有限元分析及应用 第一讲
有限元分析及应用讲义(北理工)
有限元分析方法及应用 机电学院本科课程内部讲义北京理工大学2014目 录第一章 有限元概述 (3)1.1 有限元历史 (3)1.2 有限元的定义及基本原理 (4)1.3 有限元分析的一般流程 (6)1.4 有限元的应用范围 (7)第二章 基础知识篇 (8)2.1 外力、应力、应变和位移 (8)2.2 两类平面问题 (10)2.3 平衡微分方程 (11)2.4 几何方程 (12)2.5 物理方程 (14)2.6 边界条件 (17)2.7 弹性力学的解题方法(解析法) (18)2.8 虚功方程 (27)第三章 应用CAE篇 (31)3.1 几何清理及网格划分 (32)3.2 材料模型及单元类型 (55)3.3 边界与载荷 (56)3.4 后处理 (60)第四章 线性分析及应用篇 (62)4.1 线性静力分析基础 (62)4.2静力分析简介及步骤 (64)4.3模态分析 (71)第五章 非线性 (75)5.1 几何非线性问题的有限元法 (76)5.2 材料非线性问题的有限元法 (83)第一章有限元概述1.1 有限元历史20世纪40年代,由于航空事业的飞速发展,对飞机结构提出了愈来愈高的要求,即重量轻、强度高、刚度好,人们不得不进行精确的设计和计算,在这一背景下,逐渐在工程中产生了矩阵分析法。
结构分析的有限元方法在二十世纪五十年代到六十年代创立的。
1956年,波音公司的Turner, Clough, Martin, Topp在纽约举行的航空学会年会上介绍了将矩阵位移法推广到求解平面应力问题的方法,即把结构划分成一个个三角形和矩形“单元”,在单元内采用近似位移插值函数,建立了单元节点力和节点位移关系的单元刚度矩阵,并得到了正确的解答。
1960年,Clough在他的名为“The finite element in plane stress analysis”的论文中首次提出了有限元(Finite Element)这一术语。
有限元分析及应用课件
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元分析与应用——第一章 PPT课件
0
0
k2u2 k2u3 k3u3 k3u4
k3u3 k3u4 k4u4 k4u5 0
k4u4 k4u5 P
写成矩阵的形式为
k1
=
k1 k1 k2 k2 0 0
k1 k1 0 0 0
0 k2 k 2 k3 k3 0
k1 k1 k2 k2 0 0
有限元方法与ANSYS简介
有限元方法是用于求解工程中各类问题的数值方法,应 力分析中稳态的、瞬态的、线性的或非线性的问题以及热传导、 流体流动和电磁学中的问题都可以用有限元方法进行分析解决。 现代有限元方法的20世纪早期开始,20世纪50年代,boeing公司 采用三角元对机翼进行建模,推动了有限元方法的应用。到20 世纪60年代,人们接受了“有限元”这个词。 ANSYS是一个通用的有限元计算机程序,其代码长度超 过10万行。应用ANSYS可以进行静态、动态、热传导、流体流 动和电磁学等分析。在过去的20多年里,ANSYS是主要的有限 元分析程序。现在ANSYS被广泛应用在如航天、汽车、电子、 核科学等领域。
第一章 概述
有限元方法是广泛用于解决应力分析、热传 递、电磁场和流体力学等工程问题的数值方 法。
本章的内容
(1)工程问题 (2)数值方法 (3)有限元方法与ANSYS简介 (4)有限元方法的基本步骤 (5)直接公式法 (6)最小总势能公式 (7)加权余数法 (8)结果的验证 (9)理解问题
工程问题
0
R1 0 0 0 0
0 k2 k 2 k3 k3 0
0 k3 k3 k 4 k4
0 u1 0 0 u 2 0 0 u3 0 k4 u 4 0 k4 P u5
有限元分析及工程应用
WorkPlane(工作平面):允许用户激活工作平面的打开或关 闭,同时也可以对工作平面进行移动、旋转或其它操作方式。 在这个菜单里,用户也可以创建、删除或转换坐标系统。
Select(选择):包含着允许用户选择实体(entities)的某部分 及生成一个组件(components)等功能。
List(列表):允许用户将储存在ANSYS数据库中的任何数 值项用文本方式列出。同时也可以得到在软件不同阶段的状态 信息,列来自出储存在用户系统中的文件内容。
1.3 ANSYS软件操作简介
1.3 ANSYS软件操作简介
(2)ANSYS的操作界面
ANSYS的操作界面
1.3 ANSYS软件操作简介
(2)ANSYS的操作界面 1)实用命令菜单
File(文件):包含着与文件和数据相关的功能。如清除数 据库、保存文件或从内存中恢复数据等。
