初二数学辅导讲义(3)--二次根式
初二数学经典讲义 二次根式(基础)知识讲解
《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b ≥>商的算术平方根化简公式:0,0)a b =≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).≠. 2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a <,化简二次根式3a b -的正确结果是( ).A.a ab --B. a ab -C. a abD.a ab -【答案】A.3.下列二次根式中属于最简二次根式的是( ).1448ab44a +【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.下列计算错误的是( ).A. 14772⨯=B. 60523÷=C. 9258a a a +=D. 3223-= 【答案】 D.【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;选项B :605605123423÷=÷==⨯=,故正确;选项C925358a a a a a +=+=故正确;选项D :32222-= 故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题. 举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)⋅. 【答案与解析】201020102010=(32)32)(32)(32)32)32)132)3 2.⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6 已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)1313331=3x x x xx x x =+∴->∴=--++==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【高清课堂:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11+==-(+)=-=3--ab ab a bb a b a ab∴+原式.。
《二次根式》 讲义
《二次根式》讲义一、二次根式的定义形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。
其中,\(\sqrt{}\)称为二次根号,\(a\)叫做被开方数。
需要特别注意的是,二次根式有两个非常重要的限制条件:一是根指数为 2;二是被开方数必须是非负数。
例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)等都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。
二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a \geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。
2、\((\sqrt{a})^2 = a\)(\(a\geq 0\))例如,\((\sqrt{7})^2 = 7\)。
3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))例如,\(\sqrt{12} =\sqrt{4\times 3} =\sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}\)。
4、\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\sqrt{\dfrac{18}{2}}=\dfrac{\sqrt{18}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\sqrt{2}}= 3\)。
三、二次根式的化简化简二次根式是二次根式运算中的重要环节,其目的是将二次根式化为最简二次根式。
最简二次根式需要满足以下两个条件:1、被开方数不含分母;2、被开方数中不含能开得尽方的因数或因式。
二次根式辅导讲义
二次根式一、知识梳理1、二次根式的概念和性质二次根式的定义:形如a (0a ≥)的式子叫做二次根式.注意点:(1)被开方数是正数或0;(2)二次根式a (0a ≥)表示非负数a 的算术平方根.二次根式的性质:(1)二次根式的非负性:0a ≥;(2)2()(0)a a a =≥;(3)2(0)(0)(0)a a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)当0a ≥时,22()a a =.2、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开 得尽方的因数或因式.这样的二次根式叫做最简二次根式.最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.3、二次根式的加减同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式.