最值问题在动态图形中的表现方式
探索最值误区,促进知识整合
探索最值误区,促进知识整合摘要:最值问题是初中数学的重要内容,学生解题时由于思维不够严密,常出现诸多误区.本文列举了一些常出现错误的例子,并提出了解决的方法.关键词:初中数学教学最值问题思维误区知识整合一“最值”指变量在某一变化过程中取得的最大值或最小值.在新课标中,最值问题是初中数学的重要内容,在日常生活中有着广泛的应用,如最大利润问题、最大面积问题、最低运费问题等.最值问题包括函数最值问题、不等式最值问题和几何最值问题等;在函数最值问题中,有二次函数最值、一次函数最值和反比例函数最值问题.对于二次函数y=ax+bx+c,当a>0时,它的图像开口向上,图像存在最低点,二次函数有最小值,最小值是顶点的纵坐标的值;当a0,所以二次函数有最小值,最小值是-4.这个的结论显然是错误的.其实在2≤x≤3范围内函数的图像在对称轴x=1的右侧,且y随x的增大而增大,故当x取最小数值2时,y的值最小为-3;当x取最大数值3时,y的值最大为0.事实上,在很多实际问题中,自变量往往受实际意义的限制,只能在某一范围内取值.因此,求二次函数的最值必须关注自变量取值范围对最值的影响,当顶点不在自变量取值范围内时,必须利用函数的增减性,以自变量取值范围中端点的函数值确定所求的最值.(二)忽略了a的符号对最值的影响.在某些问题中,建立起来的二次函数存在某一种最值,但要求的可能是另一种最值,因此不能盲目地用顶点纵坐标求最值,而应根据函数的增减性及自变量的取值范围确定.例2:如图,正方形abcd的边长为4,p是bc边上的一个动点,qp⊥ap交cd于q,设pb=x,△adq的面积为y.(1)求y与x之间的函数表达式;(2)当点p运动到什么位置时,△adq的面积最大?(三)忽略了其他函数在某一条件下存在最值.在一次函数y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减少.利用一次函数的增减性质,结合实际问题中自变量的取值范围,可解决有关最大利润、最低运费等的实际问题.例3:某报刊销售亭从报社购进某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社.在一个月内(以30天计算),有20天每天可以卖出100份,其余10天只能每天卖出60份,但每天报亭从报社订购的份数必须都相同.若报亭每天从报社订购报纸的份数为x(份),每月所获得利润为y(元).(1)写出y与x之间的函数关系式,并指出自变量的取值范围;(2)报亭应该每天从订购多少份报纸,才能使每月获得利润最大?最大利润是多少?由题意可建立y与x的函数关系:y=0.3(20x+10×60)-0.5×10(x-60),即y=x+480.学生往往没有注意到自变量的取值范围,认为该函数不存在最值,因而无从下手.事实上由题设可知,自变量的取值范围为60≤x≤100,且x为正整数,由于y随x的增大而增大,故当x取最大数值100时,对应的y值最大,最大利润为580元.例4:某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据猜测并确定y与x之间的函数关系式;(2)设经销此贺卡的销售利润为w元,试求w与x之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请求出当日销售单价x定为多少元时,才能获得最大的日销售利润?例5:在平面直角坐标系中,已知a(-2,-4),b(-1,-2),点p在y轴上,且pa+pb的值最小,求点p的坐标.如图,联想在直线上到直线同侧两点距离和最小的点的作法,作出点a关于y轴的对称点a′,求出直线a′b的函数表达式,再求出直线a′b与y轴的交点的坐标即为所求.这里,利用对称性质把pa转化,构造三角形两边和大于第三边的不等模型,当点p落在这一特殊位置上时,pa+pb的值最小.二那么,如何引导学生走出最值问题思维的误区呢?下面我谈谈在教学中的做法.(一)引导多方思考,加强知识联系.最值问题,涉及知识面广,解题方法灵活.