数字信号处理习题课1-66页文档

合集下载

(完整word版)《数字信号处理》复习习题

(完整word版)《数字信号处理》复习习题

《数字信号处理》复习思考题、习题(一)一、选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 。

A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.一个理想采样系统,采样频率Ωs =10π,采样后经低通G(j Ω)还原,⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ5 05 51)(j G ;设输入信号:t t x π6cos )(=,则它的输出信号y(t)为: 。

A .t t y π6cos )(=; B. t t y π4cos )(=;C .t t t y ππ4cos 6cos )(+=; D. 无法确定。

3.一个理想采样系统,采样频率Ωs =8π,采样后经低通G(j Ω)还原,G j ()ΩΩΩ=<≥⎧⎨⎩14404 ππ;现有两输入信号:x t t 12()cos =π,x t t 27()cos =π,则它们相应的输出信号y 1(t)和y 2(t): 。

A .y 1(t)和y 2(t)都有失真; B. y 1(t)有失真,y 2(t)无失真;C .y 1(t)和y 2(t)都无失真; D. y 1(t)无失真,y 2(t)有失真。

4.凡是满足叠加原理的系统称为线性系统,亦即: 。

A. 系统的输出信号是输入信号的线性叠加B. 若输入信号可以分解为若干子信号的线性叠加,则系统的输出信号是这些子信号的系统输出信号的线性叠加。

C. 若输入信号是若干子信号的复合,则系统的输出信号是这些子信号的系统输出信号的复合。

D. 系统可以分解成若干个子系统,则系统的输出信号是这些子系统的输出信号的线性叠加。

5.时不变系统的运算关系T[·]在整个运算过程中不随时间变化,亦即 。

A. 无论输入信号如何,系统的输出信号不随时间变化B. 无论信号何时输入,系统的输出信号都是完全一样的C. 若输入信号延时一段时间输入,系统的输出信号除了有相应一段时间延时外完全相同。

数字信号处理课后习题答案完整版

数字信号处理课后习题答案完整版

数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

《数字信号处理》课后答案

《数字信号处理》课后答案

数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

2. 给定信号:
2n+5
-4≤n≤-1
(x(n)=
6
0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列;
第 1 章 时域离散信号和时域离散系统
(3) 令x1(n)=2x(n-2), 试画出x1(n)波形; (4) 令x2(n)=2x(n+2), 试画出x2(n)波形; (5) 令x3(n)=x(2-n), 试画出x3(n)波形。 解: (1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
, 这是2π有理1数4, 因此是周期序
3
(2) 因为ω=
,
所以
1
8
=16π, 这是无理数, 因此是非周期序列。

第 1 章 时域离散信号和时域离散系统
4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形;

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
(2) 令输入为
x(n-n0) 输出为
时域离散信号和时域离散系统
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
m


第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
第 1 章
(4) y(n)=x(-n)
令输入为 x(n-n0) 输出为 y′(n)=x(-n+n0)
时域离散信号和时域离散系统
y(n-n0)=x(-n+n0)=y′(n) 因此系统是线性系统。 由于
T[ax1(n)+bx2(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)] 因此系统是非时变系统。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15}2。

①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列.③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3。

加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n )波形,画出x(-n)的波形图。

②尺度变换:已知x (n )波形,画出x(2n)及x (n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理--数字信号习题1

数字信号处理--数字信号习题1

N4 N0 N2
N5 N1 N3
202
x(n)
0 N0 N1 h(n m)
n0
N1 N00
m
h(n m)
n
0 N2 N3
n
h(n m)
n N0 N2
0 N2
m
0 n N0 m h(n m)
0
2020/7/14
n N1
h(n m) n N1 N3
yn 1 yn 1 xn 1 xn 1
2
2
令x n n
则y n h n 1 h n 1 x n 1 x n 1
2
2
2020/7/14
课件
23
h 0 1 h 1 x 0 1 x 1 1
2
2
h 1 1 h 0 x 1 1 x 0 1 11 1
2
2
2
h 2 1 h 1 x 2 1 x 1 1
k n0
k n0
满足叠加原理
是线性系统
n
令k' k m nm
T x n m x k m
x k'
k n0
k ' n0 m
nm
y n m x k T x n m k n0
是移变系统
2020/7/14
课件
13
n
T x n x k k n0
当 n n0 时,输出只取决于当前输入和以前 的输入
是因果系统
若 x n M 则 exn e xn eM
是稳定系统
2020/7/14
课件
16
1-8 以下序列是系统的单位抽样响应 hn ,
试说明系统是否是(1)因果的(2)稳定的
(3) 3n u n

