2014—2015学年新苏科版八年级上数学期末模拟试题(五)
2014-2015学年八年级(上)期末数学综合检测(一)及答案
![2014-2015学年八年级(上)期末数学综合检测(一)及答案](https://img.taocdn.com/s3/m/fa96a8c633d4b14e85246837.png)
2014-2015学年八年级(上)期末数学综合检测(一)(120分钟120分)一、选择题(每小题3分,共30分)1. (2014•泰州中考)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B. 1,1,C. 1,1,D. 1,2,2. (2014•荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm3.(2014•湘潭中考)下列各数中是无理数的是()1A.B.﹣2 C.0 D.74.(2014•德州中考)下列计算正确的是()A.﹣(﹣3)2=9 B.=3 C.﹣(﹣2)0=1 D.|﹣3|=﹣35. (2014•资阳中考)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限6. (2014•天津中考)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁7.(2014•汕尾中考)如图,能判定EB∥AC的条件是()A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE8.(2014•新疆中考)“六•一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是 ( ) A . B .C .D .9.(2014•孝感中考)下列二次根式中,不能与合并的是 ( ) A .B .C .D .10.(2014·昆明中考)如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是 ( )A. 85°B. 80°C. 75°D. 70° 二、填空题(每小题3分,共24分)11.(2014•梅州中考)4的平方根是 .12.(2013•常州中考)已知点P (3,2),则点P 关于y 轴的对称 点P 1的坐标是 ,点P 关于原点O 的对称点P 2的坐标是 .13.(2014•汕尾中考)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为 ,平均数为 .14.( 2014•泉州中考)如图,直线a ∥b ,直线c 与直线a ,b 都相交,∠1=65°,则∠2= °.15. (2013•宁夏中考)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种. 16.(2014•泰州中考)点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 17.(2014•自贡中考)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则的值是 .DCBA18.(2014•汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.三、解答题(共66分)19. (8分) 计算:(1)(2014•新疆中考)(﹣1)3++(﹣1)0﹣.(2)(2014•孝感中考)(﹣)﹣2+﹣|1﹣|20.(6分) (2014•湖州中考)解方程组.21. (8分) (2014•益阳中考)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.22. (9分) (2014•珠海中考)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23. (8分) (2014•湘潭中考)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.24. (7分) (2014•广东中考)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.(10分) (2013•鄂州中考)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).26. (10分) (2014•天津中考)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?答案及解析4【解析】选B.A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选B.7【解析】选D.A和B中的角不是三线八角中的角;C中的角是同一三角形中的角,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.8【解析】选B.设购买A型童装x套,B型童装y套,由题意得,.故选B.13【解析】6出现的次数最多,故众数为6,平均数为:=6.答案:6,6.14【解析】∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,答案:65.15【解析】选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.答案:3.16【解析】∵点A(﹣2,3)关于x轴的对称点A′,∴点A′的横坐标不变,为﹣2;纵坐标为﹣3,∴点A关于x轴的对称点A′的坐标为(﹣2,﹣3).答案:(﹣2,﹣3).(2)原式=+2﹣|﹣2|=4+2﹣2 =4.20【解析】①+②得:5x=10,即x=2,21【解析】∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.24【解析】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.25【解析】(1)根据图象信息:货车的速度V货==60(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);(3)设轿车从甲地出发x小时后再与货车相遇.∵V货车=60千米/时,V轿车==110(千米/时),∴110(x﹣4.5)+60x=300,解得x≈4.68(小时).答:轿车从甲地出发约4.68小时后再与货车相遇.26【解析】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.。
2014-2015年江苏省苏州市八年级(上)期末数学试卷及参考答案
![2014-2015年江苏省苏州市八年级(上)期末数学试卷及参考答案](https://img.taocdn.com/s3/m/0486ce2d4a7302768e993994.png)
2014-2015学年江苏省苏州市八年级(上)期末数学试卷一.选择题(本题有10个小题,每小题3分,共30分)1.(3分)下列各式:,,x2+y2,5,,,其中分式有()A.1个B.2个C.3个D.4个2.(3分)如果解分式方程﹣=1出现了增根,那么增根是()A.﹣2B.3C.3或﹣4D.﹣43.(3分)把一副三角尺按如图所示叠放在一起,则下图中∠α=()A.75°B.60°C.65°D.55°4.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°5.(3分)如图,在边长为1的正方形网格中,将△ABC先向右平移两个单位长度,再关于x轴对称得到△A′B′C′,则点B′的坐标是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(1,﹣2)6.(3分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.57.(3分)一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1B.3C.1D.﹣1或3 8.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.59.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x 轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x 10.(3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC 绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()形AOBO′A.①②③⑤B.①②③④C.①②③④⑤D.①②③二.填空题(本题有6个小题,每小题4分,共24分)11.(4分)已知点A(m,3)与点B(2,n)关于y轴对称,则m=,n=.12.(4分)实数a,b在数轴上的位置如图所示,则+a的化简结果为.13.(4分)已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.14.(4分)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为.15.(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.16.(4分)如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM 的解析式为.三、解答题:(共76分)17.计算(1)(2).18.(8分)解方程:(1)(2).19.先化简,再求值:,其中,a=+1.20.已知a、b、c为实数,,,.求分式的值.21.已知a+b+c=0,求的值.22.一条船往返于甲,乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.甲,乙两港相距多远?23.已知.试说明不论x为何值,y的值不变.24.(12分)如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且.(1)求B点坐标和k值;(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程中,试写出△AOB的面积S与x的函数关系式;(不要求写出自变量的取值范围)(3)探究:①当A点运动到什么位置时,△AOB的面积为,并说明理由;②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请直接写出满足条件的所有P点坐标;若不存在,请说明理由.2014-2015学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一.