出现以上误区,原因之一在于思维定势的负面效应,原因之二在于学生思维比较狭窄.因此,教学中应对一般二次函数的最值问题与其他最值问题进行比较,让学生明确在什么情况下,可直接由二次函数的顶点坐标求最值;什么情况下,需借助函数增减性并利用自变量取值范围求最值;什么情况下,需构造不等模型求最值.对生活中的函数问题、图形中的函数问题,引导学生关注自变量的取值范围,关注函数的增减性,加强相关知识的联系,培养学生思维的广阔性.(二)借图像识增减,提高思维效率.生活及图形中的函数最值问题,往往与函数自变量取值范围(函数的有界性)及函数的增减性有关,这些从函关系式上理解比较困难,借助图像观察,往往一目了然.因此,在教学中,应通过引导学生对图像的观察,加深对函数有界性和增减性的理解,从中发现函数的变化规律,在加深函数认识的过程中去发现函数的最值,培养学生思维的独创性.(三)通过动态演示,发现不变规律.对图形中的最值问题,可以利用几何画板等制作动态图形,借助图形的动态演示,引导学生探索图形性质,帮助建立图形中的函数关系,发现新的结论;通过数值自动跟踪及轨迹跟踪.让学生认识函数的有界性及增减性,认识函数的最值,从而激发学生学习兴趣.如在上面的例2中,可用几何画板制作动态图形,让点p运动时,△adq的面积随之变化,同时进行数值和轨迹跟踪,让学生通过观察发现,当动点p运动到bc的中点时,在图像上对应于抛物线的最低点,即顶点的坐标,说明顶点并非取得最大值,而是取得最小值.当点p向b运动时,函数的值趋近于8,当p与b重合时函数的值最大,最大值为8.综上可知,通过探索函数最值思维误区及应对策略,既有利于避免出现解答最值问题上的错误,又有利于促进不同知识的整合.在教学中,首先必须让学生熟练掌握用顶点坐标求二次函数最值的方法,通过不同最值问题的比较,形成最值问题解答技巧,提高综合运用知识的能力.。
专题41动态几何之最值问题-2022年中考数学备考百日捷进提升系列(解析版)
考点概述:在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量〔如线段的长度、图形的周长或面积、角的度数以及它们的和与差〕的最大值或最小值问题,称为最值问题。
在命题中通常以动态几何为背景来考查最值问题,问题设置新颖脱俗,以能力立意,重点考查应用意识、创新意识和综合素质。
解决平面几何最值问题的常用的方法有:〔1〕应用两点间线段最短的公理〔含应用三角形的三边关系〕求最值;〔2〕应用垂线段最短的性质求最值;〔3〕应用轴对称的性质求最值;〔4〕应用二次函数求最值;〔5〕应用其它知识求最值。
1.【江苏徐州】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为〔3,3〕,点C的坐标为〔12,0〕,点P为斜边OB上的一动点,那么PA+PC的最小值为〔〕A、132B、312C、3+192D、27【答案】B.【解析】试题分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,那么此时PA+PC的值最小,∴PA+PC=PD+PC=CD,2.【贵州六盘水】如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,那么这个最小值是【】A.3 B.4 C.5 D.6二、填空题1.【辽宁本溪】如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,假设点P、Q分别是AD和AE 上的动点,那么DQ+PQ的最小值是.【答案】C.试题分析:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,三、解答题1.【山东荷泽】如图,抛物线与轴交于A,B两点,与轴交于C点,且A〔﹣1,0〕.〔1〕求抛物线的解析式及顶点D的坐标;〔2〕判断△ABC的形状,证明你的结论;〔3〕点M〔m,0〕是轴上的一个动点,当MC+MD的值最小时,求m的值.