九年级数学 实数的概念复习教案【教案】
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与性质1.1 实数的定义与分类引入实数的概念,讲解实数的定义区分有理数和无理数,讲解它们的分类及特点强调实数集的完备性和有序性1.2 实数的运算复习实数的加法、减法、乘法和除法运算规则举例讲解实数运算的性质和定律,如交换律、结合律、分配律等1.3 实数的平方根与立方根讲解实数的平方根和立方根的定义引导学生掌握求解实数平方根和立方根的方法强调平方根和立方根的性质和运算规律第二章:实数的绝对值与指数2.1 实数的绝对值引入绝对值的概念,讲解绝对值的定义和性质举例说明绝对值在数轴上的表示方法复习绝对值的运算规则,如绝对值的加法、减法和乘法等2.2 实数的指数引入指数的概念,讲解指数的定义和性质讲解实数的乘方运算规则,如幂的乘方和积的乘方等引导学生掌握指数的换底公式和指数函数的性质第三章:实数的三角函数3.1 三角函数的定义与性质引入三角函数的概念,讲解正弦、余弦和正切函数的定义讲解三角函数的周期性、奇偶性和单调性等性质强调三角函数在单位圆上的表示方法,如角度与弧度的转换等3.2 三角函数的图像与变换引导学生掌握三角函数的图像特征,如正弦函数的波形、余弦函数的波动等讲解三角函数的平移、伸缩和翻转等变换规律强调三角函数图像的性质和应用,如相位变换、振幅变换等第四章:实数的函数性质与应用4.1 函数的定义与性质引入函数的概念,讲解函数的定义和性质讲解函数的域、值域、单调性、连续性等基本性质强调函数的图像在分析函数性质方面的作用4.2 函数的图像变换与应用讲解函数的图像变换规律,如平移、伸缩、翻转等引导学生掌握函数图像的应用,如解不等式、求函数值等强调函数图像在解决实际问题中的重要性第五章:实数的极限与导数5.1 极限的概念与性质引入极限的概念,讲解极限的定义和性质讲解极限的基本性质,如保号性、单调性、夹逼性等强调极限在数学分析中的重要性5.2 导数的定义与性质引入导数的概念,讲解导数的定义和性质讲解导数的运算法则,如和差、积、商的导数等强调导数在研究函数变化率方面的应用第六章:实数的积分与不定积分6.1 积分的概念与性质引入积分的概念,讲解定积分和不定积分的定义讲解积分的性质,如线性性、保号性、可加性等强调积分在几何和物理中的应用6.2 积分的计算方法引导学生掌握基本积分公式,如幂函数、指数函数、对数函数的积分讲解换元积分和分部积分的方法和技巧强调积分的计算在实际问题中的应用第七章:实数的级数与收敛性7.1 级数的概念与性质引入级数的概念,讲解级数的定义和性质讲解级数的基本性质,如收敛性和发散性强调级数在数学分析中的重要性7.2 级数的收敛性判断引导学生掌握级数收敛性的判断方法,如比值判别法、根值判别法等讲解级数收敛性的应用,如求解函数极限等强调级数在实际问题中的应用第八章:实数的常微分方程8.1 微分方程的概念与性质引入微分方程的概念,讲解微分方程的定义和性质讲解微分方程的解法和分类,如常微分方程和偏微分方程强调微分方程在自然科学和工程中的应用8.2 常微分方程的求解方法引导学生掌握常微分方程的求解方法,如分离变量法、积分因子法等讲解常微分方程的解的性质和应用,如解的存在性和唯一性等强调常微分方程在实际问题中的应用第九章:实数的概率论与数理统计9.1 概率论的基本概念引入概率论的基本概念,讲解概率、随机事件、样本空间等讲解概率的计算方法和性质,如互斥事件、独立事件的概率计算强调概率论在数学和实际问题中的应用9.2 数理统计的基本概念和方法引入数理统计的基本概念,讲解统计量、样本、估计等讲解数理统计的基本方法,如点估计、置信区间、假设检验等强调数理统计在数据分析和社会科学中的应用第十章:实数的综合应用与复习10.1 实数的综合应用案例分析分析实数在不同领域的应用案例,如物理学、工程学、经济学等强调实数在解决实际问题中的重要作用10.2 实数的复习与练习复习本单元的重点知识和技能,讲解常见错误和难点提供练习题,引导学生巩固和提高实数的理解和应用能力强调复习和练习在掌握实数知识方面的必要性重点和难点解析一、实数的定义与分类:理解实数的概念,区分有理数和无理数,掌握实数集的完备性和有序性。
复习教案 实数的有关概念
第一课时 实数的有关概念一、复习目标:1、使学生掌握有理数、无理数、实数的有关概念.2、理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3、会求一个数的相反数和绝对值。
4、会画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数。
5、理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式.。
二、复习重点和难点:(一)复习重点:1. 有理数、无理数、实数以及相反数、倒数、数的绝对值概念;2.以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
;3. 科学计数法的表示,特别是用负整数指数次幂表示绝对值较小的数。
(二)复习难点:1、对绝对值的概念的理解和应用;2、会确定用科学计数法表示的数的有效数字,以及用汉字单位为“万、千、百”类的近似数的有效数字的确定。
3、能用科学计数法表示绝对值较小的数以及能把用负整数指数次幂表示的数转化为用正整数指数次幂表示的数。
三、复习过程:(一)知识梳理:1、实数的分类 {}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数或 实数0⎧⎪⎨⎪⎩正实数负实数 强调:(1)分数一定是有理数(2)无限不循环小数叫无理数.从形式上看有以下三类无理数:⑴含π的数:如π+2,31-π;(3)开不尽的方根:如39,2,sin60°;⑶无限不循环小数如1.212112….2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,3、相反数:只有符号不同的两个数,叫做互为相反数(零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.强调:(1)若a 、b 互为相反数,则有a+b=0;反之,若a+b=0,则有a 、b 互为相反数;(2)相反数等于它本身的数是零,即若a =-a ,则a =0。
初三数学专题复习教案:实数.