选择题(本题有10个小题,每小题3分,共30分)1.(3分)下列各式:,,x2+y2,5,,,其中分式有()A.1个B.2个C.3个D.4个【解答】解:,这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)如果解分式方程﹣=1出现了增根,那么增根是()A.﹣2B.3C.3或﹣4D.﹣4【解答】解:分式方程﹣=1的最简公分母为(x﹣3)(x+4),∵当x=3或﹣4时,(x﹣3)(x+4)=0,∴增根为3或﹣4,故选:C.3.(3分)把一副三角尺按如图所示叠放在一起,则下图中∠α=()A.75°B.60°C.65°D.55°【解答】解:已知,∠ADE=45°,∠F=60°,∴∠α=180°﹣60°﹣45°=75°.故选:A.4.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选:A.5.(3分)如图,在边长为1的正方形网格中,将△ABC先向右平移两个单位长度,再关于x轴对称得到△A′B′C′,则点B′的坐标是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(1,﹣2)【解答】解:根据图可得B(﹣1,2),∵将△ABC先向右平移两个单位长度,∴B点的对应点坐标为(1,2),∵再关于x轴对称得到△A′B′C′∴点B′的坐标是(1,﹣2),故选:D.6.(3分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.7.(3分)一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1B.3C.1D.﹣1或3【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),∴|m﹣1|=2,∴m﹣1=2或m﹣1=﹣2,解得m=3或m=﹣1,∵y随x的增大而增大,∴m>0,∴m=3.故选:B.8.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.5【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选:B.9.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x 轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.(3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC 绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()形AOBO′A.①②③⑤B.①②③④C.①②③④⑤D.①②③【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;=S △AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC +S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.二.填空题(本题有6个小题,每小题4分,共24分)11.(4分)已知点A(m,3)与点B(2,n)关于y轴对称,则m=﹣2,n=3.【解答】解:∵点A(m,3)与点B(2,n)关于y轴对称,∴m=﹣2,n=3.故答案为:﹣2,3.12.(4分)实数a,b在数轴上的位置如图所示,则+a的化简结果为﹣b.【解答】解:∵从数轴可知:b<0<a,|b|>a,∴+a=﹣(a+b)+a=﹣b,故答案为:﹣b.13.(4分)已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是a>1.【解答】解:由题意可得1﹣a<0,移项得,﹣a<﹣1,化系数为1得,a>1.14.(4分)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为x<1.【解答】解:k1x+b<k2x+c的解集即为函数y=k1x+b的值小于y=k2x+c的值时x的取值范围,右图可知x<1时,不等式k1x+b<k2x+c成立,故答案为x<1.15.(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.16.(4分)如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM 的解析式为y=﹣x+3.【解答】解:法一:当x=0时,y=﹣x+8=8,即B(0,8),当y=0时,x=6,即A(6,0),所以AB=AB′=10,即B′(﹣4,′0),因为点B与B′关于AM对称,所以BB′的中点为(,),即(﹣2,4)在直线AM上,设直线AM的解析式为y=kx+b,把(﹣2,4);(6,0),代入可得y=﹣x+3.法二:直线y=﹣x+8与x轴,y轴分别交于点A和B,∴A(6,0),B(0,8)AB==10∴AB′=10设OM=x,则B′M=BM=BO﹣MO=8﹣x,B′O=AB′﹣AO=10﹣6=4∴x2+42=(8﹣x)2x=3∴M(0,3)又A(6,0)直线AM的解析式为y=﹣x+3故答案为y=﹣x+3.三、解答题:(共76分)17.计算(1)(2).【解答】解:(1)原式=3﹣3+=;(2)原式=•=2x+4﹣x+2=x+6.18.(8分)解方程:(1)(2).【解答】解:(1)去分母得:3x﹣x﹣2=0,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:x2﹣25﹣x﹣5=x2﹣5x,移项合并得:4x=30,解得:x=7.5,经检验x=7.5是分式方程的解.19.先化简,再求值:,其中,a=+1.【解答】解:+•=+•=+=,当a=+1时,原式==.20.已知a、b、c为实数,,,.求分式的值.【解答】解:∵,,,∴=6,=8,=10,∴,∴=4,=2,=6,∴++==12,∴=.21.已知a+b+c=0,求的值.【解答】解:==∵a+b+c=0,则a+b=﹣c,a+c=﹣b,b+c=﹣a,∴原式==﹣3.故答案为﹣3.22.一条船往返于甲,乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.甲,乙两港相距多远?【解答】解:设甲、乙两港相距Skm,水流速度平时速度为xkm/h.根据题意得:.解得:S=20,x=.经检验:S=20,x=都是方程的解.答:甲,乙两港相距20km.23.已知.试说明不论x为何值,y的值不变.【解答】解:=﹣x+1=x﹣x+1=1.所以不论x为何值y的值不变.24.(12分)如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且.(1)求B点坐标和k值;(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程中,试写出△AOB的面积S与x的函数关系式;(不要求写出自变量的取值范围)(3)探究:①当A点运动到什么位置时,△AOB的面积为,并说明理由;②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请直接写出满足条件的所有P点坐标;若不存在,请说明理由.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,故C的坐标是(0,﹣3),OC=3,∵=,∴OB=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,解得:k=2;(2)OB=,则S=×(2x﹣3)=x﹣;(3)①根据题意得:x﹣=,解得:x=3,则A的坐标是(3,3);②OA==3,当O是△AOP的顶角顶点时,P的坐标是(﹣3,0)或(3,0);当A是△AOP的顶角顶点时,P与过A的与x轴垂直的直线对称,则P的坐标是(6,0);当P是△AOP的顶角顶点时,P在OA的中垂线上,OA的中点是(,),与OA垂直的直线的斜率是:﹣1,设直线的解析式是:y=﹣x+b,把(,)代入得:=﹣+b,解得:b=3,则直线的解析式是:y=﹣x+3,令y=0,解得:x=3,则P的坐标是(3,0).故P的坐标是:(﹣3,0)或(3,0)或(6,0)或(3,0).。
2014~2015学年苏州第一学期期末数学模拟试卷_初二数学
![2014~2015学年苏州第一学期期末数学模拟试卷_初二数学](https://img.taocdn.com/s3/m/0bcd25b4fd0a79563c1e721b.png)
苏州2014~2015学年第一学期期末模拟试卷初二数学班级________ 姓名________ 学号________ 成绩________一.填空题(每题2分,共20分)1______________.2.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是________件.3.线段CD 是由线段AB 平移得到的,点A(-l ,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标是________.4.已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是________.5.在△ABC 中,点D 、E 、F 分别在边BC 、AB 、CA 上,且DE ∥CA ,DF// BA .下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90º,那么四边形AEDF 是矩形; ③如果AD 平分∠BAC ,那么四边形AEDF 是菱形; ④如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是菱形. 其中,正确的有________________________(只填写序号).6.等腰梯形的上下底长分别为6cm ,8cm ,且有一个角是60º,则它的腰长为________cm . 7.已知A(3,2),AB ∥x 轴,且AB =5,则B 点的坐标为________________.8.已知一次函数y =k x -b ,要使函数值y 随自变量x 的增大而减少,且与y 轴交于正半轴,则k b _______0(填<、>或=).9.函数y 1=x +1与y 2=ax +b (a ≠0)的图象如图所示,这两个函数图象的交点在y 轴上,那么使y 1,y 2的值都大于零的x 的取值范围是________.10.如图,矩形ABCD 的四个顶点的坐标分别为A(1,0),B(5,0),C(5,3),D(1,3),边CD 上有一点E(4,3),过点E 的直线与AB 交于点F ,若直线EF 平分矩形的面积,则点F 的坐标为________.二.