22.2 二次函数与一元二次方程

合集下载

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
2.通过分析二次函数图像,提升直观想象和数据分析的能力。
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

22.2.1二次函数与一元二次方程

22.2.1二次函数与一元二次方程
(2)请求出球飞行的最大 水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大 高度不变且球刚好进洞,则球飞行路线应满足怎样的抛 物线,求出其解析式.
解:(1) y 1 x2 8 x 1 (x 4)2 16
55
5
5
⸫抛物线开口向下,顶点为
4,16 5
,对称轴为x=4
(2)令y=0 ,得: 1 x2 8 x 0 55
(3)指出(2)的图像中,使y<0时, x的取值范围及使y >0时, x的取值范围
例2:王强在一次高尔夫球的练习中,在某处击球,其
飞行路线满足抛物线 y 1 x2 8 x ,其中y(m)是 55
球的飞行高度,x(m)是球飞出的水平距离,结果球离
球洞的水平距离还有2m.
(1)请写出抛物线的开口方 向、顶点坐标、对称轴.
的值永远为正的条件是__a_>_ 0,△<0 __
3.求抛物线 y=−2(x+1)2+8 ①与y轴的交点坐标; ②与x轴的两个交点间的距离.③何时y>0?
(1)抛物线y=x2+2x−3与x轴的交点有( C)
A.0个 B.1个
C.2个
D.3个
(2)抛物线y=mx2−3x+3m+m2经过原点,则其顶点坐标
图象:是一条抛物线。
图象的特点:(1)开口方向,开口大小; (2)对称轴; (3)顶点(最低点或最高点)。
y
y
o
x
o
x
二次函数y=ax2的图象与y=ax2+k的图象的关系
二次函数y=ax2+k的图象可由二次函数y=ax2 的图象向上(或向下)平移得到:
当k>0时,抛物线 y=ax2向上平移|k|个单 位,得y=ax2+k

2二次函数与一元二次方程课件

2二次函数与一元二次方程课件

22.2 二次函数与一元二次方程
讲授新课 (3)球的飞行高度能否到达20.5m?如果能,需
要多少飞行时间?
20.5 h h=20t-5t2
解方程: 20.5=20t-5t2, t2-4t+4.1=0, 因为(-4)2-4 ×4.1<0, 所以方程无解. 即球的飞行高度达不到20.5米.
O
t
你能结合图形指出为 什么球不能到达20.5m 的高度?
(3)确定方程2x2+x-15=0的解; 由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.
22.2 二次函数与一元二次方程
例4
已知二次函数y=ax2+bx+c的图象如图所示,则一元二次
方程ax2+bx+c=0的近似根为( B)
A.x1≈-2.1,x2≈0.1 B.x1≈-2.5,x2≈0.5 C.x1≈-2.9,x2≈0.9 解析:由D图.象x1可≈-得3二,次x2≈函1数y=ax2+bx+c图象的对称轴为x=-
的方法叫作图象法.
22.2 二次函数与一元二次方程
解:画出函数 y=x²-2x-1 的图象(如下图),由图象可知, 方程有两个实数根,一个在-1与0之间,另一个在2与3之间.
22.2 二次函数与一元二次方程
先求位于-1到0之间的根,由图象可估计这个根 是-0.4或-0.5,利用计算器进行探索,见下表:
1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;
又∵对称轴为x=-1,则
x1 x2 2
=-1,∴x1=2×(-1)-0.5=
-2.5.故x1≈-2.5,x2≈0.5.故选B.
22.2 二次函数与一元二次方程
方法总结

22.2 二次函数与一元二次方程(优秀经典公开课比赛课件)

22.2 二次函数与一元二次方程(优秀经典公开课比赛课件)
x2-x+1=0 的根的判别式△_______0.
A .无解 B .x=1 C .x=-4 D .x=-1 或 x=4
探究点二:二次函数 y=ax2+bx+c 中的不
等关系 【类型一】利用抛物线解一元二次不等式
抛物线 y=ax2+bx+c(a<0)如图所示,则 关 于 x 的 不等 式 ax2+bx+ c> 0 的 解集 是
()
A .x<2 B .x>-3 C .-3<x<1 D .x<-3 或 x>1
归纳:二次函数 y=ax2+bx+c 的图象和 x 轴交点有三
种情况: ①有两个交点, ②有一个交点, ③没有交点.
类型二】利用二次函数图象与 x 轴交点坐标
确定抛物线的对称轴
如图,对称轴平行于 y 轴的抛物线与 x 轴交
于(1,0),(3,0)两点, 则它的对称轴为________.
【类型三】利用函数图象与 x 轴交点情况确
定字母取值范围
若函数 y=m x2+(m +2)x+12m +1 的图象与 x 轴只有一个交点,那么 m 的值为( ) A .0 B .0 或 2 C .2 或-2 D .0,
2 或-2
类型四】利用抛物线与 x 轴交点坐标确定一
元二次方程的解
小兰画了一个函数 y=x2+ax+b 的图象如图,则关于 x 的方程 x2 +ax+b=0 的解是( )
探索新知 探究点一:二次函数与一元二次方程 【类型一】二次函数图象与 x 轴交点情况判断
探索二次函数与一元二次方程: 二次函数 y=x2+2x,y=x2-2x+1,y=x2-2x+2 的图象如图所示.
(1)每个图象与 x 轴有几个交点? (2)一元二次方程 x2+2x=0,x根吗? (3)二次函数 y=ax2+bx+c 的图象和 x 轴交点的坐标与一元二次方程 ax2+ bx+c=0 的根有什么关系?