二次根式的加减同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次 根式.合并同类二次根式:()a x b x a b x +=+,同类二次根式才可加减合并.分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b+与a b-互为有理化因式;分式有理化时,一定要保证有理化因式不为0.4、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义计算.5、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对于二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.6、根式的大小比较比较大小的方法1.作差法:比较a、b的大小,0,0,0,a b a b a ba b>>⎧⎪-==⎨⎪<<⎩2.作商法:比较a、b的大小,当0,0a b>>时,可以采用作商法,1,1,1,a b aa b ba b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法(1)0a b a b>>⇔>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法(4)分子有理化(5)倒数法7、二次根式的乘除二次根式的乘除法二次根式的乘法法则:a b ab⋅=(0a≥,0b≥).二次根式的除法法则:a abb=(0a≥,0b>).说明:利用乘除法则时注意a、b的取值范围,对于ab a b=⋅,a、b都非负,否则不成立.二、典型例题题型一、二次根式的概念和性质例1: 函数1x y x =-中自变量x 的取值范围是( ) A .1x ≥B .1x <且0x ≠C .1x >D .1x ≥且0x ≠【答案】C【解析】该题考查的是函数的定义域.根式下的式子在非负条件下有意义,分数在分母不为0的条件下有意义,综上所述,10x -≥,且10x -≠,∴1x >,故本题答案为C .例2: 若320-+-=x y ,则xy 的值为____.A .8B .6C .5D .9【答案】A【解析】该题考查的是的非负性.根据题意得:3020x y -=⎧⎨-=⎩解得:32x y =⎧⎨=⎩∴32x y =,故选A .变式: 已知:()322512012x x y x -+-=+--,求x y 的值. 【答案】25【解析】该题考查的是二次根式的性质.∵()322512012x xy x -+-=+--有意义∴()32020120120x x x ⎧-≥⎪⎪-≥⎨⎪--≠⎪⎩所以2x =,055y =+=∴2525x y ==题型二、最简二次根式例1、下列二次根式中,最简二次根式是( )A .22xB .0.5C .22x y +D .1x 【答案】C【解析】该题考查最简二次根式.A 、x x 222=被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误; B 、120.522==,被开方数含分母,不是最简二次根式;故本选项错误; C 、22x y +满足最简二次根式的定义,是最简二次根式;D 、1x x x=,被开方数含能开得尽方的因数,不是最简二次根式. 故选C .例2、若最简二次根式2342a +与22613a -是同类二次根式,则a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=-解得:1a =±变式、若2,m ,4为三角形三边,化简:()()2226m m -+-=____________.【答案】4【解析】该题考查的是根式的化简求值.∵2,m ,4为三角形三边,可知包括如下关系:①24m +>,即6m <②24m +>,即2m >∴原式264m m =-+-=题型三、二次根式的加减例1、计算124183-⨯=__________.【答案】6【解析】该题考查的是二次根式的计算.原式346923=⨯-⨯⨯326323=-⨯ 2666=-=例2、111115533131317+++=++++____.【答案】1714-【解析】该题考查根式的分母有理化.11115135133171317144444155********-----+++=+++=++++ 故答案为1714-. 变式、已知32x =+,32y =-,则33_________x y xy +=.【答案】10【解析】因为32x =+,32y =-,所以()()32321xy =+-=,()()323223x y +=++-=,所以()()()22332221232110x y xy xy x y xy x y xy ⎡⎤⎡⎤+=+=+-=⨯-⨯=⎢⎥⎣⎦⎣⎦题型四、二次根式综合运算例1、化简:2244112a a a a -+--+(112a ≤≤)【答案】32a -【解析】()()222244112211211a a a a a a a a -+--+---=---,因为112a ≤≤,所以原式21121132a a a a a =---=-+-=-例2、若352x y +=-,325x y -=-,求xy .