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

最后结果为 0
n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5) y(n)的波形如题8解图(二)所示
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
因此系统是非时变系统。
第 1 章 时域离散信号和时域离散系统
(5) y(n)=x2(n)
令输入为
输出为
x(n-n0)
y′(n)=x2(n-n0) y(n-n0)=x2(n-n0)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n) =ax21(n)+bx22(n)
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)

数字信号处理》第三版课后习题答案

数字信号处理》第三版课后习题答案

数字信号处理课后答案教材第一章习题解答1.用单位脉冲序列()nδ及其加权和表示题1图所示的序列。

解:2.给定信号:25,41 ()6,040,n nx n n+-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n序列;(3)令1()2(2)x n x n=-,试画出1()x n波形;(4)令2()2(2)x n x n=+,试画出2()x n波形;(5)令3()2(2)x n x n=-,试画出3()x n波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)(3)1()x n的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n时,先画x(-n)的波形,然后再右移2位,3()x n波形如题2解图(四)所示。

3.判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。

5.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。

数字信号处理课后习题答案(吴镇扬)(精编文档).doc

数字信号处理课后习题答案(吴镇扬)(精编文档).doc

【最新整理,下载后即可编辑】习题一 (离散信号与系统)1.1周期序列,最小周期长度为5。

1.2 (1) 周期序列,最小周期长度为14。

(2) 周期序列,最小周期长度为56。

1.5()()()()()()()11s a s s s a n s s a s n X j x t p t X j ΩP j Ω2n τn τj sin j Ωjn e X 2n π2n n τj Sa X j jn e 2T 2πττ∞=-∞∞=-∞Ω==*⎡⎤⎣⎦ΩΩ⎛⎫-=-Ω ⎪⎝⎭ΩΩ⎛⎫-=Ω-Ω ⎪⎝⎭∑∑ 1.6 (1) )(ωj e kX (2) )(0ωωj n j e X e (3) )(21)(2122ωωj j e X e X -+ (4) )(2ωj e X1.7 (1) 0n z -(2) 5.0||,5.0111>--z z (3) 5.0||,5.0111<--z z (4)0||,5.01)5.0(11101>----z z z1.8 (1) 0,)11()(211>--=---z zz z z X N(2) a z az az z X >-=--,)1()(211 (3) a z az z a az z X >-+=---,)1()(311211.91.10 (1))1(2)(1----+n u n u n (2))1(24)()5.0(6--⋅--n u n u n n (3))()sin sin cos 1(cos 000n u n n ωωωω++(4) )()()(1n u a a a n a n ---+-δ 1.11(1))(1z c X - (2) )(2z X (3))()1(21z X z -+ (4)-+<<x x R z R z X /1/1),/1(1.12 (1) 1,11<-ab ab(2) 1 (3)00n a n1.13 (1) 该系统不是线性系统;该系统是时不变系统。

【免费下载】数字信号处理习题课

【免费下载】数字信号处理习题课
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数字信号处理习题集(附标准答案)

数字信号处理习题集(附标准答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理习题(全)

数字信号处理习题(全)

习题一1 判断下列信号中哪一个是周期信号,如果是周期信号,求出它的周期。

(a )sin1.2n (b )sin9.7n π (c ) 1.6j neπ(d )cos(3/7)n π (e ) 3cos 78A n ππ⎛⎫- ⎪⎝⎭ (f )18j n e π⎛⎫- ⎪⎝⎭2 以下序列是系统的单位脉冲响应h(n),试说明系统是否是因果的和稳定的。

(1)21()u n n (2) 1()!u n n (3)3()nu n (4)3()n u n - (5) 0.3()nu n (6) 0.3(1)nu n -- (7)(4)n δ+3 假设系统的输入和输出之间的关系分别如下式所示,试分别分析系统是否是线性时不变系统。

(1) ()3()8y n x n =+ (2) ()(1)1y n x n =-+ (3) ()()0.5(1)y n x n x n =+- (4) ()()y n nx n =习题二 4 已知因果系统的差分方程为()0.5(1)()0.5(1)y n y n x n x n =-++- 求系统的单位脉冲响应h(n)。