【答案】〔1〕y=12x2-32x-2,〔32,258-〕;〔2〕直角三角形,证明见解析;〔3〕2441m=.【解析】〔3〕作出点C 关于x 轴的对称点C ′,那么C ′〔0,2〕,OC ′=2,连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC ′M=∠EDM ,∠C ′OM=∠DEM2.【重庆万州中学】如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为〔3,0〕,与y 轴交于C 〔0,3-〕点,点P 是直线BC 下方的抛物线上一动点.〔1〕求这个二次函数的表达式.〔2〕连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP’C ,那么是否存在点P ,使四边形POP’C 为菱形?假设存在,请求出此时点P 的坐标;假设不存在,请说明理由.〔3〕当点P 运动到什么位置时,四边形ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积. 23375()228x =--+ 当32x =时,四边形ABPC 的面积最大 此时P 点坐标为〔32,-154〕四边形ABPC 的面积的最大值为758.考点: 二次函数综合题. 3.【北京市密云县】四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点〔不与点A 、B 重合〕,连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于时,∠PAB =60°;当PA 的长度等于时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如下列图的直角坐标系〔点A 即为原点O〕,把△PAD、△P AB、△PBC的面积分别记为S1、S2、S3.坐标为〔a,b〕,试求2 S1 S3-S22的最大值,并求出此时a,b的值.试题解析:〔1〕假设∠PAB=60°,需∠PBA=30°,∵AB是直径,∴∠APB=90°,那么在Rt△PAB中,PA=12AB=2,∴当PA的长度等于2时,∠PAB=60°;△PAD是等腰三角形,当PA=PD时,如图1,∴DO⊥AP,AG=PG,又∵DA=2AO,∴AG=2OG,设AG为2x,OG为x,∴〔2x〕2+x2=4,。
HDR(高动态范围图片)
HDR 是英⽂ High-Dynamic Range 的缩写,中⽂译名为⾼动态光照渲染。
HDR 可以令3D 画⾯更像真,就像⼈的眼睛在游戏现场中。
在HDR 的帮助下,我们可以使⽤超出普通范围的颜⾊值,因⽽能渲染出更加真实的3D 场景。
HDR (⾼动态范围图⽚)HDR百科名⽚⽬录数字图像处理中的HDR国内的HDR 软件HDR 特效展开编辑本段数字图像处理中的HDR简介 HDR 的全称是High Dynamic Range,即⾼动态范围,⽐如所谓的⾼动态范围图象(HDRI )或者⾼动态范围渲染(HDRR )。
动态范围是指信号最⾼和最低值的相对⽐值。
⽬前的16位整型格式使⽤从“0”(⿊)到“1”(⽩)的颜⾊值,但是不允许所谓的“过范围”值,⽐如说⾦属表⾯⽐⽩⾊还要⽩的⾼光处的颜⾊值。
在HDR 的帮助下,我们可以使⽤超出普通范围的颜⾊值,因⽽能渲染出更加真实的3D 场景。
也许我们都有过这样的体验:开车经过⼀条⿊暗的隧道,⽽出⼝是耀眼的阳光,由于亮度的巨⼤反差,我们可能会突然眼前⼀⽚⽩光看不清周围的东西了,HDR 在这样的场景就能⼤展⾝⼿了。
下⾯是由OpenEXR ⽹站提供的HDR 的⼀个简单例⼦。
OpenEXR 是由⼯业光魔(Industrial Light & Magic )开发的⼀种HDR 标准。
⼯业光魔则是⼀家世界闻名的加州⼯作室,该⼯作室创造过许多惊⼈的CG 和视觉效果,⽐如1977年版的电影《星球⼤战》中的很多特效。
最左边的是原始图⽚,树⽊⾮常暗因为整体曝光受到远处⾼亮光的影响;中间图⽚的亮度提⾼了3级;⽽右边图⽚的亮度提⾼了7级,树⽊的细节很容易辨别,⽽背景极度明亮。