选择题(将正确答案填写在下面表格内,每题3分,共30分)11.在下列各数0、0.2、3π、227、6.1010010001…(相邻两个1之间的0依次增加1个)、13111( ) . A .1 B .2 C .3 D .412.由四舍五入法得到的近似数3.20×105,下列说法中正确的是( ). A .有3个有效数字,精确到百位 B .有6个有效数字,精确到个位 C .有2个有效数字,精确到万位 D .有3个有效数字,精确到千位 13.若分式方程244x ax x =+--无解,则a 的值为( ). A .4 B .2 C .1 D .014.在平面直角坐标系中,若点P(x -2,x )在第二象限,则x 的取值范围为( ). A .x >0 B .x <2C .0<x <2D .x >215.如图,将△ABC 绕点C 顺时针方向旋转40º得△A'CB',若AC ⊥A'B',则∠BAC 等于( ).A .50ºB .60ºC .70ºD .8º 16.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( ).A.①②B.①③C.①④D.②④17.平行四边形ABCD的对角线交于点O,有五个条件:(1)AC=BD;②∠ABC=90º;③AB=AC;④AB=BC;⑤AC⊥BD.则下列哪个组合可判别这个四边形是正方形( )A.①②B.①③C.①④D.④⑤18.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( ).A.y=-x+2 B.y=x+2C.y=x-2 D.y=-x-219.A(x1,y2)、B(x2,y2)是一次函数y=k x+2(k>0)图象上不同的两点,若t=( x1-x2)(y1-y2),则( ).A.t<0 B.t=0 C.t>0 D.t≤020.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC的面积为( ).A.4 B.5 C.6 D.7三.解答题(共50分)21.计算:(每题4分)(1)21(2)2242()4422a a a a a a a--+÷-++-22.(4分)先化简:22211()a a a a a a---÷+,然后给a 选择一个你喜欢的数代入求值.23.解方程(每题4分)(1) 21212339x x x -=+-- (2)22332011x x x x x -+-=--24.(5分)已知直线L 1经过点A (-1,0)与点B(2,3),另一条直线L 2经过点B ,且与x 轴相交于点P (m ,0).(1)求直线L 1的解析式;(2)若△APB 的面积为3,求m 的值.25.(5分)如图,已知平行四边形ABCD 中,M 、N 分别是CD 、AB 上的点,E 、F 分别是AC 上的两点,若CM =AN ,AE =CF . 求证:四边形MENF 是平行四边形.26.(6分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?27.(6分)已知∠AOB=90º,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.(1)当三角板绕点C旋转到CD与OA垂直时(如图1),求证:OD+OE OC.(2)当三角板绕点C旋转到CD与OA不垂直时:①在图2这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,并给予证明.②在图3这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请直接写出你的猜想(不需证明).28.(8分)如图,在直角梯形ABCD中,∠B=90º,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动,当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒.(1)直角梯形ABCD的面积为________cm2;(2)当t=________秒时,四边形PQCD成为平行四边形?(3)当t=________秒时,AQ=D C;(4)是否存在t,使得点P在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.。
苏科版2013-2014年度八年级上册数学期末模拟5
![苏科版2013-2014年度八年级上册数学期末模拟5](https://img.taocdn.com/s3/m/7c3b200679563c1ec5da7188.png)
FCEDA B泰州市民兴中学中英文部八年级数学期末模拟试卷(5) 一、选择题(每题3分,共18分) 1、实数-1.732,2π,34,0.121121112…,01.0-中,无理数的个数有 ( ). A.2个 B. 3个 C.4个 D.5个2、下列语句中,正确的是 ( ) A 、-9的平方根是-3 B 、9的平方根是3 C 、9的算术平方根是±3 D 、9的算术平方根是33、如果点P (a-1,b )在第二象限,那么点Q (-a+1,b )在 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、已知一次函数3)21(-+=x m y 中,函数值y 随自变量x 的增大而减小,那么m 的取值范 围是 ( )(A )21-≤m (B ) 21-≥m (C ) 21-<m (D ) 21->m 5、如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A 、30,2B 、60,2C 、60,D 、60,36、已知:等腰直角三角形ABC 的直角边长为16,D 在AB 上, 且DB=4,M 是在AC 上的一动点,则DM+BM 的最小值为( ) A 、16 B 、162 C 、20 D 、24 二、填空题(每空3分,共30分)7、364的平方根是 ,立方根是8、已知点P 1(a ,3)与P 2(-2,b )关于y 轴对称,则ab 的值为 . 9、比较大小:2______33--。
10、一次函数y =-2x +6与x 轴的交点坐标是________,与y 轴的交点坐标是________,与坐标轴围成的三角形的面积为 .11、在△ABC 中,∠A =50°,当∠B 的度数= 时,△ABC 是等腰三角形.12、如图,由四个边长为1的小正方形构成一个大正方形,连接小正 方形的三个顶点,可得到△ABC ,则△ABC 中BC 边上的高是 。
苏科版2014-2015学年度第二学期期末考试八年级数学试题(二)
![苏科版2014-2015学年度第二学期期末考试八年级数学试题(二)](https://img.taocdn.com/s3/m/8ef957cbbb4cf7ec4afed0df.png)
苏科版2014-2015学年度第二学期期末考试八年级数学模拟试题(二)(满分:150分 时间:120分钟)一、选择题:(每小题3分,共30分,)1.下列调查适合普查的是A .夏季冷饮市场上冰淇淋的质量B .某本书中某页的印刷错误C .公民保护环境的意识D .某批灯泡的使用寿命2.下列事件是随机事件的是A .没有水分,种子发芽B .367人中至少有2人的生日相同C .在标准气压下,-1℃冰融化D .小瑛买了一张彩票获得500万大奖 3.下列是中心对称图形的是4.下列各式成立的是A .()23434+=+B .223434+=+C .21122⎛⎫-=± ⎪⎝⎭D .21122⎛⎫-=- ⎪⎝⎭ 5.下列分式中,属于最简分式的是A .42xB .221x x +C .211x x --D .11x x -- 6.在反比例函数2k y x-=图象的每个象限内,y 随x 的增大而减少,则k 值可以是 A .3B .2C .1D .-1 7.如图,在等腰梯形ABCD 中,AD ∥B C ,AB =AD =DC ,∠B =60°,DE//AB ,梯形ABCD 的周长等于20 cm ,则DE 等于A .6 cmB .5 cmC .4 cmD .3 cm8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB'C'D'的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是A .68°B .20°C .28°D .22°9.已知m 是2的小数部分,则2212m m +-的值是 A .0 B .1 C .2 D .310.如图,正方形ABCD 内有两点E 、F 满足AE =4,EF =FC =12,AE ⊥EF ,CF ⊥EF ,则正方形ABCD 的边长为A .252B .102C .20D .202 二、填空题:(本大题共8小题,每小题4分,共32分,把答案直接填在答题卷相对应的位置上)11.当x 等于 时,分式223x x --无意义.12.化简82-的结果是 ▲13.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于 ▲ .14.反比例函数y =k x的图象过点P(2,6),那么k 的值是 . 15.化简113232+-+= . 16.若a <1,化简()211a --的结果为 . 17.设a >b >0.a 2+b 2=4ab ,则22a b ab -的值等于 .18.如图,已知双曲线y =k x(k>0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k = ▲ .三、解答题:(共88分,)19.化简与计算(本题满分24分,每小题6分) (1)114224÷; (2)()2312603a b b b ⎛⎫∙-≥ ⎪⎝⎭ (3)、10112()32(3)2π-+----; (4) 22)232(1)-2(2÷--;20.(本题满分12分,每小题6分)解下列方程:(1)30201x x =+ (2)11322x x x-=---21.(本题满分8分) 先化简,再求值:2111211x x x x x x +⎛⎫+÷⎪--+-⎝⎭,其中x =21+.22.(本题满分12分)今年某中学到“格林乡村公园”植树,已知该中学离公园约15km ,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h .(1)用v 分别表示自行车和汽车从学校到公园所用的时间;(2)求v 的值; (3)植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.23.(本题满分10分)某校为了提高学生的身体素质,每年都举行“冬季三项比赛”,要求每位同学都从“跳绳、踢毽子、长跑”三个项目中选取一个项目参加比赛.为了便于学校安排场地,体育组老师随机抽取了部分学生,对他们报名情况进行调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)将两幅统计图补充完整;(2)抽取的学生人数为 ▲ ;(3)若该校有1200名学生,试计算抽取的比例,并估计该校中选择“长跑”的人数.24.(本题满分10分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)△BEC是否为等腰三角形?请给出证明;(2)若AB=1,∠ABE=45°,求矩形的面积.25.(本题满分12分)某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图所示),现己知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y(万件)与时间x(天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,问题本次广告策划,设计师能否拿到“特殊贡献奖”?(说明:天数可以为小数,如3.14天等.)。
