马鞍山市2014—2015学年度第一学期期末考试 八年级数学试题

合集下载

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014--2015学年八年级上册期末考试数学试题及答案

2014--2015学年八年级上册期末考试数学试题及答案

期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。

马鞍山市八年级上学期期末数学试卷

马鞍山市八年级上学期期末数学试卷

马鞍山市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:. (共12题;共24分)1. (2分)(2016·藁城模拟) 下列几何体的主视图是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分) (2018八上·宁波月考) 如图,一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是()A . 垂线段最短B . 两点之间线段最短C . 两点确定一条直线D . 三角形的稳定性3. (2分)(2017·淄博) 若分式的值为零,则x的值是()A . 1B . ﹣1C . ±1D . 24. (2分)如图在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是4,则△BEF 的面积是()A . 1B . 2C . 3D . 3.55. (2分) (2016八上·路北期中) 下列各式运算正确的是()A . a2+a3=a5B . a2•a3=a5C . (ab2)3=ab6D . a10÷a2=a56. (2分)等腰三角形的一个外角是130°,则它的底角等于()A . 50°B . 65°C . 100°D . 50°或65°7. (2分) (2018八上·姜堰期中) 如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C,D为圆心,大于 CD的长为半径画弧,两弧在∠AOB内部交于点E,作射线OE,连接CD,以下说法错误的是()A . △OCD是等腰三角形B . 点E到OA,OB的距离相等C . CD垂直平分OED . 证明射线OE是角平分线的依据是SSS8. (2分) (2016八上·淮阴期末) 如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是()A . 15cmB . 16cmC . 17cmD . 16cm或17cm9. (2分)下列运算正确的是()A . (π﹣3.14)0=0B . (π﹣3.14)0=1C . ()﹣1=﹣2D . ()﹣1=﹣10. (2分)(2016·徐州) 如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△A′B′C 的位置,使得CC′∥AB,则∠BAB′=()A . 30°B . 35°C . 40°D . 50°11. (2分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y12. (2分)(2017·河北模拟) A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A . ﹣ =30B . ﹣ =C . ﹣ =D . + =30二、填空题: (共12题;共13分)13. (1分) (2020七下·镇江月考) 某球形流感病毒的直径约为0.000 085 cm,用科学记数法表示该数据为________ cm.14. (1分) (2019七下·嵊州期末) 计算: =________。

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案1.点P(3,1)所在的象限是第一象限。

2.大于2且小于3的数是2.3.不能由图1滑雪人经过旋转或平移得到的是第四个滑雪人。

4.这组数据中的众数和中位数分别是22个和21个。

5.洗衣机内水量y(升)与从注水开始所经历的时间x (分)之间的函数关系对应的图象大致为选项B。

6.a的值为-2或4.7.结论a。

ab。

b不一定正确。

8.a的值为-1.9.一次函数y=ax+(239/77)的解析式为y=(-9/7)x+(3/7)。

10.线段AC扫过的面积为16.11.关于x的一次函数y=min{2x。

x+1}可以表示为y=2x-2(x≤1)或y=x+1(x>1)。

21.1) 点B1的坐标为 (-1.-2)。

向右平移3个单位,即横坐标加3,向下平移4个单位,即纵坐标减4,得到点B1的坐标。

这次平移的距离为向右平移3个单位,向下平移4个单位。

2) 如图所示,将△ABC绕点O顺时针旋转90°后得到△A2B2C2,其中点O为坐标原点。

根据坐标轴上点的旋转公式,可得点A2的坐标为 (-4.2),点B2的坐标为 (-2.-4),点C2的坐标为 (0.-1)。

22.1) 设男装一天的租金为x元,女装一天的租金为y元,则根据题意可列出如下方程组:5x + 8y = 5106x + 10y = 630解方程组可得,x = 60,y = 45.因此男装一天的租金为60元,女装一天的租金为45元。