【答案】52-【解析】2()352x y +=-;2()325x y -=-∴22()()352(325)5244x y x y xy +-----===-变式、化简22691025a a a a +++-+【答案】当3a <-时,原式=22a -+;当35a -≤<时,原式=8;当5a ≥时,原式=22a -;【解析】()()22226910253535a a a a a a a a +++-+=++-=++-,当3a <-时,原式353522a a a a a =++-=---+=-+;当35a -≤<时,原式35358a a a a =++-=+-+=;当5a ≥时,原式353522a a a a a =++-=++-=-题型五、二次根式化简求值例1、化简:()221269x x x -+-+=____【答案】43x -【解析】该题考查根式的化简.()()2221269123x x x x x -+-+=-+-∵由题得120x -≥,12x ≤∴()2333x x x -=-=-.∴原式12343x x x =-+-=-.故答案为43x -.例2、化简:108322++.【答案】42+【解析】22108322108(12)108(12)1882(42)42++=++=++=+=+=+变式、化简:(1)412-(2)415+【答案】(1)31-(2)1062+【解析】(1)()24124233131-=-=-=- (2)221064158215(53)222++=+=+=题型六、根式的大小比较例1、比较大小:512-_______12.(填“>”、“<”或“=”). 【答案】>【解析】该题考查的是二次根式比大小.5115115254022222------===>,即511022-->, 即51122->. 例2、设120082006,2007A B =-=,比较大小:A ____B .【答案】A B >【解析】222008200620082006A ==+-,22220072007B ==;2008200622007+< ∴22A B< ∴A B >变式、已知21a =-,226b =-,62c =-,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c b a <<【答案】B【解析】()()221,223,2322a b c ⎛⎫=-=-=- ⎪ ⎪⎝⎭2222(231)2(13)(2223)0222b a -=--+=-+=+->,b a > 2222(132)2(13)(2223)0222a c -=--+=-+=+->,a c >b ac >>题型七、二次根式的乘除例1、下列计算正确的是( )A .235⋅=B .236⋅=C .84=D .2(3)3-=-【答案】B【解析】根据二次根式的乘法运算法则,可得236⋅=,故答案为B 选项.例2、下列计算结果正确的是( )A .257+=B .2510⨯=C .3223-=D .25105=【答案】B【解析】该题考查的是二次根式计算.A 选项2与5不是同类项,不能合并,故本选项错误;B 选项252510⨯=⨯=,故本选项正确;C 选项32222-=,故本选项错误;D 选项21055=,故本选项错误. 故答案是B .变式、已知:4322232b a a =-+-+,求11a b +的平方根.【答案】2±【解析】该题考查的是二次根式.4322232b a a =-+-+,根据被开方数的非负性我们知道320230a a -≥⎧⎨-≥⎩,所以23a =, 代入得43222322b a a =-+-+=,所以1131222a b +=+=,平方根为2±三、课堂巩固1、函数11y x =-中自变量的取值范围是( B )A .1x ≠B .1x >C .1x ≥D .1x ≥-2、对于所有实数,a b ,下列等式总能成立的是( C )A .()2a b a b +=+B .22a b a b +=+C .()22222a b a b +=+ D .()2a b a b +=+ 3、函数12y x =+中,自变量x 的取值范围是2->x 4、实数P 在数轴上的位置如图所示,化简()()2223p p -+-=15、计算:=⨯121726,=--)84)(213(24, =⨯-03.027.02-0.18,=÷-327348-5.6、化简:()221269x x x -+-+=x 34-.7、设120082006,2007A B =-=,比较大小:A >B . 8、已知: 21x =-,求223x x +-的值.()()()()2222231322-=-+=+-=-+x x x x 9、已知:,x y 为实数,且113y x x <-+-+,化简:23816y y y ---+. 1=x 3<y 原式=()1-4343=---=---y y y y1 2 3 4 p课后作业1、函数2x y x-=中,自变量x 的取值范围是( A ) A .2x ≤且0x ≠B .2x ≤C .2x <且0x ≠D .0x ≠2、若()424A a =+,则A =( A ) A .24a +B .22a +C .()222a + D .()224a + 3、若2(2)10m n ++-= 则m n -= -3 .4、在下列二次根式22211025312232322a a a a b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有6个.5、若最简二次根式35a -与3a +是同类二次根式,则a =___4___.6、若231604b a a +-+=-,则3223a b a b +=-___-18___.7、比较大小:512-___>___12.(填“>”、“<”或“=”). 8、计算:01186(121)221+---- 原式=01232212=--++9、化简:(1)412-原式=()13132-=- (2)415+221064158215(53)222++=+=+=。
