工程电磁场上机实验

合集下载

工程电磁场实验2

工程电磁场实验2
㈠ 测量线结构及其调谐
• 根据传输线的不同 , 测量线的形式亦有不同 , 常用的有同轴型和波导型 , 一般包括:
• 开槽线、探针耦合指示机构、机械传动及 位置移动装置三部份。
• TC26 波导测量线:
• 1. 开槽线 : 在矩形波导的宽边( 上 面 )正中平行于波导( 或同轴线 )的 轴线开一条窄缝,由于很少切割电 流 , 因而开槽对波导内的场分布影 响很小,槽长有几个半波长 , 以
• 晶体检波器输出引线应该远离电源和输入线路, 以免干扰。如果系统连接不当,将会影响测量 精度,产生误差。
• 系统调整主要指测量线的调整以及晶体检波器 的校准。
BD-20A 型波导元件(FB-100:22.86×10.16)
成套产品包括:
单位 数量
E-H 阻抗调配器

1
定向耦合器

1
可变衰减器(附衰
测试方法
• 在TC26上连接短路板,使系统处于全反射状态。 • 找出一个波节点(将YS3892的“放大选择”逐
步调至50dB或60dB处,例如:113.5mm);使 节下点刻特度征值相,当再明移显动T,C2该6波探节针点座的找读出数另为一D个m波in1节记 点即D先m调in2至(3此0或时4可0d关B小,Y以S3便89寻2“找放另大一选个择波”节开点关, 再刻放度大值至(5例0如dB:处1找35出.9Dmmmin2))。同样在标尺上读出 • D理m确in2认-为Dm半in1波为长二。个波节点的距离长度,根据原
• 探针插入愈深,影响亦愈大。
• 要减少或消除这些影响 , 就要减小探针的穿 伸度和正确调谐探头的谐振腔 。
• 但穿伸度的减小必然会影响输出指示的灵敏 度,因而必须适当地调整。
• 一般是旋到底后退出 2 圈半为源自。• 探头的调谐是十分重要的,既可以消除电纳 B 的影响,又可以提高测试灵敏度,调谐方 法为:

南京理工大学工程电磁场实验报告

南京理工大学工程电磁场实验报告

11
} } /*讨论收敛因子不同取值的计算次数情况*/ for(p=1.10;p<2.0;p+=0.01) { for(i=0;i<41;i++) {u[0][i]=100;u[40][i]=0;} /*定义初值*/ for(i=1;i<40;i++) {u[i][0]=u[i][40]=0;} for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][j]=2.5*(j-1); num=fun(u,p);if(min>num) {min=num;q=p;} }printf("\n 最佳收敛因子为:p=%f",q); printf("\n 此时运行次数为: num=%d\n",min); printf("\n 当收敛因子为%f 的时候,输出结果为:", q); for(i=0;i<41;i++) {u[0][i]=100;u[40][i]=0;} /*定义初值*/ for(i=1;i<40;i++) {u[i][0]=u[i][40]=0;} for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][j]=2.5*(j-1); num=fun(u,q); for(i=1;i<40;i++) for(j=1;j<21;j++) u[i][40-j]=u[i][j]; for(i=0;i<41;i++) {printf("\n"); for(j=0;j<41;j++) printf("%12.6f",u[i][j]);} system("pause"); return 0; }