总之简单来说,HDR 可以⽤3句话来概括: 1.亮的地⽅可以⾮常亮 2.暗的地⽅可以⾮常暗 3.亮暗部的细节都很明显 HDR 是⽬前追求画⾯逼真度最新最先进的⼿段。
Crytek 已经准备把它加⼊Far Cry 的1.3补丁中,以及EPIC Games 的史诗⼤作Unreal Tournament 3。
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
数字时代动态图形艺术表现语言探析
一、数字时代动态图形的形成与发展史相对于静态图形,动态图形不仅仅是让图动起来那么简单。
在数字时代,动态是图形发展的新趋势与新特点。
静态图形的信息传播所依托的是平面媒体——报纸、杂志、城市街道上的公共广告牌。
传统平面媒介的信息传播效率往往比不上电子屏幕。
从城市里安装在建筑上的巨型荧幕,到每个人手里的智能设备,电子屏幕几乎涵盖了现代人生活的每一个角落。
动态图形应运而生正是数字时代对信息传播提出新要求的结果。
最早提出动态图形概念的是美国动画师约翰·惠特尼。
他于1960年创立了一家名为Motion Graphics的公司,并首次使用术语“Motion Graphics”。
现在,动态图形被广泛应用在影视节目的片头、商业广告、现场舞台屏幕、城市互动装置等多个领域。
动态图形是图形领域因媒介发展而产生的一种新变化,是最能代表当下的视觉形式。
动态图形是一种融合了影视语言与平面设计语言的图形,从本质上讲是一整段动态信息流。
最初的动态图形基本上可以看作是一小段影视动画,随着动态设计软件的发展与社会需求的变化,动态图形衍生出多种不同的形式。
After Effect、Cinema4D等动态设计软件的发展,增强了动态图形的表现力。
动态图形设计能够将一整段动态信息流强化出来,在短时间内给人视觉与听觉的双重感受。
当下,社会中信息的保留和传播手段多种多样,静态图形、文字、声音、动图视频等信息在社会中同时存在。
不同信息对人的吸引力不同。
从关注程度而言,文字不如图形,静态图形不如动态图形。
对于一个品牌而言,设计师需要同时打造品牌的静态形象和动态形象,帮助受众对品牌实现全方位感知。
二、动态图形的不同形式与应用领域动态图形在当下社会中应用广泛,形式多样,总体上可以将其分为简单动态图形与复杂动态图形两类。
简单动态图形是单个动态图形的变化,复杂动态图形则是多个动态图形的共生与组合。
简单动态图形一般由单个镜头或者两三个镜头组成。
时间比较短,3秒至15秒不等。
最值问题在动态图形中的表现方式
二、 最值体现为动态图形 中高的大小变化之
最
不与点B、 重合的任意一点, 连结AP 过点 P , 作 P 上 AP交 J Q [ ) 于点 Q, BP的长为X l, 设 Cl l C Q的长为 y n. c1
() 3 连结 PB、 P 设 2 AP D, 为 BD的周 长, 当2 取最小值时, 求点 P的坐标及 2 的最小值, 并
、 , D =2/, G=妄 , D 、 C / 3 , 3
‘ .
=1 ,
.
D G=、3 求得点D ,, / 的坐标为(,/) 4、3. ,
B / G +DG =、5 +(3 D = ̄ 2 2 / 、 ) B / = /
图 3
计, 充分体现 了数学主干知识在中考命题中的能 力张扬的主旋律.
本题 中的A C就是 “ , } [ 河” J、J 分别为“ E ) 出发
点” “ 和 草地 ” .
例 3 (0 5 2 0 年河南省课改区中考题) 如图5 ,
正 方 形 ABCD 的 边 长 为 4m,点 P是 BC边 上 c
-
_
凌
图2
、
最值体现为动态图形中最短的线段距离
图 1
之 和
例1 (05 20 年广东省深圳市课改区中考题)
已知: B △A 是边长 为4 的等边三角形, 在 B z 轴上, 点D为 BC的 中点, A在第一象 限内, 点
() 3如图 2 先作点 D关 于 A , C的对称点 D , 连结 BD 交 AC于点 P, P 则 B与 P D的和取最 小值, APBD的周长2 即 取最小值.