初三专题复习:第1讲 实数一、教学目标1、理解实数的有关概念(数轴、相反数、倒数、绝对值、无理数)2、理解并掌握平方根与算术平方根意义,零指数幂与负整数指数幂的意义3、能用科学技术法表示会比较实数的大小,会利用绝对值知识解决简单化简问题掌握有理数的运算法则,并能灵活的运用.4、培养学生温故而知新的学习习惯以及认真思考的学生态度二、教学重难点重点:实数相关概念的理解难点:实数运算法则的正确运用三、教学用具:多媒体四、学情分析:实数的相关概念,部分同学已经忘记,实数的的知识点虽简单但是知识点比较碎,让学生多练多做。
五、教学方法:归纳、讨论六、教学资源:PPT七、教学过程:一、知识要点1、实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数:实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数:实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数);零没有倒数.二、典例精析例1 实数tan 45°,,0,-π,,,0.101 001 000 1…(相邻两个1之间依次多一个0),sin 60°,其中无理数有( )A.1个B.2个C.3个D.4个例2 (1)(2020南宁一模)|-|的相反数是( )A. B.- C.6 D.-6(2)(2020黔东南)-2 020的倒数是( )A.-2 020B.-C.2 020D.变式1 (2020新疆)实数a,b在数轴上的位置如图所示,下列结论中正确的是( )A.a>bB.|a|>|b|C.-a<bD.a+b>0变式2(1)(2020合肥二模)的平方根是( )A. B.- C.± D.±(2)(2020陕西模拟)-的立方根是( )A.-B.C.-D.例3已知+|b-1|=0,则a+1= .例4 (2020泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4 000亿元.把数据4 000亿元用科学记数法表示为( )A.4×1012元B.4×1010元C.4×1011元D.40×109元思政元素:我们的国家越来越强大,祖国的强大离不开每个人的奋斗,少年强则中国强,作为中学生,要好好学习科学文化知识,为祖国的未来作出贡献。
课时41_总复习_初中数学总复习第一讲:实数-教案
2020 年中考总复习第一讲《实数》【教学目标】1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法与近似数的概念,能按要求用四舍五入法求一个数的近似值,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.【教学重难点】教学重点是实数的概念及运算;教学难点是非负数 a2、|a|、 a (a≥0)的综合应用。
【教学过程】教学环节教学内容设计意图知识点1:实数的分类⎧⎧⎧正整数⎫⎪⎪⎪⎪⎪⎪整数⎨零⎪⎪有理数⎪⎪负整数⎪⎨⎩⎬实数⎪⎪⎪⎨⎪⎧正分数⎪⎪⎪分数⎨⎪⎪⎩⎩负分数⎭⎪⎧正无理数⎫无理数⎨⎬⎪⎩⎩负无理数⎭1、(2019 桂林)若海平面以上1045 米,记作+1045 米,则海平面以下155 米,记作()(A)-1200 米(B)-155 米(C)155 米(D)1200 米2、(2019 峡西)已知实数-1,0.16, 3 ,π,25 ,23 4 ,其中为无理数的是.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.1.数轴:规定了原点、正方向和单位长度的直线借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.2.相反数:像 2 和-2 这样,只有符号不同的两个数互为知识点 2:相反数.特别地,0 的相反数是 0.数轴、相 3.倒数:乘积为 1 的两个数互为倒数;反数、倒 4.绝对值:数轴上,表示数a的点与原点的距离叫做数a的数、绝对绝对值,记作|a|.正数的绝对值是它本身,负数的绝对值值是它的相反数,0 的绝对值是 0.3、(2019 广州) | -6|= ( )A.-6 B.6 C.-1D.1 6 64、(2019 玉林) 9 的倒数是 ( )A.1B.-1C.9 D.-9 9 95、(2017 广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )(A)-6 (B)6 (C)0 (D)无法确定1.科学记数法示,下列式子成立的是( )(A)a>b (B)|a|<|b| (C)a+b>0 (D a<0)b知识点 6:实数的运算1、六种基本运算:加、减、乘、除、乘方、开方.2、运算顺序:先算乘方、开方,最后算加减.如果有括号,就先算括号里面的;同级运算要按照从左到右的顺序进行.3、运算律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a b=b a乘法结合律:(a b)c=a(b c)分配律:(a+b)c=a c+b c、2019深圳)计算:9-2cos600+(1)-1+(π-3.14)0812、(2018 广东)已知a -b +b -1 = 0 ,则a +1 =.13.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a ⊗b=2a+b.例如3 ⊗ 4=2×3+4=10.求4 ⊗(一3)的值.熟练掌握实数的运算,小结有理数无理数实数的分类科学记数法、近似数作差比较法实数实数的大小比较作商比较法数轴图示法数轴、相反数倒数、绝对值常考运算及法则实数的运算实数的混合运算顺序总结本节课的主要内容,形成知识网络。
初中数学概念实数教案模板
---一、教学目标1. 知识与技能:- 了解实数的概念,掌握实数的分类。
- 理解有理数和无理数的定义,能区分和识别它们。
- 掌握实数与数轴的关系,能够利用数轴表示实数。
2. 过程与方法:- 通过实例分析和小组讨论,培养学生的逻辑思维和归纳能力。
- 通过实际问题解决,提高学生的应用意识和解决实际问题的能力。
3. 情感态度与价值观:- 培养学生对数学学习的兴趣和好奇心。
- 增强学生的数学思维和科学探究精神。
---二、教学重难点1. 教学重点:- 实数的概念和分类。
- 有理数和无理数的区分。
- 实数与数轴的关系。
2. 教学难点:- 理解无理数的概念和性质。
- 实数与数轴的对应关系。
---三、教学准备1. 教学材料:数轴图、实物教具(如直尺、圆规等)、多媒体课件。
2. 学生准备:复习有理数的相关知识,预习实数的概念。
---四、教学过程(一)导入新课1. 复习提问:提问学生有关有理数的基础知识,如整数、分数、正负数等。
2. 提出问题:引导学生思考数的概念的发展,引出实数的概念。
(二)新课讲授1. 实数的概念:- 讲解实数的定义,即实数包括有理数和无理数。
- 通过实例讲解有理数和无理数的区别。
2. 实数的分类:- 有理数:整数和分数。
- 无理数:不能表示为分数的数,如π、√2等。
3. 实数与数轴的关系:- 讲解实数与数轴上的点一一对应的关系。
- 通过实例展示如何利用数轴表示实数。
(三)巩固练习1. 练习题目:让学生完成一些关于实数的分类、比较大小和表示实数的练习题。
2. 小组讨论:让学生分组讨论实数的性质和应用。
(四)总结归纳1. 总结本节课所学内容,强调实数的概念、分类和与数轴的关系。
2. 引导学生思考实数在数学和生活中的应用。
---五、作业布置1. 完成课后练习题,巩固实数的概念和分类。
2. 查阅资料,了解实数在数学史上的地位和应用。
---六、教学反思1. 教学过程中,关注学生的理解和掌握程度,及时调整教学策略。
中考数学《实数的有关概念》复习教案
课时教案
第一部分:科学备考
一、实数的分类
二、实数的有关概念
1.数轴:(1)数轴的三要素:原点、正方向和单位长度;(2)数轴上的点和实数是一一对应关系.