2) 原计划租用男装6套,女装17套,租金为6×60 +17×45 = 1020元。

现在租用男装6套,女装14套,歌手服装3套,租金为6×60 + 14×45 + 3×1.2×45 = 1023元。

因此在演出当天租用服装实际需支付租金1023元。

23.1) 由于BE是△ABC的高,所以△ABE与△ACB相似。

2014-2015年安徽省马鞍山市八年级(上)期末数学试卷及参考答案

2014-2015年安徽省马鞍山市八年级(上)期末数学试卷及参考答案

2014-2015学年安徽省马鞍山市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列表述中,能确定准确位置的是()A.教室第三排B.湖南东路C.南偏东40°D.东经112°,北纬51°2.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()A.①②③B.②③④C.③④①D.④①②3.(3分)已知P1(﹣3,y1),P2(﹣3,y2)是一次函数y=2x﹣b的图象上的两个点,则y1、y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定4.(3分)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.(3分)如图,D是△ABC中BC边上一点,AB=AC=BD,AD=DC,则∠B的度数是()A.30°B.36°C.40°D.45°6.(3分)某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元C.0.45元D.0.5元7.(3分)已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③8.(3分)下列命题是真命题的是()A.若直线y=﹣kx﹣2过第一、三、四象限,则k<0B.三角形三条角平分线的交点到三个顶点的距离相等C.如果∠A=∠B,那么∠A和∠B是对顶角D.如果a•b=0,那么a=09.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.1个B.2个C.3个D.4个10.(3分)如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.12.(3分)在直角坐标系中,点A(﹣1,2),点P(0,y)为y轴上的一个动点,当y=时,线段PA的长得到最小值.13.(3分)若一个三角形的两边长分别为2cm和5cm,第三边长为xcm,且周长为偶数,则这个三角形的周长是cm.14.(3分)如图,长方形ABCD的长和宽分别为6cm、3cm,E、F分别是两边上的点,将四边形AEFD沿直线EF折叠,使点A落在A′点处,则图中阴影部分的周长为cm.15.(3分)已知直线y1=﹣x+m与y2=2x+n的交点的横坐标为2,则当x时y1>y2.16.(3分)如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF=度.17.(3分)△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,垂足为E,BD=10厘米,则AC=.18.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b 的值.20.(8分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.21.(8分)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.22.(8分)某公司需要购买甲、乙两种商品共150件,甲、乙两种商品的价格分别为600元和1000元.且要求乙种商品的件数不少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)请求出y与x的函数关系式及x的取值范围.(2)试利用函数的性质说明,当购买多少件甲种商品时,所需要的费用最少?23.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.24.(8分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.2014-2015学年安徽省马鞍山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列表述中,能确定准确位置的是()A.教室第三排B.湖南东路C.南偏东40°D.东经112°,北纬51°【解答】解:A、教室第三排不能确定位置,故本选项错误;B、湖南东路不能确定位置,故本选项错误;C、南偏东40°不能确定位置,故本选项错误;D、东经112°,北纬51°,能确定位置,故本选项正确.故选:D.2.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()A.①②③B.②③④C.③④①D.④①②【解答】解:①不是轴对称图形,②是轴对称图形,③是轴对称图形,④是轴对称图形,综上所述,是轴对称图形的有②③④.故选:B.3.(3分)已知P1(﹣3,y1),P2(﹣3,y2)是一次函数y=2x﹣b的图象上的两个点,则y1、y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【解答】解:∵P1(﹣3,y1),P2(﹣3,y2)是一次函数y=2x﹣b的图象上的两个点,∴y1=﹣6﹣b,y2=﹣6﹣b,∵﹣6﹣b=﹣6﹣b,∴y1=y2.故选:B.4.(3分)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选:D.5.(3分)如图,D是△ABC中BC边上一点,AB=AC=BD,AD=DC,则∠B的度数是()A.30°B.36°C.40°D.45°【解答】解:设∠C=x,∵AB=AC,∴∠C=∠B=x,∵AD=DC,∴∠C=∠DAC=x,∴∠ADB=∠C+∠DAC=2x,∵AB=BD,∴∠ADB=∠BAD=2x,在△ABD中,∠B=x,∠ADB=∠BAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=∠C=36°,故选:B.6.(3分)某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元C.0.45元D.0.5元【解答】解:超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元,故选:B.7.(3分)已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:A.8.(3分)下列命题是真命题的是()A.若直线y=﹣kx﹣2过第一、三、四象限,则k<0B.三角形三条角平分线的交点到三个顶点的距离相等C.如果∠A=∠B,那么∠A和∠B是对顶角D.如果a•b=0,那么a=0【解答】解:A、若直线y=﹣kx﹣2过第一、三、四象限,则﹣k>0,即k<0,故本选项正确;B、三角形三条角平分线的交点到三边的距离相等,故本选项错误;C、如果∠A=∠B,那么∠A和∠B可能是等腰三角形的两个底角,故本选项错误;D、如果a•b=0,那么a=0或b=0,故本选项错误.故选:A.9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.1个B.2个C.3个D.4个【解答】解:∵1=∠2,∴∠CAB=∠DAE,∵AC=AD,∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;当BC=ED时,不能判断△ABC≌△AED;当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.故选:C.10.(3分)如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.【解答】解:由题意可得:A点坐标为(﹣1,2+m),B点坐标为(1,﹣2+m),C点坐标为(2,m﹣4),D点坐标为(0,2+m),E点坐标为(0,m),F点坐标为(0,﹣2+m),G点坐标为(1,m﹣4).所以,DE=EF=BG=2+m﹣m=m﹣(﹣2+m)=﹣2+m﹣(m﹣4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于×2×1×3=3.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是y=﹣3x+2.【解答】解:y﹣2与x成正比例,即:y=kx+2,且当x=﹣1时y=5,则得到:k=﹣3,则y与x的函数关系式是:y=﹣3x+2.12.(3分)在直角坐标系中,点A(﹣1,2),点P(0,y)为y轴上的一个动点,当y=2时,线段PA的长得到最小值.【解答】解:如图,PA⊥y轴时,PA的值最小,所以,y=2.故答案为:2.13.(3分)若一个三角形的两边长分别为2cm和5cm,第三边长为xcm,且周长为偶数,则这个三角形的周长是12cm.【解答】解:根据三角形的三边关系可得:5﹣2<x<5+2,即3<x<7,∵周长为偶数,∴x=5,∴这个三角形的周长是:2+5+5=12(cm),故答案为:12.14.(3分)如图,长方形ABCD的长和宽分别为6cm、3cm,E、F分别是两边上的点,将四边形AEFD沿直线EF折叠,使点A落在A′点处,则图中阴影部分的周长为18cm.【解答】解:∵将四边形AEFD沿直线EF折叠,使点A落在A′点处,∴AE=A′E,DF=D′F,AD=A′D′∴图中阴影部分的周长为:BE+EA′+BC+A′D′+FD′=AB+BC+AD+CD,∵长方形ABCD的长和宽分别为6cm、3cm,∴图中阴影部分的周长为:6+3+6+3=18(cm),故答案为:18.15.(3分)已知直线y1=﹣x+m与y2=2x+n的交点的横坐标为2,则当x<2时y1>y2.【解答】解:如图所示:∵直线y1=﹣x+m与y2=2x+n的交点的横坐标为2,∴当x<2时,y1>y2.故答案为:<2.16.(3分)如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF=20度.【解答】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分线,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.17.(3分)△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,垂足为E,BD=10厘米,则AC=5厘米.【解答】解:连接AD,∵AB的垂直平分线交BC于D,垂足为E,BD=10厘米,∴AD=BD=10厘米,∴∠B=∠BAD,∵∠B=15°,∴∠BAD=∠B=15°,∴∠CDA=∠B+∠BAD=30°,∴AC=AD=10厘米=5厘米故答案为:5厘米.18.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.三、解答题19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b 的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.20.(8分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,=×3×|﹣3|=;∴S△ADC(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,所以P(6,3).21.(8分)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.22.(8分)某公司需要购买甲、乙两种商品共150件,甲、乙两种商品的价格分别为600元和1000元.且要求乙种商品的件数不少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)请求出y与x的函数关系式及x的取值范围.(2)试利用函数的性质说明,当购买多少件甲种商品时,所需要的费用最少?【解答】解:(1)设甲商品有x件,则乙商品则有(150﹣x)件,根据题意得:,解得:0≤x≤50.则y与x的函数关系式是:y=600x+1000(150﹣x)=﹣400x+150000(0≤x≤50);(2)∵k=﹣400<0,∴一次函数y随x的增大而减少,∴当x=50时,y=﹣400×50+150000=130000(元).最小答:购买50件甲种商品时,所需要的费用最少.23.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°又BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF为等腰直角三角形.证明:若E,F分别是AB,CA延长线上的点,如图所示:连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC(三线合一),∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.24.(8分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=﹣2x+2的图象上;平移2次后在函数y=﹣2x+4的图象上…由此我们知道,平移n次后在函数y=﹣2x+2n的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.【解答】解:(1)如图所示:(2)设过(0,2),(1,0)点的函数解析式为:y=kx +b (k ≠0), 则, 解得,故第一次平移后的函数解析式为:y=﹣2x +2;∴答案依次为:y=﹣2x +2;y=﹣2x +4;y=﹣2x +2n .(3)设点Q 的坐标为(x ,y ),依题意,.解这个方程组,得到点Q 的坐标为. ∵平移的路径长为x +y ,∴50≤≤56. ∴37.5≤n ≤42.∵点Q 的坐标为正整数,∴n 是3的倍数,n 可以取39、42,∴点Q 的坐标为(26,26),(28,28).。

