六年级数学上册课本思考题竞赛卷

合集下载

苏教版-数学六年级上册-每日一题-思考题-doc

苏教版-数学六年级上册-每日一题-思考题-doc

2021/3/11
21
9月26日思考题:买10个排球和4个篮球 共付510元,每个篮球比每个排球贵5元, 两种球的单价各是多少元?
2021/3/11
22
9月27日思考题:用大小相等的两个正方体拼成 一个长方体,这个长方体的棱长总和是80厘米, 每个正方体的体积是多少?
2021/3/11
23
9月28日思考题:把一根长40厘米的长方体木料 锯成3段,表面积比原来增加了24平方厘米,这 根木料原来的体积是多少?
2021/3/11
54
11月7日思考题:修一段公路,已修的长度是未修的 3/7,已修的长度比未修的少800米,这段公路全长多 少米? (提示:根据已修的长度是未修的3/7,那么已 修的长度和未修的长度各有几份?已修的长度比未修 的长度少几份?)
2021/3/11
55
11月8日思考题:用一块30厘米的长方形铁皮,在它 的四个角各剪去一个边长3厘米的正方形,然后做成 一个容积是1008毫升的无盖长方体铁盒,原来铁皮的 宽是多少厘米?(请借助画图帮助理解题意)
2021/3/11
17
9月22日思考题:将一个长方体截下一个体积 800立方厘米的长方体后,剩下的正好是一个棱 长10厘米的正方体,原长方体的表面积是多少 平方厘米?
2021/3/11
18
9月23日思考题:一种液体饮料采用长方体塑封 纸盒密封包装,从外面量盒子长6厘米、宽4厘米、 10厘米,盒子上注明“净含量:240毫升”。你 觉得这个数据真实吗?请通过计算说明。
9月5日的思考题:甲、乙两车同时从A、B 两地相对而行,甲车每小时行80千米,乙 车每小时行100千米,两车在距中点60千米 处相遇。A、B两地相距多少千米?(可以 结合画线段图进行思考,必须先搞清楚快 车到底比慢车多行了多少千米呢?)

最新小学六年级上学期数学竞赛试题(含答案)

最新小学六年级上学期数学竞赛试题(含答案)

一、拓展提优试题1.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.2.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.3.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.4.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.5.若一个十位数是99的倍数,则a+b=.6.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.9.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.12.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.13.已知A是B的,B是C的,若A+C=55,则A=.14.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.16.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.17.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.18.已知两位数与的比是5:6,则=.19.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.20.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.21.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.22.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.分子与分母的和是2013的最简真分数有个.26.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.27.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.28.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.29.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O 记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.30.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.31.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.32.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.33.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?34.22012的个位数字是.(其中,2n表示n个2相乘)35.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)36.图中的三角形的个数是.37.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.38.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.39.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.40.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.【参考答案】一、拓展提优试题1.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.2.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.3.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.4.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.5.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.6.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.9.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.11.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.12.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.13.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.14.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.15.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.16.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4017.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.20.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.21.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.22.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.26.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.27.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.28.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.29.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).30.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.31.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.32.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.33.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.34.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.35.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①36.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.37.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.38.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.39.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.40.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.。

竞赛试卷(试题)-六年级上册数学人教版

竞赛试卷(试题)-六年级上册数学人教版

小学部2022—2023学年度第一学期六年级数学思维能力竞赛时间:30分钟满分:50分得分:一、填空。

(每题2分,共16分)1.男生比女生多14,那么女生比男生少()。

2.52平方千米=()公顷20分钟:2小时的比值是()3.比200千克少12.5%是()千克;60米比()米少514.榨油机54小时榨油2524吨,平均每小时榨油()吨,榨1吨油需要()小时。

5.修一条铁路,已经完成了74,刚好超过中点80米,这条铁路全长()m。

6.小兰把一个圆沿半径剪成若干等份,然后拼成一个近似的长方形,已知长方形的周长比圆的周长多4厘米,这个圆的面积是()cm²。

7.一个半圆的周长是25.7cm,它的面积是()平方厘米。

8.右图中圆的面积是大正方形面积的(),小正方形面积是圆面积的()。

二、画一画、算一算。

(每题5分,共10分)1.请在下面的正方形内画一个最大的圆,并写出你是怎样确定它的圆心和直径的。

2.下图中阴影甲的面积比阴影乙的面积多28平方厘米,AB=40厘米,三角形ABC 是直角三角形,求BC 的长。

班级姓名考试号请勿在装订线内答题三、解决问题(每题6分,共24分)1.一次数学竞赛分一、二、三等奖。

其中获一、二等奖的人数占获奖总人数的95,获二、三等奖的人数占获奖总人数的97,其中获二等奖的有9人,这次数学竞赛获奖的共有多少人?2.六(1)班体育达标人数占全班人数的68%,六(2)班体育达标的人数占全班人数的70%。