2014-2015学年江苏省徐州市沛县八年级(上)期末数学试卷
![2014-2015学年江苏省徐州市沛县八年级(上)期末数学试卷](https://img.taocdn.com/s3/m/128f3ac8d15abe23482f4d25.png)
2014-2015学年江苏省徐州市沛县八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014秋•沛县期末)下列标志中,是轴对称图形的是()A.B.C.D.2.(3分)(2014秋•沛县期末)2的算术平方根是()A.B.2 C.±D.±23.(3分)(2014秋•沛县期末)如图,AC=AD,∠C=∠D=90°,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS4.(3分)(2014秋•沛县期末)等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm5.(3分)(2014秋•沛县期末)2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为384401000米,用四舍五入法取近似值,精确到1000000米,并用科学记数法表示,其结果是()A.3.84×107米B.3.8×107米C.3.84×108米D.3.8×108米6.(3分)(2015春•大名县期末)一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A.B.C.D.7.(3分)(2014秋•湖州期末)正三角形ABC中,BD=CE,AD与BE交于点P,∠APE 的度数为()A.45°B.55°C.60°D.75°8.(3分)(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)二、填空题(共10小题,每小题3分,满分30分)9.(3分)(2014秋•沛县期末)点A(2,﹣3)关于x轴的对称点A′的坐标是.10.(3分)(2014秋•沛县期末)为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是.11.(3分)(2014秋•沛县期末)将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式.12.(3分)(2014秋•沛县期末)如图,将Rt△ABC沿AC所在的直线向右平移3个长度单位得到△DEF,已知AC=5,则DC=.13.(3分)(2014秋•沛县期末)如图,在Rt△ABC中,∠C=90°,D为AC上的一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是.14.(3分)(2014秋•沛县期末)如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=°.15.(3分)(2014秋•沛县期末)写出同时具备下列两个条件的一次函数关系式.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).16.(3分)(2014秋•沛县期末)如图,点O是△ABC的两条角平分线的交点,若∠A=80°,则∠BOC的大小是.17.(3分)(2014秋•沛县期末)如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为.18.(3分)(2014•徐州)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A 以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为.三、解答题(共10小题,满分86分)19.(5分)(2014秋•沛县期末)计算:+﹣(2+)0﹣|﹣|20.(5分)(2014秋•沛县期末)解方程;2x2﹣32=0.21.(6分)(2014秋•沛县期末)已知:y与x+2成正比例,且x=1时,y=3,(1)写出y与x之间的函数关系式;(2)计算y=4时,x的值.22.(8分)(2014秋•沛县期末)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE,求证:BD=AE.23.(10分)(2014秋•沛县期末)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)①样本中D级学生有人,并补齐条形统计图;②扇形统计图中A级所在的扇形的圆心角度数是;③若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.24.(10分)(2014秋•沛县期末)某校有一空地ABCD,如图所示,现计划在空地上中草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若种植1平方米草皮需要200元,问总共需要投入多少元?25.(10分)(2014秋•沛县期末)△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位,(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标.(3)求△ABC的面积.26.(10分)(2014•射阳县校级模拟)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.27.(10分)(2014秋•沛县期末)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=°,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.28.(12分)(2014秋•沛县期末)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D 的坐标为(1,n),(1)点A的坐标是,n=,k=,b=;(2)x取何值时,函数y=kx+b的函数值大于函数y=x+1的函数值;(3)求四边形AOCD的面积;(4)是否存在y轴上的点P,使得以点P,B,D为顶点的三角形是等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.2014-2015学年江苏省徐州市沛县八年级(上)期末数学试卷参考答案一、选择题(共8小题,每小题3分,满分24分)1.B 2.A 3.A 4.C 5.C 6.B 7.C 8.D二、填空题(共10小题,每小题3分,满分30分)9.(2,3)10.抽样调查11.y=2x+2 12.2 13.3 14.30 15.y=-x-1(答案不唯一)16.130° 17.60cm218.y=-3x+18三、解答题(共10小题,满分86分)19.20.21.22.23.572°330 24.25.26.27.2525115小28.(0,1)23-1。
2014苏科版八年级数学上册期末测试题及答案1
![2014苏科版八年级数学上册期末测试题及答案1](https://img.taocdn.com/s3/m/ab4f5dd2162ded630b1c59eef8c75fbfc77d9493.png)
2014苏科版八年级数学上册期末测试题及答案1八年级数学第一学期期末测试卷时间:100分钟;满分:120分一、选择题(共8小题,每小题3分,共24分)1.2的算术平方根是()。
A。
2B。
-2C。
±2D。
±22.2013年12月2日,“嫦娥三号”在___发射升空,并于12月14日在月球上成功实施软着陆。
月球距离地球平均为xxxxxxxx0米,用四舍五入法取近似值,精确到xxxxxxx米,并用科学计数法表示,其结果是()。
A。
3.84×107米B。
3.8×107米C。
3.84×108米D。
3.8×108米3.在实数:3.21,π,3,-√7,-1/2,-5/3,-2中,无理数的个数有()。
A。
1个B。
2个C。
3个D。
4个4.在平面直角坐标系中,点P(3,-5)在()象限。
A。
第一象限B。
第二象限C。
第三象限D。
第四象限5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()。
A。
△ABD≌△CBDB。
△ABC是等边三角形C。
△AOB≌△COBD。
△AOD≌△COD6.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()。
7.删除此段落,因为没有题目。
8.删除此段落,因为没有题目。
7.在正方形网格中,有两个小正方形被涂黑,现将其余小正方形涂黑一个,使整个图案构成一个轴对称图形。
问涂法共有几种?8.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶。
快递车到达乙地后卸完物品再另装货物共用h,立即按原路以另一速度返回,直至与货车相遇。
已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示,现有以下4个结论:①快递车到达乙地时两车相距120km;②甲、乙两地之间的距离为300km;③快递车从甲地到乙地的速度为100km/h;④图中点B的坐标为(3,75)。
2014-2015常州市八上期末数学试卷(word四页版有答案)
![2014-2015常州市八上期末数学试卷(word四页版有答案)](https://img.taocdn.com/s3/m/5c4989285a8102d276a22f4f.png)