2.相反数:只有符号不同的两个数互为相反数,0的相反数是0
三、绝对值
四、倒数
五、科学计数法(必考)
六、近似数、精确度
七、平方根、算术平方根、立方根
第二部分:重难点选讲
例[2020·深圳,第3题]2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为
()
A.0.15×108
B. 1.5×107
C.15×107
D. 1.5×108变式训练
[2021·齐齐哈尔]随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007mm2.将0.0000007用科学记数法表示为__ _________.
第三部分:深圳五年中考。
初中实数的概念教案
初中实数的概念教案教学目标:1. 理解实数的定义和性质;2. 能够对实数进行分类和理解实数的意义;3. 能够运用实数的概念解决一些实际问题。
教学重点:1. 实数的定义和性质;2. 实数的分类和意义。
教学难点:1. 实数的性质的理解和应用;2. 实数的分类和意义的理解。
教学准备:1. 教学课件或黑板;2. 实数的相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾有理数和无理数的概念;2. 提问:有理数和无理数能否涵盖所有的数呢?;3. 引导学生思考实数的定义和意义。
二、实数的定义和性质(15分钟)1. 讲解实数的定义:实数是包含有理数和无理数的全体数;2. 讲解实数的性质:实数具有大小、加减、乘除等运算性质;3. 举例说明实数的性质,如实数的加减乘除运算规则等。
三、实数的分类和意义(15分钟)1. 讲解实数的分类:实数可分为正实数、负实数和零;2. 讲解实数的意义:实数是用来表示物体的大小和位置的数;3. 举例说明实数的意义,如用实数表示物体的长度、面积等。
四、实数的应用(15分钟)1. 举例讲解实数在实际问题中的应用,如计算物体的体积、距离等;2. 让学生尝试解决一些实际问题,如计算购物时的折扣、测量长度等。
五、总结和练习(10分钟)1. 总结实数的定义、性质、分类和意义;2. 布置一些练习题,让学生巩固所学知识。
教学反思:本节课通过讲解和练习,使学生掌握了实数的定义、性质、分类和意义,能够运用实数的概念解决一些实际问题。
在教学过程中,注意引导学生思考和探索,提高学生的思维能力和解决问题的能力。
同时,通过练习题的布置,让学生巩固所学知识,为后续学习打下基础。
初三实数教案
初三实数教案教案标题:初三实数教案教学目标:1. 理解实数的概念,能够区分有理数和无理数。
2. 掌握实数的运算规则,包括加法、减法、乘法和除法。
3. 熟练运用实数的性质解决实际问题。
4. 培养学生的逻辑思维和问题解决能力。
教学重点:1. 实数的概念和分类。
2. 实数的加减法运算。
3. 实数的乘除法运算。
4. 实数的性质及其应用。
教学难点:1. 实数的无理数部分的理解和运算。
2. 实数性质的应用。
教学准备:1. 教材:初中数学教材。
2. 教具:黑板、白板、彩色粉笔、教学PPT等。
教学过程:一、导入(5分钟)1. 引入实数的概念,通过提问和讨论激发学生对实数的兴趣和思考。
2. 提示学生回顾前几年学习的数学知识,如整数、分数等,为实数的引入做铺垫。
二、概念讲解与分类(15分钟)1. 通过教师讲解和示例,引导学生理解实数的概念。
2. 分类介绍有理数和无理数的定义和特点,并通过实例进行说明。
三、实数的加减法运算(20分钟)1. 通过教师示范和学生练习,讲解实数的加法和减法运算规则。
2. 给学生提供一些练习题,巩固实数的加减法运算。
四、实数的乘除法运算(20分钟)1. 通过教师示范和学生练习,讲解实数的乘法和除法运算规则。
2. 给学生提供一些练习题,巩固实数的乘除法运算。
五、实数的性质及其应用(25分钟)1. 教师讲解实数的性质,如交换律、结合律、分配律等。
2. 引导学生通过实际问题的解决,应用实数的性质。
六、小结与作业布置(10分钟)1. 对本节课的内容进行小结,强调重点和难点。
2. 布置相应的作业,巩固学生对实数的理解和运算。
教学辅助措施:1. 利用多媒体教学手段,如教学PPT等,辅助讲解和示范。
2. 鼓励学生参与课堂讨论和互动,提高学生的学习积极性。
教学评价与反馈:1. 课堂练习:通过课堂练习检查学生对实数的理解和运算掌握情况。
2. 作业批改:对学生的作业进行批改,并及时给予反馈和指导。
3. 学生互评:鼓励学生互相评价和交流,促进学生的共同进步。
中考数学实数的概念复习优秀教案
中考数学实数的概念复习优秀教案教学难点:绝对值。
教学过程:一、复习:1、实数分类:方法(1),方法(2)注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1)两有理数的和、差、积、商是有理数;(2)有理数与无理数的积是无理数;(3)有理数与无理数的和、差是无理数;(4)小数都是有理数;(5)零是整数,是有理数,是实数,是自然数;(6)任何数的平方是正数;(7)实数与数轴上的点一一对应;(8)两无理数的和是无理数。