5 设系统的差分方程为()(1)()y n ay n x n =-+,0<a<1,(1)0y -=。

分析系统是否是 线性、时不变系统。

习题三 6 试求以下序列的傅里叶变换。

(1) 1()(3)x n n δ=- (2)211()(1)()(1)22x n n n n δδδ=+++- (3) 3()()nx n a u n = 0<a<1 (4)4()(3)(4)x n u n u n =+--7 设()j X e ω是()x n 的傅里叶变换,利用傅里叶变换的定义或者性质,求下面序列的傅里叶变换。

(1)()(1)x n x n -- (2) *()x n (3)*()x n - (4) (2)x n (5)()nx n习题四8 假设信号1,2,3,2,1,n 2,1,0,1,20,()x n ---=--⎧⎨⎩=其他,它的傅里叶变换用()j X e ω表示,不具体计算()j X e ω,计算下面各式的值:(1)0()j X e (2) ()j X e ω∠ (3)()j X e d πωπω-⎰(4) ()j X e π(5)2()j d X e ππωω-⎰习题五9 设图P2.5所示的序列()x n 的FT 用()j X e ω表示,不直接求出()j X e ω,完成下列运算 (1) 0()j X e (2)()j X e d πωπω-⎰ (3)()j X e π(4)确定并画出傅里叶变换为(())j e R X e ω的时间序列()e x n(5)2()j d X e ππωω-⎰ (6)2()j d dX e d ππωωω-⎰10 求以下各序列的Z 变换和相应的收敛域,并画出相应的零极点分布图。

数字信号处理习题课内容

数字信号处理习题课内容

数字信号处理教程课后习题及答案第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。

分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个( ③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。

2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。

)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ; ③卷积和求解时,n 的分段处理。

()∑∑∑+-=+-=--+===-=-+≥nN n m m nn nN n m mn n m nn m m n h m x n y N n n 111N -00)()()( , 1)3(αββααβ全重叠时当()()()()βααβαβαβαββααβαβαβ==≠--=--=---+++--,)(,100111n n N N n N n n N n n nN n y ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(:解0)()1(0=<n y n n 时当, 1)2(00部分重叠时当-+≤≤N n n n ()∑∑∑==--===-=nn m mnn n n m mn n m nn m m n h m x n y 0)()()(αββααβ()()βαβαβαβααβαβαβ≠--=--=-+-++-,10111n n n n n n n n())(,1)(00βαα=-+=-n n n y n n3 .已知 10,)1()(<<--=-a n u a n h n ,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

数字信号处理_第一章_习题

数字信号处理_第一章_习题
r[ k ]
N 1
1
N
k -1 0
N-2
N-1
N
2N-2 2N-1
1 y2 [k ] = (r[k + N - 1]) N 1 j( N - 1)W jW Y2 (e ) = R (e ) e N
jW
r[k ] = x[k ] * x[k ]
x[k ]
Y2 (e jW) =
1 j N- 1 W R (e jW) e ( ) N
p 2
p
3p 2
2p
5p 2
1 Y e 2

2
X e j X e j d
2 8 fm


Y e j

3p
2p
p
0
p
2p
3p
D/A转换----数字频率转换成模拟频率
Y e j
2 8 fm

3p
2p
p
0
p
2p
3p
4 fm Ts

w
Y ( jw) 2 fm
2p f m
4p f m 2p f m
4p f m
w
4p f m
4p f m
0
0
w
2p f m 4p f m
信号采样间隔
解:(2)
2p f m
X jw
1 Ts = 2 fm
1
2p ws = = 4p f m Ts
w
2p f m
0
1 X s j Ts
冲激函数卷积特性
(1)
X ' jw
Y ( jw) =
w 1 X '( jw) * ò X ( jq)d q 2p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续信道的信道容量(香农公式):
C B lo2 1 g N S B lo2 1 g nS 0B (b/s)
B l i C m B l i B lm 2 o 1 n S g 0 B n S 0 B l i n S 0 B m l2 o 1 n S g 0 B n S 0 l2 o e 1 . 4 g n S 04
无失真传输条件(时域和频域):
s0(t)K 0si(ttd)
S0( )K 0ejtdSi( )或 H K0ejtd
或 H K0 td ddtd
随参信道的相关带宽: B c

