0236-向明中学高三开学考(2017.9)
2017-2018年上海市向明中学高三上开学考
能变动为止):若ai, j ai, j1 ,则q ai, j ,ai, j ai, j1 ,ai, j1 q ;若ai,j ai ,j 1 ,则不变动,这样得到
矩阵 C,则 C
二. 选择题
第 1页
微信公众号:一站升学
13.
用数学归纳法证明:1 a a2
n1
a
1 an2 1 a
(a 1, n N* ) ,在验证n 1成立时,
15. 在△ABC 中,已知cos B 4 , sin C 5 ,则 cos A ( )
5
13
A. 63
B. 33
C. 63 或 33
D. 以上答案都不对
65
65
65 65
16. 对于函数 f (x) ,若存在区间 A [m,n],使得{y | y f (x), x A} A ,则称函数 f (x)
18.(1) f (x) 2sin(3x ) , M ( 2 ,1) ;(2) t 0 .
6
9
19.(1) An
490n
10n2 , B n
500n
500 2n
100
;(2)4
年.
20.(1) f (x) log (2x 1) ;(2)5;(3) 2 3 .
3
3
21.(1) y 15 x ;(2) x2 y2 1 ;(3)略.
1. 3
2. x 1 (x 1)
2
6. 4a 5b
7. 5 n2 7 n 66
10. [ , ]
3
11.
3
3. 10
4. 4
8. [4, 4]
0 0 0 0
12.
0 1
1 2
1 3
高三上学期数学开学测试卷(含答案)
高三上学期数学开学测试卷一、单选题(每小题5分,共8小题,计40分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}=1,2,3,4,5,6,A B y y x A ==∈,则A B ⋂=()A.{}1,2B.{}1,2,3C.{}1,3,5 D.{}1,2,3,4,5,62.已知()2xf x =,则()3f =()A.8B.9C.2log 3D.3log 23.已知,a b ∈R .则“0a >且0b >”是“2a b ba+≥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知0a >,0b >,直线(1)10a x y -+-=和210x by ++=垂直,则21a b+的最小值为()A.16B.8C.4D.25.()f x 是定义域在R 上的奇函数,若0x ≥时()22f x x x =+,则()2f -等于()A.8B.4C.0D.-86.给出下列命题:①如果不同直线,m n 都平行于平面,则,m n 一定不相交;②如果不同直线,m n 都垂直于平面α,则,m n 一定平行;③如果平面,αβ互相平行,若直线m α⊂,直线n β⊂,则m n ∥;④如果平面,αβ互相垂直,且直线,m n 也互相垂直,若m α⊥,则n β⊥;其中正确的个数为()A.1个B.2个C.3个D.4个7.已知函数()(),f x g x 的定义域均为R ,()()22f x g x +-=,()()44f x g x --=,()20f -=,则()()20182024g g +=()A.4- B.2- C.2D.48.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2x ∈,使得12()()g x f x >,则实数k 的取值范围是()A.1,12⎛⎫⎪⎝⎭B.12,33⎛⎫- ⎪⎝⎭C.1,12⎛⎫-⎪⎝⎭D.以上都不对二、多选题(每小题6分,共3小题,计18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是()A.24a b +≥B.4a b +≥C.8ab ≥ D.2248a b +≥10.已知定义在R 上的函数()f x 满足()()()()f x f x f x y f xy ⨯--=⎡⎤⎣⎦,当()(),00,x ∈-∞⋃+∞,时,()0f x ≠.下列结论正确的是()A.1122f ⎛⎫=⎪⎝⎭ B.()101f =C.()f x 是奇函数D.()f x 在R 上单调递增11.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1AA 的中点,点F 满足()11101A F A B λλ=≤≤,则()A.当0λ=时,1AC ⊥平面BDFB.任意[]0,1λ∈,三棱锥F BDE -的体积是定值C.存在[]0,1λ∈,使得AC 与平面BDF 所成的角为π3D.当23λ=时,平面BDF 截该正方体的外接球所得截面的面积为56π19三、填空题(每小题5分,共3小题,计15分)12.函数()||3x f x x =-的定义域为___________.13.已知一个四棱柱,其底面是正方形,侧棱垂直于底面,它的各个顶点都在一个表面积为4π2cm 的球面上.如果该四棱柱的底面边长为1cm ,则其侧棱长为___________cm .14.