例2下列各数中:-1,0,,,1.101001,,,-,,2,.有理数*{…};正数*{…};整数*{…};自然数*{…};分数*{…};无理数*{…};绝对值最小的数的*{…};2、绝对值:=(1)有条件化简例3、①当1<a<2时,化简;②a,b,c为三角形三边,化简;③如图,化简+。
(2)无条件化简例4、化简解:步骤①找零点;②分段;③讨论。
例5、①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3<a<-1时,化简:|a+1|-|3-2a|-|3+a|例6、阅读下面材料并完成填空你能比较两个数20042005和20052004的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,。
这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。
(1)通过计算,比较下列①——⑦各组中两个数的大小(在横线上填“>、=、<”号”)①1221;②2332;③3443;④4554;⑤5665;⑥6776⑦7887(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是:2004200520052004练习:(1)若a<-6,化简;(2)若a<0,化简;(3)若;(4)若=;(5)解方程;(6)化简:。
初中数学实数复习课教案
一、教学目标1. 理解实数的定义及分类,掌握有理数、无理数和实数之间的关系。
2. 掌握相反数、绝对值的概念及求法,能够运用数轴理解其意义。
3. 了解平方根、立方根的定义及求法,能够熟练运用根号表示数的平方根、立方根。
4. 掌握科学记数法、近似数与有效数字的概念,并能进行相关计算。
二、教学内容1. 实数的定义及分类2. 相反数、绝对值的概念及求法3. 平方根、立方根的定义及求法4. 科学记数法、近似数与有效数字的概念及应用三、教学重点和难点1. 教学重点:实数的定义及分类,相反数、绝对值的概念及求法,平方根、立方根的定义及求法,科学记数法、近似数与有效数字的概念及应用。
2. 教学难点:平方根、立方根的求法,科学记数法、近似数与有效数字的运用。
四、教学方法启发式教学法、讲练结合法。
通过提问、讨论、练习等方式,激发学生的学习兴趣,引导学生主动探索、积极思考,提高学生的数学素养。
五、教学过程1. 导入新课通过复习小学学过的加减乘除等运算,引导学生思考:这些运算都是在处理哪些数?(有理数)那么,有没有一种运算可以处理无理数呢?从而引出实数的概念。
2. 教学实数的定义及分类(1)实数的定义:实数是包括有理数和无理数的所有数。
(2)实数的分类:有理数和无理数。
3. 教学相反数、绝对值的概念及求法(1)相反数的定义:一个数的相反数是与它的数值相等,但符号相反的数。
(2)绝对值的定义:一个数的绝对值是它到原点的距离。
(3)相反数、绝对值的求法:通过数轴理解相反数、绝对值的概念,并能熟练求出相反数和绝对值。
4. 教学平方根、立方根的定义及求法(1)平方根的定义:一个数的平方根是它的二次方等于这个数的数。
(2)立方根的定义:一个数的立方根是它的三次方等于这个数的数。
(3)平方根、立方根的求法:通过实例讲解平方根、立方根的求法,让学生熟练掌握。
5. 教学科学记数法、近似数与有效数字的概念及应用(1)科学记数法的定义:将一个数表示成a×10^n的形式,其中1≤|a|<10,n为整数。
中考数学实数的运算复习教案
中考数学实数的运算复习教案【教学目标】1.复习实数的概念和特性。
2.复习实数的四则运算。
3.复习实数的混合运算。
4.加强解决实际问题的能力。
【教学重点】1.实数的概念和特性。
2.实数的四则运算。
3.实数的混合运算。
【教学难点】实数的混合运算和实际问题的解决。
【教学方法】知识点讲解、示例分析、学生练习、解题讲评。
【教学准备】教材、黑板、白板、教学投影仪。
【教学过程】Step 1 知识点讲解(8分钟)1.复习实数的概念和基本性质,引出实数的运算。
2.讲解实数的四则运算规则:加法、减法、乘法和除法。
3.引导学生讨论混合运算的步骤和技巧。
Step 2 示例分析(10分钟)1.以例子讲解实数的四则运算步骤和规则。
2.分析典型实例,引导学生找出解题的关键点。
Step 3 学生练习(20分钟)1.学生在课本上独立完成练习题。
2.教师巡视指导,发现问题及时纠正。
3.鼓励学生与同桌合作,共同解决难点问题。
Step 4 解题讲评(15分钟)1.教师选取几道典型题目进行讲解。
2.鼓励学生上台讲解解题思路和步骤。
3.全班讨论解题过程和答案的准确性。
Step 5 实际问题解决(15分钟)1.提供几个实际问题,要求学生用实数的四则运算解答。
2.鼓励学生分组讨论,并找出问题的关键信息。
3.鼓励学生提出解决问题的方法和步骤。
Step 6 总结讲评(10分钟)1.教师总结实数的运算规则和解题技巧。
2.引导学生总结实数的四则运算步骤。
【教学反思】通过这堂数学复习课,学生对实数的概念和运算规则有了更深入的理解。
同时,学生通过实际问题的解答,提高了解决实际问题的能力。
但是,在学生练习环节,部分学生的注意力稍有不集中,需要教师在课堂上更加精心地引导和激发学生的学习兴趣。
为了更好地提高课程效果,可以在教学中增加一些游戏化的活动,让学生在实际操作中体会实数的运算规律。