工程电磁场实训报告总结

工程电磁场实训报告总结

一、引言电磁场是现代工程领域中不可或缺的一部分,涉及通信、电子、电力、医疗等多个领域。

为了加深对电磁场理论知识的理解,提高实际操作能力,我们参加了为期两周的工程电磁场实训。

通过本次实训,我们不仅巩固了电磁场的基本理论,还学会了如何运用这些理论解决实际问题。

以下是本次实训的总结报告。

二、实训内容1. 电磁场基本理论实训首先对电磁场的基本理论进行了回顾,包括麦克斯韦方程组、电磁波、电磁场能量等。

通过理论学习,我们深入了解了电磁场的基本性质和规律。

2. 电磁场模拟软件的使用实训过程中,我们学习了电磁场模拟软件的使用方法。

以Ansys Maxwell为例,我们学会了如何建立模型、设置边界条件和求解电磁场问题。

通过实际操作,我们掌握了软件在工程中的应用。

3. 电磁场仿真实验在仿真实验环节,我们针对实际工程问题进行了电磁场仿真。

例如,我们模拟了天线辐射、传输线特性、电磁屏蔽等场景,分析了电磁场参数对实际工程的影响。

4. 电磁场测量实验实训还安排了电磁场测量实验,包括电磁场强度测量、电磁波传播特性测量等。

通过实验,我们掌握了电磁场测量仪器的使用方法,了解了电磁场参数的测量方法。

三、实训收获1. 理论知识得到巩固通过本次实训,我们对电磁场基本理论有了更深入的理解,为今后在相关领域的学习和工作打下了坚实的基础。

2. 实际操作能力得到提高实训过程中,我们学会了使用电磁场模拟软件和测量仪器,提高了实际操作能力。

这些技能将有助于我们在今后的工作中解决实际问题。

3. 团队协作能力得到锻炼实训过程中,我们分组进行实验和仿真,培养了团队协作精神。

在遇到问题时,我们共同讨论、解决问题,提高了团队协作能力。

4. 创新意识得到培养在实训过程中,我们针对实际问题进行仿真和实验,培养了创新意识。

通过不断尝试和改进,我们找到了更优的解决方案。

四、不足与反思1. 理论与实践结合不够紧密在实训过程中,我们发现部分理论知识在实际操作中应用不够灵活。

工程电磁场实验报告上交版

工程电磁场实验报告上交版

实验报告——叠片钢涡流损耗分析实验目的:1)认识钢的涡流效应的损耗, 以及减少涡流的方法;2)学习涡流损耗的计算方法;3)学习用MAXWELL SV计算叠片钢的涡流。

实验内容:作用在磁钢表面的外磁场Hz=397.77A/m, 即Bz=1T, 要求理论分析与计算机仿真:叠片钢的模型为四片钢片叠加而成, 每一片界面的长和宽分别是12.7mm和0.356mm, 两片之间的距离为8.12um, 叠片钢的电导率为2.08e6S/m, 相对磁导率为2000, 建立相应几何模型, 并指定材料属性, 制定边界条件。

分析不同频率下的涡流损耗。

实验简介:在交流变压器和驱动器中, 叠片钢的功率损耗很重要。

大多数扼流圈和电机通常使用叠片, 以减少涡流损耗, 但是这种损耗仍然很大, 特别是在高频的情况下, 交变设备中由脉宽调制波形所产生的涡流损耗不仅降低了设备的整体性能, 也产生了热。

设计工程师通常采用两种方法预测叠片钢的损耗:使用叠片钢厂商提供的铁耗随频率的变化曲线, 但是往往很难得到这样的曲线;使用简单的计算公式, 公式中的涡流损耗是叠片厚度的函数, 但是这样的公式往往仅在频率为60Hz或更低的频率情况下才是正确的。

而大多数交变电磁设备, 所使用的频率可达千赫兹或兆赫兹, 因此需要用其它的方法预测涡流损耗。

在非常高的频率下, 涡流损耗远大于磁滞损耗, 铁损几乎完全是由涡流引起的。

涡流损耗可以使用有限元法通过数值计算获得。

本实验就采用轴向磁场涡流求解器来计算不同频率下的涡流损耗。

实验步骤:根据实验内容分析建立实验模型, 由于四片叠片钢关于XY轴具有对称性, 故可以只计算第一象限。

定义模型的长宽及两片之间距离, 电导率, 相对磁导率以及外磁场场强之后就可以进行仿真。

通过生成几何模型, 制定材料属性, 指定边界条件和源, 设定求解参数选项极乐进行数据的统计了。

数值计算结果:图一Hz=1Hz时叠片钢的磁场分布图二Hz=60Hz时叠片钢的磁场分布图三Hz=360Hz时叠片钢的磁场分布图四Hz=1kHz时叠片钢的磁场分布图五Hz=2kHz时叠片钢的磁场分布图六Hz=5kHz时叠片钢的磁场分布图七Hz=10kHz时叠片钢的磁场分布1.数值结果与低频损耗计算公式的比较低频涡流损耗的计算公式为P=t2ω2B2σ2/24 V式中, V为叠片体积;t为叠片厚度;B为峰值磁通密度;δ为叠片电导率;ω为外加磁场角频率。

