李明能否在联欢会开场前赶到学校?★8.某自来水公司水费计算方法如下:假设每户每月用水不超过5 m3,那么每立方米收费1.5元,假设每户每月用水超过5 m3,那么超出局部每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当月水费是27.5元,超出5 m3的局部每立方米收费多少元?创新应用★9.甲、乙两名同学玩“托球赛跑〞游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P跑回到起跑线(如图);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜,结果:甲同学由于心急,掉了球,浪费了6 s,乙同学那么顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50 s,捡球过程不算在内时,甲的速度是我的1.2倍〞,根据图文信息,请问哪名同学获胜?参考答案能力提升1.C2.B3.A小号的单价为x元,那么长笛的单价为(x-100)元,由题意得.应选A.4.D江水的流速为v km/h,根据题意得,应选D.5.解设公司新增工程机械后每天清淤x万立方米,由题意,得=25,解得x=0.2.经检验,x=0.2是原方程的解,也符合题意.故公司新增工程机械后,每天清淤0.2万立方米.6.解设A4薄型纸每页的质量为x g,那么A4厚型纸每页的质量为(x+0.8) g,根据题意,得=2×,解得x=3.2.经检验,x=3.2是原分式方程的解,且符合题意.所以A4薄型纸每页的质量为3.2 g.7.解 (1)设李明步行的速度是x m/min,那么他骑自行车的速度是3x m/min.由题意,得=20,解得x=70.经检验,x=70是所列分式方程的解,且符合题意.故李明步行的速度是70 m/min.(2)因为+1=41(min),41 min<42 min,所以李明能在联欢会开场前赶到学校.8.解设超出5 m3的局部每立方米收费x元,那么1月份,张家超出5 m3局部的水费为(17.5-1.5×5)元,超出5 m3的用水量为 m3.李家超出5 m3局部的水费为(27.5-1.5×5)元,超出5 m3的用水量为m3.根据题意,得+5=.解得x=2.经检验,x=2是所列方程的解.所以超出5 m3局部的水,每立方米收费2元.创新应用9.分析读懂题意,找出相等关系“全部时间的和为50 s〞是解决问题的关键.解设乙同学的速度为x m/s,那么甲同学的速度为1.2x m/s.由题意,得=50,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.所以甲同学所用的时间为+6=26(s),乙同学所用的时间为=24(s).因为26>24,所以乙同学获胜.如有侵权请联系告知删除,感谢你们的配合!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 在下列方程①x2﹣x+ ; ② ﹣3=a+4; ③ +5x=6; ④ A.1 个 B.2 个 C.3 个 D. 4 个
2
1
1
2h
㐠‫ڣ‬
+
1h
‸‫ڣ‬
=1 中, 是分式方程的有 (

9
2.方程 A.x=
t
‸2
3
B.x=㐠
‸1
1
的解为(
1 2
) C.x=﹣2 D.无解
3.某服装店用 10000 元购进一批某品牌夏季衬衫若干件,很快售完;该店又用 14700 元钱 购进第二批这种衬衫,所进件数比第一批多 40%,每件衬衫的进价比第一批每件衬衫的进 价多 10 元,求第一批购进多少件衬衫?设第一批购进 x 件衬衫,则所列方程为( A.
②将整式方程的解代入最简公分母,如果最简公分母的值为 0,则整式方程的解不是原分 式方程的解. 所以解分式方程时,一定要检验. (二)分式的实际应用 (1)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那 么各阶段的工作量的和=工作总量);
(2)行程问题(路程=速度×时间); (3)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度). (4)销售问题(利润=售价﹣进价,利润率=利润进价×100%)
t
8
【举一反三】
1.若关于 x 的分式方程
t 㐠1 㐠2
+
㐠2
1
=2 有整数解,整数 m 的值是

2.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总 面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积是原计划的 1.6 倍, 这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完成,那 么实际平均每年绿化面积至少还要增加多少万平方米?
2.某地区两个城市之间,可乘坐普通列车或高铁.已知高铁行驶线路的路程是 400 千米, 普通列车行驶线路的路程是高铁行驶路程的 1.3 倍;高铁的平均速度是普通列车平均速度 的 2.5 倍.如果乘坐高铁所需时间比乘坐普通列车所需时间缩短 3 小时,求高铁的平均速 度.
7
3.在哈市地铁一号线施工建设中,安排甲、乙两个工程队完成大连北路至新疆大街路段的 铁轨铺设任务,该路段全长 3600 米.已知甲队每天铺设铁轨的米数是乙队每天铺设铁轨 米数的 1.5 倍,并且甲、乙两队分别单独完成 600 米长度路段时,甲队比乙队少用 10 天. (l)求甲、乙两个工程队每天各能铺设铁轨多少米? (2)若甲队每天施工的费用为 4 万元,乙队每天施工的费用为 3 万元,要使甲、乙两队 合作完成大连北路至新疆大街全长 3600 米的总费用不超过 520 万元,则至少应安排甲队 施工多少天?
11
6.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰 销量大,店主决定将玫瑰每枝降价 1 元促销,降价后 30 元可购买玫瑰的数量是原来可购 买玫瑰数量的 1.5 倍. (1)求降价后每枝玫瑰的售价是多少元? (2)根据销售情况,店主用不多于 900 元的资金再次购进两种鲜花共 500 枝,康乃馨进 价为 2 元/枝,玫瑰进价为 1.5 元/枝,问至少购进玫瑰多少枝?
【基础知识重温】
(一)解分式方程 (1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. (2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为 0,所以应如 下检验: ①将整式方程的解代入最简公分母,如果最简公分母的值不为 0,则整式方程的解是原分 式方程的解.
4