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类1.1 实数的定义与性质理解实数的定义:实数是包括有理数和无理数的所有数。
掌握实数的性质:实数具有加法、减法、乘法、除法等运算性质,以及相反数、绝对值等概念。
1.2 实数的分类掌握有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数。
理解无理数:不能表示为两个整数比的数,如π和√2等。
第二章:实数的运算2.1 实数的加减法掌握加减法的运算规则:同号相加减去绝对值,异号相加减去绝对值较大的数。
能够熟练进行实数的加减法运算。
2.2 实数的乘除法掌握乘除法的运算规则:同号相乘除为正,异号相乘除为负。
能够熟练进行实数的乘除法运算。
第三章:实数的倒数与绝对值3.1 实数的倒数理解倒数的概念:一个数的倒数是1除以该数。
能够求出一个实数的倒数。
3.2 实数的绝对值理解绝对值的概念:一个数的绝对值是该数到原点的距离。
能够求出一个实数的绝对值。
第四章:实数的大小比较4.1 实数的大小比较法则掌握实数的大小比较法则:正实数大于负实数,负实数大于正实数,两个正实数比较大小按数值大小比较。
能够判断两个实数的大小关系。
4.2 实数的排序理解实数排序的方法:按数值大小进行排序。
能够对给定的实数进行排序。
第五章:实数的应用5.1 实数在几何中的应用理解实数在几何中的应用:坐标系中点的坐标表示。
能够利用实数表示几何图形中的点、线、面等。
5.2 实数在生活中的应用理解实数在生活中中的应用:长度、面积、体积等量的表示。
能够运用实数解决实际问题。
第六章:实数的乘方与开方6.1 实数的乘方理解乘方的概念:一个数的乘方是该数自乘的结果。
能够计算实数的乘方。
6.2 实数的开方理解开方的概念:一个数的开方是该数的平方根。
能够计算实数的开方。
第七章:实数与代数式的运算7.1 实数与代数式的加减法掌握实数与代数式加减法的运算规则:同类项相加减,不同类项不能直接相加减。
能够熟练进行实数与代数式的加减法运算。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
中考数学第一章《实数的有关概念》复习教案新人教版【教案】
3. 已知 (x-2) 2+|y-4|+ z 6 =0,求 xyz 的值.
解: 48 点拨:一个数的偶数次方、绝对值,非负数的算术平方根均为非负数, 若几个非负数的和为零,则这几个非负数均为零.
2
4.已知 a 与 b 互为相反数, c 、d 互为倒数, m的绝对值是 2 求 2(a b)3 的值
2(cd) m
5 .近似数 0.030 万精确到 位,有 个有效数字, 用科学记数法表示为
万
二:【经典考题剖析】
1 .在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青
少年宫在学校东 300m处,商场在学校西 200 m 处,医院在学校东 500m处.若将马路
近似地看作一条直线,以学校为原点,向东方向为正方向,用
章节
第一章
课题
实数的有关概念
课型
复习课
教法 讲练结合
教 学 目 标 ( 知 1. 使学生复习巩固有理数、实数的有关概念. 识、能力、教育) 2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对
值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小
4. 画数轴,了解实数与数轴上的点一一对应, 能用数轴 上的点表示实数,
10 、( 1)阅读下面材料:点 A 、B 在数轴上分别表示实数 a,b,A、B 两点之间的距离表 示为 |AB| ,当 A 上两点 中有一点在原点时,不妨设点 A 在原点,如图 1- 2- 4 所 示, |AB|=|BO|=|b|=|a -b| ;当 A、 B 两点都不在原点时,①如图 1- 2- 5 所示, 点 A、 B 都在原点的右边, |AB|=|BO | - |OA|=|b| - |a|=b - a=|a - b| ; ②如图 1- 2- 6 所示,点 A、B 都在原点的左边, |AB|=|BO| -|OA|=|b| -|a|= - b- ( - a)=|a - b| ; ③ 如 图 1 - 2 - 7 所 示 , 点 A 、 B 在 原 点 的 两 边 多 边 ,
《实数》复习课教学设计
小结
引导、总结
由学生小结
五、作业
1、计算:
2、先化简,再求值:
其中
课题:实数(复习)
教学目标:
1、加强对实数的有关概念、性质及其运算规律的理解。
3、能运用实数的运算解决简单的实际问题,提高学生的应用能力。
教学重点:
平方根、算术平方根、立方根概念与性质,二次根式的运算法则。
教学难点:
利用平方根、算术平方根、立方根进行有关计算,化简二次根式,注意平方根与算术平方根的区别
教学过程:
教学步骤
设计意图
教师活动
学生活动
教学媒体和教学形式
一、知识网络
1、实数的分类:
(1)按定义分类
(2)按正、负分类
2、实数的相关概念:
(2)绝对值、相反数、倒数的意义与有理数相同.
(3)实数与数轴上的点是一一对应的.
(4)实数的运算法则、运算律与有理数相同.