二次根式讲义(初次、基础版)
二次根式【知识要点】 必杀技:要注意二次根式中字母的取值范围: 被开方数必须是非负数.1. 二次根式的主要性质: ①⎩⎨⎧<-≥==002a a a a a a ; ②()a a =2(),0≥a ; ③()0,0≥≥⋅=b a b a ab ④()0,0>≥==b a b ab ba b a ; ⑤()()b a b a b a b a ba b a --=-+-=+1; ⑥b a b a ba -+=-1. A 、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式,像这样的二次根式成为最简二次根式最简二次根式的条件:①根号内不含有开的尽方的因数或因式②根号内不含有分母③分母不含有根号B 、同类二次根式:被开方数相同的最简二次根式叫做同类二次根式C 、乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a abD 、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a E 、合并同类二次根式:__________________;=-=+a n a m a n a m【典型例题】例1.x 是怎样的实数时,下列二次根式有意义?(1)1+x ; (2)23-x ; (3)123+x ; (4)x231-.例2.若a a ---33有意义,则a 的值为______________.例3.若22)2()2(-=-x x ,则x 的取值范围是________________.例4.已知2<x <3,化简:3)2(2-+-x x .例5.数a 、b 在数轴上的位置如图所示,化简222)()1()1(b a b a ---++.例1、乘法运算(1))169()25(-⨯- (2)1527⨯ (3)228n m (4)a a 122532⋅-例2:除法运算(1)354- (2)531513÷ (3)921.15004.0⨯⨯ (4)2294a b例3:加减混合运算(1)4832315311312--+(2)xx x x 1246932-+二次根式加减时,可以先将二次根式化简成最简二次根式,再合并同类二次根式,一般步骤为: 化简→分类→合并例1、计算:(1)ab ab ab b a ÷+-)3(33,其中0,0>>b a(2)312)22(28++-(3)32)2145051183(÷-+(4)20)21()23(3632918-+-++--【变式练习】计算:6、27348612421-+-; (2))312218(21812-+--(3)a ab a b ab a 4322763232+-,其中0>ab(4)33)2321418(÷---【课堂练习】1.如果03332=⎪⎪⎭⎫ ⎝⎛-++y x ,那么()=2005xy . 2.已知y x ,的实数,214422-+-+-=x x x y ,则y x 43+的值为 . 3.化简下列各式:(1)()()()44322>---a a a(2)()()233522-+---4.已知23-=a ,求121232---++a a a a a 的值.【贴近中考】1. (2011 江苏省南京市)计算)(12-=___________.2. (2011 江苏省扬州市)=_______________.3. (2011 内蒙古包头市)_________4. (2011 青海省)___________.5. (2011 山东省菏泽市) 实数a在数轴上的位置如图所示,则)A. 7B. -7C. 2a-15D. 无法确定6. (2011 山东省济宁市) 下列各式计算正确的是()A=B.2=C.=D.=-7. (2011 山东省聊城市)=_____________.8. (2011 山东省临沂市)计算)A.B.5-C.5D.。
八年级数学 二次根式 专题讲义
拓展:已知
,则 a ______。
例 3.已知 a>b>0,a+b=6 ab ,则
A.
a b 的值为( ) a b
C. 2 D.
2 2
B.2
1 2
例 4.对于题目“化简求值:
甲的解答是:
1 1 1 + a 2 2 ,其中 a= ”,甲、乙两个学生的解答不同. 2 5 a a
1 1 1 1 1 1 2 49 + a 2 2 = + ( a)2 = + -a= a 2 a a a a a 5 a a 1 1 1 1 1 1 1 + a 2 2 = + ( a)2 = +a- =a= 2 5 a a a a a a
二次根式
知识点一:二次根式、最简二次根式、同类二次根式、二次根式的性质(双重非负性) 【知识梳理】
(1) 二次根式的概念 一般地,形如 a (a≥0)的式子叫做二次根式 注:1)二次根式必须含有根号“ ”;
2)a可以是数,也可以是代数式;但a必须是非负数或代数式值是非负数; 3)形如b a 的式子也是二次根式; (2)最简二次根式: 最简二次根式的定义:①被开方数是整数,因式是整式; ②被开方数中不含能开得尽方的数或因式. (3)同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即 可以合并的两个根式 (4)二次根式的性质(双重非负性) 性质一: a2 =a(a≥0),同时理解当 a<0 时, a2 =-a 性质二:( a )2=a(a≥0),反之:a=( a )2(a≥0)
【例题精讲】 例 1.