/ ' G
P在抛物线上.
() 2因为抛物线 Y= 一
立体几何中的动态问题
立体几何中的动态问题立体几何中的动态问题可以分为平移和旋转两类。
所求变量可以分为相关线、面、体的测度、角度和距离三类。
解决这类问题需要较高的空间想象能力和化归处理能力。
在高考选择题与填空题中,也时常会出现这类问题。
如果能够探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜。
解决立体几何中的动态问题,需要从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序。
这是解决动态问题的关键。
例如,在解决某个问题时,可以从图形中分化出几个点,然后找到其中的关系,进而得出答案。
在这个过程中,需要注意极端位置,通过穷尽极端特殊的方法,往往能够直接得出答案。
另外,使用法向量定平面也是解决立体几何中动态问题的一种有效方法。
通过寻找垂直,可以找到两个平面的夹角,从而解决问题。
综上所述,解决立体几何中的动态问题需要一定的数学基础和空间想象能力。
通过分化图形、寻找极端位置和使用法向量定平面等方法,可以有效地解决这类问题。
在解决立体几何中的“动态”问题时,可以利用角度计算和法向量定平面来转化线面角或面面角为线线角。
例如,在长方体ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小为π/6,一条直线l与直线CC1所成的角为π/12.如果空间有π/6,则直线l与平面A1BD所成角的取值范围是π/4.解析如下图所示:过点A作AE⊥BD于点E,连接A1E,则∠A1EA=π/6.过点A作AH⊥A1E于点H,则AH为平面A1BD的法向量,且∠A1AH=π/2.因为l与直线CC1所成角的大小为π/12,即l与直线A1A所成角的大小为π/6,那么l与直线AH所成角的取值范围为π/4 ~ π/3.又因为l与直线AH所成的角和l与平面A1BD所成的角互余,所以直线l与平面A1BD所成角的取值范围是π/4 ~ π/3.在解决立体几何中的“动态”问题时,可以通过锁定垂面来破解翻折或投影问题,将空间化为平面,从而更容易找到问题的核心。
初中数学最值系列问题之瓜豆原理
最值系列之瓜豆原理初中数学有一类动态问题叫做主从联动,这类问题应该说是非常出题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,个人理解可能是种瓜得瓜种豆得豆的意思吧,主动点运动的轨迹是什么,则从动点的轨迹就是什么。
也有的老师叫他旋转相似,或者手拉手。
我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些题目来集中训练一下这类题目,希望对你能有所帮助涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点),根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题中考数学专题:动态几何与函数问题以下是查字典数学网为您推荐的中考数学专题:动态几何与函数问题,希望本篇文章对您学习有所帮助。
中考数学专题:动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中减少复杂性增大灵活性的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(2)当时,阴影部分的面积=直角梯形的面积的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)【例2】已知:在矩形中,, .分别以所在直线为轴和轴,建立如图所示的平面直角坐标系. 是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点 .(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE和△FOB 这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。
数学动点问题技巧
数学动点问题技巧
数学动点问题是指在几何图形中,某一个点或多个点在运动变化时,引起图形中其他相关量随之变化的问题。
这类问题涉及的知识点较多,需要运用动态思维和函数思想进行解答。
以下是一些常见的数学动点问题技巧:
- 确定图形有定值:如果图形中的一些元素是确定的,例如角度、边长等,那么这个图形可能存在一些固定的数值或比例关系。
在求解时,可以利用这些固定的数值或比例关系来求解。
- 不定图形有最值:如果图形中的一些元素是不确定的,例如动点的位置等,那么这个图形可能存在一些极端的情况或最大值、最小值。
在求解时,可以通过分析动点的运动轨迹和范围,找到可能的最值情况。
数学动点问题需要灵活运用数学知识和思维方法,多加练习和思考,才能提高解决问题的能力。
在遇到数学动点问题时,你可以采用以下方法来确定图形中的定值和不定值:
- 定值:如果图形中的一些元素是确定的,例如角度、边长等,那么这个图形可能存在一些固定的数值或比例关系。
在求解时,可以利用这些固定的数值或比例关系来求解。
- 不定值:如果图形中的一些元素是不确定的,例如动点
的位置等,那么这个图形可能存在一些极端的情况或最大值、最小值。
在求解时,可以通过分析动点的运动轨迹和范围,找到可能的最值情况。
在求解数学动点问题时,需要灵活运用数学知识和思维方法,多加练习和思考,才能提高解决问题的能力。
2020年中考数学热点冲刺8 动态几何问题(含解析)
热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。
2024年高考数学总复习:立体几何中的动态问题
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
例析动态图形问题的解题策略
.