22.2 二次函数与一元二次方程

22.2 二次函数与一元二次方程

集是
.
-1<x<3
关闭
答案
6.利用二次函数的图象求方程-
1 2
x2+x+2=0的近似解(精确到0.1).
解: 函数 y=-12x2+x+2 的图象如图.
设-12x2+x+2=0 的两根分别为 x1,x2,且 x1<x2,观察图象可知
-2<x1<-1,3<x2<4.
因为当 x=-1 时,y=-12×(-1)2-1+2=0.5>0,
解得 k=196.
(2)由题意,得 b2-4ac=b2-8=0,解得 b=±2 2.
∵x=-������>0,∴b<0,
关闭
(1)1∴96 b=(2-2)2-22.2
解析 答案
5.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,
若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解
-1.4 -0.38 3.2 0.08
-1.3 -0.145 3.3 -0.145
-1.2 0.08 3.4 -0.38
-1.1 0.295 3.5 -0.625
所以方程-12x2+x+2=0 的根 x1 的近似值为-1.2,x2 的近似值为 3.2.
当 x=-1.5 时,y=-12×(-1.5)2-1.5+2=-0.625<0,
所以-1.5<x1<-1.
因为当 x=3 时,y=-12×32+3+2=0.5>0,当 x=3.5
时,y=-12×3.52+3.5+2=-0.625<0,

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程
✓有b2两– 4个ac根> 0 ✓有b2一– 4个ac根=(0两个相同的根) ✓没b2有– 4根ac < 0
若抛物线 y=ax2+bx+c 与 x 轴有交点,则 __b_2_–_4_a_c_≥__0______ 。
△ = b2 – 4ac
y △<0
△=0
△>0
o
x
课堂小结
二次函数 y=ax2+bx+c 的图象和x轴交点 的三种情况与一元二次方程根的关系:
y
(2) y = 4x2 -4x +1
(3) y = x2 – x+ 1
o
x
令 y= 0,解一元二次方程的根
(1) y = 2x2+x-3 y
解:当 y = 0 时, 2x2+x-3 = 0
(2x+3)(x-1) = 0
o
x
x 1 =-
3 2
,x 2 = 1
所以与 x 轴有交点,有两个交点。
二次函数的两点式
1.一元二次方程 3 x2+x-10=0的两个根是 x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10 与x轴的交点坐标是_(-2_,0)_(5_/3_,0).
2.抛物线y=2x2-3x-5 与x轴有无交点?若无说 出理由,若有求出交点坐标?
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
与x轴交点坐标 (-2,0),(1,0)
(3,0)
相应方程的根 x1=-2,x2=1
x1=x2=3

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程问题:二次函数的223y x x =--的图象如图所示。

根据图象回答:⑴ x 为何值时, 0y =?⑵ 你能根据图象,求方程2230x x --=的根吗?⑶ 你认为二次函数223y x x =--与方程2230x x --=之间有何关系呢?请你谈一谈你的看法。

探究(一)二次函数与一元二次方程之间的关系如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。

如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系:2205h t t =-。

考虑以下问题:⑴ 球的飞行高度能否达到15m ?如能,需要多少飞行时间? ⑵ 球的飞行高度能否达到20m ?如能,需要多少飞行时间? ⑶ 球的飞行高度能否达到20.5m ?为什么? ⑷ 球从飞出到落地需要多少时间?知识总结:一般地,已知二次函数y =ax 2+bx +c 的函数值为m,求自变量x 的值,可以看作解一元二次方程__________________.反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数_______________的值为______时自变量x 的值。