2014-2015学年江苏省常州市八年级(上)期末数学试卷班级 姓名 评价一、填空题(每题2分,共20分)1.16的平方根是 , x 3=﹣1,则x= .2.|﹣|= , 比较大小π﹣3 0.14.3.等腰三角形一个内角等于70°,则它的底角为 .4.如图,已知AC=FE ,BC=DE ,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 .第4题图 第7题图 第10题图5.取=1.732050807…的近似值,若要求精确到0.01,则 . 6.若+|b+2|=0,则点P (a ,b )在第 象限,点P 到x 轴的距离是 .7.如图,在△ABC 中,AB=AC=13,BC=10,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于 .8.已知点A (﹣1,m ),点B (1,n )在函数y=﹣2x+b 的图象上,则m n (填“>”或“=”或“<”)9.已知一次函数y=kx+b (k ≠0)图象上 的点P 的坐标(x ,y )满足下表: 则k= ;m= .10.如图,直线l 1:y=x+1与直线l 2:y=x+,直线l 1与y 轴相交于点A ,动点C 从点A 出发,沿平行于x 轴的方向向右运动,到达直线l 2上的点B 1处后,沿垂直于x 轴的方向向上运动,到直线l 1上的点A 1处:再沿平行于x 轴的方向向右运动,到达直线l 2上的点B 2处后,沿垂直于x 轴的方向向上运动,到直线l 1上的点A 2处:按此规律运动,…,试写出点A 1的坐标 ,点A 2015的坐标 .二、选择题(每小题3分,共18分)11.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .12.下列表述正确的是( )A .是无理数B . =±5C .=()2D .无限小数都是无理数13.一次函数y=mx+n (m ≠0)的图象如图所示,则m 、n 的符号是( )x 3 m 1 y 2 ﹣6 ﹣2A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0第13题图第15题图14.在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在所给的下列条件中能判断△ABC不是直角三角形的是()A.∠A=∠C﹣∠B B.a2=c2﹣b2C.a=k,b=k,c=k(k>0)D.a:b:c=2:3:415.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE 的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°16.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A.B.C.D.三、解答或证明(第17、18题每题5分,第19题6分,第20、21题每题8分,第22题7分,第23题6分,第25题10分,共62分)17.计算:+(﹣)﹣1﹣.18.已知(1+x)2=4,求x的值.19.已知:如图,在Rt△ABC中,∠B=90°,AE⊥CA,且AE=BC,点D在AC上,且AD=AB,求证:DE∥AB.20.已知:图中点A,点B的坐标分别为(﹣2,1)和(2,3).(1)在图(1)中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2;(2)在图(2)中分别画出线段AB关于直线x=﹣1和直线y=4的对称线段A3B3及A4B4;(3)写出点A1、B1,点A2、B2,点A3、B3,点A4、B4的坐标.21.如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是一元二次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.22.已知:如图,AD是△ABC的角平分线,AB=AC,点E是AC的中点.(1)求证:ED=AC;(2)如果点F是AD的中点,那么EF与AD有怎样的关系?证明你的结论.23.先阅读,然后解答提出的问题:设m,n是有理数,且满足m+n=2﹣3,求n m的值.解:由题意,移项得,(m﹣2)+(n+3)=0,∵m、n是有理数,∴m﹣2,n+3也是有理数,又∵是有理数,∴m﹣2=0,n+3=0,∴m=2,n=﹣3∴n m=(﹣3)2=9.问题解决:设a、b都是有理数,且a2+b=16+5,求2﹣5b的值.24.甲乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数的图象如图所示,根据图象所提供的信息解答下列问题:(1)他们进行米的长跑训练,在0<x<15的时间段内,速度较快的人是;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?25.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.一、填空题(每题2分,共20分)1.±4,﹣1.2.﹣,>3.70°或55°.4.∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).5.1.73.6.四,2.7..8.>9.2;﹣1.10.(1,2),(22015﹣1,22015).二、选择题(每小题3分,共18分)11~16 A C B D B B三、解答或证明(第17、18题每题5分,第19题6分,第20、21题每题8分,第22题7分,第23题6分,第25题10分,共62分)17.解:原式=﹣3﹣2﹣3=﹣8.18.解:方程开方得:1+x=2或1+x=﹣2,解得:x=1或x=﹣3.19.证明:∵AE⊥CA,∴∠EAD=90°,∵∠CBA=90°,∴∠CBA=∠EAD,在△BCA和△AED中,,∴△BCA≌△AED(SAS),∴∠CAB=∠EDA,∴DE∥AB.20.解:(1)如图1所示;(2)如图2所示;21.解:(1)交点P的坐标(1,1)是一元二次方程组的解;(2)不等式kx+b<0的解集为x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)把A(0,﹣1),P(1,1)分别代入y=mx﹣n得,解得,所以直线l1的解析式为y=2x﹣1,当y=0时,2x﹣1=0,解得x=,所以M点的坐标为(,0);把P(1,1)、B(3,0)分别代入y=kx+b得,解得,所以直线l2的解析式为y=﹣x+,当x=0时,y=﹣x+=,则N点坐标为(0,),所以四边形OMPN的面积=S△ONB﹣S△PMB=×3×﹣×(3﹣)×1=1.故答案为;x>3;≤1.22.(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∵点E是AC的中点,∴ED=AC;(2)解:EF垂直平分AD.证明如下:∵点E是AC的中点,∴EA=AC,∵ED=AC,∴EA=DE,∵点F是AD的中点,∴EF垂直平分AD.23.解答:解:由题意得:(a2﹣16)+(b﹣5)=0,∵a,b为有理数,∴a2﹣16=0,b﹣5=0,解得:a=±4,b=5,∵a≥0,∴a=4,则原式=2×2﹣5×5=4﹣25=﹣21.24.解:(1)由图象得:他们进行5000米的长跑训练,在0<x<15的时间段内,速度较快的人是甲;(2)设所求线段的函数表达式为y=kx+b(0≤x≤20),把(0,5000)和(20,0)代入得:,解得:k=﹣250,b=5000,则y=﹣250x+5000(0≤x≤20);(3)当x=15时,y=﹣250x+5000=﹣250×15+5000=5000﹣3750=1250,则两人相距(5000﹣1250)﹣(5000﹣2000)=750(米).故答案为:5000;甲25解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得,所以直线AB的函数表达式为y=﹣x+3,②由①知点P坐标为(a,﹣a+3),∴点Q坐标为(﹣a,﹣a+3),∴S△QOA=×|OA|×|﹣a+3|=×2×|﹣a+3|=|﹣a+3|=﹣a+3=4.解得a=﹣,∴P点的坐标为(﹣,4),(2)设P点的坐标为(a,n),(a<0,n>0),则点C,Q的坐标分别为C(a,0),Q(﹣a,n),①如图1,当∠QAC=90°且AQ=AC时,QA∥y轴,∴﹣a=2,∴a=﹣2,∴AC=4,从而AQ=AC=4,即|n|=4,由n>0得n=4,∴P点坐标为(﹣2,4).设直线AB的函数表达式为y=cx+b(c≠0),将P(﹣2,4),A(2,0)代入得,解得,∴a=﹣2,b=2.②如图2,当∠AQC=90°且QA=QC时,过点Q作QH⊥x轴于点H,∴QH=CH=AH=AC,由Q(﹣a,n)知H(﹣a,0).Q的横坐标﹣a=,解得a=﹣,Q的纵坐标QH==∴Q(,),∴P(﹣,),由P(﹣,),点A坐标为(2,0),可得直线AP的解析式为y=﹣x+1,∴b=1,∴a=﹣,b=1,综上所述当△QAC是等腰直角三角形时,a=﹣2,b=2或a=﹣,b=1.。
江苏省14-15学年秋学期八年级期末数学模拟试卷(1)含答案苏科版
![江苏省14-15学年秋学期八年级期末数学模拟试卷(1)含答案苏科版](https://img.taocdn.com/s3/m/bc42ecf60242a8956bece47a.png)
八年级秋学期期末数学模拟试卷(1)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列四个图形中轴对称图形的个数是( )A.1 B.2 C.3 D.42.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是( ) A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°+的结果为( ) 3.实数a,b在数轴上的位置如图所示,若a>b a bA.2a+b B.-2a+b C.b D.2a-b4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.050(精确到0.001)5.卞列各式化简结果为无理数的是( )A B.-1)0C D6.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D.若点E 为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.137.周一的升旗仪式上,同学们看到匀速上升的旗子,下面能反映其高度与时间关系的大致图像是( )8.已知两个变量x 和y ,它们之间的3组对应值如下表所示:则y 与x 之间的函数关系式可能是 A .y =xB .y =2x +1C .y =x 2+x +1D .3y x=二、填空题(每题2分,共20分)9.在平面直角坐标系中,点(1,2)位于第_______象限. 10.若一个汽车牌在水中的倒影为,则该车牌照号码为_______.11.在平面直角坐标系中,点(-3,4)关于y 轴对称的点的坐标是_______.12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D .