1、若 y= x 5 + 5 x +2011,则 x+y=
新编八年级数学二次根式新课讲义(全四讲)
新编八年级数学二次根式新课讲义(全四讲)第一讲 二次根式一、复习引入:(1)已知x 2= a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
二、知识点梳理:二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式,“”称为二次根号二次根式的性质:(1))0(0≥≥a a (2))0()(2≥=a a a (3)a a =2三、经典例题:例1:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,3412+x例2.x 取何值时,下列各二次根式有意义?①43-x③例3、(1a 的值为___________.(2)若x -在实数范围内有意义,则x 为( )。
A.正数 B.负数 C.非负数D.非正数例4.在实数范围内因式分解72-x 4a 2-11例5(1)、计算:=24 22.0= =220观察其结果与根号内幂底数的关系,归纳得到: 当=>2,0a a 时(2)、计算:=-2)4(-2)2.0(= =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 (3)、计算:=20 ,当==2,0a a 时归纳总结:=2a例6.化简下列各式(1))0(42≥x x (2) 4x(3))3()3(2≥-a a (4)()232+x (x <-2)例7. 已知:b a b a ⨯=⨯,把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x四、课堂练习 1. x 。
2.如果等式2)(x -= x 成立,那么x 为( )。
A x ≤0; B.x=0 ; C.x<0; D.x ≥03. 若20a -=,则 2a b -= 。
(word完整版)初二数学二次根式概念及性质讲义
二次根式的概念1、判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、计算 : (1) 2)4((2) (3)2)5.0((4)2)31(3、 x 取何值时,下列各二次根式有意义?①43-x ③ 4、(1)若a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数【总结】 1、二次根式的基本性质(a )2=a 成立的条件是a ≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
【拓展延伸】1、(1)在式子xx +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.(3)已知y =x -3+23--x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解72-x 4a 2-11【练习】A 组(一)填空题:1、2)3(x --2123⎪⎪⎫ ⎛2、 在实数范围内因式分解:(1)x 2-9= x 2 - ( )2= (x+ ____)(x-____)(2) x 2 - 3 = x 2 - ( ) 2 = (x+ _____) (x- _____)(二)选择题:1、计算( )A. 169B.-13C±13 D.132、已知的值不能确定3、下列计算中,不正确的是 ( )。
A. 3= 2)3( B 0.5=2)5.0( C .2)3.0(=0.3 D 2)75(=35B 组(一)选择题:1、下列各式中,正确的是( )。
最新数学八年级下第一章第一节《二次根式》课件教学讲义ppt课件
下列各式中哪些是二次根式?
7, 1, x6, x2y(y0), x2y2, 3
38, 2x22x 5, a1
?
7, 1, x2y(y0), x2y2, a1 3
说一说:
下列各式是二次根式吗?
(1) 32, (2)6,(3) 12, (4)-m(m≤0), (5) xy(x,y 异号), (6) a2 1 , (7)3 5
?
a 1
求下列二次根式中字母的取值范围:
1 a1
3 a32
2 1
1 2a
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零; ②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x1 x 1 (2) 3xx0
(3) 4x2x为全体实数(4) 1 x
(5) x3
注意:为了方便起见,我们把一个数的算术平方根 也叫做二次根式。如 3 , 1
2
思考: a 1 是不是 二次根式?
不是,它是 二次根式 的代数式.
形 如 a (a 0 ) 的 式 子 叫 做 二 次 根 式 .
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
4. a≥0, a≥0 ( 双重非负性)
4 25x 5 2x12
6 x532x
7 2 x 1
1 x
(8)
1、若二次根式 x 2 的值为3,求x的值.
2.物体自由下落时,下落距离h(米)可用公 式 h=5t2来估计,其中t(秒)表示物体下落所 经过的时间.
(1)把这个公式变形成用h表示t的公式
(2)一个物体从54.5米高的塔顶自由下落, 落到地面需几秒(精确到0.1 秒)?