所以:⑴ 如果抛物线2y ax bx c =++与x 轴有公共点(x 0,0),那么 就是方程20ax bx c ++=的一个根。

⑵ 抛物线与x 轴的三种位置关系:相交,即有_____公共点;相切,即有______公共点;相离,即______公共点。

这对应着一元二次方程根的三种情况:有 实数根;有________ 的实数根; ______的实数根。

(3)二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)基础练习:1. 二次函数232+-=x x y ,当x =1时,y =______;当y =0时,x =______. 2.抛物线342+-=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; 3、二次函数642+-=x x y ,当x =________时,y =3.4、抛物线 y=2x 2-3x -5 与y 轴交于点 ,与x 轴交于点5、一元二次方程 3 x 2+x -10=0的两个根是x 1=-2 ,x 2=5/3,那么二次函数 y= 3 x 2+x -10与x 轴的交点坐标是4.利用抛物线图象求解一元二次方程及二次不等式 (1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________;变式训练:1.不与x 轴相交的抛物线是( )A. y = 2x 2 – 3B. y=-2 x 2 + 3C. y= -x 2 – 3xD. y=-2(x+1)2 -3 2.若抛物线 y = ax 2+bx+c= 0,当 a>0,c<0时,图象与x 轴交点情况是( ) A. 无交点 B. 只有一个交点 C. 有两个交点 D. 不能确定3.已知抛物线y = ax 2+bx+c 的图象如图,则关于x 的方程ax 2 + bx + c -3 = 0根的情况是( ) A. 有两个不相等的实数根 B. 有两个异号的实数根 C. 有两个相等的实数根 D. 没有实数根4、已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根判断方程 ax 2+bx+c =0 (a ≠0,a,b,c 为常数)一个解x 的范围是( )A. 3< x < 3.23B. 3.23 < x < 3.24C. 3.24 <x< 3.25D. 3.25 <x< 3.26 6、关于x 的一元二次方程 x 2-2x+m=0有两个相等的实数根,则m=___,此时抛物线 y=x 2-2x+m 与x 轴有__个交点.7.已知抛物线 y=x 2 – 8x + c 的顶点在 x 轴上,则 c =__.8.若抛物线 y=x 2 + bx+ c 的顶点在第一象限,则方程 x 2 + bx+ c =0 的根的情况是 。

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程

是否有公共点,并说明理由.
(1) y=x2-4x+3
(2) y=x2-6x+9
(3) y=x2-x+1
• 例2.已知抛物线 y=x2-2x+k
• (1)当k取什么值时,抛物线与x轴有两个交点? • (2)当k取什么值时,抛物线与x轴有一个公共点?并求
出这个公共点的坐标. • (3)当k取什么值时,抛物线与x轴没有公共点?
决函数问题,同样运用函数知识又可以解决
方程根的问题.(数形结合)
下列情形时,如果a>0,抛物线y=ax2+bx+c的顶点在什么 位置?
(1)方程ax2+bx+c=0有两个不等的实数根;
(2)方程ax2+bx+c=0有两个相等的实数根;
(3)方程ax2+bx+c=0无实数根。
如果a<0呢?
今 天 就休 到息 这一 吧会
O
x
归纳整理、理清关系
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二 次方程ax2+bx+c=0的根有什么关系?
一元二次方程 ax2+bx+c=0根 的判别式Δ=b2-4ac
Δ=b2-4ac > 0
一元二次方程 ax2+bx+c=0的根
二次函数y=ax2+bx+c的 图象和x轴的交点
有两个相异的实数根
ax²+ bx + c = 0
二次函数与一元二次 方程有什么关系?
y ax2 bx c
一、复习回顾
1. 一次函数y=2x-4与x轴交点坐标是?
2x-4=0 x =2

专题22.2 二次函数与一元二次方程(讲练)(解析版)

专题22.2 二次函数与一元二次方程(讲练)(解析版)