工程电磁场实验报告

工程电磁场实验报告

一、实验目的a)认识钢的涡流效应的损耗,以及减少涡流的方法;b)学习涡流损耗的计算方法;c)学习用MAXWELL 2D计算叠片钢的涡流。

二、软件环境的使用简介及实验步骤以螺线管电磁阀静磁场分析为例,练习在MAXWELL 2D环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。

a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目与运行MAXWELL 2D。

b) 生成螺线管模型:使用MAXWELL 2D求解电磁场问题首先应该选择求解器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几何模型,螺线管的组成包括Core、Bonnet、Coil、Plugnut、Yoke。

c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分元件的材料需要自己生成,根据给定的BH曲线进行定义。

d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil施加电流源。

e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上的作用力,在求解参数中要注意进行设定。

f) 设定求解选项:建立几何模型并设定其材料后,进一步设定求解项,在对话框Setup Solution Options进入求解选项设定对话框,进行设置三、实验的结果及理论分析1.不同频率时的最低的磁通密度B和涡流损耗下图是Hz=1Hz和Hz=1kHZ时叠片钢的磁场分布。

图1 Hz=1Hz时叠片钢的磁场分布图1 Hz=1KHz时叠片钢的磁场分布由MAXWELL 2D软件通过有限元分析得出的不同频率出最低的磁通密度B和涡流损耗,见下表。

表不同频率下的B(T)和PF(Hz)Bmin(T)P(W)1 0.999 1.92947e-660 0.999 6.95679e-3360 0.989 2.44296e-11K 0.915 1.648422K 0.732 4.577485K 0.408 9.5638210K 0.096 1.244e1由表格可以知道:频率越大,B的大小越小,磁集肤现象越明显,涡流损耗p会迅速增大。

工程电磁场实验报告 (1)

工程电磁场实验报告 (1)

工程电磁场导论实验报告姓名:学号:班级:指导教师:实验一 矢量分析一、实验目的1.掌握用matlab 进行矢量运算的方法。

二、基础知识1. 掌握几个基本的矢量运算函数:点积dot(A,B)、叉积cross(A,B)、求模运算norm(A)等。

三、实验内容1. 通过调用函数,完成下面计算给定三个矢量A 、B 和C 如下:23452x y zy zx zA e e eB e eC e e =+-=-+=-求(1)A e ;(2)||A B -;(3)A B ⋅;(4)AB θ ;(5)A 在B 上的投影 ;(6)A C ⨯;(7)()A B C ⋅⨯和()C A B ⋅⨯;(8)()A B C ⨯⨯和()A B C ⨯⨯A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; y1=A/norm(A) y2=norm(A-B) y3=dot(A,B)y4=acos(dot(A,B)/(norm(A)*norm(B))) y5=norm(A)*cos(y4) y6=cross(A,C)y71=dot(A,cross(B,C)) y72=dot(A,cross(B,C)) y81=cross(cross(A,B),C) y82=cross(A,cross(B,C))运行结果为:y1 =0.2673 0.5345 -0.8018 y2 = 7.2801 y3 =-11y4 = 2.3646 y5 =-2.6679y6 = -4 -13 -10 y71 =-42y72 =-42y81 = 2 -40 5 y82 = 55 -44 -11解:(1)[0.2673,0.5345,0.8018]A e =-; (2)||7.2801A B -=; (3)11A B ⋅=-;(4) 2.3646(135.4815)AB θ=; (5) 2.6679-;(6)[4,13,10]A C ⨯=---; (7)()()42A B C C A B ⋅⨯=⋅⨯=-;(8)()[2,40,5]A B C ⨯⨯=-;()[55,44,11]A B C ⨯⨯=--;2. 三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三 角形的面积;(2)与该三角形所在平面垂直的单位矢量。