二次根式讲义
教学情况记录表课程类别□同步□串讲□其他(请注明类别:_____________________)本次课授课目标1、了解二次根式和最简二次根式的概念2、理解二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算3、会确定二次根式有意义的条件教学重点二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算教学难点二次根式的混合运算教学步骤及内容一、错题回顾二、知识总结1、二次根式的概念(例1)一般地,我们把形如)0(≥aa的式子叫做二次根式.在二次根式中,a可以是一个数,也可以是一个代数式,但不管是什么形式,作为被开方数的a必须满足0≥a,当0<a时,二次根式无意义.也就是说,当被开方数0≥a时,二次根式才有意义.注意:二次根式的两个基本特征:一是根指数为2,二是被开方数为非负数.比如)1(1,0,2≥-aa等均是二次根式,而像1,32---a等均不是二次根式. 2、二次根式的性质(例2)(1)二次根式的非负性,即)0(0≥≥aa,这一性质也是非负数的算术平方根. (2)一个非负数的算术平方根的平方是它本身,即)0()(2≥=aaa.把公式)0()(2≥=aaa反过来就得到了式子)0()(2≥=aaa,也就是说,逆用这一性质,可以把任何一个非负数写成一个数的平方的形式.(3)任意一个数的平方的算术平方根等于它本身的绝对值,即aa=2.3、积的算术平方根的性质(例3)积的算术平方根的性质:积的算术平方根等于积中各因式的算术平方根的积,即baba∙=∙).,0(≥≥ba注意:(1)在这个性质中,ba,可以是实数,也可以是代数式,但不管是实数,还是代数式,都必须使二次根式有意义,即0,0≥≥b a .要防止出现94)9()4(-⨯-=-⨯-这样的错误.(2)另外该性质并非局限于被开方数为两个因数,它可以推广到更多个,如)0,0,0(≥≥≥∙∙=c b a c b a abc .(3)如果一个二次根式的被开方数比较大,可以运用该性质将其分解为若干个,再分别运用a a =2化简二次根式.4、商的算术平方根的性质(例4)商的算术平方根的性质:商的算术平方根等于被除数的算术平方根与除数的算术平方根的商,即).0,0)((>≥÷=÷=b a b a b a ba b a 或可以简单地说:商的算术平方根等于算术平方根的商.注意:(1)在运用商的算术平方根的性质解决有关计算时,一定要准确把握性质成立的条件,即被开方数的分子为非负数,而分母大于0.(2)如果被开方数是带分数,应先化成假分数,如412必须先化成49,注意412412⨯≠;如果被开方数是小数,应先化成分数,如5.0必须先化成21 5、最简二次根式(例5)定义:一般地,如果一个二次根式满足下面两个条件,那么,我们把这样的二次根式叫做最简二次根式.(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式如229,465,54,63都是最简二次根式.要注意分母中不能含有根号,如21不是最简二次根式.把二次根式化为最简二次根式时,当被开方数为小数或分数时,可运用商的算术平方根的性质变形,使被开方数化为整数;当被开方数为整数时,可以把它分解因数,再运用积的算术平方根的性质变形,化为最简二次根式.6、二次根式的乘法和除法(例6)(1)把积的算术平方根的性质)0,0(≥≥∙=b a b a ab 反过来写为)0,0(≥≥∙=∙b a b a b a ,则为二次根式的乘法法则,即二次根式相乘,把被开方数相乘,根指数不变.二次根式的乘法法则可推广到多个二次根式进行相乘的运算,如)0,0,0(≥≥≥=∙∙c b a abc c b a .二次根式前面有系数时,可类比单项式乘单项式的法则进行计算,即系数之积作为积的系数,被开方数之积作为被开方数.(2)把商的算术平方根的性质).0,0)((>≥÷=÷=b a b a b a ba b a 或反过来写为)00)((>≥÷=÷=b a b a b a b a ba ,或,则为二次根式的除法法则,即二次根式相除,就是把被开方数相除,根指数不变.注意:二次根式的乘、除法法则和积的算术平方根、商的算术平方根的性质互为逆运算,在计算和化简二次根式时可结合题目灵活运用,但始终要注意法则与性质成立的条件.7、分母有理化(例7)定义:把分母中的二次根式化去,叫做分母有理化.例如36963232=== 注意:(1)有理化因式:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式互为有理化因式.(2)分母有理化的依据:分式的基本性质.(3)分母有理化的方法:将分子和分母都乘分母的有理化因式,化去分母中的二次根式.(4)分母有理化因式不唯一,但以运算最简便为宜,如)0(>a a 的有理化因式是a .8、二次根式的合并(例8)合并被开方数相同的二次根式,把系数相加减,根指数和被开方数不变.方法与整式加减运算中的合并同类项类似,例如3233)2123(3213233=+-=+-.二次根式的系数是带分数的要化成假分数的形式.9、二次根式的加减法(例9)二次根式的加减法法则:二次根式的加减运算,就是将被开方数相同的项进行合并。