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015 年人教版八年级数学上册期末测试题2014-2015 年人教版八年级数学上册期末测试题带详尽解说一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B .C. D .2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3 根3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 2+43 2 6 0B .( x+2) =x C.( ab ) =ab D.(﹣ 1) =16.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a)( x+a) 2 2 C.( x﹣ a)( x﹣ a) D .(x+a) a+( x+a) xB . x +a +2ax7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C . 22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+68.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠09.( 3 分)(2012?安徽)化简的结果是( ) A .x+1 B . x ﹣ 1C .﹣ xD . x2 3 5;③2 ﹣2 4 2 2 210.(3 分)( 2011?鸡西)以下各式: ①a =1 ;②a ?a =a =﹣ ;④﹣( 3﹣ 5)+(﹣ 2) ÷8×(﹣ 1)=0 ;⑤x +x =2x , 此中正确的选项是( )A .①②③B .①③⑤C .②③④D .②④⑤11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A .15 分钟,现已知小林家距学校 8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为( )B .C .D .12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DCC .∠ADB= ∠ADCD . ∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式: x3﹣ 4x 2﹣ 12x= _________ .14.( 4 分)( 2012?攀枝花)若分式方程:有增根,则 k= _________ .15.( 4 分)( 2011?昭通)以下图,已知点 A 、 D 、B 、F 在一条直线上, AC=EF , AD=FB ,要使 △ABC ≌△FDE ,还需增添一个条件,这个条件能够是_________.(只需填一个即可)16.( 4 分)( 2012?白银)如图,在 △ABC 中, AC=BC , △ABC 的外角∠ACE=100 °,则∠A= _________ 度.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共 7 小题,满分64 分)18.( 6 分)先化简,再求值:2 2 2 2, b=﹣.5( 3a b﹣ ab )﹣ 3( ab +5a b),此中 a=19.( 6 分)( 2009?漳州)给出三个多项式:2 2 2﹣ 2x.请选择你最喜爱的两个多项式进行x +2x ﹣1,x +4x+1 , x加法运算,并把结果因式分解.20.( 8 分)( 2012?咸宁)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:_________.l 当作一条直线(图(2)),问题就转变AB 、 AC 边的中点, BC=6 , BC 边上的高为参照答案与试题分析一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A . B .C. D .考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根 D . 3 根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ACD 及△ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC ,∠BAE= ∠CAD ,BE=DC , AD=AE ,故 A 、B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣ 60°=120°;∴∠α+∠β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为 180°,四边形的内角和是 360°等知识,难度不大,属于基础题5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 23 2 6 0B .( x+2) =x +4 C.( ab ) =ab D.(﹣ 1) =1考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析: A 、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D 、任何不为0 的数的 0 次幂都等于1.解答:解:A、不是同类项,不可以归并.故错误;2 2B 、( x+2) =x +4x+4 .故错误;32 2 6C、( ab ) =a b .故错误;D 、(﹣ 1) =1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a )( x+a ) 2 2C .( x ﹣ a )( x ﹣ a )D . (x+a ) a+( x+a ) xB . x +a +2ax考点 : 整式的混淆运算.剖析: 依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答: 解:依据图可知,222S 正方形 =( x+a ) =x +2ax+a ,应选 C .评论: 本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C .22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+6考点 : 因式分解的意义.剖析: 依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解: A 、 x 2﹣ 5x+6=x ( x ﹣5) +6 右侧不是整式积的形式,故不是分解因式,故本选项错误; B 、 x 2﹣5x+6= ( x ﹣ 2)( x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、( x ﹣ 2)( x ﹣ 3) =x 2﹣ 5x+6 是整式的乘法,故不是分解因式,故本选项错误; D 、 x 2﹣ 5x+6= ( x ﹣ 2)( x ﹣ 3),故本选项错误.应选 B .评论: 本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠0考点 : 分式存心义的条件. 专题 : 计算题.剖析: 依据分式存心义的条件进行解答. 解答: 解:∵分式存心义,∴a+1≠0, ∴a ≠﹣ 1. 应选 C .评论: 本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点: ( 1)分式无心义 ? 分母为零;( 2)分式存心义 ? 分母不为零;9.( 3 分)(2012?安徽)化简的结果是( )A .x+1B . x ﹣ 1C .﹣ xD . x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x ,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.0 2 3 5 ﹣2 4 2 2 2 10.(3 分)( 2011?鸡西)以下各式:①a =1;②a ?a =a ;③2 =﹣;④﹣( 3﹣ 5)+(﹣ 2)÷8×(﹣ 1)=0 ;⑤x +x =2x ,此中正确的选项是()A .①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;②切合同底数幂的乘法法例,故本小题正确;﹣2= ,依据负整数指数幂的定义﹣p( a≠0, p 为正整数),故本小题错误;③2 a =④﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0 切合有理数混淆运算的法例,故本小题正确;2 2 2,切合归并同类项的法例,本小题正确.⑤x +x =2x应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A.15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为()B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DC C .∠ADB= ∠ADCD . ∠B=∠C考点 : 全等三角形的判断.剖析: 先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中 C 、AB=AC 与∠1=∠2、 AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答: 解: A 、∵AB=AC ,∴,∴△ABD ≌△ACD ( SAS );故此选项正确;B 、当 DB=DC 时, AD=AD ,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误; C 、∵∠ADB= ∠ADC , ∴,∴△ABD ≌△ACD ( ASA );故此选项正确;D 、∵∠B=∠C ,∴,∴△ABD ≌△ACD ( AAS );故此选项正确. 应选: B .评论: 本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS 、 ASA 、 SAS 、 SSS ,但 SSA没法证明三角形全等.二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式:x 3﹣ 4x 2﹣ 12x=x ( x+2)( x ﹣ 6) .考点 : 因式分解 -十字相乘法等;因式分解-提公因式法.剖析: 第一提取公因式 x ,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答: 解: x 3﹣ 4x 2﹣ 12x2=x ( x ﹣ 4x ﹣ 12)故答案为: x ( x+2 )( x ﹣ 6).评论: 本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.( 4 分)( 2012?攀枝花)若分式方程: 有增根,则 k= 1 或 2 .考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣ 2=0 ,2﹣ x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2) +1 ﹣ kx=﹣ 1,整理得:( 2﹣ k) x=2,当 2﹣ k=0 时,此方程无解,∵分式方程有增根,∴x﹣ 2=0 , 2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣ k)x=2 得: k=1.故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于 0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.( 4 分)( 2011?昭通)以下图,已知点A、 D、B 、F 在一条直线上,AC=EF , AD=FB ,要使△ABC ≌△FDE ,还需增添一个条件,这个条件能够是∠A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故增添∠A=∠F,利用SAS可证全等.(也可增添其余条件).解答:解:增添一个条件:∠ A=∠F,明显能看出,在△ABC和△FDE中,利用SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、 AAS 、SAS、 SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.