已知函数(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意的12x x <,都有()()12f x f x <恒成立,那么实数a 的取值范围是___________.四、解答题(本题共5小题,共77分解答应写出文字说明、证明过程或演算步骤)15.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()A B ⋂R ð;(2)若()A B B ⋂=R ð,求实数a 的取值范围.16.已知()y f x =(x ∈R )是偶函数,当0x ≥时,2()2f x x x =-.(1)求()f x 的解析式;(2)若不等式()f x mx ≥在12x ≤≤时都成立,求m 的取值范围.17.(2016年苏州19)设函数()1f x x x m =-+.(1)当2m =-时,解关于x 的不等式()0f x >;(2)当1m >时,求函数()y f x =在[0,]m 上的最大值.18.已知函数22()4422f x x ax a a =-+-+.(1)若2a =,求函数()f x 在区间(1,2)-上的值域;(2)若函数()f x 在区间[0,2]上有最小值3,求a 的值.19.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥侧面PAB ,F 为BD 中点,E 是PA 上的点,2PA PD ==,PA PD ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若二面角E DF A --的余弦值为31111,求E 到平面PBC 的距离.参考答案及解析一、单选题(每小题5分,共8小题,计40分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】A【分析】先求出集合B ,再根据交集的定义即可求出.【详解】{}=1,2,3,4,5,6A ,{}{B y y x A ∴==∈=,{}1,2A B ∴⋂=.故答案为:A.2.【答案】C【分析】根据指数、对数运算以及函数的概念求得正确答案.【详解】令23x =,可得2log 3x =,则()23log 3f =.故选:C 3.【答案】A【分析】根据条件,利用充分条件和必要条件的判断方法,即可求出结果.【详解】当0a >且0b >时,0,0a b b a >>,所以2a b b a +≥=,当且仅当a b b a =,即a b =时取等号,所以由0a >且0b >可以得出2a b ba+≥,显然,当2a b ==-,有2a b ba+≥成立,但得不出0a >且0b >,所以“0a >且0b >”是“2a b ba+≥”的充分而不必要条件,故选:A.4.【答案】B【分析】由题意利用两直线垂直的性质,求得21a b +=,再利用基本不等式,求得21a b+的最小值.【详解】0a > ,0b >,直线1:(1)10l a x y -+-=,2:210l x by ++=,且12l l ⊥,(1)1120a b ∴-⨯+⨯=,即21a b +=.则212424224448a b a b b a a b a b a b +++=+=+++≥++=,当且仅当122a b ==时,等号成立,故21a b+的最小值为8,故选:B.5.【答案】D【分析】根据函数是奇函数得到()()22f f -=-,再将2代入函数解析式得到函数值.【详解】根据函数是奇函数得到()()22f f -=-,由0x ≥时()22f x x x =+可得到()()()28.228.f f f =-=-=-故答案为D.【点睛】这个题目考查的是函数奇偶性的应用,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证()f x 和()f x -的关系.6.【答案】A【分析】根据已知线面、面面的位置关系,结合平面基本性质及空间想象,即可判断各项正误.【详解】①如果不同直线,m n 都平行于平面α,则,m n 相交、平行或异面,错误;②如果不同直线,m n 都垂直于平面α,则由线面垂直的性质定理得,m n 一定平行,正确;③如果平面,αβ互相平行,若直线m α⊂,直线n β⊂,则,m n 相交、平行或异面,错误;④如果平面,αβ互相垂直,且直线,m n 也互相垂直,若m α⊥,则n 与β相交或平行,错误.故选:A 7.【答案】B【分析】已知条件可求得2())6(g x g x +-=-,代入2024计算即可.【详解】2()(2)f x g x +-=,以4x -代x ,有2()46)(f x g x -+-=,又4(()4)f x g x --=,得2(()6)g x g x -+=-,所以()()()()201820242024620242g g g g +=-+=-.故选:B.8.【答案】C【解析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案.