专题22.2二次函数与一元二次方程(讲练)一、知识点二、标准例题:例1:如图,已知二次函数2y ax bx c=++的部分图象,由图象可估计关于x的一元二次方程20ax bx c++=的两个根分别是1 1.6x=,2x=A.-1.6 B.3.2C.4.4 D.5.2【答案】C【解析】由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.总结:此题主要利用抛物线是轴对称图象的性质确定抛物线与x 轴交点坐标,是一道较为简单的试题.例2:如图,二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,则方程2(1)10ax b x c +-++=(0a ≠)的根为( )A .122,3x x =-=-B .121,0x x ==C .122,1x x =-=D .123,0x x =-=【答案】C【解析】解:∵2(1)10ax b x c +-++=,∴21ax bx c x ++=-. ∴方程2(1)10ax b x c +-++=的根即为二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,∵二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,∴方程2(1)10ax b x c +-++=(0a ≠)的根为122,1x x =-=.故选C.总结:本题考查了二次函数与一元二次方程的关系,解此题的关键是将方程2(1)10ax b x c +-++=变形为21ax bx c x ++=-,进一步将所求转化为求二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,这类题目的求解,重在理解与领悟.最后结合抛物线的增减性进行判断.例3:二次函数y =x 2+bx ﹣t 的对称轴为x =2.若关于x 的一元二次方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解,则t 的取值范围是( )A .﹣4≤t <5B .﹣4≤t <﹣3C .t≥﹣4D .﹣3<t <5【答案】A【解析】解:∵抛物线的对称轴x =2b -=2, ∴b =﹣4,则方程x 2+bx ﹣t =0,即x 2﹣4x ﹣t =0的解相当于y =x 2﹣4x 与直线y =t 的交点的横坐标,∵方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解, ∴当x =﹣1时,y =1+4=5,当x =3时,y =9﹣12=﹣3,又∵y =x 2﹣4x =(x ﹣2)2﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解.∴t 的取值范围是﹣4≤t <5,故选:A .总结:本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程2ax bx c k ++=的解相当于2y ax bx c =++ 与直线y=k 的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.例4:.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中,m =__________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象剩下的部分.(3)观察函数图象,写出一条性质__________.(4)进一步探究函数图象发现:①方程22||0x x -=有__________个实数根.②关于x 的方程22||x x a -=有4个实数根时,a 的取值范围是__________.【答案】(1)0 (2)(3)当1x >时,y 随x 的增大而增大(4)①3 ②10a -<<.【解析】(1)x=-2时,m=x 2-2l-2l=0;.(2)如图所示(3)由函数图象知:1x >时y 随x 的增大而增大;函数图像关于y 轴对称;(4)如图:①22||=0x x -时即0y =,∴令x 轴有3个交点,分别是2-、0、2;即答案为3;②由函数图象知:关于x 的方程22||x x a -=有4个交点,∴a 的取值范围是10a -<<.总结:本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.其中观察函数图像的能力是解答本题的关键.三、练习1.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点, 22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22a x a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D .2.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】B【解析】∵抛物线开口向下,∴0a <, ∵抛物线的对称轴为直线12bx a =-=,∴20b a =->,∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①正确;∵2b a =-, ∴102a b a a +=-=,∵0c >, ∴11024a b c ++>,所以②错误;∵(0,)C c ,OA OC =,∴(,0)A c -,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=,∴10ac b -+=,所以③错误;∵(,0)A c -,对称轴为直线1x =,∴(2,0)B c +,∴2c +是关于x 的一元二次方程20ax bx c ++=的一个根,所以④正确;综上正确的有2个,故选B.3.已知0m >,关于x 的一元二次方程()()120x x m +--=的解为1212,()x x x x <,则下列结论正确的是( )A .1212x x <-<<B .1212x x -<<<C .1212x x -<<<D .1212x x <-<<【答案】A【解析】解:关于x 的一元二次方程()()120x x m +--=的解为12,x x ,可以看作二次函数()()12m x x =+-与x 轴交点的横坐标,∵二次函数()()12m x x =+-与x 轴交点坐标为()()1,0,2,0-,如图:当0m >时,就是抛物线位于x 轴上方的部分,此时1x <-,或2x >;又∵12x x <∴121,2x x =-=;∴1212x x <-<<,故选:A .4.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <1【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点②方程ax2+bx+c=0(a≠0)的解为x=0或x=4,③a﹣b+c<0;④当0<x<4时,ax2﹣bx+c<0;⑤当x<2时,y随x增大而增大,其中结论正确的个数()A.1 B.2 C.3 D.4【答案】C【解析】①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线与x轴的交点坐标为:(0,0),(4,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=4,正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当0<x<4时,ax2﹣bx+c<0,结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C .6.抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230x bx t ++-=(t 为实数)在14x -<<的范围内有实数根,则t 的取值范围是( )A .211t ≤<B .2t ≥C .611t <<D .26t ≤<【答案】D【解析】∵23y x bx =++的对称轴为直线1x =,∴2b =-,∴223y x x =-+,∴一元二次方程230x bx t ++-=的实数根可以看做223y x x =-+与函数y t =的有交点,∵方程在14x -<<的范围内有实数根,当1x =-时,6y =,当4x =时,11y =,函数223y x x =-+在1x =时有最小值2,∴26t ≤<,故选D .7.若函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,则m 的值为( )A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C【解析】解:当m =1时,函数解析式为:y =﹣6x + 是一次函数,图象与x 轴有且只有一个交点,当m ≠1时,函数为二次函数,∵函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,∴62﹣4×(m ﹣1)× m =0,解得,m =﹣2或3,故选:C .8.二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b + 13)x +c =0(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定【答案】C 【解析】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a 0>, 0b a∴-<. 设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=-- 010300a a b am m >∴-<-<∴+< . 故选:C .9.如图,二次函数y =ax 2+bx+c 图象的对称轴是直线x =1,与x 轴一个交点A (3,0),则与x 轴的另一个交点坐标是( )A .(0,12-)B .(12-,0)C .(0,﹣1) D .(﹣1,0)【答案】D【解析】解:∵点A 的坐标为(3,0), ∴点A 关于x =1的对称点的坐标为(﹣1,0). 故选:D .10.已知二次函数226y x x m =-+的图象与x 轴没有交点,则m 的取值范围是_____. 【答案】92m >【解析】∵二次函数y=2x 2-6x+m 的图象与x 轴没有交点,∴△<0,∴(-6)2-4×2×m <0, 解得:92m >; 故答案为:92m >.11.抛物线2243y x x =--,当14x -≤≤时,y 的取值范围是__________. 【答案】513y -≤≤【解析】解:根据二次函数的解析式2243y x x =--可得 由a=2>0,可得抛物线的开口向上 对称轴为:41222b x a -=-=-=⨯ 所以可得在14x -≤≤范围内,二次函数在11x -≤≤ ,y 随x 的增大而减小,在14x <≤ 上y 随x 的增大而增大.所以当1x = 取得最小值,最小值为:2435y =--=- 当4x =取得最大值,最大值为:22444313y =⨯-⨯-= 所以513y -≤≤ 故答案为:513y -≤≤12.抛物线223y x x =--与x 轴的交点坐标是_____【答案】(10)-,,(3,0) 【解析】令y=0,则x 2-2x-3=0,解得x=3或x=-1.则抛物线y=x 2-2x-3与x 轴的交点坐标是(3,0),(-1,0).故答案为(3,0),(-1,0).13.已知函数 的图象如图所示,若直线 与该图象恰有两个不同的交点,则的取值范围为_____.【答案】【解析】解:直线 与该图象恰有三个不同的交点, 则直线与 有一个交点, ∴ ,∵与 有两个交点, ∴ , , ∴, ∴; 故答案为.14.抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx-+=-的解是___________ 【答案】12x =-,25x =.【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b a c a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x -1)2+c =b -bx 为:2(1)12a x a a ax --=-+,即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.15.已知m ,n 是方程(x ﹣a )(x ﹣b )﹣1=0(其中a <b )的两根,且m <n ,则a ,b ,m ,n 的大小关系是_____. 【答案】m <a <b <n【解析】∵函数y =(x ﹣a )(x ﹣b )与x 轴的交点坐标的横坐标为a 与b , 二次函数y =(x ﹣a )(x ﹣b )﹣1相当于y =(x ﹣a )(x ﹣b )向下平移一个单位, 又∵二次项系数为1,开口向上,如图所示:∴由图可得:m <a <b <n . 故答案为:m <a <b <n .16.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是_____.【答案】3x <-或1x >.【解析】解:∵抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,∴m n p -+=,3m n q +=,∴抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点,观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax bx c =++的下方,∴不等式2ax mx c n ++>的解集为3x <-或1x >. 故答案为:3x <-或1x >.17.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式mx +n <ax 2+bx +c 的解集是____.【答案】﹣1<x <4.【解析】观察函数图象可知:当﹣1<x <4时,直线y =mx+n 在抛物线y =ax 2+bx+c 的下方, ∴不等式mx+n <ax 2+bx+c 的解集为﹣1<x <4.故答案为:﹣1<x <4.18.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 【答案】(1)k =-3;(2)点P 的坐标为(2,-5)或(-2,-5).【解析】(1)∵抛物线y=x 2+(k 2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k 2+k -6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3;(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2, 当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x _____时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.【答案】(1)2323y x x =-++;(2)13≤;(3)103k <. 【解析】解:(1)由甲同学的错误可知c=3, 由甲同学提供的数据选x=-1,y=6;x=1,y=2,有6323a b a b =-+⎧⎨=++⎩,∴12a b =⎧⎨=-⎩,∴a=1,由甲同学给的数据a=1,c=3是正确的;由乙同学提供的数据,可知c=-1,选x=-1,y=-2;x=1,y=2,有2121a b a b -=--⎧⎨=+-⎩, ∴12a b =⎧⎨=⎩, ∴a=1,b=2,∴y=x 2+2x+3;(2)y=x 2+2x+3的对称轴为直线x=-1,抛物线开口向上,∴当-1x ≥时,y 的值随x 的值增大而增大; 故答案为-1≥;(3)方程()20ax bx c k a ++=≠有两个不相等的实数根,即x 2+2x+3-k=0有两个不相等的实数根,∴()4-430k ∆=->, ∴2k >;20.已知抛物线232y ax bx c =++.(1)若1a b ==,1c =-,求该抛物线与x 轴公共点的坐标;(2)若1a b ==,且当11x -<<时,抛物线与x 轴有且只有一个公共点,求c 的取值范围. 【答案】(1)()1,0-和1,03⎛⎫ ⎪⎝⎭.(2)13c =或51c -<≤- 【解析】(1)当1a b ==,1c =-时,抛物线为2321y x x =+-,方程23210x x +-=的两个根为11x =-,213x =.所以该抛物线与x 轴公共点的坐标是()1,0-和1,03⎛⎫⎪⎝⎭.(2)当1a b ==时,抛物线为232y x x c =++,且与x 轴有公共点.对于方程2320x x c ++=,判别式4120c ∆=-≥,有13c ≤.①当13c =时,由方程213203x x ++=,解得1213x x ==-,此时抛物线为21323y x x =++与x 轴只有一个公共点1,03⎛⎫- ⎪⎝⎭; ②当13c <时,11x =-时,1321y c c =-+=+,21x =时,2325y c c =++=+.由已知11x -<<时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为13x =-,应有1200y y ≤⎧⎨>⎩,即1050c c +≤⎧⎨+>⎩,解得51c -<≤-.综上,13c =或51c -<≤-. 21.已知函数()21y x m x m =-+-+(m 为常数). (1)该函数的图象与x 轴公共点的个数是( ). A .0 B .1 C .2 D .1或2(2)求证:不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上. (3)当23m -≤≤时,求该函数的图象的顶点纵坐标的取值范围.【答案】(1)D (2)详见解析;(3)当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤. 【解析】(1)因为()()()2214110m m m ∆=--⋅-⋅=+≥,故选D.(2)配方得()2221(1)124m m y x m x m x -+⎛⎫=-+-+=--+⎪⎝⎭, 所以该函数的图象的顶点坐标为()211,24m m ⎛⎫+- ⎪ ⎪⎝⎭. 把12m x -=代入()21y x =+,得221(1)124m m y -+⎛⎫=+=⎪⎝⎭. 因此,不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上.(3)设函数的图象的顶点纵坐标()214m z +=.当1m =-时,z 有最小值0.当1m <-时,z 随m 的增大而减小;当1m >-时,z 随m 的增大而增大.又当2m =-时,()221144z -+==;当3m =时,()23144z +==.因此,当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤.。