《工程电磁场实验》课件

《工程电磁场实验》课件
实验数据处理方法需改进
现有的数据处理方法较为繁琐,未来可以尝试采用更高效的数据处 理软件或算法,提高数据处理效率。
实验内容需进一步丰富
目前实验内容相对单一,未来可以增加更多种类的电磁场实验,以 丰富实验内容。
实验拓展与展望
1 2
探索更多应用领域
电磁场实验不仅在工程领域有应用,还可以拓展 到生物医学、环保等领域,未来可以尝试在其他 领域应用电磁场实验。
《工程电磁场实验》 ppt课件
目录
• 实验课程介绍 • 电磁场基本理论 • 实验操作与演示 • 实验数据处理与分析 • 实验总结与思考
01
实验课程介绍
实验课程目标
01
掌握电磁场的基本原理和实验技能
02
培养学生对电磁场现象的观察、分析和解决问题的 能力
03
提高学生的实践能力和创新思维
实验课程内容与安排
描述了磁场在不同介质交界处的行为 ,包括磁场的切向分量和法向分量。
03
实验操作与演示
电场与电通密度实验
总结词
01
了解电场与电通密度之间的关系
实验目的
02
通过测量电场强度和电通密度,探究它们之间的关系,加深对
电场理论的理解。
实验原理
03
利用高斯定理计算电通密度,通过测量电场强度分布来验证电
通密度与电场强度的关系。
电磁场基本实验
包括电场、磁场和电磁波的测量和观察
电磁场应用实验
涉及电磁场在通信、雷达、电子对抗等领域的 应用
综合性实验
结合理论知识和实验技能,进行综合性实验设计和操作
实验课程要求
01 实验前充分准备,了解实验目的、原理和 步骤
02 严格遵守实验室安全规定,注意实验操作 安全

工程电磁场实验报告

工程电磁场实验报告

工程电磁场实验报告【实验名称】:工程电磁场实验报告【实验目的】:1. 学习电磁场的基本概念和理论知识,了解电磁场的产生、传播和作用。

2. 掌握电磁场的测量方法和仪器设备,学会使用电磁场测试仪对不同环境下的电磁场进行测量。

3. 通过实验验证电磁场与周围环境的关系,研究电磁场对人体健康的影响。

【实验原理】:电磁场是由运动电荷所激发出来的一种物理场。

在任何电路中,电子都在自己周围创造了一个细微的电磁场。

当这些电子流动时,它们产生一个磁场,这个磁场又会影响电子的运动,从而形成一个电磁波,这就是我们常见的无线电波。

电磁场可以分为静电场和磁场两种。

静电场是由电荷间的相互作用所产生的电场,具有电势能,可用库仑定律来描述;磁场是由运动电荷所产生的,具有磁通量,可用安培定律来描述。

当电子加速或减速时,会产生辐射场,辐射场也是一种电磁场。

【实验步骤】:1. 准备实验所需的电磁场测试仪器,并对其进行校准和调试。

2. 在室内、室外、地下等不同环境下进行电磁场测量,并记录数据。

3. 将测量结果进行统计和分析,得出电磁场与周围环境的关系。

4. 通过文献资料和相关研究了解电磁场对人体健康的影响,并将实验结果与理论知识相结合,分析电磁场对人体健康的影响因素和防护措施。

【实验结果】:经过多组数据的测量和分析,我们发现电磁场的大小与周围环境有很大的关系。

在室内环境中,电磁场主要来自于电器设备、灯具等电子设备;在室外环境中,电磁场主要来自于手机信号塔、广播电视塔等无线电波源。

此外,在地下建筑物中,电磁场主要来源于电力线路和照明设施。

同时,我们也发现电磁场的大小会对人体健康产生影响。

高强度电磁场会导致头痛、恶心、疲劳等身体不适,长期暴露在电磁场中还可能引起神经系统和免疫系统的损伤。

因此,为了保障人体健康,应该加强对电磁辐射的监测和控制,采取科学有效的防护措施。

【实验结论】:通过本次实验,我们深入了解了电磁场的基本概念和理论知识,掌握了电磁场的测量方法和仪器设备,验证了电磁场与周围环境的关系,并研究了电磁场对人体健康的影响。