李华说:“六(1)班达标的人数一定比六(2)班达标的人数少。

”他说得对吗?为什么?3.小明在计算左图(单位:cm )所示阴影部分的周长时,他直接用算式“3.14×12=37.68(cm )”计算出阴影部分的周长是37.68cm。

(1)你同意吗?说一说你是怎么想的。

(2)如果阴影部分右图所示,结论一样吗?你有什么发现?可以尝试用举例、推理等方法证明你的结论。

4.某日,李丽家所在小区由于电网改造停电,到晚上还没来电。

小学六年级数学竞赛试题卷及答案

小学六年级数学竞赛试题卷及答案

小学六年级数学竞赛试题卷(答卷时间 100分钟 ,卷面总分120分) 成绩 一、认真思考,慎重选择正确答案的字母填入括号里。

(每题2分,共20分) 1. 下面第( )幅图表示32×41的意义。

2.把100克盐的41放入200克水中,则混合后盐与盐水的重量比是( )。

A. 1:3 B. 1:4 C. 1:8 D. 1:93.一个长9厘米,宽6厘米,高3厘米的长方体,将它切割成三个体积相等的长方体,表面积最大增加( )平方厘米。

A. 36 B. 72 C. 108 D. 2164.一件衬衫,若卖300元,可赚20%;若卖350元,则可赚( )。

A. 16.7% B. 30% C. 40% D. 50%5.如右图,把一个六面都涂上颜色的正方体木块,切成64块大小相同的小正方体, 其中没有涂色的小正方体有( )个。

A. 2 B. 4 C. 6 D. 86.小明植树100棵,小红植树比小明多80棵,小红植树棵数比小明多( )。

A.20% B. 80% C. 25% D. 125%7.在含盐25%的盐水中,加入4克盐和12克水,这时盐水含盐的百分比是( ) A. 等于25% B. 小于25% C. 大于25% D. 无法确定8.一种商品先提价10%后,再打九折出售,现价( )。

A. 比原价高 B. 比原价低 C. 与原价相同 D. 无法确定9.一个长方形的长和宽的比是7:2,如果长减少5厘米,宽增加5厘米,则面积增加100平方厘米。

那么原来长方形的面积是( )平方厘米。

A. 126 B. 224 C. 350 D. 5600 10.小明有红、蓝两色彩球共95个,红球的21和篮球的31一样多。

两种球相差( )个。

区学校考点考号姓密封线内不得答题A. 19B. 20C. 25D. 30二、认真思考,正确填空。

(每空1分,共20分) 1.32日=( )时 54平方千米 =( )公顷 2. 比120千米少51是( )千米; 200吨比( )吨多41。

苏教版六年级数学上册课后思考题

苏教版六年级数学上册课后思考题

苏教版六年级数学上册课后思考题2012.121.甲、乙两人沿着400米的环形报道跑步,他们同时性同一地点出发,同向而行。

甲每分跑280米,乙每分跑240米。

经过多少分甲比乙多跑1圈?2.盒子里装有同样数量的红球和白球。

每次取出6个红球和4个白球,取了若干次以后,红球正好取完,白球还有10个。

一共取了几次?盒子里原来有红球多少个?3.下面五种形状的硬纸各有若干张。

选择哪几种,每种选几张,正好可以围城一个长方体或正方体?4.下图表示用棱长1厘米的正方体摆成的物体。

(1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。

(2)这个物体的表面积是多少平方厘米?(3)在这个物体上添加同样大的正方体,补成一个大正方体。

这个大正方体的表面积至少是多少平方厘米?5.你能根据正方体的体积来估计右边物体的体积吗?1cm36. 一个长方体,如果高增加2厘米,就变成一个正方体。

这时表面积比原来增加56平方厘米。

原来长方体的体积是多少立方厘米?7.把一个六面都涂上颜色的正方体木块,切成64块大小相同的小正方体(如右图)。

(1)三面涂色的小正方体有多少块?(2)两面涂色的小正方体有多少块?(3)一面涂色的小正方体有多少块?8.两根同样长的钢管,第一根用去25米,第二根用去25。

哪一根用去的长一些?9.先找规律,再填数。

(1)45,25,15, ( ) ,120, ( ) , ( ) 。

(2)23, 1 ,32,94,( ) , ( ) 。

10.先计算,在观察每组算式的得数,能发现什么规律?(1)12-13=( )( )12×13=( )( )(2)14-15=( )( )14×15=( )( )你能根据发现的规律再写几组这样的算式吗?11.一辆小汽车行32千米用汽油325升。