初中数学八年级二次根式讲义
〖拓展〗1.若 -(1-a)2有意义,则满足条件的 a 的个数为( )
A.1
B.2
C.3
D.4
2.若代数式 -m-n+ 1 有意义,则在直角坐标系中,点 P(m,n)在第_______象限. mn
3.无论 x 取任何实数,代数式 x2-6x+m都有意义,则 m 的取值范围是( )
A.m≥6
B.m≥8
D. x2-2
A. 1+(x-1)2
B. x
C.3 27
D. x2-1
〖课后作业〗下列各式中 15, 3a, b2-1, a2+b2, m2+40, -144,二次根式的 个数是( )
A.4
B.3
C.4
D.1
【有意义】
〖例〗如果 3a+12是二次根式,那么 a 的取值范围是( )
A.a≥﹣4
B.a≤﹣4
C.a≠﹣4
D.a>4
1
〖变式〗1.要使式子 aa+2有意义,则 a 的取值范围是(
)
A.a≠0
B.a>﹣2 且 a≠0
C.a>﹣2 或 a≠0
D.a≥﹣2 且 a≠0
2.已知代数式 1-x+ 1x在实数范围内有意义,则 x 的取值范围是( )
A.x≥1
B.0<x≤1
C.x>0
D.0≤x≤1
3.使分式
A.1 个
B.2 个
C.3 个
D.4 个
〖练习〗1.下列各式中属于最简二次根式的是( )
A. x2+1
B. x2
C. 12
D. 0.5
2.下列二次根式中,是最简二次根式的是( )
Байду номын сангаас
A. 18
B. a2-b2
C.
人教版初中数学八年级下册16.1二次根式的概念及其性质辅导教案
c)二次根式的除法法则:√a / √b = √(a / b),其中b不为0。
d)二次根式的平方:(√a)^2 = a,其中a为非负数。
3.二次根式的化简与运算:通过性质对二次根式进行化简,掌握二次根式的加减乘除运算。
二、核心素养目标
本节课的核心素养目标主要包括:
4.增强数学运算能力:训练学生对二次根式进行加减乘除运算,提高数学运算的速度和准确性,培养严谨细致的数学运算习惯。
5.培养学生的创新意识:鼓励学生在解决二次根式相关问题时,勇于尝试新方法,探索新规律,激发创新思维。
三、教学难点与重点
1.教学重点
(1)理解二次根式的概念:二次根式的定义是本节课的核心,学生需要掌握根号下表示的数为非负数的平方根。
其次,二次根式的性质和运算规则是本节课的重点,也是学生学习的难点。在讲解过程中,我尽量用简单的语言和具体的例子来阐述,但仍有部分学生难以消化。我意识到,可能需要通过更多的练习和变式题目,让学生在反复实践中掌握这些规则。
让我印象深刻的是,在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们通过讨论和实验操作,对二次根式的应用有了更深的理解。这说明,将理论知识与实际操作相结合的教学方式是非常有效的。
1.培养学生的数学抽象能力:通过二次根式的概念及其性质的探究,使学生能够从具体实例中抽象出数学规律,形成数学表达式,提高数学抽象思维。
2.提升逻辑推理能力:引导学生运用二次根式的性质进行推理和论证,掌握二次根式的化简和运算方法,增强逻辑思维和推理能力。
3.发展数学建模素养:通过解决实际问题时运用二次根式,培养学生建立数学模型,运用数学知识解决现实问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(最新整理)八年级下册数学--二次根式知识点整理
八年级下册数学--二次根式知识点整理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下册数学--二次根式知识点整理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级下册数学--二次根式知识点整理的全部内容。
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:—2x>4,不等式两边同除以-2得x<-2。