( 4 分)( 2012?白银)如图,在△ABC 中, AC=BC ,△ABC 的外角∠ACE=100 °,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠ A= ∠B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:∵AC=BC ,∴∠A= ∠B , ∵∠A+ ∠B=∠ACE ,∴∠A= ∠ACE=×100°=50°.故答案为: 50.评论: 本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .考点 : 平方差公式的几何背景.剖析: 依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答: 解:设拼成的矩形的另一边长为 x ,则 4x= ( m+4)2﹣ m 2=( m+4+m )( m+4﹣m ),解得 x=2m+4 . 故答案为: 2m+4 .评论: 本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.( 6 分)先化简,再求值: 2222, b=﹣ .5( 3a b ﹣ ab )﹣ 3( ab +5a b ),此中 a= 考点 : 整式的加减 —化简求值.剖析: 第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.解答: 解:原式 =15a 22222b ﹣ 5ab ﹣3ab ﹣ 15a b=﹣ 8ab ,当 a= , b=﹣ 时,原式 =﹣8× × =﹣ .评论: 娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.( 6 分)( 2009?漳州)给出三个多项式:2﹣1, 2, 2﹣ 2x .请选择你最喜爱的两个多项式进行 x +2xx +4x+1 x加法运算,并把结果因式分解.考点 : 提公因式法与公式法的综合运用;整式的加减.专题 : 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答: 解:状况一: 2 ﹣ 1+ 2 2( x+6 ).x +2x x +4x+1=x +6x=x状况二:x 2+2x ﹣ 1+ x 2﹣ 2x=x 2﹣ 1=( x+1)( x ﹣ 1).状况三:2 2 2 2x +4x+1+ x ﹣ 2x=x +2x+1= ( x+1) .评论: 本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点.熟记公式构造是分解因式的重点.平方差公式:2 22 2a ﹣ b=( a+b )(a ﹣ b );完整平方公式: a ±2ab+b =( a ±b )2 .20.( 8 分)( 2012?咸宁)解方程:.考点 : 解分式方程.剖析: 察看可得最简公分母是( x+2)( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解.解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2), 得 x ( x+2)﹣( x+2 )( x ﹣ 2)=8.( 4 分) 化简,得2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,( x+2 )( x ﹣ 2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. ( 8 分)评论: 本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.( 10 分)已知:如图, △ABC 和 △DBE 均为等腰直角三角形.( 1)求证: AD=CE ; ( 2)求证: AD 和 CE 垂直.考点 : 等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析: ( 1)要证 AD=CE ,只需证明 △ABD ≌△CBE ,因为 △ABC 和 △DBE 均为等腰直角三角形,因此易证得结论.( 2)延伸 AD ,依据( 1)的结论,易证∠ AFC= ∠ABC=90 °,因此 AD⊥CE .解答: 解:( 1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC , BD=BE ,∠ABC= ∠DBE=90 °, ∴∠ABC ﹣∠DBC= ∠DBE ﹣∠DBC , 即∠ABD= ∠CBE , ∴△ABD ≌△CBE ,∴AD=CE .(2)垂直.延伸 AD 分别交 BC 和 CE 于 G 和 F,∵△ABD ≌△CBE,∴∠BAD= ∠BCE,∵∠BAD+ ∠ABC+ ∠BGA= ∠BCE+ ∠AFC+ ∠CGF=180 °,又∵∠BGA= ∠CGF ,∴∠AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠DCE=∠ACB,依据SAS证△DCE≌△ACB,依据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+ ∠ACE= ∠BCE+ ∠ACE ,∴∠DCE= ∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.( 2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:(1)设这项工程的规准时间是x 天,依据题意得:(+)×15+=1 .解得: x=30.经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.( 2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18×(6500+3500 ) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是 AB 、 AC 边的中点, BC=6 , BC 边上的高为4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D ′,连结 D′E,与 BC 交于点 P, P 点即为所求;( 2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)作D点对于BC的对称点D′,连结D′E,与BC交于点P,P点即为所求;(2)∵点 D、 E 分别是 AB 、 AC 边的中点,∴DE 为△ABC 中位线,∵BC=6 , BC 边上的高为 4,∴DE=3 , DD ′=4,∴D′E===5,∴△PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△PDE周长的最小值,求出 DP+PE 的最小值即但是解题重点.2013 八年级上学期期末数学试卷及答案二一、选择题(每题 3 分,共 24 分)1.的值等于()A .4B.-4C.±4 D .±22. 以下四个点中,在正比率函数的图象上的点是()A.( 2, 5)B.(5,2)C.(2,-5)D.(5,― 2)3. 估量的值是()A.在 5与6之间B.在 6与7之间 C .在 7与8之间 D .在 8与 9之间4. 以下算式中错误的选项是()A.B.C.D.5.以下说法中正确的选项是()A.带根号的数是无理数B.无理数不可以在数轴上表示出来C.无理数是无穷小数D.无穷小数是无理数6. 如图,一根垂直于地面的旗杆在离地面5m处扯破折断,旗杆顶部落在离旗杆底部12m处,旗杆折断以前的高度是()A . 5m B.12m C.13m D.18m7.已知一个两位数,十位上的数字x 比个位上的数字y 大 1,若颠倒个位与十位数字的地点,获得新数比原数小9,求这个两位数列出的方程组正确的选项是()座位号(考号末两位)A.B.C.D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B.y2>y1C.y1=y2D.不可以确立二、填空题(每题 3 分,共 24 分)9. 计算:.10. 若点 A 在第二象限,且 A 点到 x 轴的距离为 3,到 y 轴的距离为4,则点 A 的坐标为.11. 写出一个解是的二元一次方程组.12. 矩形两条对角线的夹角是60°,若矩形较短的边长为 4cm,则对角线长.13. 一个正多边形的每一个外角都是36°,则这个多边形的边数是.14. 等腰梯形 ABCD中, AD= 2,BC=4,高 DF=2,则腰 CD长是.15. 已知函数的图象不经过第三象限则0,0.16. 如图,已知 A 地在 B 地正南方 3 千米处,甲、乙两人同时分别从 A、 B 两地向正北方向匀速直行,他们与 A 地的距离 S(千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC和 BD给出,当他们行走 3 小时后,他们之间的距离为千米.三、解答题(每题 5 分,共 15 分)17. (1)计算(2)化简( 3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为 1 个单位长度的方格纸中,有一个△ ABC和点O,△ABC的各极点和O点均与小正方形的极点重合. (1)在方格纸中,将△ ABC向下平移 5 个单位长度得△ A1B1C1,请画出△ A1B1C1.(2)在方格纸中,将△ ABC绕点 O顺时针旋转 180°获得△ A2B2C2,请画出△ A2B2C2.19. 某校教师为了对学生零花费的使用进行教育指导,对全班50 名学生每人一周内的零花费数额进行了检查统计,并绘制了下表零花费数额 / 元 5 10 15 20学生人数10 15 20 5(1 )求出这 50 名学生每人一周内的零花费数额的均匀数、众数和中位数(2 )你以为( 1)中的哪个数据代表这50 名学生每人一周零花费数额的一般水平较为适合?简要说明原因.五、解答题( 20 题 6 分,21 题 7 分,共 13 分)20. 已知点 A( 2,2), B(- 4, 2), C(- 2,- 1), D(4,- 1). 在以下图的平面直角坐标系中描出点A、B、C、 D,而后挨次连结 A、B、C、 D 获得四边形ABCD,试判断四边形ABCD的形状,并说明原因.21. 阅读以下资料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点 B 逆时针旋转必定角度后,获得正方形GBEF,边 AD与 EF订交于点 H.请你判断四边形ABEH是不是“筝形”,说明你的原因.六、(每题10 分,共 20 分)22 .以下图,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直均分线交AD于 E,交 BC于 F. (1)试判断四边形AFCE是如何的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价钱规定以下表购票人数1—50 人51—100 人100 人以上每人门票价12 元10 元8 元某校八年( 1)( 2)两班共 102 人去旅行该景点,此中(1)班不足50 人,( 2)班多于 50 人,假如两班都以班为单位分别购票,则一共付款1118 元(1)两班各有多少名学生?(2)假如你是学校负责人,你将如何购票?你的购票方法可节俭多少钱?七、( 12 分)24.我国是世界上严重缺水的国家之一,为了加强居民的节水意识,某自来水企业对居民用水采纳以户为单位分段计费方法收费;即每个月用水 10 吨之内(包含 10 吨)的用户,每吨水收费 a 元,每个月用水超出 10 吨的部分,按每吨 b 元( b>a)收费,设一户居民月用水x (吨),应收水费y(元), y 与 x 之间的函数关系以下图.(1)分段写出 y 与 x 的函数关系式 .(2)某户居民上月用水 8 吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水 4 吨,两家一共交水费46 元,求他们上月分别用水多少吨?八年级数学参照答案四、 18 略(1)3 分(2)3 分19( 1)均匀数是 12 元( 2 分)众数是 15 元( 1 分)中位数是12.5 元( 1 分)( 2)用众数代表这50 名学生一周零花费数额的一般水平较为适合,因为15 元出现次数最多,因此能代表一周零花费的一般水平(2 分)五、 20 画出图形( 3 分)说明是平行四边形( 3 分) 21 能够判断 ABEH是筝形,证△ HAB≌△ HEB(7 分)六、 22( 1)菱形( 5 分)( 2)周长是25cm(5 分)23( 1)设一班学生x 名,二班学生y 名依据题意(5 分)。