但其中有些功能只有在软件开始阶段才能使用的,如果 用户在非开始阶段使用到了这些功能,软件将会出现一个对话 框,要求用户进行一个选择。
1.1 有限元法概况
(2)有限元的分类
从选择基本未知量出发: 1)位移法——选取节点的位移作为基本未知量,它的理
论基础是最小势能原理; 2)应力法——选取节点的应力作为基本未知量,它的理
论基础是最小余能原理; 3)混合法——一部分选取节点位移而另一部分则选取节
点的应力作为基本未知量,其理论基础为混合变分原理,如 Hellinger-Reissner变分原理的混合板单元。
1956年由Clough等人首次将有限元法用于飞机机翼的 结构分析,并于1960由Clough发表了一篇“平面应力分析 中的有限单元”。
有限元分析与应用技术培训教材
借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组即可。
添加标题
添加标题
添加标题
添加标题
1-3 有限元法基本思想
实例1(离散系统)结构离散
节点位移向量表示: 节点力向量表示: 节点1沿x方向的位移 、其余节点位移全为0时轴向压力为:
1-1工程和科学中典型问题
1-2 场问题的一般描述 --微分方程+边界条件
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
应力场----弹性力学
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
有限元分析及应用
有限元分析及应用介绍有限元分析,简称FEA(Finite Element Analysis),是一种数值计算方法,用于预测结构的力学行为。
它可以将结构离散为有限个小单元,在每个小单元内进行力学计算,并通过求解得到整个结构的应力和位移分布。
有限元分析常用于工程领域中,如结构分析、热传导分析、流体流动分析等。
原理有限元分析的基本原理可以概括为以下几个步骤:1.离散化:将结构或物体离散为有限个小单元。
常见的小单元形状有三角形、四边形等,在三维问题中可以使用四面体、六面体等。
2.建立数学模型:在每个小单元内,根据结构的物理特性和力学行为建立数学模型。
模型中包括了材料的弹性模量、泊松比等参数,以及加载条件、约束条件等。
3.组装和求解:将所有小单元的数学模型组装成一个整体的数学模型,然后利用求解算法进行求解。
常见的求解算法有直接法、迭代法等。
4.后处理:得到结构的应力和位移分布后,可以进行各种后处理操作,如绘制位移云图、应力云图等,以帮助工程师分析结构的强度和刚度性能。
应用有限元分析在工程领域有着广泛的应用。
下面介绍几个常见的应用案例:结构分析有限元分析可以用于结构分析,以评估结构的刚度和强度。
在设计建筑、桥梁、航空器等工程项目时,工程师可以使用有限元分析来模拟结构的力学行为,预测结构在不同加载条件下的变形和应力分布,以优化结构设计。
热传导分析有限元分析也可以用于热传导分析,在工程项目中评估热传导或热辐射过程。
例如,在电子设备的散热设计中,可以使用有限元分析来预测电子元件的温度分布,优化散热设计,确保电子元件的正常工作。
流体流动分析在流体力学研究中,有限元分析可以用于模拟流体的运动和流动行为。
例如,在船舶设计中,可以使用有限元分析来模拟船体受到波浪作用时的变形和应力分布,验证船体的可靠性和安全性。
优缺点有限元分析具有以下优点:•可以模拟复杂结构和物理现象,提供准确的结果。
•可以优化结构设计,减少设计成本和时间。
有限元分析及应用讲义
识别无效的结果
分析的对象的一些行为 计算出的几何项 求解的自由度及应力 反作用力或节点力
有限元分析及应用讲义
1.分析的对象的一些基本的行为:
• • • • • 重力方向总是竖直向下的 离心力总是沿径向向外的 没有一种材料能抵抗 1,000,000 psi 的应力 轴对称的物体几乎没有为零的 环向应力 弯曲载荷造成的应力使一侧受压,另一侧受拉
13
有限元分析及应用讲义
局部的细化
采用plane42单元网格局部细化与未细化
能量百分比误差 局部细化
Displacement DMX=0.88E-03 SEPC=14.442
未细化
DMX=0.803E-03
应力偏差
Element Solution(SDSG) SDSG SMN=63.453 SMN=64.528 SMX=426.86 SMX=689.589
s = 1200 Elem 2 s = 1300
节点的 ss 是积分点 的外插)
(
savg = 1200
7
有限元分析及应用讲义
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