让学生对本章所学的知识
提问
回答。
出示知识网络
巩固二次根式
提问
回答。
显示复习内容
二、做一做
1、把下列各数分别填入相应的集合内:
(相邻两个5之间的7的个数逐次加1)
正数集合:__________________________
有理数集合:__________________________
无理数集合:___________________________
3、实数的基本性质、法则
加深理解实数的基本性质、法则
提问
回答。
显示实数的基本性质、法则
4、二次根式
1、二次根式的定义
一般地,形如 的式子叫做二次根式, 叫做被开方数。
初三数学实数复习教案
初三数学实数复习教案【篇一:初中数学复习实数的运算教案】第二课实数的运算知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字。
大纲要求:1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
考查重点:1.2.考查近似数、有效数字、科学计算法;考查实数的运算;实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。
(2)减法a-b=a+(-b)(3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即|a||b|(a,b同号)ab|a|?|b|(a,b异号)0(a或b为零)?(4)除法?a?(b?0)(5)乘方 an?aa?an个ab1b(6)开方如果x2=a且x≥0,那么a=x;如果x3=a,那么a?x 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b=b+a(2)加法结合律 (a+b)+c=a+(b+c)(3)乘法交换律 ab=ba.(4)乘法结合律 (ab)c=a(bc)(5)分配律 a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使运算简便.典型题型与习题一、填空题:2.1.5972精确到百分位的近似数是;我国的国土面积约为9600000平方干米,用科学计数法表示为平方干米。
完整word版中考数学第1讲实数复习教案
课题:第一讲实数教学目标:1.了解有理数、无理数和实数的概念,知道实数与数轴上的点一一对应.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.4.了解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.5.熟练掌握实数的运算,会用各种方法比拟两个实数的大小.教学重点与难点:重点:会运用运算规律,按照规定的运算法那么进行实数的加、减、乘、除、乘方、开方混合运算.难点:掌握数学思想,熟练应用各个知识点解题.课前准备:教师制作多媒体课件.教学过程:一、知识梳理,构建网络(一)知识梳理师:课前请同学们翻阅课本并回忆实数的有关内容,熟记概念、性质等知识点,完成了知识梳理.下面我们比一比看看谁做得最好〔导学稿,提前下发,学生在导学稿中填空.〕处理方式:学生边口答边在导学稿中填空,师生共同回忆矫正.考点一实数的分类1. 统称为实数,一般地实数有两种分类〔如图〕考点二实数的有关概念2.数轴:规定了、、是一一对应.3.相反数:到原点的距离相等且符号不同的两个数称为相反数零的相反数是,a与b互为相反数,那么的直线叫数轴.数轴上的点与,实数a的相反数是;,4.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.___(a0)|a|___(a0)___(a0)5.倒数:假设实数a不为0,那么a的倒数为,假设ab1,那么a与b互为.考点三近似数、有效数字和科学计数法6.科学记数法:将一个数记作a×10n,其中〔1≤||<10,n是整数〕的记数方法叫做科学记a数法.当原数的绝对值≥10时,n为正整数,n等于原数的;当原数的绝对值<1时,n 为负整数,n的绝对值等于原数中左起第一个非零数前零的个数〔含整数位数上的零〕.7.有效数字:一个数从左边第一个的数字起,到右边精确到的数位止,所有的数字都叫这个数的有效数字.8.精确度的形式有两种:〔1〕;〔2〕,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位,用科学记数法表示数的有效数字位数,只看乘号前的局部.考点四平方根、算术平方根、立方根9.假设x2aa(0),那么x叫做a的,记做;正数的平方根有个,它们互为,0的平方根是,负数没有平方根,正数a的正的平方根叫做,记做a,0的算术平方根是0.10.假设x3a,那么x叫做a的,记做;正数的立方根有1个正的立方根,0的立方根是0,负数的立方根是负数.考点五实数的大小比拟11.比拟实数大小的一般方法:(1)数轴比拟法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数.(2)性质比拟法:正数大于;负数小于;正数一切负数;两个负数,绝对值大的数.(3)差值比拟法:设a,b是两个任意实数,那么:a-b>0那么a___b,如a-b<0,那么a<b,如a-b=0,那么a___b.11(4)倒数比拟法:假设a>b,a>0,b>0,那么a b.(5)平方比拟法:∵由a>b>0,可得a b,∴可以把a与b的大小问题转化成比拟a和的大小问题.考点六实数的运算12.有理数的运算定律在实数范围内都适用,其中常用的运算律有________、__________、____________、________、____________.13.在实数范围内进行运算的顺序是先算________、________,再算_________,最后算__________,运算中有括号的,先算 ________,同一级运算从_____到______依次进行.14.写出你熟悉的三种非负数的形式:,假设几个非负数的和为零,那么.处理方式:学生举手答复,畅所欲言,其他同学互相补充、交流、回忆实数的相关知识点,教师到学生中巡视指导,关注每位学生,在巡查中发现学生的问题,进行“第二次备课〞.设计意图:实数的知识点较多,如果用课堂时间来看书梳理很占用时间,因此自主复习放在课前,从而培养学生自主学习的习惯,通过“导学稿〞形式让学生在填空的过程中回忆实数的相关知识,如有遗忘,借用课本或同学间交流进行补充.这样做既可以节省课上时间,也能为知识网络图的理解作准备.(二)构建网络师:本节课我们将再次走进实数的世界,进一步复习探究其中蕴含的数学思想及方法.通过前面知识梳理,相信同学们对本节的知识结构已胸有成竹,请同学们结合以下知识网络图对实数的有关内容进行简要回忆.处理方式:〔多媒体展示课件〕学生举手答复,畅所欲言,其他同学互相讨论补充.在学生充分交流后,教师出示知识结构.设计意图:本环节在学生充分思考、交流的根底上出示本讲的知识结构网络,理清各板块内容间的联系,让学生对本讲知识有一个系统完整的了解.二、范例导航、方法指导考点一实数的分类例138,,-π,25,1(2021安顺)以下各数:,无理数的个数7有()A.1个B.2个C.3个D.4个解析:无理数是无限不循环的小数,其中的无理数有:,-π,应选B.方法总结:对数的判断不能从形式上判断是有理数还是无理数,应先把它们化简后从结果上作判断,再根据无理数的四种类型:①开方开不尽的数,②某些三角函数值,③含有π的数,(4)特殊结构数来判断即可.跟踪练习:1.(20211)合肥)实数π,,0,-1中,无理数是(51A.πB.5C.0D.-12.(2021安庆)以下各数中,为负数的是()1A.0B.-2C.1D.2考点二实数的有关概念例2〔1〕〔2021珠海〕﹣的相反数是.〔2〕〔2021广西玉林市〕3的倒数是.〔3〕〔〔2021四川成都〕计算:|﹣|=.〔4〕〔2021呼和浩特〕实数a,b,c在数轴上对应的点如下图,那么以下式子中正确的选项是〔〕A.ac >bcB.|a﹣|=﹣C.﹣a<﹣b<cD.﹣a﹣>﹣﹣b abc bc解析:〔1〕根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.