工程电磁场实验报告

工程电磁场实验报告

实验一静电场仿真分析(一)矢量运算1、矢量运算函数程序代码:a=[1,2,-3];b=[0,-4,1];c=[5,0,-2];ea=a/norm(a)/////////////////////////////////////norm求模函数t2=norm(a-b)t3=dot(a,b)/////////////////////////////////////dot点积函数theta=acos(dot(a,b)/(norm(a)*norm(b))////////////acos叉积运算theta*180/pit5=norm(a)*cos(theta)t6=cross(a,c)t71=dot(a,cross(b,c))t72=dot(c,cross(a,b))t81=cross(cross(a,b),c)t82=cross(a,cross(b,c))答案:ea =0.2673 0.5345 -0.8018t2 = 7.2801t3 = -11theta = 2.3646ans =135.4815t5 =-2.6679t6 =-4 -13 -10t71 =-42t72 = -42t81 =2 -40 5t82 =55 -44 -112、三角形的面积与垂直矢量程序代码:a=[6,-1,1];b=[-2,3,2];c=[-3,1,5];n=cross(b-a,c-a);s=1/2*norm(n)en=n/norm(n)运算结果:s =16.7705en =0.4174 0.6857 0.5963 3、圆柱坐标下的电场求解程序代码:p=[3,4,2];rou=[p(1),p(2),0];erou=rou/norm(rou);ez=[0,0,1];ephai=cross(ez,erou);a=[4,2,3];arou=dot(a,erou)aphai=dot(a,ephai)az=dot(a,ez)运算结果:arou =4aphai =-2az =3(二)静电场仿真原理:单个点电荷电场强度:E =q/(4πεr2)e r多个点电荷电场强度:E =14πεq ir e ri1、电场强度的计算程序代码与运算结果:2、点电荷在球面上的电场矢量图函数说明:surf(X,Y,Z,0*Z);quiver3(X,Y,Z,X,Y,Z) 程序代码:r=1;i=0;for theta=(0:2:180)*pi/180i=i+1;j=0;for phai=(0:2:360)*pi/180j=j+1;X(i,j)=r*sin(theta)*cos(phai);Y(i,j)=r*sin(theta)*sin(phai);Z(i,j)=r*cos(theta);endendsurf (X,Y,Z,0*Z);hold on;quiver3(X,Y,Z,X,Y,Z); 结果显示:3、电偶极子的等位面和电力线程序代码:g=10;x=-g:g;y=-g:g;[X,Y]=meshgrid(x,y);d=0.5;r1=sqrt(X.^2+(Y-d).^2);r2=sqrt(X.^2+(Y+d).^2);rf=sqrt(X.^2+Y.^2).^3;phai=(r2-r1)./(r2.*r1)*1e4; contour(X,Y,phai,100);hold on[FX,FY]=gradient(phai,1);quiver(X,Y,-FX.*rf,-FY.*rf);结果显示:(三)有限差分法求静电场的电位基础知识:1)静电位的拉普拉斯方程:∇2φ=0,泊松方程::∇2φ=−ρε2)二维拉普拉斯方程的差分格式:φ0=φ1+φ2+φ3+φ44迭代法程序代码:u=[100,100,100,100,100;0,75,75,75,0;0,50,50,50,0;0,25,25,25,0;0,0,0,0,0];v=u;i=2:size(u,1)-1;j=2:size(u,2)-1;for k=1:100000v(i,j)=1/4*(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1));u(i,j)=1/4*(v(i-1,j)+v(i+1,j)+v(i,j-1)+v(i,j+1));err=max(max(abs(u-v)));if err<1e-8 break;end;enduk程序输出结果:u =100.0000 100.0000 100.0000 100.0000 100.00000 42.8571 52.6786 42.8571 00 18.7500 25.0000 18.7500 00 7.1429 9.8214 7.1429 00 0 0 0 0k =31实验二微波发信机系统实验原理图:。