1 m
信号带宽一般取为:
B


13~15Bc
(二)联系:
消息、信息、信号是与通信(Communication)密切相关的三个概念。信 息一词在概念上与消息相似,但其含义却更具普遍性、抽象性。消息可以 有各种各样的形式,但消息的内容可统一用信息来表述,传输信息的多少 可直观地使用“信息量”进行衡量。信号是消息的载体和通信的客观对象, 而信息是信号的内涵。
1-2 什么是通信方式?它有哪几种类型?
答:对点到点通信,按消息传递的方向与时间关系划 分,通信方式可分为单工(Simplex Communication) 、半双工 (Half-duplex Communication)及全双工通信(Duplex Communication)三 种。
1-3 什么是传输方式?数据传输方式有哪几种类型?
1-12 已知二进制信号在3分钟内共传送了72000个码元,问(1)码元速率和 信息速率各为多少?(2)若码元宽度不变,但改为16进制数字信号,则其 码元速率和信息速率又为多少?
N
P(xi)loP g(xi)比/符 特号 i1
单个符号的信息量: IloagP(1x)loagP(x)
频带利用率:B
RB(Bau/H d )z
B
b
Rb (b i/ts/H)z
B
基带系统无码间串扰的最大频带利用率是2Bd/Hz。
误码率和误Байду номын сангаас率:
Pe =
错误码元数 传输总码元数
答:现代数字通信系统中,按照数字信号的各个二进制位 (又称比特)是否同时传输,数据的传输方式可分为并行传输 (Parallel Transmission)和串行传输(Serial Transmission)两种。
1-4 什么是复用方式?它有哪几种类型?各有何含义?
答:实现在同一条通信线路上传送多路信号的技术叫做多路复用技 术(multiplex)。 各种多路复用技术的目的均在如何尽量提高信道的利 用率。目前常用的复用方式主要有频分复用、时分复用、码分复用和 空分复用。
习题讲解 (第1、2、4章)
第1章 概论
基本概念:(略)
主要公式:
码元速率计算:RB

1 Tb
(Bd)
信息速率计算:Rb RB.H(bs)
RbRBlo2gN (N进制信源各符号独立等概时)
信源的熵: (平均信息量)
IH(X)
P(x1)loP g(x1)P(x2)loP g(x2) P(xn)loP g(xN)
窄带高斯噪声的数学描述
ni(t)(t)cosct [(t)]
(t)co(st)cocst(t)si n(t)si nct
I(t)cocstQ(t)si nct
其中
n
I(t)i(t)cosi(t) i1 n
Q(t) i(t)sini(t) i1
同相分量 正交分量
多径信号合成包络: (t) I2(t)Q 2(t)
多径信号合成相位: (t)arctanQ(t) I (t)
1-1 简述消息、信息、信号三个概念之间的联系与区别。
答:(一)区别:
消息(Message)是包含具体内容的文字、符号、数据、语音、图片、图 象等等,是信息的具体表现形式,也是特定的信息。信息(Information)是 消息的统称,是消息的概括和抽象,可理解为消息中包含的有意义的内 容,它用信息量来衡量。信号(Signal)是搭载或反映信息的载体,通常以 某种客观物理量(电压、电流)表现出来。
频分复用(FDM)是指根据工作频率来区分用户,各路信号的频谱 处于不同频段的物理信道上,互不重叠。时分复用(TDM)是指根据工 作时隙来区分用户,它将整个信道传输信息的时间划分成若干时隙, 并将这些时隙分配给每一个用户使用,每一路信号在分配给自己的时 隙内独占信道进行数据传输。码分复用(CDM) 是指根据码型来区分用 户,系统为每个用户分配各自特定的地址码,地址码之间具有相互准 正交性,所有子信道在时间、空间和频率上则可以重叠。空分复用 (SDM)是指多对电线或光纤共用一条缆的空间复用方式。
错误比特数 Pb 传输总比特数
二进制系统平均误码率(总误码率):
P e P (0 )P ( 1 0 ) P ( 1 )P (0 1 )
信道传输特性:H(jω)
幅频特性: H(j) ~
相频特性: Ar (j g )~ H ,( )~
群迟延特性: () d() d
高斯噪声的一维概率分布函数:
F ( x ) x p ( z ) d x z2 1e x z 2 p a 2 2 d z 2 1 x e x z 2 p a 2 2 d
白噪声的功率谱密度:
Pn()nn00 /2 0 双单边边谱谱
白噪声的相关函数:
R n()2 1 n 2 0ejd n 2 0()
高斯噪声的一维概率密度函数(pdf):
p(x) 21exp x2 a22
相关文档
最新文档