【详解】解:∵x ∈,∴2[1,3]x ∈,∴224()3[1,2]f x x x =-∈+.当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<;当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-.∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.9.【答案】AD【分析】由基本不等式判断AD ,取1,2b a ==判断BC.【详解】由题意可知1112b a +=,1122(2)2422a ba b a b b a b a⎛⎫+=++=++ ⎪⎝⎭(当且仅当22a b ==时取等号),故A 正确;取1,2b a ==,则3,2a b ab +==,故BC 错误;因为22a b ab +=≥,所以2ab (当且仅当22a b ==时取等号),则22448a b ab +(当且仅当22a b ==时取等号),故D 正确;故选:AD 10.【答案】ACD【分析】利用赋值法得到()()f x f x =--,由此判断出()f x 的奇偶性.利用赋值法求得()()0,1f f ,进而求得()110,2f f ⎛⎫⎪⎝⎭,根据函数单调性的定义,计算()()12f x f x -的符号来判断函数()f x 的单调性.【详解】令0x y ==,可得()00f =.令1x y ==,可得()()2[1]1f f =.因为当0x >时,()0f x ≠,所以()11f =.令x y =,可得()()22[]0f x f x =≥.因为20x ≥,所以当0x ≥时,()0f x ≥.又因为当0x >时,()0f x ≠,所以当0x >时,()0f x >.令1y =,可得()()()()1f x f x f x f x ⨯--=⎡⎤⎣⎦,①所以()()()()11,11f x f x f x f x --=+-=,两式相加可得()()112f x f x +--=.令1y =-,可得()()()()1f x f x f x f x ⨯-+=-⎡⎤⎣⎦.②①-②可得()()()()()11f x f x f x f x f x ⨯+--=--⎡⎤⎣⎦,化简可得()()f x f x =--,所以()f x 是奇函数,C 正确.由()()11f x f x --=,可得:()()()()()()()2112,3213,4314,,1010f f f f f f f =+==+==+== ,B 错误.由()()()()11f x f x f x f x +-=⎧⎪⎨=--⎪⎩可得111221122f f ff ⎧⎛⎫⎛⎫--= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪=-- ⎪ ⎪⎪⎝⎭⎝⎭⎩解得1122f ⎛⎫= ⎪⎝⎭,A 正确.令112,x x y x x ==-,可得()()()()()112121f x x x f x f x f x --=.令210x x <<,则()121120,0x x x x x ->->.因为当0x >时,()0f x >,所以()()()11120,0f x f x x x >->,所以()()()()()1121210f x x x f x f x f x --=>,即()()12f x f x >,所以()f x 在(0,)∞+上单调递增.因为()f x 为奇函数,所以()f x 在R 上单调递增,D 正确.故选:ACD【点睛】方法点睛:利用函数单调性的定义证明函数的单调性,首先要在函数定义域的给定区间内,任取两个数12,x x ,且12x x <,然后通过计算()()12f x f x -的符号,如果()()120f x f x -<,则()f x 在给定区间内单调递增;如果()()120f x f x ->,则()f x 在给定区间内单调递减.11.【答案】ACD【分析】建立适当的空间直角坐标系,对于A ,0λ=时,F 与1A 重合,故只需验证1AC ⊥面1BDA 是否成立即可,对于B ,由11A B 不与平面BDE 平行,即点F 到面BDE 的距离不为定值,由此即可推翻B ,对于C ,考虑两种极端情况的线面角,由于F 是连续变化的,故AC 与平面BDF 所成的角也是连续变化的,由此即可判断;对于D ,求出平面BDF 的法向量,而显然球心坐标为()1,1,1O ,求出球心到平面BDF 的距离,然后结合球的半径、勾股定理可得截面圆的半径,进一步可得截面圆的面积.【详解】如图所示建系,()()()()()110,0,0,2,2,0,2,0,2,2,0,0,0,2,2D B A A C,所以()()()112,2,0,2,0,2,2,2,2DB DA AC ===-,从而111440,440AC DB AC DA ⋅=-+=⋅=-+=,所以111,AC DB AC DA ⊥⊥,又11,,DB DA D DB DA ⋂=⊂面1BDA ,所以1AC ⊥面1BDA ,0λ=时,F 与1A 重合,平面BDF 为平面1BDA ,因为1AC ⊥面1BDA ,1AC ∴⊥平面BDF ,A 对.11A B 不与平面BDE 平行,F ∴到面BDE 的距离不为定值,∴三棱锥F BDE -的体积不为定值,B 错.