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程
2 2 2
2
2
不论m取何值, 抛物线与x轴总有公共点 .
(2) A(1,0)在抛物线y 2 x m x m 上 0 2 1 m 1 m
2 2 2 2 2
即 m m 2 0, (m 2)(m 1) 0 m1 2, m2 1 B点坐标为(2,0)
(1) 没有公共点 (2)有一个公共点
(3)有两个公共点
没有实数根 有两个相等的实数根
有两个不等的实数根
2 2 2
解:
(1)抛物线y x x 2与x轴有两个公共点 , 它的横坐标 2, 1 , 当x取公共点的横坐标时 , 函数的值是0.由此得出方程x x 2 0 根是 x1 2, x2 1. (2)抛物线y x 6 x 9与x轴有一个公共点 , 这点的横坐标是 3.当 x 3时, 函数的值是0.由此得出方程x 6 x 9 0有两个相等的 实数根 x1 x2 3. (3)抛物线y x x 1与x轴没有公共点 ,由此可知, 方程
即:y=0 。
-1 A 0
y B
解:根据题意得 -0.5x2+2x+2.5 = 0,
D x
解得x1=5,x2=-1(不合题意舍去)
答:水流的落地点D到A的距离是5m。
观察
下列二次函数的图象与 x轴有公共点吗? 如果有, 公共点的横坐标是多少 ?当x取公共 点的横坐标时 , 函数的值是多少?由此, 你能 得出相应的一元二次方 程的根吗? (1) y x x 2 ( 2) y x 6 x 9 (3) y x x 1
2 2
2Hale Waihona Puke (2)二次函数的图象与 x轴的位置关系有三种 :