2014—2015学年度第一学期八年级数学期末试题

2014—2015学年度第一学期八年级数学期末试题

2014—2015学年度第一学期八年级数学期末试题题号 一 二 三总分 19 20 21 22 23 24 得分一、选择题(本大题共10小题,每小题3分,共30分。

每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标为何?( ) A .(-9,3), B .(-3,1), C .(-3,9), D .(-1,3)2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A .5B .6C .11D .16 3.已知一次函数y=kx+b 的图象经过第一、二、三象限,则b 的值可以是( ) A .-2, B .-1, C .0, D .24.已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k 的值为( ) A .1或-2, B .2或-1, C .3, D .45.若实数a 、b 、c 满足0a b c ++=,且a b c >>,则函数y ax c =+的图象可能是( )xyxyxyxyA. B . C. D.OOOO6.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入A 袋中,那么击打白球时,必须保证∠1的度数为( ) A .75° B .60° C .45° D .30°7.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DCE D A B 第8题图 第7题图 E DC B A 第6题图AC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D 8.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:① BD=CE ;②∠ACE+∠DBC=45°;③ BD ⊥CE ;④∠BAE+∠DAC =180° 其中结论正确的个数是( ) A.1 B.2 C.3 D.4 9.下列命题为真命题的是( )A .若两个图形沿某条直线对折后能够完全重合,那么这两个图形成轴对称B .有两边和一角分别相等的两个三角形全等C .直线23y x =-在y 轴上的截距为3D .△ABC 中,若∠A =2∠B =3∠C ,那么△ABC 为直角三角形 10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中不正确...的是( ) A. AD 是∠BAC 的平分线 B. ∠ADC=60°C.点D 在AB 的中垂线上D. S △DAC ︰S △ABD =1︰3二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.点(5,3)P -关于x 轴的对称点P '的坐标是 .12.等腰三角形的一个角是80°,则它顶角的度数是________.13.根据下表中一次函数的自变量与函数的对应值,可得的值为_______.14.如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C= .15.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax >+的解集为___________.16.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为.(只需填一个). 17.如图,△ABC中AB 、BC 的垂直平分线相交于点O ,∠A =70°,则∠BOC 的度数为.第10题图第14题图第16题图E DBCA18.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,1y 表示乌龟所行的路程,2y 表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟. 其中正确的说法是 .(把你认为正确说法的序号都填上)三、解答题(本大题共6小题,共46分) 19.(本题满分6分)如图,点D ,E 在△ ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .20.(本题满分8分)如图,已知AC ⊥ BC ,BD ⊥ AD ,AC 与BD 交于O ,AC =BD . 求证:(1)BC=AD ; (2)△ OAB 是等腰三角形. 21.(本题满分8分)已知一次函数3y x m =+和y x n =-+的图象都经过点A (2,3)-,且与x 轴分别交于ABCDO第18题图ACBDE O 第17题图A E D CB、C两点,求△ ABC的面积.22.(本题满分8分)如图,△ ABC,△ CEF均为等腰直角三角形,∠ ABC=∠ CEF=90°,C、B、E在同一直线上,连接AF,M是AF的中点,连接MB、ME.延长BM交EF于点D.求证:MB=MD=ME.E23.(本题满分8分)(1)如图1,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠ EDM=84°,求∠ A的度数;(2)如图2,点B 、F 、D 在射线AM 上,点G 、C 、E 在射线AN 上,且 AB=BC=CD=DE =EF =FG =GA ,求∠ A 的度数.24.(本题满分8分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x 小时后,记客车离甲地的距离为1y 千米,轿车离甲地的距离为2y 千米,1y 、2y 关于x 的图1 A GCEDF B 图2NM函数图像如图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式; (2)当两车相遇时,求此时客车行驶的时间; (3)两车相距200千米时,求客车行驶的时间.马鞍山市2013-2014学年第一学期期末素质测试八年级数学试题参考答案一、选择题)1D ,2C ,3B ,4A ,5C ,6B ,7C ,8D ,9A ,10D 二、填空题11.(5,3), 12. 80°或20°, 13. 1, 14. 40°, 15. 32x >, 16. 答案不唯一,可以为AC=CD 或∠B=∠E 或∠A=∠D 等, 17. 140°, 18.①③④. 三、解答题19.证明:∵AB=AC ,∴∠B=∠C ,………………2分 在△ABD 与△ACE 中,∵,∴△ABD ≌△ACE (SAS ),……………………5分 ∴AD=AE …………………………6分20.证明:(1)∵AC ⊥BC ,BD ⊥AD ∴ ∠D =∠C =90︒……2分在Rt △ACB 和 Rt △BDA 中,AB = BA ,AC =BD , ∴ △ACB ≌ △BDA (HL )………4分 ∴BC =AD ………………5分(2)由△ACB ≌ △BDA 得 ∠C AB =∠D BA …………………7分 ∴△OAB 是等腰三角形.……………………8分21. 解:将(2,3)A -分别代入3y x m =+和y x n =-+中,得6323m n -+=⎧⎨+=⎩,解得91m n =⎧⎨=⎩……………………3分故两个一次函数解析式为39y x =+与1y x =-+当0y =时,求得(3,0)B -、(1,0)C ,∴BC =4………………5分 ∴14362ABC S ∆=⨯⨯=………………8分22.证明:∵∠ABC=∠CEF=90°,∴AB ⊥CE ,EF ⊥CE ,∴AB ∥EF ,∴∠BAM=∠DFM , ∵M 是AF 的中点,∴AM=MF , ∵在△ABM 和△FDM 中,,∴△ABM ≌△FDM (ASA ),……………4分 ∴BM =MD ,AB=DF ,…………………6分 ∵BE=CE ﹣BC ,DE=EF ﹣DF ,∴BE=DE ,∴△BDE 是等腰直角三角形,M 为BD 中点,故△BEM 是等腰直角三角形, ∴BM =EM即MB =MD =ME ;…………………………8分 23.解:(1)∵AB=BC=CD=DE ,∴∠A=∠BCA ,∠CBD=∠BDC ,∠ECD=∠CED ,…………………………2分 根据三角形的外角性质,∠A+∠BCA=∠CBD ,∠A+∠CDB=∠ECD ,∠A+∠CED=∠EDM ,又∵∠EDM=84°, ∴∠A+3∠A=84°, 解得,∠A=21°;…………………………4分(2)∵AB=BC=CD=DE =EF =FG =GA ,设∠A=x ︒,则∠AFG =∠ACB =x ︒,∠CGF =∠CEF =∠CBF =∠CDF =2x ︒,∠ECD =∠CED =∠EFD =∠EDF =3x ︒……………………6分而∠A+∠CED+∠EDF =180°,故1807x =,即∠A =1807︒……………………8分24.解:(1)160y x = (0≤10x ≤),2100600y x =-+ (0≤6x ≤) ····· (2分)(2)当两车相遇时,12y y =,即60100600x x =-+解得,154x = ∴当两车相遇时,求此时客车行驶了154小时 ··································· (4分) (3)若相遇前两车相距200千米,则21200y y -=,∴10060060200x x -+-=, 解得:52x =…………………………………………………………………………(6分) 若相遇后相距200千米,则12200y y -=,即601006002005x x x +-=⇒=∴两车相距200千米时,客车行驶的时间为52小时或5小时 .…………图(1)A G C E DF B图(2)NM。