误差信息:
s
mnb j
min( s
a jm
s n )
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi (difference ~ 450 psi ~ 1.5 %)
s mxb max( s a s n ) j jm 例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限
《有限元法及其应用》课件
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
有限元分析及应用
有限元分析及应用有限元分析是一种数值计算方法,用于解决各种工程和科学领域中的复杂问题。
该方法基于物体或结构的离散性近似模型,将其分割成许多小的子领域,进而进行数学求解。
有限元分析广泛应用于结构力学、流体力学、电磁学、热传导等领域,在工程设计、产品开发和科学研究中发挥着重要作用。
一、有限元分析的原理有限元分析的核心原理是将一个复杂的物体或结构离散为许多互相连接的小尺寸单元,如三角形或四边形。
每个单元被视为一个小的、局部的子问题,并假设在每个单元内部的场变量(如位移、温度、电势等)为局部常数。
根据这一假设,可以建立一个局部方程来描述每个单元内部的行为。
为了求解整个系统的行为,将这些局部方程组合为一个整体方程组,并且采用边界条件来限制解的自由度。
然后,通过求解整体方程组,就可以得到整个系统在给定加载条件下的响应。
二、有限元分析的步骤有限元分析通常需要经过以下几个步骤:1. 几何建模:将待分析的物体或结构建立几何模型,包括定义节点、边界和连接关系等。
2. 单元划分:将几何模型划分为许多小的单元,选择合适的单元类型和尺寸。
3. 材料属性和加载条件:分配材料属性和加载条件给每个单元,如材料的弹性模量、材料的线性或非线性特性以及加载的力、温度等。
4. 单元方程建立:根据每个单元的几何形状和材料特性,建立每个单元内部的方程。
5. 整体方程建立:将所有单元的方程组合成一个整体方程,引入边界条件和约束条件。
6. 方程求解:通过数值方法(如矩阵解法)求解整体方程组。
7. 结果后处理:根据求解得到的结果,进行分析和后处理,如位移、应力和应变的计算、轴力图、位移云图等的绘制。
三、有限元分析的应用有限元分析已经应用于各种领域,主要包括以下几个方面:1. 结构力学:有限元分析可以用于评估结构的强度和刚度,预测结构的变形和破坏情况。
它广泛应用于建筑、桥梁、汽车、飞机等结构的设计和优化。
2. 流体力学:有限元分析可以用于模拟流体力学问题,如流体流动、传热和传质等。
第一节有限元分析概述
第一节有限元分析概述有限元分析是一种数值计算方法,用于求解连续物体的力学问题。
它是将连续体划分成有限个小元素,利用元素间的相互关系来近似描述物体的行为。
有限元分析可以用于求解各种力学问题,如固体力学、流体力学、热传导等。
有限元分析的基本步骤包括建立模型、离散化、求解和分析结果。
首先,需要根据实际问题建立一个几何形状和边界条件的模型。
然后,将模型离散化为有限个小元素,每个元素具有一些简单的形状和几何特征。
接下来,需要确定每个元素内部的应力和变形的形式,这通常与所采用的数学模型有关。
然后,根据力学原理和边界条件,可以通过数值方法求解每个元素的应力和变形。
最后,可以对求解结果进行后处理,分析模型的响应,并检查结果的合理性。
有限元分析的优点之一是可以处理复杂的几何形状。
因为问题的几何形状是通过离散化成有限个小元素来描述的,所以可以处理各种形状的物体,包括曲线、曲面和体积。
同时,有限元分析还可以考虑非线性和不均匀性。
对于具有非线性特性的材料或结构,可以通过数值方法来求解其行为。
此外,有限元分析还可以处理多物理场的耦合问题,如流固耦合、热力耦合等。
然而,有限元分析也有一些局限性。
首先,离散化过程中需要选择合适的元素类型和大小。
选择不当的元素可能导致结果的不准确性。
其次,有限元分析需要耗费大量的计算资源。
由于模型通常包含大量的节点和单元,需要进行大规模的计算,对计算机的存储和计算能力有一定的要求。
最后,有限元分析的结果需要进行验证和验证。
由于模型的简化和假设,有限元分析的结果可能与实际情况存在一定的差异,需要通过实验数据进行验证和验证。
总的来说,有限元分析是一种有效的数值计算方法,用于求解连续体的力学问题。
它可以处理复杂的几何形状、非线性和不均匀材料,以及多物理场的耦合问题。
然而,它也有一定的局限性,需要合适的离散化、大量的计算资源和验证结果的步骤。