若CD =4,则点D 到AB 的距离为_______.13.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上.若CG =CD ,DF =DE ,则∠E =_______.14.一次函数y =-x +1的图像不经过第_______象限.15.已知(2a +1)20,则-a 2+b 2004=_______.16.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm ,则正方形a ,b ,c ,d 的面积之和是_______cm 2.17.如图,已知函数y =x -2和y =-2x +1的图像交于点P ,根据图像可得方程组221x y x y -=⎧⎨+=⎩的解是_______.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h ,两车的距离y(km)与货车行驶的时间x(h)之间的函数图像如图所示.现有以下4个结论:①快递车从甲地到乙地的速度为100km/h ; ②甲、乙两地之间的距离为120km ; ③图中点B 的坐标为(334,75); ④快递车从乙地返回时的速度为90km/h . 其中正确的是_______.(填序号) 三、解答题(共64分) 19.(本题6分)计算下列各题.(1)()01232π--+--(2)12+.20.(本题5分)如图,在△ABC 中,∠BAC 的平分线与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN ⊥LAB ,PM ⊥AC ,垂足分别为点N ,M .求证:BN =CM .21.(本题6分)如图,已知一架竹梯AB 斜靠在墙角MON 处,竹梯AB =13m ,梯子底端离墙角的距离B0=5m .(1)求这个梯子顶端A 距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离BD =4m 吗?为什么?22.(本题5分)如图所示是一个正比例函数与一个一次函数的图像,它们交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.23.(本题6分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且么GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.24.(本题5分)小明根据某个一次函数的关系式填写了下面这张表.其中有一格不慎被墨迹遮住了,想想看,该空格里原来填的数是多少?说明你的理由.25.(本题8分)一农民带上若千千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆的千克数与他手中持有的钱数(含备用零钱)韵关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前y与x之间的函数关系式;(3)由表达式你能求出降价前每千克土豆的价格是多少吗?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?26.(本题9分)已知点P是直角三角形ABC斜边AB上一动点(不与A、B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是_______,QE与QF的数量关系是_______.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,(2)中的结论是否成立?请画出图形并给予证明.27.(本题9分)在社会主义新农村建设电,菜乡镇决定对A,B两材之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系图像,请根据图像所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求、出甲、乙两工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?参考答案一、选择题1.C2.A3.C4.B5.C6.C7.D8.B二、填空题9.一10.M17936 11.(3,4) 12.4 13.15°14.三15.3416.49 17.11xy=⎧⎨=-⎩18.①③④三、解答题19.(1)-12(2)原式=120.略21.(1)12m(2)4m22.y=2x-523.(1)略(2)EG⊥DF24.-2.25.(1)5元(2)y=0.5x+5 (3)0.5元/千克(4)45千克26.(1)AE//BF,QE=QF (2)QE=QF.(3)(2)中结论仍然成立.27.(1)120米(2)y甲=60x (3)9天完成。
【八上期末】苏科版数学八年级上期末试卷含答案[1]
![【八上期末】苏科版数学八年级上期末试卷含答案[1]](https://img.taocdn.com/s3/m/e16131eca76e58fafbb0038e.png)
2014–2015学年第一学期期中模拟试卷四初二数学考试范围:八年级上学期,主要有全等三角形、轴对称图形、勾股定理、实数。
题型:选择、填空共十八题(54分),解答题十题(76分),分值130分,考试时间120分钟。
一、选择题(每小题3分,共30分)1.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. 正确的有( ) A.1个 B.2个 C.3个 D.4个等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( ) A.3 cm 或5 cm B.1 cm 或7 cm C.3 cm D.5 cm 3.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-4.下列运算中,错误的是( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A. 1个 B. 2个 C. 3个 D. 4个 5.如图,在△中,是角平分线,∠∠36°,则图中有等腰三角形( )A.3个B.2个C.1个D.0个6.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( ) A.45°,90° B.90°,45° C.60°,30° D.30°,60°7.如图,已知∠∠15°,∥,⊥,若,则()A.4B.3C.2D.1面半径为π68.如图,一圆柱高8 cm ,底cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.9. 已知平行四边形的周长为,两条对角线相交于点,且△的周长比△的周长大,则的长为( ) A.2ba - B.2ba +C.22ba + D.22ba + 10. 下列图形是轴对称图形而不是中心对称图形的是( )二、填空题(每小题3分,共24分)11.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { };②无理数集合: { };③正实数集合: { };④实数集合: { }.12.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 . 13.在△中,cm ,cm ,⊥于点,则_______.14.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为________.15.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.16.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.第15题 第16题 第18题 17.(1)已知5-a +3+b ,那么. (2).若02733=+-x ,则_________. 18.如图,点、分别是菱形的边、上的点,且∠∠60°,∠45°,则∠___________.三、解答题(共76分)19.(6分)如图,四边形ABCD 是平行四边形,,BD ⊥AD ,求BC ,CD及OB 的长.20.(6分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).21.(6分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且. (1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.22.(6分)如图,在梯形中,∥,,⊥,延长至点,使. (1)求∠的度数. (2)试说明:△为等腰三角形.23.(6分)如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.24.(每题4分,共8分)求各式中的实数x . (1)36(x -3)2=49; (2)3(x -1)3+24=0 25.(8分)如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A 出发的一条线段AB ,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为8;(2)以(1)中的AB 为边的一个等腰三角形ABC ,使点C 在格点上,且另两边的长都是无理数.26.计算:(每题4分,共8分)(1)4+(3)2+ 38 (2)])3(3[64)5.2(223332---+⨯---27.(10分)如图,△ABC 中,∠ACB=90°,以AC 为边在△ABC 外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE . (1)说明:AE=CE=BE ; (2)若AB=15cm ,P 是直线DE 上一点.则当P 在何处时,PB+PC 最小,并求出此时PB+PC 的值.28.(12分)如图,点O 是等边△ABC 内一点,∠AOB =110º,∠BOC =a .将△BOC 绕点C 按顺时针方向旋转60º得△ADC ,连结OD . (1)求证:△COD 是等边三角形; (2)当a =150º时,试判断△AOD 的形状,并说明理由;(3)探究:当a 为多少度时,△AOD 是等腰三角形?参考答案一、选择题1.A 解析:①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误; ③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A . 2.B 解析:(1)当边长7是腰时,底边长(cm ),三角形的三边长为1、7、7,能组成三角形;(2)当边长7是底边时,腰长(cm ),三角形的三边长为4、4、7,能组成三角形.