22.2_第1课时二次函数与一元一次方程之间的关系

22.2_第1课时二次函数与一元一次方程之间的关系

没有实数根 O x
讨论点拨
课堂练习
• 课本47页 1、2、5
课堂小结
二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点有三 种情况: b2 – 4ac > 0 (1)有两个交点 b2 – 4ac= 0 (2)有一个交点 2 – 4ac< 0 b (3)没有交点
若抛物线y=ax2+bx+c与x轴有交点,则
20.5 h
你能结合图形指出 为什么球不能达到 20.5m的高度?
O
t
讨论点拨
?
(4)球从飞出到落地要用多少时间?
h
你能结合图形指出
为什么在两个时间 球的高度为0m吗?
O t
讨论点拨
?
从以上可以看出,
讨论点拨
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变量x 的值. 就是求方程3=-X2+4x的解, 例如,解方程X2-4x+3=0
问题 如图,以40m/s的速度将小球沿与地面成300角的方向击出时, 球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行 h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,
考虑以下问题:
(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?
(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
b2 – 4ac ≥0
课堂小结
二次函数y=ax2+bx+c的图象和x轴交点 Y △<0
△=0

22.2二次函数与一元二次方程

22.2二次函数与一元二次方程

攀 1 22.2 二次函数与一元二次方程1.二次函数y =ax 2+bx +c (a ≠0)的图象如图22-2-3所示,则不等式ax 2+bx +c <0的解集是( )A .x >-3B .x <1C .-3<x <1D .x <-3或x >12.二次函数y =ax 2+bx +c (a ≠0)的图象如图22-2-4所示,则下列结论中,正确的是( )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大3.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图22-2-5所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x =12C .当x <1时,y 随x2时,y >04.如图22-2-6所示是二次函数y =-x 2+2x +4的图象,使y ≤1成立的x 的取值范围是( )A .-1≤x ≤3B .x ≤-1C .x ≥3D .x ≤-1或x ≥35.函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,若点A 坐标为(-1,0),点B 坐标为(3,0),则下列说法正确的是( )A .b >0B .该抛物线的对称轴是x =-1C .当x =-3与x =5时,y 值相等D .若y >0时,-1<x <36.若二次函数y =-x 2+2x +k 的部分图象如图22-2-7所示,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=______7.已知二次函数y =ax 2+bx +c 的图象如图22-2-8所示,则:(1)这个二次函数的解析式为__________;(2)当x =____________时,y =3;(3)根据图象回答:当_____________时,y >0;当__________时,y <0.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图22-2-9所示,且关于x 的一元二次方程ax 2+bx +c -m =0没有实数根,有下列结论,①b 2-4ac >0 ②abc <0 ③m >2其中正确结论的个数是( )A .0B .1C .2D .39.二次函数y =ax 2+bx +c (a ≠0)的图象如图22-2-10所示,给出下列四个结论,其中正确结论的个数是 ( ) ①4ac -b 2<0 ②4a +c <2b ③3b +2c <0 ④m (am +b )+b <a (m ≠-1)A .4个B .3个C .2个D .1个 图22-2-9 图22-2-3 图22-2-4 图22-2-5 图22-2-6图22-2-10。