2014-2015第一学期期末八年级数学

2014-2015第一学期期末八年级数学

2014—2015学年度第一学期期末学业水平检测八 年 级 数 学(检测时间:120 分钟;满分:120分)请将1—8各小题所选答案的标号填写在第8小题后面的表格中. 1.下列说法正确的是( ).A .带根号的数都是无理数;B .绝对值最小的实数是0;C .数轴上的每一个点都表示一个有理数;D .两个无理数的和还是无理数. 2.下面四组数值中,是二元一次方程2x +y =10解的是( ).① ② ③ ④ A .①② B .①③ C .②③ D .②④3.某校为了丰富校园文化,举行书法比赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的( ).A .中位数 B.平均数 C.众数 D.方差4.若a ,b 异号,则点P (a ,b )关于x 轴的对称点在( ).A .第二象限B .第四象限C .第一象限或第三象限D .第二象限或第四象限 5.某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产了17吨,其中水稻超产15%,小麦超产10%.该专业户去年实际生产水稻和小麦各多少吨?设该专业户去年实际生产水稻x 吨,小麦y 吨,根据题意列方程组得( ).A .B .①如果∠1和∠2是对顶角,那么∠1=∠2;市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线⎩⎨⎧=-=62y x ⎩⎨⎧==43y x ⎩⎨⎧==34y x ⎩⎨⎧-==26y x ⎩⎨⎧=+=+17%10%1515y x y x ()()⎩⎨⎧=+++=+17%101%15115y x y x ⎪⎧=+17y x ⎪⎧=+17y x8.已知正比例函数y =kx (k ≠0)的函数值随x 值的增大而增大,则一次函数y =-2kx +k 在平面直角坐标系内的图象大致是( ).二、填空题:(本题满分24分,共有8道小题,每小题3分)请将 9—16各小题的答案填写在第16小题后面的表格内. 9.估算: (结果精确到1). 10.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成不完整的统计图(如图).其中捐100元的人数占全班总人数的25%,则本次捐款的众数是 元.11.如图,等腰三角形ABC 的面积是 . 12.如图,已知∠B =40°,∠C =59°,∠DEC =47°,则∠F 的度数是 °.13.计算: =_______.A C DC 6(第10题)(第11题)AB CDF E32715.16124-+÷⎪⎪⎭⎫ ⎝⎛-(第12题)≈4814.已知直线y =2x 与y =-x +b 的交点坐标为(a ,4),则关于x ,y 的方程组 的解是 .三.解答题(本题满分72分,共有8道小题) 17.(本小题满分10分,共有2道小题,每小题5分) 20x y x y b -=⎧⎨+-=⎩第16题18.(本小题满分6分)如图,在正方形ABCD 中,边长AB =4.(1)在图中建立直角坐标系,使x 轴与BC 平行,且点C 的坐标为(2,1);如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高CE =DB =3 m ,CD =1 m ,求滑道AC 的长. 解: 密 封 线22.(本小题满分10分)小颖和小亮两位同学在八年级某次考试8门科的成绩(假设成绩均为整数,且个位数字为0)如图所示.利用图中提供的信息,解答下列问题:文学语品 史理物 理小颖 文学语品 史理物理小亮 市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线10:10:10:10:5:8:8:8的比例计算各人的成绩,那么谁的成绩高(计算结果精确到0.1)? (3)根据图、表信息,请你对小颖和小亮各提一条不超过30字的学习建议. 解:(2)B 追赶.图中的l 1,l 2分别表示A ,B 两船相对于海岸的距离y (n mile )与追赶时间x (min )之间的关系.(1)求l 1,l 2对应的两个一次函数表达式;(2)求快艇B 出发多长时间后,追上可疑船只A ?(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义各是什么?解:(1)2(第23题)(2)(3)24.(本小题满分12分)数学问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足什么条件时,这两条直线互相垂直?探究问题:我们采取一般问题特殊化的策略来进行探究.探究一:如图①,在同一直角坐标系内直线y =x 与y =-x 有怎样的位置关系? 解:如图①,设点A (t ,t )(t >0)在直线y =x 上,则点B (-t ,t )一定在直线 y =-x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .则OC =AC =t ,OD =BD =t ∴∠AOC =∠BOD =45° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =x 与y =-x 互相垂直.探究二:如图②,在同一直角坐标系内直线y =2x 与y = 有怎样的位置关系?解:如图②,设点A (t ,2t )(t>0)在直线y =2x 上,则点B (-2t ,t )一定在直线 y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .∵OC =t ,AC=2t ,OD =2t ,BD =t ∴OC=BD ,AC=OD①21-21-又∵∠ACO =∠ODB =90°∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =2x 与y = x 互相垂直.探究三:如图③,在同一直角坐标系内直线y =3x 与y = x 有怎样的位置关系?(仿照上述方法解答,写出探究过程) 解决问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足 条件时,这两条直线互相垂直.拓广应用:(1)在同一直角坐标系内已知直线 y =0.1x ,请写出一条直线的函数表达式, 使它与直线y =0.1x 互相垂直(只写出结果, 不需要证明).(2)在同一直角坐标系内直线y = x -与y = x -7是否互相垂直?若垂直,请直接写出垂足的坐标;若不垂直,请说明理由. 解:探究三:解决问题:拓广应用:(1) (2)密 封 线21-1-3223-。

2014---2015年八年级数学期末试卷及答案

2014---2015年八年级数学期末试卷及答案

2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。

题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。

10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。

若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。

【解析版】2014-2015学年辽宁省鞍山市八年级上期末数学试卷

【解析版】2014-2015学年辽宁省鞍山市八年级上期末数学试卷

2014-2015 学年辽宁省鞍山市八年级(上)期末数学试卷
一、选择题(共 8 小题,每小题 2 分,满分 16 分) 1.2012年国务院正式批准每年 12月 2 日为全国交通安全日,你认为下列交通标识不是轴 对称图形的是( )
A.
B.
C.
D.
2.下列计算正确的是( ) A. a2+a2=a4 B. a2•a3=a6 C. a3÷a=a3 D. (a3)3=a9
3.下列计算正确的是( )
A. (π﹣1)0=1 B.
=
C. ( )﹣2= D. + =
4.长为 10、7、5、3 的四根木条,选其中三根组成三角形,共有( A. 1 种 B. 2 种 C. 3 种 D. 4 种
)种选法.
5.下列各式中能用完全平方公式分解因式的是( ) A. x2+x+1 B. x2+2x+1 C. x2+2x﹣1 )2﹣(
),其中 x= .
20.甲乙丙丁四位同学在铅球场地做接力游戏,其中丙在 OA边,丁在 OB边.游戏规则 是,甲将接力棒传给丙,丙传给丁,丁传给乙,乙最后丁跑回甲处.那么丙丁两人站在何 处,才能使四人的路程和最短?(请画出路线,并保留作图痕迹,作法不用写)
21.如图,在等腰直角三角形 ABC中,∠ACB=90°,D 为斜边 AB上一点,连接 CD,过点 A、B 分别向 CD作垂线,垂足分别为点 F、E,试判断 AF、BE与 EF之间的数量关系,并证 明你的结论.
6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
7.在等腰△ABC中,AB=AC,中线 BD将这个三角形的周长分为 15和 12两个部分,则这个 等腰三角形的底边长为( )

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。

——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。

2014-2015第一学期期末八年级答案

2014-2015第一学期期末八年级答案

2014-2015学年度第一学期期末学业水平检测八年级数学参考答案及评分标准一、选择题:(本题满分24分,共有8道小题,每小题3分)二、填空题:(本题满分24分,共有8道小题,每小题3分)9. 7 10. 10 11. 12. 34° 13. 14. 15. 84 16.三、解答下列各题:(本题满分72分,共有8道小题)17.解方程组(本小题满分10分,共有两道小题,每小题5分)(1) (2) 18.(本小题满分6分)解:(1)建立直角坐标系正确; ………3分(2)A (-2,5),B (-2,1),D (2,5)………6分19.(本小题满分8分)解:设滑道AC 的长为x m ,则AB 的长为x m ,AE 的长为(x -1 )m .………1分在Rt △ACE 中, ∵∠AEC =90°∴AE 2+EC 2= AC 2(勾股定理) ………4分 ∵CE =3∴(x -1)2+32=x 2解得,x =5 ………7分 答:滑道AC 的长是5 m . ………8分20.(本小题满分8分)本题给出两种评分标准(每步的理由不写或不正确酌情扣1-3分):评分标准(一)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分(2)∵EC ∥BF (已证)∴∠AEG =∠B (两直线平行,同位角相等)………5分 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………7分73310⎩⎨⎧==42y x 2521±=x ⎩⎨⎧==23n m ABCFDEGH∴∠A =∠D (两直线平行,内错角相等) ………8分评分标准(二)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分∴∠AEG =∠B (两直线平行,同位角相等) 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………6分 (2)∵AB ∥CD (已证)∴∠A =∠D (两直线平行,内错角相等) ………8分 21.(本小题满分8分)解:设小明8:00时看到的两位数的十位数字为x ,个位数字为y .根据题意,得…………4分解方程组,得 …………7分所以,小明8:00时看到的两位数为:10×1+5=15答:小明在8:00时看到的里程碑上的数是15. …………8分22.(本小题满分10分)…………4分 (2)小颖的成绩为:(分) 小亮的成绩为:(分) 所以,小亮的成绩高. …………8分(3)建议合理. …………10分23.(本小题满分10分)解:(1)l 1对应的一次函数表达式为:y =0.2x +4.5(用待定系数法求解,步骤略).…………3分l 2对应的一次函数表达式为:y =0.5x (用待定系数法求解,步骤略).…………5分 (2)解方程组 ,得 …………7分()()⎪⎩⎪⎨⎧+-+=+-+=+y x x y x y y x y x 10105.1101006⎩⎨⎧==51y x ()()7.7988851010101088080905801070807090≈+++++++⨯+++⨯+⨯+++()()1.808885101010108509070590101006010080≈+++++++⨯+++⨯+⨯+++⎨⎧=+=x y x y 5.05.42.0⎨⎧==5.715y x所以,快艇B 出发15 min 后,追上可疑船只A . …………8分(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义分别是可疑船只A 和快艇B 的速度. …………10分 24.(本小题满分12分)解:探究三:如图③,设点A (t ,3t )(t>0)在直线y =3x 上,则点B (-3t ,t )一定在直线y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D . ∵OC =t ,AC =3t ,OD =3t ,BD =t∴OC=BD ,AC=OD 又∵∠ACO =∠ODB =90° ∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180°∴∠AOB =90° 所以,在同一直角坐标系内,直线y =3x 与y = x 是互相垂直. …………5分解决问题: (或 或 )…………8分拓广应用:(1) (或 等)(答案不唯一)…………10分(2)垂直,垂足为(0,-7) …………12分31-31-x y 10-=110+-=x y 121-=⋅k k 211k k -=121k k -=。