设面1BDA 的法向量为()1111,,n x y z =,则1111111220220n DB x y n DA x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =,解得111,1y z =-=-,即可取()11,1,1n =--,而()2,2,0AC =-,所以AC 与平面BDF所成角的正弦值为111cos ,3AC n AC n AC n ⋅===⋅ ,又()()12,2,0,0,0,2BD BB =--=,所以1440,0AC BD AC BB ⋅=-=⋅=,所以1,AC BD AC BB ⊥⊥,又11,,BD BB B BD BB ⋂=⊂面1DBB ,所以AC ⊥面1DBB ,当F 在1A 时,AC 与平面BDF 所成角的正弦值为6332<,此时AC 与平面BDF 所成角小于π3,当F 在1B 时,AC 与平面BDF 所成角为ππ23>,所以存在[]0,1λ∈使AC 与平面BDF 所成角为π3,C 正确.()()()0,0,0,2,2,0,2,2,2D B F λ,设平面BDF 的法向量为()0220,,,,22200n DB x y n x y z x y z n DF λ⎧⋅=+=⎧⎪=∴⎨⎨++=⋅=⎩⎪⎩ ,不妨设1x =,则()()1,1,1,1,1,2,2,0y z n AC λλ=-=-=--=-.23λ=,则42,,23F ⎛⎫⎪⎝⎭,平面BDF 的法向量11,1,3n ⎛⎫=-- ⎪⎝⎭ ,显然球心()1,1,1O ,O 到面BDF的距离1919OD n d n ⋅===,外接球半径4442R ==∴截面圆半径的平方为2225619r R d =-=,所以256ππ19S r ==,D 对.故选:ACD.【点睛】关键点点睛:判断D 选项的关键是利用向量法求出球心到截面BDF 的距离,由此即可顺利得解.12.【答案】[)()2,33,⋃+∞【分析】根据根式以及分式的性质即可求解.【详解】()||3x f x x =-的定义域满足20x -≥且||30x -≠,解得2x ≥且3x ≠.故答案为:[)()2,33,∞⋃+13.【分析】根据已知四棱柱结构特征确定外接球球心位置,结合球体表面积公式确定球体半径,进而求侧棱长.【详解】四棱柱底面是正方形,侧棱垂直于底面,此四棱柱外接球的球心为体对角线的中点,因为球的表面积为4π2cm ,所以球的半径为1cm ,故体对角线长为2cm ,设侧棱长为h2h =⇒=cm .14.【答案】3,22⎡⎫⎪⎢⎣⎭【详解】∵函数()f x 满足对任意12x x <,都有()()12f x f x <成立,∴函数()f x 在定义域上是增函数,则满足202311222132a a a a a a a a ⎧⎧⎪⎪-><⎪⎪>∴>∴≤<⎨⎨⎪⎪-+≤⎪⎪≥⎩⎩,故答案为3,22⎡⎫⎪⎢⎣⎭.15.【答案】(1)[)()3,3,()1,3A B A B ⋃=-⋂=R ð(2)0a =【分析】(1)先求集合B ,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-,所以[)3,3,A B ⋃=-因为()()(),31,A =-∞-⋃+∞R ð,所以()()1,3A B ⋂=R ð(2)因为()A B B ⋂=R ð,所以B A ⊆R ð,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.16.【答案】(1)f (x )=222,02,0x x x x x x ⎧-≥⎨+<⎩(2)1m ≤-【详解】试题分析:已知函数的奇偶性求函数的解析式是函数的奇偶性常见考试题,函数()f x 为偶函数,求0x <的解析式,利用0,()()x f x f x ->=-去求;解决不等式恒成立问题首选方法是分离参数借助极值原理去解决,本题注意到x 的范围,由于x 为正,所以分离参数时,不等号的方向不变,再求最值,最后的处m 的取值范围试题解析:(1)设0x <时,则0x ->,()f x 为偶函数,()()()22()22f x f x x x x x ∴=-=---=+.()2220;2,0x xx f x x x x ⎧-≥∴=⎨+<⎩(2)由题意得22x x mx -在12x 时都成立,即2x m -在12x 时都成立,即2m x -在12x 时都成立,当12x 时,min (2)1x -=-,则1m -.【点睛】函数的奇偶性常见问题(1)利用函数的奇偶性求值,(2)利用函数的奇偶性分析函数的图象,借助单调性解不等式,(3)利用函数的奇偶性求函数的解析式;解决不等式恒成立问题首选方法是分离参数借助极值原理去解决,当然也有很多恒成立问题需要对参数进行讨论才能解决.17.