在实际应用中,需要根据具体问题的性质和要求,选择适当的数值方法和参数,以获得准确可靠的结果。
有限元分析及应用
方程
变量
求解 方法
积分法
积分法
解析法、半 解析法、半 解析法 解析法
4
2015-06-13
基本假设
材料力学
1. 连续性假设 2. 均匀性假设 3 各向同性假设 3. 4. 小变形条件
1. 2 任意变形体力学分析的基本变量及方程 研究对象:任意形状的变形体 弹性力学
1. 假定物体是连续的 2. 假定物体是完全弹性的 3. 假定物体是均匀的 4. 假定物体是各向同性的 5. 假定位移和形变是微小 的 满足前4条为理想弹性体
8
2015-06-13
7
2015-06-13
1.3 有限元方法的思路及发展过程 思路: 以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、 方便,一般人员可以使用。 发展过程:
如: 屋顶结构
杆
支承
真实结构 (物理模型) 铰接
实现过程
连续体
离散体
力学模型
两个重要工具: (1)在理论推导方面采用矩阵方法 (2)在计算中采用了计算机
x yx bx 0 x y xy y b y 0 y x
并且所有力学变量都是x, y的函数,不随 的函数 不随z变化,即有 变化 即有
但
zx
0,
z
E
zy
0
( x v y v u x y
4) 边界条件
25 2015-06-13
l x m yx p x l xy m y p y
u u 和 v v
26
2015-06-13
1有限元分析及医学应用
有限元法的发展概况
1943年 Courant从应用数学角度,尝试用定义在三角形区域上的分 片连续函数和最小位能原理相结合求解 St. Venant扭转问题。
1956年 Turner、Clough等将刚架位移法推广到弹性力学平面问题, 用三角形单元求得平面应力问题的正确解答。
1960年 Clough进一步处理了弹性力学问题,并第一次提出了“有 限单元法” (Finite Element Method)的名称,使人们开始认识到 了有限单元法 的功效。
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
弹性力学
对象:任意变形体 特征:变形(小)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(针对微体dxdydz) (1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
• 综合分段函数描述的优势和问题,只要采用功能完善的软 件以及能够进行高速处理的计算机,就可以完全发挥“化 繁为简”策略的优势,有限元分析的概念就在于此。
商业软件
• ANSYS :(机械、电磁、热力学等) • NASTRAN :电机有限元分析软件 • 三维结构设计方面的有限元分析软件:
UG,CATIA,Proe • 国产有限元软件:
弹塑性力学
对象:任意变形体 特征:变形(屈服,非线性)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程: (针对微体dxdydz) (1)物理本构方程(屈服,非线性) (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
有限元分析详解
第一章概述 有限元法基本原理及应用课件
第一章 概述
有限元法的基本思想 有限元法的特点 有限元法的发展及其应用领域
1.1有限元法的基本思想
2.有限元法是一种应用已知求解未知的思想
在弹性力学领域,已经能用数学偏微分方程将问 题加以表达,但是运用解析方法求解这些方程有时会 很难甚至无法求解。而有限元法是应用人们对事物规 律的已有认识并结合研究对象的各种约束条件,组织 一个运用已知的参量和规律来求解未知问题的有机过 程。
西班牙的Onate E和波兰的Rojek J将DEM 和FEM结合解决地质 力学中的动态分析问题;
瑞典的Birgersson F和英国的Finnveden S针对FEM在频域中的 应用提出了SFEM 。
FEM也从分析比较向优化设计方向发展。印度Mahanty博士用 ANSYS对拖拉机前桥进行优化设计
物体的几何形状可以用大大小小的多种单元进行拼装,所以 有限元法可以分析包括各种特殊结构的复杂结构体。
单元之间材料性质可以有跳跃性的变化,所以能处理许多物 体内部带有间断性的复杂问题,以适应不连续的边界条件和载荷 条件。
三维实体的四面体单元划分
平面问题的四边形单元划分
1.2 有限元法的特点
7.适合计算机的高效计算