2014-2015学年八年级上期数学期末试卷及答案

2014-2015学年八年级上期数学期末试卷及答案

1.在平面直角坐标系中,点P (3,1)所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.下列各数中,即大于2又小于3的数是( )A .2B .3C .4D .5 3.在图1右侧的四个滑雪人中,不能由图1滑雪人经过旋转或平移得到的是( )4.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( ) A .22个、20个 B .22个、21个C .20个、21个D .20个、22个5.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与从注水开始所经历的时间x (分)之间的函数关系对应的图象大致为( )6.已知一次函数1y ax a =+-的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为( )A .2-B .2C . 4D .2-或47.已知a ,b ,c 均为实数,若a b >,0c ≠.下列结论不一定正确的是( )A .a c b c +>+B .22a ab b >> C .22a b c c > D .c a c b -<- 8.关于x 的不等式(1)3a x a +<+和24x <的解集相同,则a 的值为( )A .1-B .0C .1D .29.已知32x y =⎧⎨=-⎩和21x y =⎧⎨=⎩是二元一次方程30ax by ++=的两个解,则一次函数0y ax b a =+≠()的解析式为( )A .23y x =--B .239+77y x =C .9+3y x =-D .9377y x =-- O yx OxyOy xO x yA .B .C .D .10.如图,把Rt ABC △放在平面直角坐标系内,其中=90CAB ︒∠,BC =5,点A 、B 的坐标分别为(1,0),(4,0),将ABC △沿x 轴向右平移,当点C 落在直线=24y x -上时,线段AC 扫过的面积为( )A .82B . 12C .16D .1811.设min {}x y ,表示x ,y 两个数中的最小值,例如min {}=11,2,min {}=57,5,则关于x的一次函数{}min 2,1y x x =+可以表示为( ) A .2y x = B .+1y x =C .2(1)1(1)x x y x x <⎧=⎨+≥⎩ D .2(1)1(1)x x y x x >⎧=⎨+≤⎩12.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)二、填空题:(本大题6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列方框内.题号 13 14 15 16 17 18 答案13.8的立方根是____________.14.在平面直角坐标系中,已知点A (3,2),AC ⊥x 轴,垂足为C ,则C 点坐标为_________. 15.若1、2、x 、5、7五个数的平均数为4,则x 的值是____________. 16.当实数x 的取值范围使得3x -有意义时,在函数21y x =-中y 的取值范围是___________.17.如图,已知直线(0)y kx b k =+≠交坐标轴分别于点A (3-,0),B (0,4)两点,则关于x 的一元一次不等式0(0)kx b k --<≠的解集为__________.18.如图,O 是等边△ABC 中一点,OA =2,OB =3,∠AOB =150°,∠BOC =115°,将△AOB 绕12 3xy12 3 …(12题图)xB y AOy=kx+b(17题图)OA(10题图)=24y x -xyO A BC点B 顺时针旋转60°至'C O B △,下列说法中: ①OC 的长度是13;②9334S S +=+△ABO △BOC ;③534S S -=△AOC △AOB ;④以线段OA 、OB 、OC 为边构成的三角形的各内角大小分别为90°,55°,35°;⑤AOB △旋转到'CO B △的过程中,边AO 所扫过区域的面积是32π.说法正确的序号有______________. 三、解答题:(本大题3个小题,其中19题12分、20题6分、21题8分、共26分)解答时每小题必须给出必要的演算过程或推理步骤. 19.计算:(1)01313(271)16()3--+--+ (2)解方程组3(1)9223x y y x y --=-⎧⎪⎨+=⎪⎩(3)解不等式组:20312123x x x +≥⎧⎪-+⎨<⎪⎩ ,并把解集在数轴上表示出来.20.若x ,y 为实数,且满足14102x y -+-=.求2244x xy y ++的值.21.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标别为A (2,4)-,B (4,2)-,C (1,0)-. (1)将△ABC 先向右平移3个单位,再向下平移4个单位,则得到△111A B C ,请直接写点1B 的坐标_________;若把△111A B C 看成是由△ABC 经过一次平移得到的(即从A 到1A 方向平移),请直接写出这一次平移的距离 .(2)在正方形网格中作出△ABC 绕点O 顺时针旋转90°后得到的△222A B C .四、解答题 :(本大题5个小题,其中22题8分、23题10分、24题10分、25题12分、26题12分,共52分)解答时每小题必须给出必要的演算过程或推理步骤.22.为参加重庆一中教师元旦晚会演出,初二年级老师欲租用男、女演出服装若干套以供跳舞 用.已知5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元. (1)租用男装、女装一天的价格分别是多少?(2)该节目原计划由6名男教师和17名女教师完成,后因节目需要,将其中3名女教师由扮演舞者角色转向歌手角色,Ayx O C B歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?23.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD⊥AG.24.古巴国家芭蕾舞团作为世界芭蕾舞团之一,将于2015年携亚洲巡演版特别纪念版《天鹅湖》首次到访山城,届时,重庆市民将领略“世界第一黑天鹅”的迷人风采.某票务网站抢得商机拿到了亲子套票和VIP专享票的销售权.但由于票价较高,该票务网站准备用不超过105000元购进这两种票共150张票,其中亲子套票每张订购价550元,VIP专享票每张订购价800元,亲子套票每张票价600元,VIP专享票每张票价880元,预计销售额不低于114640元.设亲子套票购进x张,票务网站的总利润为y(元).(1)请你设计出该票务网站的订购方案有哪几种?(2)求出总利润为y(元)与订购亲子套票x(张)的函数关系式,并利用函数关系式说明哪种方案的利润最大,最大利润是多少元?25.如图,直线2+(0)y x m m =>与x 轴交于点A (2-,0),直线(0)y x n n =-+>与x 轴、y 轴分别交于B 、C 两点,并与直线2+(0)y x m m =>相交于点D ,若4AB =.(1)求点D 的坐标;(2)求出四边形AOCD 的面积;(3)若E 为x 轴上一点,且ACE △为等腰三角形,求点E 的坐标.命题:胡玉霆审题:付 黎26.阅读以下材料:在平面直角坐标系中,1x =表示一条直线;以二元一次方程220x y -+=的所有解为坐标的点组成的图形就是一次函数22y x =+的图象,它也是一条直线.不仅如此,在平面直角坐标系中,不等式1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图①;不等式22y x ≤+也表示一个平面区域,即直线22y x =+以及它下方的部分,如图②.而y x =既不表示一条直线,也不表示一个区域,它表示一条折线,如图③.根据以上材料,回答下列问题: (1)请直接写出....图④表示的是_________________________的平面区域; (2)如果x ,y 满足不等式组3050x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,请在图⑤中用阴影表示出点(x ,y )所在的平面区域,并求出阴影部分的面积S 1;(3)在平面直角坐标系中,若函数=22y x -与y x m =-的图象围成一个平面区域,请直接..用含m 的式子表示该平面区域的面积S 2,并写出实数m 的取值范围.y=|x|Oyx图③ xOy x =1图①y= 2 x + 2Ox图② y-2 6 Oy x图④xy O图⑤ xyO备用图。