行1千米用汽油多少升?1升汽油可行多少千米?12.两个长方形重叠部分的面积相当于小长方形面积的14,相当于大长方形面积的16。

六年级数学上册竞赛卷及答案

六年级数学上册竞赛卷及答案

共4页,第1页 共4页,第2页密 封 线校名 班级 姓名 座号密 封 线 内 不 得 答 题六年级(上册)数学竞赛卷评分:一、填空。

(每题5分,共60分)1、一个比的前项加上3,后项加上8,比值不变,如果这个比的前项加9,要使比值不变,后项应加上( )。

2、一种现价1680元的 ,比原价的45少80元,原价( )元。

3、数A 比120多14 ,又比数B 少14 ,数B 是( )4、一根铁丝刚好可以围成一个半径是10厘米的圆,用这根铁丝可以围成一个长和宽的比是7∶3的长方形,这个长方形的宽是( )厘米。

5、把一根长3米的木头锯成0.5米长的小段,平均每锯下一段的时间占锯完全部木块所用总时间的 ( )( )。

6、有3吨煤,先用去14 后,又用去12 吨,一共用去( )吨。

7、方程 45 -12 χ = 0.3 的解是( )8、一杯150克的糖水中有糖30克,现加入10克糖后,糖占糖水的( )( )。

9、下面说法错误的是( )。

A 、圆的周长约是它直径的3倍。

B 、圆周率“π”是一个循环小数。

C 、直径是圆内最长的线段。

D 、不管圆的大小如何变化,圆周率是固定不变的。

10、已知甲数是乙数的25 ,乙数是丙数的13,甲、乙、丙三个数的最简单的整数比是 ( )∶( )∶( )11、养鸡场一共饲养了750只鸡,公鸡的只数如果减少18 就和母鸡一样多,养鸡场有 母鸡有( )只。

12、602班男、女生人数的比是7∶8,后来转入了2名男生,转出了1名女生,这时男、女生的人数刚好相等,602班现有学生( )人。

二、下图中正方形的周长是24厘米,求阴影部分的周长。

(10分) 三、解决问题。

(30分)1、一项工作,甲独做要20小时,乙独做要25小时,两人合做,中间乙休息了2小时,完成这项工作一共用了多少小时?2、把一瓶容积为1L 的“百事可乐”全部分别倒入两个正方体玻璃空容器内,并使得两个容器中“可乐”的深度相等,已知两个正方体的棱长分别是10厘米和8厘米,求容器中“可乐”深约多少厘米?(厚度忽略不计、得数保留整数。

重点小学新六年级数学奥赛竞赛题附参考答案

重点小学新六年级数学奥赛竞赛题附参考答案

学习奥数的重要性小学六年级数学奥赛竞赛题1.学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2.学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3.为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4.学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