zs22.2.二次函数与一元二次方程

zs22.2.二次函数与一元二次方程

y=a(x-h)2。
1、已知抛物线y=x2-6x+a的顶点在x轴上,则 a= ;若抛物线与x轴有两个交点, 则a的范围是 ; 2、已知抛物线y=x2-2x+a+1与x轴最多只有一 个交点,则a的范围是 。 3、已知抛物线y=x2+px+q与x轴的两个交点为 (-2,0),(3,0),则p= ,q= 。
(5)a+b+c的符号: ∵x= 1时,y=a+b+c.∴a+b+c的值等于 抛物线上 横坐标为1点 的 纵坐标,它的符号 可以根据这个点与x轴的位置确定。
(6)a-b+c的符号:
∵x= -1时, y=a-b+c.∴a-b+c的符号可以 根据抛物线上 横坐标为 -1的点的纵坐标确定.
例 已知如图是二次函数y=ax2+bx+c的图象,判 断以下各式的值是正值还是负值. (1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b; (6)a+b+c;(7)a-b+c.
抛物线y=ax2+bx+c 和x轴公共点 一元二次方程 ax2+bx+c=0的根 一元二次方程 ax2+bx+c=0根的判别 式Δ=b2-4ac
有两个公共点 有一个公共点 即:顶点在x轴上 没有公共点
有两个不相等 的实数根 有两个相等 的实数根 没有实数根
b2-4ac > 0
b2-4ac = 0 b2-4ac < 0
抛物线y=ax2+bx+c中a,b,c的作用。
(1)a决定抛物线形状及开口方向,若 a 相 等,则形状相同。
①a>0开口向上; ②a<0开口向下。
a还影响对称轴和顶点的位置。

22.2 二次函数与一元二次方程

22.2 二次函数与一元二次方程

有交点,则 k的取值范围( B )
A
:
k
4 7
B
:
k
4 7
且k
0
C
:
k
4 7
D:k
4 7
且k
0
K≠0 b2-4ac≥0
请你把这节课你学到了东西告诉你的同桌,然
后告诉老师?
这节课应有以下内容:
二次函数与一 元二次方程的 关系
当二次函数y=ax2+bx+c中y的值 确定,求x的值时,二次函数就变 为一元二次方程。即当y取定值时, 二次函数就为一元二次方程。
B y= - 2 x2 + 3
C y= - x2 – 2x D y=-2(x+1)2 - 3
2.如果关于x的一元二次方程 x2-2x+m=0有两个相等的实
数根,则m=_1_,此时抛物线 y=x2-2x+m与x轴有 1 个交
点.
3.已知抛物线 y=x2 – 8x +c的顶点在 x轴上,则c=_1_6 .
当球飞行1s和3s时,它的高度为15m.
t1=1s
t2=3s
15m
15m
(2)解方程 20=20t-5t 2 t 2-4t+4=ቤተ መጻሕፍቲ ባይዱ t1=t2=2
当球飞行2s时,它的高度为20m.
t1=2s 20m
(3)解方程 20.5=20t-5t 2 t 2-4t+4.1=0
因为(-4)2-4×4.1<0,所以方程无解. 球的飞行高度达不到20.5m.
解:作y = x2-2x-2的图象,它与x轴的公共点的横坐标大约
是-0.7,2.7. 所以方程x2-2x-2=0的实数根为
x1≈-0.7,x2≈2.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综上所述,正确的说法是①②④.
解目 归纳总结
析标 突
1.根据抛物线确定一元二次方程(不等式)的解(解集):

不等式y<0即 不等式y>0
二次函数y=ax2 方程ax2+bx
ax2+bx+c<0 即ax2+bx+
+bx+c的图象 +c=0的解
的解集 c>0的解集
x=x1或x=x2 x1<x<x2 x<x1或x>x2
(1)y=2x2-3x;
(2)y=-x2-4x-1;
(3)y=x2+2x+5.
解目 (1)y=2x2-3x;
析标
突 解:(1)函数图象与x轴有两个公共点.

理由:令y=0,则2x2-3x=0,
因为(-3)2-4×2×0=9>0,
所以该方程有两个不相等的实数根,即函数y=2x2-3x的
图象与x轴有两个公共点.

方程x2+2x-10=0的根.(精确到0.1)
[解析] 欲估计一元二次方程x2+2x-10=0的根,必须先画出二次函数y =x2+2x-10的图象,确定根的大致范围,再进一步估算.
解目 析标
解:作出二次函数y=x2+2x-10的图象,如图.由图象可
突 破
知方程的一个根在-5与-4之间,另一个根在2与3之间.
的根
线y=-c
解目
(续表)
析标 突
步骤
结论

先将一元二次方程化为 x2+abx+ac=

0,移项后得
x2=-bax-ac,再在同一
两图象的交点的横 坐标就是方程 ax2
法三 直角坐标系中画出抛物线 y=x2 和直 +bx+c=0 的根
线 y=-bax-ac
解析总结反
小结
知识点一 二次函数与一元二次方程的关系

“三种方法”:
步骤
结论
方 直接作出二次函数y=ax2 法一 +bx+c的图象
图象与x轴的交点的横坐标 就是一元二次方程ax2+bx+ c=0的根
解目
(续表)
析标 突
步骤
结论