因此,三角形的底边长为1 cm 或7 cm . 3.A 解析:选项A 中;选项B 中;选项C 中;选项D 中,故只有A 正确.①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+.5.A 解析:∵ 是角平分线,∠36°, ∴ ∠36°,∠72°,∴ (△是等腰三角形). ∵ ∠∠72°,∴(△是等腰三角形). ∵ ∠72°,∴ (△是等腰三角形),故选A .6.A 解析:∵ △和△都是等腰直角三角形,∴ ∠∠. 又∵ △绕着点沿逆时针旋转度后能够与△重合,∴ 旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A .7.C 解析:如图,作⊥于点,∵ ∠,⊥,⊥,∴ . ∵ ∥,∴ ∠2∠30°,∴ 在Rt △中,,故选C .8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径. ∵ ,∴ . ∵ ,∴ ,即蚂蚁要爬行的最短距离是10 cm . 9. B 解析:依据平行四边形的性质有,由△的周长比△的周长大,得,故2ba . 10.D 解析:A 是中心对称图形,不是轴对称图形;B 、C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选D . 二、填空题 11. ①-7,0.32,31,46,0,3216;②8,21,-2π; ③0.32,31,46,8,21,3216; ④-7,0.32,31,46,0,8,21,3216,-2π 12.29 解析:当腰长为3时,等腰梯形不成立.同理,当腰长为4时,也不能构成等腰梯形.故只有当腰长为11时满足条件,此时等腰梯形的周长为29.13.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一, ∴ .∵,∴.∵,∴(cm ). 14.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.15.15 解析:∵ 点关于的对称点是,关于的对称点是,∴ ,.∴ △的周长为.16. 解析:如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.17.(1)8 解析:由5-a +3+b ,得,所以.(2).27 解析:因为,所以,所以.18. 解析:连接,∵ 四边形是菱形,∠,∴ ∠,,∠,∠21∠.∴ ∠,△为等边三角形,∴,∠,即∠.又∠,即∠,∴ ∠.又,∠,∴ △≌△(ASA ),∴ .。
2014-2015学年江苏省八年级(上)期末数学模拟试卷(3)
![2014-2015学年江苏省八年级(上)期末数学模拟试卷(3)](https://img.taocdn.com/s3/m/38080d432e3f5727a5e96248.png)
2014-2015学年江苏省苏州市昆山市锦溪中学八年级(上)期末数学模拟试卷(3)2014-2015学年江苏省苏州市昆山市锦溪中学八年级(上)期末数学模拟试卷(3)一、选择题(每题3分,共30分).CD ..3.(3分)在﹣0.101001,,,﹣,,0中,无理数的个数有( ). C D .6.(3分)如图所示,已知AB ∥CD ,AD ∥BC ,AC 与BD 交于点O ,AE ⊥BD于E ,CF ⊥BD 于E ,图中全等三角形有( )8.(3分)(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )C D10.(3分)下表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:则根据表格中的相关二、填空题(每题3分,共24分)11.(3分)(2007•三明)我国最长的河流长江全长约为6300千米,用科学记数法表示为_________千米.12.(3分)(2011•牡丹江)函数y=的自变量x取值范围是_________.13.(3分)(2000•河北)比较大小:_________(填:“<、>、=”).14.(3分)等腰△ABC中,BD为腰上的高.∠A=50°,则∠DBC的度数为_________.15.(3分)(2012•青海)如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是_________(只需一个即可,图中不能再添加其他点或线).16.(3分)(2001•昆明)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为_________.17.(3分)如图,已知A、B两点的坐标分别为(,)、(,﹣),将线段AB绕坐标原点O按逆时针方向旋转一定角度后得到对应线段A′B′(其中旋转角度小于90°).若线段A′B′的中点P恰好在直线y=x上,则点P的坐标为_________.18.(3分)(2014•沙湾区模拟)如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是_________.三、解答题(96分)19.(8分)求出下列x的值:(1)x2﹣25=0(2)(x+1)3=﹣64.20.(6分)计算题:(π﹣3.14)0+|1﹣|+()﹣1.21.(6分)已知3﹣的整数部分是a,小数部分是b,求500a2+(2+)ab+4的值.22.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.23.(10分)求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通n 16(2)运用你发现的规律,探究下列问题:已知≈1.435,求下列各数的算术平方根:①0.0206;②206;③20600.24.(10分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.25.(10分)如图,已知公路上有A、B、C三个汽车站,A、C两站相距280km,一辆汽车上午8点从离A站40km 的P地出发,以80km/h的速度向C站匀速行驶,到达C站休息半小时后,再以相同的速度沿原路匀速返回A站.(1)在整个行驶过程中,设汽车出发x h后,距离A站y km,写出y与x之间的函数关系式;(2)若B、C两站相距80km,求汽车在整个行驶过程中途经B站的时刻.26.(12分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.27.(12分)(2013•河南)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.28.(12分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D.(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k的取值范围是_________.2014-2015学年江苏省苏州市昆山市锦溪中学八年级(上)期末数学模拟试卷(3)参考答案与试题解析一、选择题(每题3分,共30分).C D..,﹣,,0中,无理数的个数有()3.(3分)在﹣0.101001,,,,,﹣,,﹣..C D.6.(3分)如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有()8.(3分)(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是(),最大长度根据勾股定理,得:=13C D10.(3分)下表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:则根据表格中的相关;二、填空题(每题3分,共24分)11.(3分)(2007•三明)我国最长的河流长江全长约为6300千米,用科学记数法表示为 6.3×103千米.12.(3分)(2011•牡丹江)函数y=的自变量x取值范围是x≤3.13.(3分)(2000•河北)比较大小:>(填:“<、>、=”).>﹣.14.(3分)等腰△ABC中,BD为腰上的高.∠A=50°,则∠DBC的度数为25°.(15.(3分)(2012•青海)如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO(只需一个即可,图中不能再添加其他点或线).16.(3分)(2001•昆明)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.17.(3分)如图,已知A、B两点的坐标分别为(,)、(,﹣),将线段AB绕坐标原点O按逆时针方向旋转一定角度后得到对应线段A′B′(其中旋转角度小于90°).若线段A′B′的中点P恰好在直线y=x上,则点P的坐标为(,).两点的坐标分别为(,),﹣两点的坐标分别为(,,﹣),,),18.(3分)(2014•沙湾区模拟)如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是①②③.三、解答题(96分)19.(8分)求出下列x的值:(1)x2﹣25=0(2)(x+1)3=﹣64.20.(6分)计算题:(π﹣3.14)0+|1﹣|+()﹣1.(﹣.21.(6分)已知3﹣的整数部分是a,小数部分是b,求500a2+(2+)ab+4的值.<)<﹣2+﹣22.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.﹣××﹣23.(10分)求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通n 16(2)运用你发现的规律,探究下列问题:已知≈1.435,求下列各数的算术平方根:①0.0206;②206;③20600.=0.143524.(10分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.25.(10分)如图,已知公路上有A、B、C三个汽车站,A、C两站相距280km,一辆汽车上午8点从离A站40km 的P地出发,以80km/h的速度向C站匀速行驶,到达C站休息半小时后,再以相同的速度沿原路匀速返回A站.(1)在整个行驶过程中,设汽车出发x h后,距离A站y km,写出y与x之间的函数关系式;(2)若B、C两站相距80km,求汽车在整个行驶过程中途经B站的时刻.26.(12分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.)根据两直线相交的问题,通过解方程组得,解得得x+1=0﹣27.(12分)(2013•河南)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.,,28.(12分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D.(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k的取值范围是k>1.,×××;DB=﹣,a=)参与本试卷答题和审题的老师有:workholic;2300680618;gsls;522286788;CJX;蓝月梦;py168;137-hui;王岑;lanyan;心若在;hdq123;nhx600;HLing;zhjh;wdxwzk;星期八;lf2-9;lhf3-3;fuaisu;lanchong;cair。