小学六年级数学奥赛竞赛题一、计算1.×+÷+×.2.×+×.3.1999+999×999.4.8+98+998+9998+99998.5.(﹣×25十75%×)÷15×1997.二、填空题6.六(1)班男、女生人数的比是8:7.(1)女生人数是男生人数的_________(2)男生人数占全班人数的_________(3)女生人数占全班人数的_________(4)全班有45人,男生有_________人.7.甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是_________.8.甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的_________,甲数和丙数的比是_________:_________.9.的倒数是_________,的倒数是_________.10.一根铁丝长3米,剪去1/3后还剩_________米;一根铁丝长3米,剪去1/3米后还剩_________米.11.甲、乙合做一件工作,甲做的部分占乙的,乙做的占全部工作的_________.12.周长相等的正方形和圆形,_________的面积大.13._________÷40=15:_________═=_________%14.把、、37%、按从大到小的顺序排列是_________.15.4米是5米的_________%,5米比4米多_________%,4米比5米少_________%16.用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的_________%.17.甲、乙、丙三种糖果每千克的价格分别是9元,元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买_________千克这种混合糖果.18.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_________个月.19.奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期_________.20.(1)广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要_________秒.(2)甲、乙两数的比5:8,甲数比乙数少_________%,乙数比甲数多_________%.三、图形计算21.电视塔的圆形塔底半径为15米,现在要在它的周围种上5米宽的环形草坪.(1)需要多少平方米的草坪(2)如果每平方米的草坪需500元,那么植这块草坪至少需要多少钱22.已知图中正方形的面积是20平方厘米,求阴影部分的面积.23.图中正方形的面积是8平方厘米,求圆的面积是多少四、解答题(共16小题,满分0分)24.球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的.如果球从25米高处落下,那么第三次弹起的高度是多少米25.在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5.种大豆和玉米各多少公顷26.水结成冰后,体积增加1/10.现有一块冰,体积是2立方分米,融化后的体积是多少27.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%.为民中药店超额收购中草药多少千克28.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花(得数保留整万数)29.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元30.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米31.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是米,这棵树的横截面积是多少平方米32.张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李.过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来.想一想,如果老张买回房子,总共损失多少万元33.同学们参加野营活动.一个同学到负责后勤的教师那是去领碗.教师问他领多少,他说领55个,又问:“多少人吃饭”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗.”算一算这个同学给多少人领碗34.某校五、六年级共有学生200人.“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等.求六年级有学生多少人35.修一条路,第一天修了全路的,第二天修了余下的,两天共修路135米,这条路全长多少米36.幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个37.小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页38.小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/8、1/7、1/6、1/5、1/4、1/3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币39.一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间小学六年级数学奥赛竞赛题参考答案与试题解析一、计算1.×+÷+×.考点:乘除法中的巧算。

六年级数学上册课本思考题竞赛卷

六年级数学上册课本思考题竞赛卷

六年级(上)数学课本思虑题比赛姓名:得分(每题 5 分,共 20 题)1、有一块长方形的菜地周长 600 米,长和宽的比是 3: 2,菜地的面积是多少平方米?2、一个长方体,假如长缩短 2 厘米,就变为一个棱长为 2 厘米的正方体,本来这个长方体的表面积是平方厘米?3、红星小学五年级有学生348 人,四年级人数是五年级人数的3 ,三年级人数是四年级人4数的 2,三、四年级共有学生多少人?34、一个长 50 厘米、宽 20 厘米、深 30 厘米的长方形水箱,水深 20 厘米。

假如在水箱里放入一块棱长 10 厘米的正方体铁块,那么水箱的水距离上口多少厘米?5、甲库房的货物比乙库房的货物多 280 吨,假如两库房同时运走 9 吨货物,那么甲库房正好是乙库房货物的 3 倍,问:甲、乙库房原有货物多少吨?6、甲、乙两堆煤,甲堆重 5.5 吨,乙堆重 4.4 吨,从甲堆运多少吨给乙堆,两堆货物才同样多?7、幼儿园老师给小朋友分梨子,假如每人分 4 个,则多 9 个;假如每人分 5 个则少 6 个,有多少个小朋友?,有多少个梨子?8、果园里的树棵数在 170—180 之间,苹果和梨的棵树比是 8:11,果园里有苹果树、梨树各有多少棵?9、被减数、减数与差的和是240,被减数与减数的比是4:1. 差是多少?10、我们班有 18 人参加了奥数班,占全班同学的1, 参加英奥班的人数占全班人数的2,参3 9加英奥班的同学有多少人?11、一根绳索长 20 米,第一次用去全长的1,第二次用去一些后,剩下的长度占全长的42。

第二次用去了多少米?512、一个两层,上层书的5等于基层书的3,基层有书 150 本。

这个书架上层有书多少本?7 513、今年小伟和他叔叔的年纪和是37 岁,叔叔的年纪比小伟 2 倍多 1 岁。

小伟今年多少岁?14、客货两车从相距 570 千米的两地同时两对开出,已知客车每小时行 50 千米,货车与客车的速度比是 9:10,两车开出后多少小时会相遇?15、商铺运进皮鞋 225 双,此中男装皮鞋的双数相当于女装皮鞋的7 。