【答案】(1)(2,)+∞(2)2max 12,2()112,142m m f x m m ⎧+≥⎪⎪=⎨⎪+<<⎪⎩【详解】(1)借助绝对值的定义运用分类整合的数学思想将问题转化为求两个二次不等式的解集,最后再求其并集;(2)依据题设条件先运用分类整合思想求出函数的解析式,再分别借助二次函数的图像和性质求二次函数的最大值问题:解:(1)当1x >时,()220f x x x =-->,解得2x >或1x <-,所以2x >当1x ≤时,()220f x x x =-->,得x 无实数解,综上所述,关于x 的不等式()0f x >的解集为()2,+∞.(2)当[]0,1x ∈时,()()1f x x x m =-+221124x x m x m ⎛⎫=-++=--++ ⎪⎝⎭,当12x =时,()max 14f x m =+.当(]1,x m ∈时,()()1f x x x m =-+=221124x x m x m ⎛⎫-+=-+- ⎪⎝⎭,因为函数()y f x =在(]1,m 上单调递增,所以()()2max f x f m m ==.由214m m ≥+,得2104m m --≥,又1m >,所以122m ≥.所以()2max 12,21,1142m m f x m m +⎧≥⎪=⎨+⎪<<⎩.18.【答案】(1)[]2,14-(2)1a =5a =+.【分析】(1)把a 的值代入函数解析式,再判断函数在已知区间上的单调性,进而可以求解,(23,解出来a 的值,进而可以求解.【小问1详解】若2a =,则22()4824(1)2f x x x x =-+=--,对称轴为1x =,函数()f x 在区间[1-,1)上单调递减,在(1,3)上单调递增,所以()min ()12f x f ==-,max ()(1)14f x f =-=;所以()f x 的值域为[]2,14-【小问2详解】2()4(222a f x x a =--+,对称轴为2a x =,①当02a ≤,即0a ≤时,函数()f x 在[0,2]上是增函数.2min ()(0)22f x f a a ∴==-+,由2223a a -+=,得1a =±.0a ≤ ,1a ∴=②当022a <<,即04a <<时,min ()()222a f x f a ==-+.由223a -+=,得1(0,4)2a =-∉,舍去.③当22a ≥,即4a ≥时,函数()f x 在[0,2]上是减函数,()min ()2f x f =21018a a =-+.由210183a a -+=,得5a =±.4a ≥,5a ∴=+,综上所述,1a =-5a =+.19.【答案】(1)证明见解析(2)105【分析】(1)由面面垂直和线面垂直性质可得PD AB ⊥,结合AB AD ⊥,由线面垂直和面面垂直的判定方法可证得结论;(2)取AD 中点O ,结合面面垂直性质可知,,OF AD OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系,设()01AE AP λλ=≤≤ ,根据二面角的向量求法可构造方程求得λ的值,进而根据点面距离的向量求法求得结果.【小问1详解】平面PAD ⊥平面PAB ,平面PAD ⋂平面PAB PA =,PA PD ⊥,PD ⊂平面PAD ,PD ∴⊥平面PAB ,又AB ⊂平面PAB ,PD AB ∴⊥;四边形ABCD 为正方形,AB AD ∴⊥,PD AD D = ,,PD AD ⊂平面PAD ,AB ∴⊥平面PAD ,AB ⊂ 平面ABCD ,∴平面PAD ⊥平面ABCD .【小问2详解】取AD 中点O ,连接,OP OF ,PA PD = ,O 为AD 中点,OP AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,OP ⊂平面PAD ,OP ∴⊥平面ABCD ,,O F 分别为,AD BD 中点,//OF AB ∴,又AB AD ⊥,OF AD ∴⊥;以O 为坐标原点,,,OA OF OP 正方向为,,x y z轴正方向,可建立如图空间直角坐标系,2PA PD == ,PA PD ⊥,AD ∴=,12OP AD ==()D ∴,)A,(P,)B,()C,()F,)DF ∴=,PB =,()BC =-,(AP =,()DA = ,设()01AE AP λλ=≤≤,则()AE =,()DE DA AE ∴=+= ,设平面DEF 的法向量(),,n x y z =,则()00DE n x z DF n λ⎧⋅=+=⎪⎨⎪⋅=+=⎩ ,令x λ=,解得:y λ=-,2z λ=-,(),,2n λλλ∴=-- ;z 轴⊥平面ADF ,∴平面ADF 的一个法向量()0,0,1m = ,311cos ,11m n m n m n ⋅∴==⋅ ,解得:1λ=-(舍)或12λ=,22,0,22AE ⎛∴=- ⎪⎝⎭ ,22,0,22EP AP AE ⎛∴=-=- ⎪⎝⎭;设平面PBC 的法向量(),,t a b c= ,则00PB t BC t ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1b =,解得:0a =,2c =,()0,1,2t ∴= ,∴点E 到平面PBC的距离105EP t d t ⋅=== .。