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 24382013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a ) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a 〉b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a —b) 2=a 2—2ab+b 2C 、a 2-b 2=(a+b )(a —b )D 、(a+2b)(a-b )=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD;(3)A B ∥CD ,BC ∥DA.其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: =53-x 22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 10、当x 时,分式 有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b —2ab 2-b 2)÷b —(a+b )(a —b ),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。

2014-2015学年度八年级上册数学期末试卷

2014-2015学年度八年级上册数学期末试卷

2014~2015学年度素质教育评估试卷 第一学期期末八年级数学一.选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2·2x 3的正确结果是 ( ) A 、1; B 、x C 、4x 6; D 、x 43、一次函数 12+-=x y 的图象经过点 ( ) A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( ) ①1))((122--+=--y x y x y x ②)1(23+=+x x x x ③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=- A .1个 B .2 个 C .3个 D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )ADB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE8、下列图案中,是轴对称图形的是 ( )9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马鞍山市2014—2015学年度第一学期期末考试 八年级数学试题
考生注意:本卷共6页,满分100分.
题号 一 二 三
总分 19 20 21 22 23 24 得分
一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.下列表述中,能确定准确位置的是( )
A.教室第三排
B.湖南东路
C.南偏东40°
D.东经112°,北纬51°
2.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图是我国四大银行的商标图案,其中是轴对称图形的有( )
A .①②③
B .①②④
C .①③④
D . ②③④ 3.已知11P (3,)y -,22P (2,)y 是一次函数2y x b =-的图象上的两个点,则12y y ,的大小关系是( )
A .12y y <
B .12y y =
C .12y y >
D .不能确定
4.请仔细观察用直尺和圆规作一个角等于已知角的示意图(见下左一图),请你根据所学的三角形全等的有关知识,说明画出∠A 'O 'B '=∠AOB 的依据是( ) A .SAS B .ASA C .AAS D .SSS
5.如图,在△ABC
中,D 为BC 上一点,且AB =AC =BD , CD =AD ,则∠B 的度数为( )
A .30°
B .36°
C .40°
D .45°
6.某复印店复印收费y (元)与复印面数x (面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费( ) A .0.2元 B .0.4 元 C .0.45元 D .0.5元
7.如图,下列三角形中,均有AB =AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分
第6题图
y (元)
x (面)
100 150 50
70 第5题图
D
C
B
A
第4题图
D
D '
O
'
O
C 'B 'A '
C
B A
成两个小等腰三角形的是( )
A .①③
B .①②④
C .①③④
D .①②③④
8.下列命题是真命题的是( )
A .若直线y = -kx -2过第一、三、四象限,则k <0
B .三角形三条角平分线的交点到三个顶点的距离相等
C . 如果∠A =∠B ,那么∠A 和∠B 是对顶角
D .如果a ·b =0,那么a =0
9.如图,已知∠1=∠2,AC =AD ,从下列条件:①AB =AE ②BC =ED ③∠C =∠D ④∠B =∠E 中添加一个条件,能使ABC AED △≌△的有( ) A .1个 B .2个 C .3个 D .4个
10.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1
B .3
C .3(1)m -
D .3
(2)2
m -
一、
填空题(本大题共8小题,每小题3分,共24分)
11.已知2y -与x 成正比例,当x =1时,y =5,那么y 与x 的函数关系式是_________________. 12.在直角坐标系中,点A 为(1,2)-,点P (0,)y 为y 轴上的一个动点,当y =____ 时,线段P A 的长取得最小值.
13.若一个三角形的两边长分别为2cm 和5cm ,第三边长为xcm ,且周长为偶数,则这个三角形的周长是 cm .
14.如图,长方形ABCD 的长和宽分别为6cm 、3cm ,E 、F 分别是两边上的点,将四边形AEFD 沿直线EF 折叠,使点A 落在点A′处,则图中阴影部分的周长为 cm .
15.已知直线1y x m =-+与22y x n =+的交点的横坐标为2,则当x _______时,12y y >.
第7题图
① ② ③ ④
45°
90°
108°
36°
C
C
C
C
B B
B
B
A A A A F
E
D
C
B
A
A ′
D ′
第14题图
第9题图 E
D
C
B
A
2
1
x
y
C
B A
2
1-1O
第10题图
B
A
C
D
E
16.如图,AD 、AE 分别是△ABC 的高和角平分线,且∠B=36°,∠C=76°,则∠DAE= .
17.
△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=10厘米,则AC 的长为 厘米.
18.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S , 若AQ=PQ ,PR=PS ,下面四个结论:①AS =AR ②QP ∥AR ③△BRP ≌△QSP ,④AP 垂直平分RS . 其中正确结论的序号是 (请将所有正确结论的序号都填上). 三、解答题 19.(本题满分6分)
ABC △在平面直角坐标系中的位置如图所示. (1)在图中画出与ABC ∆关于y 轴对称的图形 111A B C ∆,并写出顶点1A 、1B 、1C 的坐标;
(2)若将线段11A C 平移后得到线段22A C ,且2(,2)A a ,2(2,)C b -,求a b +的值. 20.(本题满分8分)
如图,直线1l 的解析式为33y x =-+,且1l 与 x 轴交于点D ,直线l 2经过点A 4,0()和点B 3
(3,)2
-,
直线1l 交2l 于点C .
(1)求点D 的坐标; (2)求直线2l 的解析式;
(3)求ADC △的面积; (4)在直线l 2上存在异于点C 的另一点P ,使得ADP △与ADC △面积相等,请直接..写出点P 的坐标.
21.(本题满分8分)
如图,ABC ∆为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形CDE ∆,连接AE . 第18题图
R
S
Q
P
C
B A
E
D
C
B
A
第16题图
A
B
C
D
E
第17题图
A
B
C 1 2 3 4
5
6
-1 -2 -3 1
O 2 x
y

x
y
3-1.5
B
A D
C
O
(1)求证:CBD ∆≌CAE ∆.
(2)判断AE 与BC 的位置关系,并说明理由.
22.(本题满分8分)
某公司需要购买甲、乙两种商品共150件,甲、乙两种商品的价格分别为600元和1000元.且要求乙种商品的件数不少于甲种商品件数的2倍.设购买甲种商品x 件,购买两种商品共花费y 元.
(1)请求出y 与x 的函数关系式及x 的取值范围.
(2)试利用函数的性质说明,当购买多少件甲种商品时,所需要的费用最少?
23.(本题满分8分)
已知:ABC ∆中,∠A =90°,AB =AC ,D 为BC 的中点.
(1)如图23-1,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:DEF ∆为等腰直角三角形. (2)若E ,F 分别为AB ,CA 延长线上的点(如图23-2),仍有BE =AF ,其他条件不变,那么,DEF ∆是否仍为等腰直角三角形?证明你的结论.
24.(本题满分8分)
在平面直角坐标系中,点P 从原点O 出发,每次向上平移1个单位长度或向右平移2个单位
长度.
A
B
C
D
E
F
(1)实验操作:
在平面直角坐标系中描出点P 从点O 出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次平移,点P 可能到达的点在我们学过的某一种函数的图象上,如:平移1次后可能
到达的点在函数1
12
y x =-+的图象上;平移2次后可能到达的点在函数 的图
象上,……,由此我们知道,平移n 次后可能到达的点在函数 的图象上.(请填写相应的解析式)
(3)探索运用:
点P 从原点O 出发经过n 次平移后,到达直线x y =上的点Q ,若平移n 次的路径总长不小于50,不超过56,求点Q 的坐标.
P 从点O 出发
平移次数
可能到达的点的坐标 1次 (0,1),(2,0) 2次
3次
y x
2
O
1。

相关文档
最新文档