【工程】南京理工大学工程电磁场实验报告

【工程】南京理工大学工程电磁场实验报告
Bmin(T)
P(W)
1
0.9997
1.9605e-006
60
0.9993
7.0578e-003
360
0.9881
2.5408e-001
1k
0.9192
1.9605e+000
2k
0.7585
7.8420e+000
5k
0.4124
4.9012e+001
10k
0.1996
1.9605e+002
经过对比发现在2kHz以下频率,数值结果与低频涡流损耗公式的计算结果吻合的非常好。
}
五、求解结果
六、实验总结
通过工程电磁场这门课的学习,掌握了二维静电场边值问题的分析,但是对有限差分法的掌握还不够深入,所以这次实验还是有点难度的。本次实验,编写C++程序即可,源程序的编写是在参照了许多资料完成的。通过本次实验。对有线差分法和超松弛迭代法有了进一步的了解。
实验二螺线管电磁阀静磁场分析
六、磁通等势线
七、Plugnut的BH曲线
八、实验总结
本次实验练习了在MAXWELL 2D环境下建立磁场模型,并求解分析磁场的分布,深入地认识螺线管静磁场的分布。通过建立磁场模型,熟悉了MAXWELL 2D的使用,整个实验过程比较顺利、完成了实验任务要求的内容,对课程的学习有了很大的帮助作用。
实验三叠片钢涡流损耗分析
2、实验要求
做不同频率下的叠片钢磁场分布图,计算不同频率下的最低磁通密度和涡流
损耗,与理论计算结果进行比较。
二、不同频率下的叠片钢磁场分布图
f=1hz:
f=60hz:
f=360hz:
f=1khz:

工程电磁场实验报告

工程电磁场实验报告

工程电磁场实验报告电磁场实验报告姓名:咳咳学号:201230254咳咳咳咳班级:电气工程学院2012级1班问题:有一极长的方形金属槽,边宽为1米,除顶盖电位为100V外,其他三面的电位均为零,试用差分法求槽内的电位分布。

有限差分法(Finite Differential Method,FDM)是基于差分原理的一种数值计算法。

其基本思想是:将场域离散为许多小网格,用差分代替微分,用差商代替求导,将求解连续函数泊松方程的问题转换为求解网格节点上的差分方程组的问题。

用所求网格的数值解代替整个场域的真实解。

因而数值解即是所求场域的离散点的解。

虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点的数目也愈多,近似解(数值解)也就愈逼近于真实解。

设求解二维静电场边值问题:①网格划分将场域划分为小的网格。

设为正方形网格,边长h。

② 方程离散 将节点上的电位值作为求解变量,把微分方程化为关于的线性代数方程组。

21032202()x h ϕϕϕϕ-+∂≈∂ 22042202()y h ϕϕϕϕ-+∂≈∂ a ) 对内部节点12340024F hϕϕϕϕϕ+++-=b)对边界节点(只考虑节点位于边界上的情况)i fϕ=③ 求解线性代数方程组N 个方程联立成为线性代数方程组求解得到节点上的电位值。

当内点数较少时,可直接用代元消去法或列式法,张弛法等少算;当内点较多时,即内点不是几个,十几个而是成百个,上千个时,手算几乎不可能,这就必须借助计算机进行计算。

求解高阶方程有赛德尔迭代法等方法。

解:对于本例而言,用差分法可直接求得场域中离散点上电位的近似值。

首先对场域进行等距剖分,此处取步长h=0.1米,对于正方形场域则可使用网络格线自边界处起始, 边界节点的电位值(i=0,10;j=0,10)由边界条件给出,其内部节点的电位值(i=1,2,...9;j=1,2,...9)则待求。

由于槽内部电流密度为0所以电位函数所满足的拉普拉斯方程的差分离散格式为j i j i j i j i j i ,1,,11,,14ϕϕϕϕϕ=+++--++)(411,,11,,1,--+++++=j i j i j i j i ji ϕϕϕϕϕ 对于本例的网络剖分,i,j=1,2,3…9,则上式即为待求的内部节点上的电位值所应满足的代数方程组。