.
.—
—..Fra bibliotek...
—
—
20 0 8年第 l 2期
中学教研 ( 学) 数
= 6 +3 = 9 .
从而
=. 2 故选 D .
又点 P在面 P B内运动 , A 在平面 P B内以直线 B A A为 轴 ,
本题 先以静制 动 , 将动点 , 据圆 的性质选 取其 最 Ⅳ依
・
l O・
中学教研 ( 数学 )
20 0 8年第 l 2期
例 析 动 态 图 形 问 题 的 解 题 策 略
●钱 从新 ( 柳市中学 浙江乐清 350 ) 264
动态 图形 问题是 指图形 中涉及到运 动变 化 的问题. 相
对 于静态 的图形 问题 , 它对能力 的要求更高. 这类 问题 多以
例 1 如 图 1A ,B是平面 的斜线段 , A为斜足 , 若点 P 在平 面 O 内运 动, t 使得 AA P的面积为定值 , B 则动点 P的轨
迹 是 A. 圆 B 椭 圆 . ( )
的取值 范围是—
—一
c 一条直线 .
D 两条平行直线 . (0 8年浙江省数 学高考试题) 20
解 决动态图形问题 有许多 常用 的策略 , 学生 若能 掌握
A D) B ∥a的情形通 过计算 比较 可 以排 除 ) 得 射影 面积 的 ,
这些策 略 , 必有利于其能力的提升. 笔者 选择具有典 型性的
问题 例 析这 些策 略 , 以助 教 学 之用 . 1 动 态 想 象 。 观破 解 直
(0 6年浙江省数学高考试题 ) 20
分析
让正 四面体绕 A B旋转 , 动态想象其投影面积的
高中数学论文例说用二次函数求图形面积的最值
例说用二次函数求图形面积的最值二次函数常用来解决最优化问题这类问题。
而图形面积最优化问题已经走进各省市的中考试卷。
下面分类予以说明。
一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含x 的代数式表示出矩形的长与宽。
解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=;又∵180,0180<x<x >x >∴⎩⎨⎧- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
点评:在回扣问题实际时,一定注意不要遗漏了单位。
2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
点评:如果设养鸡场的宽为x ,上述函数关系式如何变化?请读者自己完成。
初中最值问题汇总(将军饮马,辅助圆,瓜豆原理,“胡不归”问题,阿氏圆问题,费马点)72页
初中最值问题汇总(将军饮马,辅助圆,瓜豆原理,“胡不归”问题,阿氏圆问题,费马点)最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?军营B将军河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.AP''当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
小专题(三)特殊平行四边形中的最值问题
小专题(三)特殊平行四边形中的最值问题【例】(盐城中考)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=4,EF=43,∠BAD=60°,且AB>4 3.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【思路点拨】(1)求∠EPF的大小,就是解△EFP,通过作底边上的高转化为直角三角形解决;(2)这里∠BAD+∠EPF =180°,PE=PF,可通过构造全等三角形解决问题;(3)观察图形,作PM⊥AB于M,AP的长随PM大小的变化而变化.【方法归纳】动态图形中最值问题关键要改变思考的角度,善于转化为另一个量的最值问题考虑.1.如图,∠MON=90°,矩形ABCD的顶点A,B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离是多少?2.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB 的最小值.参考答案【例】(1)过点P 作PG ⊥EF ,垂足为G.∵PE =PF ,PG ⊥EF ,∴FG =EG =23,∠FPG =∠EPG =12∠EPF. ∵EP =4,∴在Rt △FPG 中,由勾股定理得PG =2.∴PG =12PF.∴∠PFG =30°.∴∠FPG =60°.∴∠EPF =2∠FPG =120°.(20作PM ⊥AB ,PN ⊥AD ,垂足分别为M 、N.在菱形ABCD 中,∠DAC =∠BAC ,∴点P 到AB 、AD 两边的距离相等,即PM =PN.