先将一元二次方程变形为ax2+
两图象的交点的横坐标
方 bx=-c,再在同一直角坐标系
就是方程ax2+bx+c=0
法二 中画出抛物线y=ax2+bx和直

如果抛物线y=ax2+bx+c与x轴有公共点,那么公共点的横
坐标就是方程ax2+bx+c=0的根.
解析总结反
知识点二 抛物线与x轴的位置关系与对应的一元二次方程根的 情况之间的关系

抛物线y=ax2+bx+c与x轴 一元二次方程ax2+bx+c=0的根
的位置关系
的情况
有两个公共点
有两个不相等的实数根
解析总结反
即m2-m+1=7,解得m1=3,m2=-2. ∴m的值为3或-2.

指出以上解答中存在的错误,并进行改正.
[答案] 错在未根据题意对m的值进行取舍. 改正如下:∵抛物线与y轴的负半轴相交,∴m-1<0. 当m=3时,m-1=2>0,不符合题意,舍去; 当m=-2时,m-1=-3<0,符合题意, ∴m的值为-2.
解目 析标
我们先求-5与-4之间的根,利用计算器探索如下:
突 破
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56
∴一个根约为-4.3,即x1≈-4.3. 同理可求得x2≈2.3.
解目 归纳总结
析标
突 利用二次函数的图象求一元二次方程ax2+bx+c=0的根的
+bx+c+3=0有两个相等的实数根,
则抛物线的顶点坐标为(1,-3).其 中正确的说法是_①__②__④___.(请写出
所有正确说法的序号)
图22-2-1
解目 [解析] (1)∵抛物线与x轴有两个公共点,
析标 突
∴b2-4ac>0.可见说法①正确.
破 (2)∵点(-1,0)和(3,0)的中点坐标是(1,0),∴抛物线的对称轴是直线x
理由:令y=0,则x2+2x+5=0,
因为22-4×1×5=-16<0,
所以该方程没有实数根,即函数y=x2+2x+5的图象与x轴
没有公共点.
解目 析标
例2 [教材补充例题]二次函数y=ax2+bx+c的图象如图22
突 -2-1所示,有下列说法:①b2-4ac>0;②抛物线的对

称轴为直线x=1;③当-1<x<3时,y>0;④若方程ax2
全品学练考
数学 九年级 上册 人教版
第 二
二次函数
十 二
22.2 二次函数与一元二次方程

-
22.2 二次函数与一元二次方程
目标突破 总结反思
解目 目标一 掌握抛物线与x轴的位置关系和对应的一元二次
析标
突 方程的根的情况之间的关系

例1 [教材补充例题]判断下列函数的图象与x轴的公共点情
况,并说明理由.
ห้องสมุดไป่ตู้
解目 (2)y=-x2-4x-1;
析标
突 破
(2)函数图象与x轴有两个公共点.
理由:令y=0,则-x2-4x-1=0,
因为(-4)2-4×(-1)×(-1)=12>0,
所以该方程有两个不相等的实数根,即函数y=-x2-4x-
1的图象与x轴有两个公共点.
解目 (3)y=x2+2x+5.
析标
突 破
(3)函数图象与x轴没有公共点.
=1.可见说法②正确.
(3)当-1<x<3时,图象位于x轴下方,因此函数值y<0.可见说法③错误.
(4)∵方程ax2+bx+c+3=0有两个相等的实数根,即抛物线y=ax2+bx+c
与平行于x轴的直线y=-3只有一个公共点,∴这个公共点是抛物线的顶
点.结合②可知顶点的坐标为(1,-3),可见说法④正确.
解目
(续表)
析标 突 破
不等式y<0即 不等式y>0 二次函数y=ax2 方程ax2+bx
ax2+bx+c<0 即ax2+bx+
+bx+c的图象 +c=0的解
的解集 c>0的解集
x=x1或x=x2 x<x1或x>x2 x1<x<x2
解目 析标
2.抛物线的对称轴与对应方程两根的关系:
突 破
(1)若抛物线 y=ax2+bx+c 与 x 轴的交点坐标为(x1,0),(x2,
0),则抛物线的对称轴为直线 x=x1+2 x2;
(2)若抛物线与 x 轴的一个交点坐标为(x1,0),对称轴为直线
x=x0,则抛物线与 x 轴的另一个交点坐标为(2x0-x1,0).
解目 目标二 会用二次函数的图象求一元二次方程的根
析标
突 例3 [教材例题针对训练]利用二次函数的图象估计一元二次
只有一个公共点
有两个相等的实数根
没有公共点
没有实数根
解总
反思
析结反 已知抛物线y=x2+mx+m-1与x轴交于点A(x1,0),B(x2,0),
思 与y轴的负半轴相交,且x12+x22+x1x2=7,求m的值.
解:依题意可知,x1,x2是一元二次方程x2+mx+m-1=0的
两根,
∴x1+x2=-m,x1x2=m-1. ∵x12+x22+x1x2=7,∴(x1+x2)2-x1x2=7,
相关文档
最新文档