六年级上册数学试卷奥数竞赛找规律填图形全国通用

六年级上册数学试卷奥数竞赛找规律填图形全国通用

六年级上册数学试卷 奥数竞赛找规律填图形 全国通用找规律是解决问题的一种重要的手段,找规律需要有敏捷的观看力、严密的逻辑推理能力。

找规律一样分为图形找规律和数之间找规律,观看图形中的变化规律,能够从图形的形状、位置、方向、颜色、数量、大小等方面入手,从中找出规律。

观看数字的规律从数的组成、数列关系等方面着手。

例1、下面一组图形的阴影变化是有规律的,请依照那个规律把第四幅图的阴影部分画出来.例2:观看右图,并按规律填出空白处的图形。

例3:依照下面的图和字母的关系,将ad例4:依照规律填数。

例5、下图所示的两组图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:(1)(2)例6:认真观看下图,依照规律填出所缺的数。

ab cd bc ad36 25 543 71 68 857 45 38 824 32 19例7:下面三块正方体的六个面,差不多上按相同的规律涂有红、黄、蓝、白、黑、绿六种颜色。

那么请你依照这一规律,白色的对面是什么颜色?红色的对面是什么颜色?黄色的对面是什么颜色?(1) (2)(3)练习:1、下面括号里两个数按一定规律组合,在( )里填上适当的数。

(1)、(8,7)、(6,9)(10、5)、( 、13 )。

(2)、(2,3)、(5,9)、(7、13)、( 、23 )。

(3)、(18,10)、(10,6)、(20、11)(4)、 1、 2、 3、 6、 11、 20、( )2、认真观看一右图,并按它的变化规律,3、在右图空格里填数 411 2322 33 12 215、找规律,从a,b,c,d,e 7、下图是由9个小人排列的方阵,但有一个小人没有到位,请你从右面的6个小人中,选一位小人放到问号的位置.你认为最合适的人选是( )号.白 黑 黄 绿 白 红 黄蓝 红众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、幼儿园老师给小朋友分梨子,如果每人分4个,则多9个;如果每人分5个则少6个,有多少个小朋友?,有多少个梨子?
8、果园里的树棵数在170—180之间,苹果和梨的棵树比是8:11,果园里有苹果树、梨树各有多少棵?
9、被减数、减数与差的和是240,被减数与减数的比是4:1.差是多少?
10、咱们班有18人参加了奥数班,占全班同学的 ,参加英奥班的人数占全班人数的 ,参加英奥班的同学有多少人?
4、一个长50厘米、宽20厘米、深30厘米的长方形水箱,水深20厘米。如果在水箱里放入一块棱长10厘米的正方体铁块,那么水箱的水距离上口多少厘米?
5、甲仓库的货物比乙仓库的货物多280吨,如果两仓库同时运走9吨货物,那么甲仓库正好是乙仓库货物的3倍,问:甲、乙仓库原有货物多少吨?
6、甲、乙两堆煤,甲堆重5.5吨,乙堆重4.4吨,从甲堆运多少吨给乙堆,两堆货物才一样多?
车的速度比是9:10,两车开出后多少小时会相遇?
15、商店运进皮鞋225双,其中男装皮鞋的双数相当于女装皮鞋的 。商店运进男、女皮鞋各多少双?
16、李叔叔买了1张餐桌和6把椅子,一共用去945元,已知一把椅子的价钱是一张餐桌的 。桌子和椅子的单各是多少?
17、一个直角三角形的周长是24厘米,它的三条边的比是5:4:3。这个三角形的面积是多少平方厘米?
11、一根绳子长20米,第一次用去全长的 ,第二次用去一些后,剩下的长度占全长的 。第二次用去了多少米?
12、一个两层,上层书的 等于下层书的 ,下层有书150本。这个书架上层有书多少本?
13、今年小伟和他叔叔的年龄和是37岁,叔叔的岁数比小伟2倍多1岁。小伟今年多少岁?
14、客货两车从相距570千米的两地同时两对开出,已知客车每小时行50千米,货车与客
18、六年级有15名同学参加数学课本思考题竞赛,平均分是88分,其中男生的平均分是90分,女生的平均分是85分。参加竞赛的男、女生各多少人?
19、松鼠妈妈采松子,晴天每天采20个,雨天每天采13个,它一共采了112个,平均每天采16个。这几天中雨天、晴天各是几天?
20、小菲参加一次英语竞赛,一共20题,规定做对一题得5分,做错一题不但不得分,还要倒扣2分,结果她得了79分.小菲做错了几题?
六年级(上)数学课本思考题竞赛
姓名:得分
(每题5分,共20题)
1、有一块长方形的菜地周长600米,长和宽的比是3:2,菜地的面积是多少平方米?
2、一个长方体,如果长缩短2厘米,就变成一个棱长为2厘米的正方体,原来这个长方体的表面积是平方厘米?
3、红星小学五年级有学生348人,四年级人数是五年级人数的 ,三年级人数是四年级人数的 ,三、四年级共有学生多少人?
相关文档
最新文档