工程电磁场实验报告

工程电磁场实验报告

越大。涡流损耗可以通过使用有限元法通过数值计算获得。本实验采 用轴向涡流求解器来计算不同频率下的涡流损耗。 四、实验要求 如图所示,模型由 4 片叠片钢组成,每一片的截面长和宽分别为 12.7mm 和 0.356mm,两片之间的距离为 8.12um,叠片钢的电导率为 2.08e6S/m,相对磁导率为 2000,作用在磁钢表面的外磁场 Hz=397.77A/m,即 Bz=1T。求不同频率下的涡流损耗。 叠片钢模型如图所示:
进行理论计算时,可用以下公式: 1、低频涡流损耗计算公式: P=
t² ω² B² σ 24
V
式中,V 为叠片体积;t 为叠片厚度;B 为峰值磁通密度;σ 为 叠片电导率;ω 为外加磁场角频率。 本实验中,V=12.7*0.001*0.356*0.001*1=4.5212*10-6m3 根据低频数值计算公式,求得不同频率下的理论计算值如表所示: F(Hz) 1 60 360 1k 2k 5k 10k Bmin(T) 1.000 0.999 0.987 0.912 0.743 0.396 0.191 P(W) 1.9605e-6 7.0578e-3 2.5408e-1 1.9605 7.8420 4.9012e1 1.9605e2
比较实验值与理论计算时,分析结果如下: F(HZ) 1 60 360 1K 2K 5K 10K P 实(W) P 理(W) 误差 E 1.58% 1.75% 3.85% 16.34% 41.63% 80.67% 93.64%
1.92947E-006 1.9605e-6 6.93405E-003 7.0578e-3 2.44296E-001 2.5408e-1 1.64331E+000 4.57748E+000 9.47548E+000 1.24500E+001 1.9605 7.8420 4.9012e1 1.9605e2

工程电磁场实验报告

工程电磁场实验报告

工程电磁场仿真实验报告——叠钢片涡流损耗Maxwell 2D仿真分析(实验小组成员:文玉徐晨波葛晨阳郭鹏程栋)Maxwell仿真分析——二维轴向磁场涡流分析源的处理在学习了Ansoft公司开发的软件Maxwell后,对工程电磁场有了进一步的了解,这一软件的应用之广非我们所想象。

本次实验只是利用了其中很小的一部分功能,涡流损耗分析。

通过软件仿真、作图,并与理论值相比较,得出我们需要的实验结果。

在交流变压器和驱动器中,叠片钢的功率损耗非常重。

大多数扼流线圈通常使用叠片,以减少涡流损耗,但这种损耗仍然很大。

特别是在高频情况下,交变设备由脉宽调制波形所产生的涡流损耗不仅降低了设备的整体性能,也产生了热,因此做这方面的分析十分有必要。

一、实验目的1)认识钢的涡流效应的损耗,以及减少涡流的方法;2)学习涡流损耗的计算方法;3)学习用MAXWELL 2D计算叠片钢的涡流。

二、实验模型实验模型是4片叠钢片组成,每一篇截面的长和宽分别是12.7mm和0.356mm,两片中间的距离为8.12um,叠片钢的电导率为2.08e6 S/m,相对磁导率为2000,作用在磁钢表面的外磁场H z=397.77A/m,即B z=1T。

考虑到模型对X,Y轴具有对称性,可以只计算第一象限的模型。

三、实验步骤一.单个钢片的涡流损耗分析1、建立模型,因为是单个钢片的涡流分析,故位置无所谓,就放在中间,然后设置边界为397.77A/m,然后设置频率,进行求解。

2、进行数据处理,算出理论值,并进行比较。

二、叠钢片涡流损耗分析1、依照模型建立起第一象限的模型,将模型的原点与坐标轴的原点重合,这样做起来比较方便。

设置钢片的材质,使之符合实际要求。

然后设置边界条件和源,本实验的源为一恒定磁场,分别制定在上界和右边界,然后考虑到对偶性,将左边界和下界设置为对偶。

然后设置求解参数,因为本实验是要进行不同的频率下,涡流损耗的分析,所以设定好Frequency后,进行求解。

工程电磁场实验指导书 (1)

工程电磁场实验指导书 (1)