2014—2015第一学期新苏科版八年级数学期末模拟试题三
![2014—2015第一学期新苏科版八年级数学期末模拟试题三](https://img.taocdn.com/s3/m/5513ab715acfa1c7aa00cc69.png)
A B C D2014—2015八年级数学第一学期期末模拟试卷(三)一.选择题(每小题3分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.估算7的值是( )A .在1和2之间 B .在2和3之间 C .在3和4之间 D .在4和5之间4.若点P 关于x 轴的对称点的坐标是(2,3),则点P 关于原点的对称点的坐标是( )A .(-3,-2)B .(2,-3)C .(-2,-3)D .(-2,3) 5.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( )A.-2 B.-1C.0D.26.若等腰三角形的两边长分别是4和6,则这个三角形的周长是( )A .14B .16C .14或16D .以上都不对7.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y ,则下列图象能大致反映y 与x 的函数关系的是 ( )8.一次函数5+=x y 的图象经过点P(a ,b)和Q(c ,d),则a(c -d )-b(c -d)的值为( )A .9 B .16 C .25 D .36.9.如图,在平面直角坐标系中,直线y =2233x -与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA =3.OC =4,则△CEF 的面积是( )A .6 B .3 C .9 D .1210.如图,正方形ABCD 的面积为36,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 ( )A .5 B .6 C .7 D .8二.填空题(每空2分)11.9的算术平方根是 ; 的立方根为-2.12.比较大小:-2.(填>、=或<) 13.2013年“元旦”期间无锡市旅游人数达约13.6 万人次,近似数数 “13.6万 ”是精确到 位.14.如图,将Rt △ABO 绕点O 顺时针旋转90°,得到O B A Rt ''∆,已知点A 的坐标为(4,2),则点A '的坐标为 .15.在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若∠BAC =110°,则∠EAG = °.16.如图,长为5米的梯子靠在墙上,梯子的底部到墙的底端距离为3米.若梯子的顶端下滑了117.如图,一束光线从点A (3,3,1)反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 . 18.一次函数y =-2x +6与x 轴的交点坐标是________,与y 轴的交点坐标是________,与坐标轴围成的三角形的面积为 .19.在数学活动“温度计上的一次函数”中,我们知道表示温度一般有两种方式:摄氏(℃)与华氏(°F).通过调查得知:10℃=50°F ,20℃=68°F .请你算一算:30℃=_______°F .20.若直线y =x -1与直线y =-ax +c 2的交点坐标为(2,1),则直线y =-x -1与直线y =ax +c 2的交点坐标为_______.三、解答题21.(9分)计算:(1)32781-÷-2)5(-; (2)()002π-- 解方程:0942=-x .22.(8分)在△ABC 中,∠BAC=900,AB=20,AC=15,AD ⊥BC ,垂足为D ,(1)求BC 的长(2)求AD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015八年级数学第一学期期末模拟试卷(五)(时间:100分钟;满分:150分)一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)A B .2 C D .±2 2.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为384401000米,用四舍五入法取近似值,精确到1000000米,并用科学计数法表示,其结果是 ······························································································· ( ) A .3.84×107米 B .3.8×107米 C .3.84×108米 D .3.8×108米3.在实数:213.,π−227中,无理数的个数有 ········································· ( ) A .1个 B .2个 C .3个 D .4个 4.在平面直角坐标系中,点P (3,−5)在 ··························································· ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.如图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O ,且AB ≠AD ,则下列判断不正确的是 ································································· ( ) A .△ABD ≌△CBD B .△ABC 是等边三角形 C .△AOB ≌△COB D .△AOD ≌△COD6.一次函数y =kx b ,当k <0,b <0时,它的图象大致为 ····························· ( )7.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有 ····························································· () A .3种 B.4种C .5种D .6种8.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用34h,立即按原路以另一速度返回,直至与货车相遇.已知货车的速度为60km/h ,两车之间的距离y (km )与货车行驶时间x (h )之间的函数图象如图所示,现有以下4个结论: ①快递车到达乙地时两车相距120km ; ②甲、乙两地之间的距离为300km ;③快递车从甲地到乙地的速度为100km/h ;第7题 第5题 A B C Dh第8题④图中点B 的坐标为(334,75). 其中,正确的结论有 ··························································································· ( ) A .1个 B .2 C .3个 D .4个 二、填空题(本大题共10小题,每小题4分,共40分)9.函数y =x -3中自变量x 的取值范围是___________ 10.-64的立方根是 ,49的平方根是 。
12.点P (2-,3-)到x 轴的距离是_____.13.比较大小:7.(填“>”、“=”、“<”)14.已知等腰三角形的一个外角是80°,则它顶角的度数为_____.15.若直角三角形的两条直角边的长分别是6和8,则斜边上的中线长为_____. 16.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =10cm ,BD =6cm ,那么D 点到直线AB 的距离是_____cm .17.在平面直角坐标系中,一青蛙从点A (−1,0)处向左跳2个单位长度,再向下跳2个单位长度到点A ′处,则点A ′的坐标为_____.18.写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可) (1)y 随x 的增大而减小;(2)图像经过点(1,−2).三、解答题(本大题共9小题,共86分,解答要求写出文字说明,证明过程或计算步骤) 19.(本题满分24分) (1)求x 的值:249x -=0;(2)计算:0(1)-(3)已知:(x +5)3=-27,求x (4220.(8分) 已知a 所对应的点在数轴上的位置如图所示.化简:a 1-AB C D第16题21(本题满分8分)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?22.(本题满分8分) 下图是单位长度是1的网格⑴在图1中画出一个边长5的线段⑵在图2中画出一个以格点为顶点,面积为5的正方形.23.(本题满分10分)在平面直角坐标系中,已知A (−1,5)、B (4,2)、C (−1,0)三点.(1)点A 关于原点O 的对称点A ′的坐标为_____,点B 关于x 轴的对称点B ′的坐标为_____,点C 关于y 轴的对称点C ′的坐标为_____; (2)求以(1)中的点A ′、B ′、C ′为顶点的△A ′B ′C ′的面积.24.(本题满分10分)如图,四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BD=CB ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ; (2)若∠DBC =50°,求∠DCE 的度数.AB CDE25.(本题满分10分)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D . 求证:(1)∠EDC =∠ECD ; (2)OC =OD ;(3)OE 是线段CD 的垂直平分线.26.(本题满分12分)小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m/min .设小华出发x (min )行走的路程为y (m ),图中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?A B C D EO。