〔2〕根据倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.3的倒数是.〔3〕根据负数的绝对值等于它的相反数.解:|﹣|=.〔4〕先根据各点在数轴上的位置比拟出其大小,再对各选项进行分析即可.解:∵由图可知,a<b<0<c,∴A、ac<bc,故本选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故本选项错误;C、∵a<b<0,∴﹣a>﹣b,故本选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故本选项正确.应选D.方法总结:解决本类题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数〞的内涵.实数与数轴问题,熟知数轴上各点与实数是一一对应关系是解答此类题的关键.跟踪练习:3.(2021年黑龙江绥化)-2021是2021的()A.相反数B.倒数C.绝对值D.算术平方根4.〔2021湖北荆门〕假设〔〕×〔﹣2〕=1,那么括号内填一个实数应该是〔〕A.B.2C.﹣2D.﹣5.(2021蚌埠)在如下图的数轴上,点B 与点C关于点A对称,、B两点对应的实数分别是A3和-1,那么点C所对应的实数是( )A.1+3B.2+3C.23-1D.23+1考点三近似数、有效数字和科学计数法例3〔2021湖南衡阳〕环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的?环境空气质量标准?中增加了PM检测指标,“PM〞是指大气中危害健康的直径小于或等于微米的颗粒物,微米即米.用科学记数法表示为〔〕A.×10﹣5B.×105C×10﹣6D.×106解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:×10﹣6;应选:C.方法总结:科学记数法一般表示的数较大或很小,所以解题时一定要仔细,确定n的值时,把大数的总位数减1即为n的值,较小的数表示时就数第1个有效数字前所有“0〞的个数(含小数点前的那个“0〞)即为n的值.此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.跟踪练习:6.近似数万精确到____位.7.〔2021广西玉林市〕将×10﹣3化为小数的是〔〕A.B.C.D.8.(2021芜湖)餐桌上的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克.×1011千克D考点四平方根、算术平方根、立方根例4(1)〔2021年江苏南京〕8的平方根是〔〕A.4B.±4C.2D.〔2〕〔2021山东威海〕假设a3=8,那么a的绝对值是.解析:〔1〕直接根据平方根的定义进行解答即可解决问题.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.解:∵,∴8的平方根是.应选D.〔2〕运用开立方的方法求解,关键是确定符号.解:∵a3=8,∴a=2.方法总结:1.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a具有双重非负性:①被开方数a是非负数,即≥0;②算术平方根本身是非负数,即≥0.3.(3)3=,33=.a a a a a a a跟踪练习:9.(2021陕西)4的算术平方根是〔〕A.﹣2B.2C.±2D.16考点五实数的大小比拟例5〔1〕〔2021益阳〕四个实数﹣2,0,﹣,1中,最大的实数是〔〕A.﹣2B.0C.﹣D.1(2)(2021河北)a,b是两个连续整数,假设a<7<b,那么a,b分别是()A.2,3B.3,2C.3,4D.6,8解析:〔1〕根据正数大于0,0大于负数,正数大于负数,比拟即可.解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.应选D..〔2〕479,所以a=2,b=3方法总结:此题考查了实数大小比拟,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.实数的各种比拟方法,要明确应用条件及适用范围.跟踪练习:10.〔2021年江苏南京〕以下无理数中,在﹣2与1之间的是〔〕A.﹣B.﹣C.D.11.〔2021新疆〕规定用符号[x]表示一个实数的整数局部,例如[3.69]=3.[]=1,按此规定,[﹣1]=.考点六实数的运算例6〔2021湖北黄石〕计算:|﹣5|+2cos30°+〔〕﹣1+〔9﹣〕0+.解析:先分别算出每一项的值,然后根据实数的运算法那么求得计算结果.解:原式=5323312=11.2方法总结:实数运算的考查是中考的必考知识,此类题中常常结合绝对值、零指数、负指数、特殊角的三角函数值、无理数的化简等概念,牢记这些概念是解决这类问题的关键.解题时还应注意运算顺序以及运算技巧. 跟踪练习:112.〔2021浙江金华〕计算:84cos45012213.(2021东营)计算:(-1)2021+(sin 30°)-1+(3 )0-|3-18|+83×(-0.125) 3.5-2考点七实数非负性质的应用例7〔2021河北〕假设实数m ,n 满足|m ﹣2|+〔n ﹣2﹣10.2021〕=0,那么m +n =解析:根据绝对值与平方的和为0,可得绝对值与平方同时为 0,根据负整指数幂、非 0的0次幂,可得答案.解:|m ﹣2|+〔n ﹣2021〕2=0,m ﹣2=0,n ﹣2021=0,m =2,n =2021.﹣10﹣1.m +n =2+2021=+1=,故答案为:方法总结:中考中对于非负数考查也比拟多,这就需要学生掌握非负数的性质及几 4种形式.常见的非负数的形式有三种:|a |,a (a ≥0),a 2,假设它们的和为零,那么每一个式子都为 0.跟踪练习:14.〔2021四川泸州〕实数x 、 y 满足+| y+3|=0,那么+的值为〔 〕xyA .-2B .2C .4D .﹣4处理方式:以上例题及练习都是根底知识和根本技能的再现,学生自主完成练习,教师各小组巡视.完成后先由学生相互补充、交流、评价.教师适时进行有针对性的提问并指导学生总结归纳知识点和方法,反应矫正,做到查缺补漏.例6让两名学生主动到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.设计意图:本环节设计七个有代表性的关于实数的典型考题,让学生在练习的过程中体会每种类型题解题的关键.同时学生通过练习,自查补漏,发现问题及时解决.在解决问题的过程中掌握方法、学会学习. 三、回忆反思,提炼升华通过本节课的复习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的 习惯,培养自我反应,自主开展的意识.同时在与同学交流的过程中,增强与他人合作的意识 .四、达标测试,反应提高1.(2021 年山东东营)的平方根是〔 〕 A .±3B .3C.±9D .92.〔2021 德州〕以下计算正确的选项是〔〕2B .=3﹣3A .﹣〔﹣3〕=9C .﹣〔﹣2〕=1D .|﹣3|=3.〔2021山东潍坊〕以下实数中是无理数的是 ( )A.22B.2-2C.D.sin4574.(2021南北.据统计,年广东深圳)支付宝与“快的打车〞联合推出优惠,“快的打车〞一夜之间红遍大江2021年“快的打车〞账户流水总金额到达亿元亿用科学记数法表示为()A.×108B.×109C.×1010D.×10115.〔2021湖北宜昌〕如图,M,N两点在数轴上表示的数分别是m,n,以下式子中成立的是〔〕A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n6.〔2021山东临沂〕一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加〞.定义:集合A与集合B中的所有元素组成的集合称为集合1,5,7},B={﹣3,0,1,3,5},那么A+B=A与集合B的和,记为A+B.