20世纪90年代以来,大批FEA系统纷纷向微机移植, 出现了基于各种微机版FEA系统。有限元法向流体力学、 温度场、电传导、磁场、渗流和声场等问题的求解计算 方面发展,并发展到求解一些交叉学科的问题。
1.3.1 有限元法的发展
3.有限元法的研究现状
美国的HeoFanis Strouboulis等人提出用GFEM 解决 分析域内含有大量孔洞特征的问题;比利时的Nguyen Dang Hung 和越南的Tran Thanh Ngoc 提出用HSM解 决实际开裂问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-2 场问题的一般描述
---微分方程+边界条件
1) 应力场----弹性力学 2) 温度场----热传导 3) 电磁场----电磁学 4) 流速场----流体力学 A、B----微分算子(如 对坐标或时间的微分) u----未知场函数,可为 标量场(如温度), 也可为矢量场(如位 移、应变、应力等) 严格讲,都属张量场; 4/3/2004
x
X 4/3/2004 (a)
(b) ¼ Í
(c) 2-1
实例2
材料力学方法求解直杆拉伸: 图(b)---位移法
考虑微段dx,内力 N=q (L-x) dx的伸长为 N(x)dx
Δ(dx)
EA
q(L x)dx EA
x截面上的位移:
u
x 0
x q(L x)dx N(x)dx q x2 (Lx ) 0 EA EA EA 2
• • 弹性力学的基本方程 虚功原理及最小势能原理
• 连续弹性体的有限元法 • 平面问题的有限元法
• • • 空间问题的有限元法 轴对称问题的有限元法 薄板弯曲问题的有限元法
• • • • •
离散结构的有限元法
杆梁结构的有限元法
有 限 元 分 析 及 应 用
• • • • • •
有限元建模的基本原则 几何模型的简化处理 物理问题的等效处理 单元类型选择与常见单元 网格布局与划分 模型检查与处理
• 一、求解策略: • 1、直接法:求解基本方程和相应定解条件的解; • 2、间接法:基于变分原理,构造基本方程及相应定解 条件的泛函形式,通过求解泛函的极值来获得原问题 的近似解。即将微分形式转化与其等价的泛函变分的 积分形式; • 二、求解方法: • 1、解析或半解析法: • 2、数值法: • A)基于直接法的数值法,如差分法; • B)基于间接法的数值法,如等效积分法(如里兹 法)、有限元法等 •
EA 1 k31 cos2 l 1 e
1 k 41
EA cos sin l1
实例1(单元分析)
1 1 、 v 、 v • 同理可求 u1 2 1 2 分别作单位位移时相应的刚度系 数,考虑到节点的实际受力为 Fx11, Fy11, Fx12 , Fy12 和实际 1 1 1 位移为 u1 ,则据各个节点节点力平衡得: , v1 , u1 , v 2 2 • 单元1节点力平衡方程 F 1 k 1 u1 k 1 v1 k 1 u1 k 1 v1
有限元 法
可非均匀离散求解域;分片连续函 数近似整体未知场函数;解线性方 程组。有限元法的数学基础仍是变 分法(同上)。
4/3/2004
节点可任意配置,边 界适应性好;适应任 意支撑条件和载荷; 计算精度与网格疏密 和单元形态有关,精 度可控。对裂缝和无 限域的分析存在不足
1-4 有限元法基本思想
x1
11 1
12 1
13 2
14 2
1 1 1 1 1 1 1 1 Fy11 k21 u1 k22 v1 k23 u2 k24 v2 1 1 1 1 1 1 1 1 Fx12 k31 u1 k32 v1 k33 u2 k34 v2 1 1 1 1 1 1 1 1 Fy12 k41 u1 k42 v1 k43 u2 k44 v2
实例1(引入约束求解)
• 整体矩阵记为: • 将 u1 v1 u3 v3 0 代 入可得整体方程
K R
2 12 2 22
k k k k
1 33 1 43
4/3/2004
2 11 2 21
k k u2 X 2 k k v2 Y2
整 体 平 衡
总 刚 方 程
方 程 求 解
节 点 位 移
Y2
实例1(离散系统)结构离散
• 节点位移向量表示: 1 1 1 1 1 T { } [u1 , v1 , u2 , v2 ] • 节点力向量表示:
{F1} [Fx11, Fy11, Fx12 , Fy12 ]T
v1 2 F u
①
1 2 1 y2
4/3/2004
1-1 工程和科学中典型问题
在工程技术领域内,经常会遇到两类典型的问题。第一类问题, 可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、 建筑结构框架和桁架结构。把这类问题称为离散系统。如左图所示 平面桁架结构,是由6 个承受轴向力的“杆单元”组成。尽管离散系 统是可解的,但是求解右图这类复杂的离散系统,要依靠计算机技 术。