《工程电磁场》实验指导书电气与电子工程学院电子信息教研室刘子英编2010年9月目录实验一:球形载流线圈的场分布与自感 (1)实验二:磁悬浮 (7)实验三:静电除尘 (10)实验四:电磁场Matlab编程 (12)实验五:工程电磁场应用仿真 0实验一:球形载流线圈的场分布与自感一、实验目的1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法;3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应高斯计的应用。

二、实验原理(1)球形载流线圈(磁通球)的磁场分析如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。

显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有()i dz R N i Rd W ⎪⎭⎫⎝⎛='2θ因在球面上,θcos R z =,所以()d d cos sin d z R R θθθ==代入上式,可知对应于球面上线匝密度分布W ′,应有θθθθsin 2sin 2RN Rd d R R N W =⋅='即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。

因此,本实验模拟的在球表面上等效的面电流密度K 的分布为sin Ni 2RK e φθ=⋅⋅ 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。

因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位ϕm 为待求场量,列出待求的边值问题如下:上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for(int i=0; i<=ROW-1; i++) {
cout<<"Row"<<i<<":"<<endl; for(int j=0,k=1; j<=COL-1; j++,k++) {
//printf("%lf", phi[i][j]); //printf(" "); cout<<setw(10)<<setiosflags(ios::fixed)<<setprecision(4)<<phi[i][j]<<" "; if(k%5==0)
}
void Copy(double phi[ROW][COL], double phi2[ROW][COL]) {
for(int i=0; i<=ROW-1; i++) {
for(int j=0; j<=COL-1; j++) {
phi2[i][j]=phi[i][j]; } } }
int Check(double phi[ROW][COL], double phi2[ROW][COL]) {
} } num++; }while(Check(phi, phi2)==1);
Print(phi); cout<<"迭代次数:"<<num;
cout<<endl<<endl<<"phi[10][20]="<<phi[10][20]<<endl<<"phi[11][21]="<<phi[11][ 21]<<endl;
int num=0; do{
Copy(phi, phi2); for(int i=1; i<ROW-1; i++) { for(int j=1; j<COL-1; j++) { phi[i][j]=phi[i][j]+(phi[i+1][j]+phi[i][j+1]+phi[i-1][j]+phi[i][j-1ain(void) {
double a=1.0; double phi[ROW][COL]; double phi2[ROW][COL]; Init(phi); Copy(phi, phi2);
cout<<endl<<"请输入加速收敛因子 a(输入 a=0 时退出):"<<endl; cin>>a; while(a!=0) {
cout<<endl<<"请输入加速收敛因子 a(输入 a=0 时退出):"<<endl; cin>>a; Init(phi); Copy(phi, phi2); }
return 0; }
void Init(double phi[ROW][COL]) {
for(int i=0; i<=ROW-1; i++) {
int f=0; for(int i=0; i<=ROW-1; i++) {
for(int j=0; j<=COL-1; j++)
{ if(abs(phi[i][j]-phi2[i][j])>ERROR) { f=1; return f; }
} } return f; }
void Print(double phi[ROW][COL]) {
cout<<endl; } //printf("\n"); cout<<endl; } //printf("\n"); cout<<endl; }
实验结果:
for(int j=0; j<=COL-1; j++) {
phi[i][j]=0; } } for(int i=0; i<=ROW-1; i++) { phi[i][0]=0; phi[i][COL-1]=0; } for(int i=0; i<=COL-1; i++) { phi[0][i]=0; phi[ROW-1][i]=100; }
using namespace std;
#define COL 41 #define ROW 21 #define ERROR 0.001
void Init(double phi[ROW][COL]); void Copy(double phi[ROW][COL], double phi2[ROW][COL]); int Check(double phi[ROW][COL], double phi2[ROW][COL]); void Print(double phi[ROW][COL]);
工程电磁场上机实验
题目:设有一金属矩形槽,其边长分别为 a=40,b=20,其侧壁与底面电位均为
零,顶盖电位为 100V,如下图所示,试编程求槽内电位分布。
y
b
100V
GND1
ax
图 1 金属矩形槽及其电位分布
解:利用有限元法,用 C++语言编程。 C++代码: #include <iostream> #include <cmath> #include <iomanip> //#include <fstream> //#include <stdbool.h>
相关文档
最新文档