不等式3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如(a≥0)的式子叫做二次根式,“Error!"称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“”,我们一般省略根指数2,写作“”。
2,,如Error!可以写作.,5(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
,a(3)式子表示非负数a的算术平方根,因此a≥0,Error!≥0。
其中a≥0是Error!有意义的前提条件。
,a(4)在具体问题中,如果已知二次根式,就意味着给出了a≥0这一隐含条件。
(5)形如b(a≥0)的式子也是二次根式,b与Error!是相乘的关系。
要注但不能写成2 。
意当b是分数时不能写成带分数,例如可写成,练习:一、判断下列各式,哪些是二次根式?(1); (2)Error!; (3),6Error!;(4);(5);(6)3;(7),x2+2x+1,|x|,1+2x (x<- Error!)二、当x取什么实数时,下列各式有意义?(1)Error!; (2)二、二次根式的性质:非负数的和等于0,则这几个非负数分别等于0。
二次根式知识点整理:初二下册数学
二次根式知识点整理:初二下册数学效果的提高是同窗们提高总体学习效果的重要途径,大家一定要在往常的练习中不时积聚,小编为大家预备了二次根式知识点整理:初二下册数学,希望同窗们不时取得提高!
1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必需同时满足以下条件:
3.同类二次根式:
二次根式化成最简二次根式后,假定被开方数相反,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:
a(a0) 22(1)(a)=a (a≥0); (2)a a
0 (a=0);
5.二次根式的运算:
a(a0)
(1)因式的外移和内移:假设被开方数中有的因式可以开得尽方,那么,就可以用它的算术根替代而移到根号外面;假设被开方数是代数和的方式,那么先解因式,变形为积的方式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号外面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再兼并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相
乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
以上就是查字典数学网为大家整理的二次根式知识点整理:初二下册数学,大家还满意吗?希望对大家有所协助!。
【精品】初二数学二次根式知识点大全
.
4c 【点评】 此题考查了二次根式的性质与化简,
题的关键.
以及三角形的三边关系, 熟练掌握运算法则是解本
【例 7】 数 a , b 在数轴上的位置如图所示,化简
(a b) 2 (b 1)2 (a 1)2 .
【解答】 解:如图得, 2 a 1, 1 b 2 , a b 0,b 1 0, a 1 0, (a b)2 (b 1)2 (a 1)2 .
(a b c) 2 ( a b c)2 ( b a c)2 ( c b a)2 .
【解答】 解:根据 a , b , c 为 ABC 的三边,得到 a b c 0 , a b c 0 , b a c 0 ,
c b a 0 ,则原式 |a b c| |a b c| |b a c| |c b a|
a bc b ca a cb ab c
C. 3 或 5
【解答】 解:由题意得, 1 a 2…0 , a 2 1…0 ,
则 a2 1,
解得, a 1 ,
b 的值为 (
)
D. 5
1
b 4, 则 a b 3 或 5, 故选: C .
【点评】 本题考查的是二次根式有意义的条件,
掌握二次根式的被开方数是非负数是解题的关键.
【例 4】 若 y x 2 4 4 x2 2 ,求 y x 的值.
的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括 号的先算括号里面的. ( 2)二次根式的运算结果要化为最简二次根式. ( 3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解 题途径,往往能事半功倍.
题型 4 最简二次根式
【例 8】 下列说法错误的是 (
【例 2】 若 2x 是二次根式,则下列说法正确的是