3.甲、乙二人做某种机械零件,已知甲每小时比乙多做 6 个,甲做 90 个所用时间与乙做 60 个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做 x 个,那么所列 方程是( A. =
h ‸ h
) B.
‸ 3 h
=
h
C.

h
=
h
D. =
h

h
4.解分式方程:
2㐠
+1=
㐠1

5.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力, 把距离港口 420km 的普通公路升级成了同等长度的高速公路, 结果汽车行驶的平均速度比 原来提高了 50%,行驶时间缩短了 2h,求汽车原来的平均速度.
【精准突破 1】分式方程
【例题精讲】 【例题 1-1】下列方程是分式方程的是( A.
㐠㤴 㤴 2

1 1
C.x‸ =5(b 为常数)
2㐠
㐠 㤴
(a,b 为常数)
B.x‸ =c‸ (c 为常数) D.
‸1 2
3
【 【例题 1-2】 已知关于 x 的分式方程 A.a>1 B.a≥1
3 㐠
C.a≥1 且 a≠9
1 2

5.先化简,再求值:(x﹣y)2﹣(x﹣y)(x+y)+(x+y)2,其中 x=3,y=﹣ .
3
1
3
问题 1 分式方程 1.若关于 x 的分式方程
A.﹣
3 2
2t‸ 1 2
B.1
C. 或 2
2
3
D.﹣ 或﹣
㐠3
﹣1=
3 2
2
无解,则 m 的值为(

问题 2 分式的应用
2.某商店用 1000 元人民币购进水果销售,过了一段时间,又用 2400 元人民币购进这种水 果,所购数量是第一次购进数量的 2 倍,但每千克的价格比第一次购进的贵了 2 元. (1)该商店第一次购进水果多少千克? (2)假设该商店两次购进的水果按相同的标价销售,最后剩下的 20 千克按标价的五折优 惠销售.若两次购进水果全部售完,利润不低于 950 元,则每千克水果的标价至少是多少 元? 注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两 批水果全部售完的利润等于两次购进水果的销售利润之和.
㐠3
= 的解是非负数, 那么 a 的取值范围是(
3
1

D.a≤1
【例题 1-3】如果解关于 x 的分式方程 A.﹣2 B.2 C. 4
t
D.﹣4
㐠2

2㐠
2
=1 时出现增根,那么 m 的值为(

【例题 1-4】解分式方程:
2 㐠t
2

2㐠
1.
5
【精准突破 2】分式的应用
【例题精讲】 【例题 2-1】一艘轮船在静水中的最大航速为 35km/h,它以最大航速沿江顺流航行 120km 所用时间,与以最大航速逆流航行 90km 所用时间相等.设江水的流速为 v km/h,则可列 方程为( A.
3 2
12
【查漏补缺】
1.若分式
t‸1 1
有意义,且关于 x 的分式方程 ) B. D.
2 㐠t ‸1
=3 的解是负数,则 m 的取值范围在数轴上
表示正确的是( A. C.
2.为抓住“足球走进校园”的商机,王杰到体育用品批发市场用 1000 元购进了一批足球, 然后以每个 90 元的定价进行销售,很快售完,由于该品牌足球深受学生喜爱,十分畅销, 他再次去购买同样品牌的足球时,发现其批发价格每个比原来增加了 20 元,结果他多花 400 元购进了与第一批相同数量的足球. 当第二批足球按原定价销售了 时, 却出现了滞销, 于是他才去以定价的 5 折促销方式并售完剩余的足球,王杰销售完这两批足球一共可赢利 了 元.
1hhhh

﹣10 =
C.
1㐠th㺜
1hhhh
﹣10 =
1‸th㺜
1thhh 1thhh
B.
1hhhh
+10 =
D.
1㐠th㺜
1hhhh
+10 =
1‸th㺜
1thhh 1thhh
4.解分式方程:
2㐠
㐠3
‸t
3㐠
1

5.2016 年 12 月 28 日举行了微山县南阳镇北、两城镇南跨湖高速的路线开工仪式,其中的 一项工程由 A、B 两工程队合作,120 天可以完成;如果 A,B 两工程队单独完成此项工程, B 工程队所用时间是 A 工程队的 1.5 倍. (1)求 A,B 两工程队单独完成此项工程各需多少天? (2)在施工过程中,该总公司派一名技术人员在现场对施工质量进行全程监督,每天总 公司补助技术人员 100 元, 若由 A 工程队单独施工, 平均每天 A 工程队的费用为 0.5 万元, 现总公司选择了 B 工程队单独施工,要求总费用不能超过选择 A 工程队时的总费用,则平 均每天 B 工程队的费用最多为多少?
【巩固一】分式的方程
1.已知 x=3 是分式方程 A.﹣1 B.0
㐠1

2 㐠1
=2 的解,那么实数 k 的值为( D. 2
6

C.1
2.解分式方程:
2 ‸1
3

2 㐠1
2
=
‸1 . t 2 㐠1
3.关于 x 的方程
㐠t
+
3‸t t㐠
=2 有增根,则 m=

【巩固二】分式的应用
1. 某超市第一次用 3000 元购进某种干果销售,第二次又调拨 9000 元购进该种干果,但 第二次的进价比第一次进价提高了 20%,购进干果数量是第一次的 2 倍还多 300 千克,如 果超市先按每千克 9 元的价格出售,当大部分干果售出后,最后的 600 千克按原售价的 7 折售完.超市两次销售这种干果共盈利 元.
相关文档
最新文档