根据几何方程求应变,物理方程求应力。这里 du q 应变 εx (L X) dX EA q 应力 σ x Eε x (L X) EA
4/3/2004
实例2 (结构离散)
有限单元法求解直杆拉伸:
1、离散化
L 1
1 2
2、外载荷集中到结点上,即把投 影部分的重量作用在结点i上
L2
e 1
yi
Yi
• 结合前式推导得:
1 k11 1 k21 1 k31 1 k41 0 0 1 k13 1 k23 1 k14 1 k24
0 0
1 1 2 1 2 2 k32 k33 k11 k31 k12 k13 1 1 2 1 2 2 k42 k43 k21 k44 k22 k23 2 2 2 0 k31 k32 k33
4/3/2004
0
2 k41
2 k42
2 k43
0 u1 X 1 0 v1 Y1 2 u2 X 2 k14 2 k24 v2 Y2 2 u3 X3 k34 2 v Y k44 3 3
1 34 1 44
实例2 (连续问题)
通过材料力学求解和有限元求解进行比较 例:等截面直杆在自重作用下的拉伸 图(a) 单位杆长重量为q,杆长为L,截面面积为A,弹性模数为E
0 u
x L
L-x
N
N dx N
L 3 L 3 L 3
5 qa2 2 EA
a
L 3
8 qa2 2 EA
9 qa2 2 EA
• 先将求解域离散为有限个单元,单元与单元只在节点 相互连接;----即原始连续求解域用有限个单元的集合 近似代替 • 对每个单元选择一个简单的场函数近似表示真实场函 数在其上的分布规律,该简单函数可由单元节点上物 理量来表示----通常称为插值函数或位移函数 • 基于问题的基本方程,建立单元节点的平衡方程(即 单元刚度方程) • 借助于矩阵表示,把所有单元的刚度方程组合成整体 的刚度方程,这是一组以节点物理量为未知量的线形 方程组,引入边界条件求解该方程组即可。
2
ቤተ መጻሕፍቲ ባይዱ
X2 ②
①
1
3
Fy22 Fx12
• 节点1沿x方向的位 1 u 移 1 1、其余节点位 F 移全为0时轴向压力 v 为: EA EA cos 1
1 1
2
2
②
Fx22
1 y1
Fy23 u
1 1
(
4/3/2004
l1
)l1
Fx11
l1
3
Fx23
实例1(单元分析)
• 节点1作用于单元1上的力,在x和y方向的分量分别为:
ui 1 ui N i 1 A E ( ) Li 1
4/3/2004
实例2 (单元分析)
有限单元法求解直杆拉伸:
Ni
i
q (Li Li1 ) 2
4/3/2004
1-4 有限元法基本思想
节点
m( xm ym ) Fmy vi
vm
um Fmx vj
u
j
y
单元
i ( xi yi )
ui Fiy j(x j y j )
Fix x
力 学 模 型 4/3/2004
问 题 分 析
结 构 离 散
节 点 单 元
分 片 近 似
位 移 函 数
单 元 平 衡
单 刚 方 程
y x
A (u) 1 A(u)= A (u) 0 2 ...
在 内
B1(u) B(u) B2(u) 0 ...
在上
实例:二维热传导(稳态)问题
i-1
Li Li1
i-1 i i+1
Li
i
Li1
n-1 n
q (Li Li1 ) 2
i+1 ¼ Í 2-3
4/3/2004
¼ Í
2-2
实例2 (单元分析)
有限单元法求解直杆拉伸:
3、假设线单元上的位移为线性函数
x i1
i-1 u
x
u i1
Li
i
u (x ) ui
X ¼ 2-4 Í
u i u i 1 u u ( x) u i 1 ( X X i 1 ) Li du u i ui 1 εx dX Li u i ui 1 i E i E ( ) Li u u N i A i A E ( i i 1 ) Li
•有限元结果分析及可视化 • 有限元计算结果分类
• • 有限元结果分析 有限元结果的可视化
•常用有限元分析系统简介 • 有限元分析系统的基本组成
• • 有限元分析系统的基本功能 常见商业化有限元分析系统
等参单元与数值积分 结构动力学问题的有限元法 温度场的有限元法 4/3/2004
本章内容
• • • • • • • • • 1-1工程和科学中典型问题 1-2 场问题的一般描述 1-3 场问题的求解策略及求解方法比较 1-4 有限元法基本思想 1-5 有限元法的基本步骤 1-6 有限单元法的发展 1-7 有限单元法的基本内容 1-8 有限单元法的应用 1-9 有限元法的几个热点问题