假设A={﹣2,0,7.(2021年广东深圳)计算:12-2tan60°+(2021-1)0-13-1处理方式:学生用6分钟独立完成,然后反应矫正.对于出错较多的题目重点讲解.设计意图:限时训练,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解决问题的能力.每一道小题都各有目的,从不同的侧面考查了这节的知识点,从而到达熟练应用知识的目的.五、布置作业,课堂延伸必做题:完成复习指导丛书第4页到7页内容.选做题:1.(2021年四川达州)?庄子·天下篇?中写道:“一尺之棰,日取其半,万世不竭〞意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1111由图易得:2+22+23++2n=________.2.〔2021甘肃兰州〕为了求1+2+22+23++2100的值,可令S=1+2+22+23++2100,那么23410110110123100101 2S=2+2+2+2++2,因此2S﹣S=2﹣1,所以S=2﹣1,即1+2+2+2++2=2﹣1,仿照以上推理计算1+3+32+33++32021的值是.板书设计:第一讲实数1.知识梳理考点一:实数的分类考点二:实数的有关概念2.范例导航考点三:科学记数法与近似数、有效数字考点四:平方根、算术平方根、立方根考点五:实数的大小比拟考点六:实数的运算考点七:实数非负性质的应用学生活动区投影区。
初中中考复习实数教案
初中中考复习实数教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数、无理数和实数之间的关系;(2)掌握实数的性质,如相反数、倒数、绝对值等;(3)了解平方根、算术平方根、立方根的概念及求法;(4)学会运用科学记数法表示较大的数,并能进行相关计算。
2. 过程与方法:(1)通过数轴理解实数与数轴上的点一一对应的关系;(2)运用实数的性质解决实际问题;(3)运用平方根、算术平方根、立方根解决相关问题。
3. 情感态度价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力,培养学生的团队协作精神。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数;(2)无理数:不能表示为两个整数比的数,如π、√2等;(3)实数:包括有理数和无理数,是数的全体。
2. 实数的性质(1)相反数:一个数与它的相反数相加等于0;(2)倒数:一个数与它的倒数相乘等于1;(3)绝对值:一个数的绝对值表示它在数轴上的距离,总是非负的。
3. 平方根、算术平方根、立方根(1)平方根:一个数的平方根是另一个数的平方等于这个数的正数;(2)算术平方根:一个非负数的算术平方根是它的非负平方根;(3)立方根:一个数的立方根是另一个数的立方等于这个数的正数。
4. 科学记数法(1)科学记数法的表示形式:a×10^n,其中1≤|a|<10,n为整数;(2)科学记数法的转换:将一个数转换为科学记数法,就是将小数点移动到第一个非零数字的右边,并记录小数点移动的位数作为指数n。
三、教学过程1. 导入:复习实数的定义及分类,引导学生回顾实数之间的关系。
2. 新课导入:(1)实数的性质:相反数、倒数、绝对值;(2)平方根、算术平方根、立方根的概念及求法;(3)科学记数法的表示方法及转换。
3. 实例讲解:(1)运用实数的性质解决实际问题;(2)运用平方根、算术平方根、立方根解决相关问题;(3)运用科学记数法表示较大的数,并进行相关计算。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。
2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。
二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。
三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。
2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。
五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。
六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。
2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心 爱心 专心 1
A · · · O
B 初三复习教案(01)
课 题:实数(1)
教学目标:使学生掌握实数的分类,绝对值的意义,非负数的意义。
教学重点:分类、绝对值。
教学难点:绝对值。
教学过程:
一、 复习:
1、实数分类:方法(1)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数零正整数整数有理数实数,方法(2)⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数零正无理数正分数
正整数正有理数正实数实数 注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数 例1判断:
(1) 两有理数的和、差、积、商是有理数;
(2) 有理数与无理数的积是无理数;
(3) 有理数与无理数的和、差是无理数;
(4) 小数都是有理数;
(5) 零是整数,是有理数,是实数,是自然数;
(6) 任何数的平方是正数;
(7) 实数与数轴上的点一一对应;
(8) 两无理数的和是无理数。
例2 下列各数中:
-1,0,169,2π,1.1010016.0, ,12-, 45cos ,- 60cos ,7
22,2,π-722.
有理数集合{ …}; 正数集合{ …};
整数集合{ …}; 自然数集合{ …};
分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};
2、绝对值:a =⎪⎩⎪⎨⎧<-=>)0()0(0)
0(a a a a a
(1) 有条件化简
例3、①当1<a<2时,化简332)3()2(1-+---a a a ;
②a ,b ,c 为三角形三边,化简2)((c b a c b a --+-+;
用心 爱心 专心 2 ③如图,化简2)(b a b a --++b a +。
(2) 无条件化简
例4、化简32-++m m
解:步骤①找零点;②分段;③讨论。
例5、①已知实数abc 在数轴上的位置如图,化简|a+b|-|c-b|的结果为
②当-3<a <-1时,化简:|a+1|-|3-2a|-|3+a|
例6、阅读下面材料并完成填空
你能比较两个数20042005和20052004的大小吗?为了解决这个问题先把问题一般化,既
比较n n+1和(n+1)n 的大小(的整数),然后从分析=1,=2,=3,。
这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。
(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填“>、=、<”
号”)
①12 21 ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76
⑦78 87
(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n 的大小关系是
(3)根据上面的归纳结果猜想得到的一般结论是: 20042005 20052004
练习:(1)若a<-6,化简2)3(3a +-;(2)若a<0,化简a a -;
(3)若=-=x x x
则,1 ;(4)若x x x 则,>= ;
(5)解方程222332x x x x -+=--;(6)化简:x x x -++--3112。
二、 小 结:
三、作 业:
四、教后感:
c a 0 b。