∵在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF.∴FN =EM.在Rt △PMA 中,∠PMA =90°,∠PAM =12∠DAB =30°,∴AM =3 3. 同理:AN =3 3.∴AE +AF =(AM -EM)+(AN +NF)=AM +AN =6 3.(3)当EF ⊥AC ,点P 在EF 右侧时,AP 有最大值,当EF ⊥AC ,点P 在EF 左侧时,AP 有最小值.故AP 的最大值为8,AP 的最小值为4.针对训练1.取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大.∵AB =2,BC =1,∴OE =AE =12AB =1,DE =AD 2+AE 2=12+12= 2. ∴OD 的最大值为2+1.2.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD.∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°.∴∠COA =∠DOB.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴FC ⊥CD ,OD =OF =OC.∴CA =DA.∴OA =12CF =1.∴ AB = 2.∴AB 的最小值为 2.。
中考15题最大、小值问题
九年级数学中考复习教学资源-----15题最大、小值问题黄陂区李集中学 张峰 150********一、隐圆与相似相结合的最值问题【例1】圆O 中A 、B 在圆O 上,点C 在圆O 内,∠ABC =90°,tan ∠BAC =3/4,圆的半径为3,当A 在圆O 上运动时,求OC 的最小值【分析】:∠ABC =90°,tan ∠BAC =3/4,∠ACB 及其邻补角均为定角,延长BC 交圆O 于F ,点C 在过A 、C 、F 三点的圆E 上运动。
【解】:延长BC 交圆O 于F ,连AF ,∠ABC =90,∴AF 为直径,AF =6, ∠ACF 不变,点C 在过A 、C 、F 三点的圆E 上运动 ∴CE =3.75,EO =2.25,OC ≥CE-OE=3.75-2.25=1.5当E 、O 、C 三点共线时,OC 最小为1.5练习:如图1,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连结PA .设PA =x ,PB =y ,则(x -y)的最大值是_____. 分析:AC 为⊙O 的直径,连结PC .由△ACP ∽△PAB ,得所以当x =4时,x -y 最大,最大值为2.二、利用不等式求最小值【例2】如图,在边长为1的等边三角形OAB 中,以边AB 为直径作圆D ,在O 为圆心,OA 长为半径作圆O ,,C 为半圆弧AB 上的一动点(不与A 、B 两点重合),射线AC 交圆O 于E ,BC =a ,AC =b ,求a+b 的最大值。
2922,215546sin ,,54sin 43tan =-===∠=∠=∠=∠∴=∠AD FD AD D AF FD ACB D ACB BAC ,)4(8181,81.8222+-=-=-=∴=x x x y x x y y x x PB PA AP AC ,即=2)(21,122222≤++≥+=+b a b a b a b a练习:等腰Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作圆O ,圆O 交AC 于另一点F ,在此运动变化过程中,线段EF 长度的最小值是 。
中考数学动点问题题型方法归纳
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点———-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨.一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A(8,0) B(0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8—t )t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-————①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标. 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm, ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1位和2个长度单位的速度沿OC 和BO 停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。