届向明中学高三年级十月份月考试卷
2017届向明中学高三年级十月份月考试卷一、填空题1.设集合()(){}120A x x x =+-<,集合{}13B x x =<<,则AB =__________.2.复数311i i --的虚部是__________.3.已知()1tan 2,tan 7ααβ=-+=,则tan β的值为__________. 4.23n x x ⎛+ ⎪⎝⎭展开式的第6项系数最大,则其常数项为__________. 5.有4人排成一排照相,由于甲乙两人关系比较好,要求站在一起,则4人站法种数是__________.6.在等比数列{}n a 中,0n a >,且127816a a a a =,则45a a +的最小值为__________.7.三阶行列式42354112k---第2行第1列元素的代数余子式为10-,则k =__________.8.在三棱锥D ABC -中,2AC BC CD ===,CD ⊥面ACB ,90ACB ∠=︒,若其主视图和俯视图如图所示,则其左视图的面积为__________.9.将一个半圆面围成圆锥的侧面,则其任意两条母线夹角的最大值为__________.10.已知点(),P x y 的坐标满足条件1230x y x x y ≥⎧⎪≥⎨⎪-+≥⎩,则点P 到直线3490x y --=的距离的最小值为__________.11.我们知道反比例函数()0k y k x =≠的图像是等轴双曲线,根据你所学习双曲线知识写出双曲线4y x=的焦点坐标是__________. 12.已知函数()2sin 2sin 22cos 1,33f x x x x x R ππ⎛⎫⎛⎫=++-+-∈ ⎪ ⎪⎝⎭⎝⎭,则函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最小值是__________.13.给出下列四个命题:(1)过平面外一点,作与该平面成θ角的直线一定有无穷多条;(2)对两条异面的直线,都存在无穷多个平面与这条直线所成的角相等;(3)当0x >且1x ≠时,有1ln 2ln x x+≥; (4)函数()1y f x =+与函数()1y f x =-的图像关于直线1x =对称.其中正确的命题序号为__________.(请把所有正确命题的序号都填上).14.曲线():0,0b C y a b x a =>>-把y 轴的交点关于原点的对称点称为“望点”,以“望点”为圆心,凡是与曲线C 有公共点的圆,皆称之为“望圆”,则当1,1a b ==时,所有的“望圆”中,面积最小的“望圆”的面积为__________.二、选择题15.下列在曲线sin 2sin cos x y θθθ=⎧⎨=+⎩(θ为参数)上的点的坐标是( ) .A 1,22⎛⎫- ⎪⎝⎭ .B 31,42⎛⎫- ⎪⎝⎭ .C ()2,3 .D ()1,3 16.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) .A ()0,1 .B ()1,2 .C ()2,4 .D ()4,+∞17.函数cos sin y x x x =+的图像大致为( )18.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( ).A 7,4⎛⎫+∞ ⎪⎝⎭.B 7,4⎛⎫-∞ ⎪⎝⎭ .C 70,4⎛⎫ ⎪⎝⎭ .D 7,24⎛⎫ ⎪⎝⎭ 三、解答题19.在直三棱柱111ABC A B C -中,1AB AC ==,90BAC ∠=︒,且异面直线1A B 与11B C 所成的角等于60︒,设1AA a =.(1)求a 的值;(2)求三棱锥11B A BC -的体积.20.已知函数()()11,14f x x g x x =--=-+-.(1)若函数()f x 的值不大于1,求x 的取值范围;(2)若不等式()()1f x g x m -≥+的解集为R ,求m 的取值范围.21.已知椭圆E 的长轴的一个端点是抛物线2y = (1)求椭圆E 的方程;(2)过点()1,0C -,斜率为k 的动直线与椭圆E 相交于,A B 两点,请问x 轴上是否存在点M ,使MA MB ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由.22.函数()f x 和()g x 的图像关于原点对称,且()22f x x x =+.(1)求函数()g x 的解析式;(2)解不等式()()1g x f x x >--;(3)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.23.已知数列{}{},n n a b 满足1n n n b a a +=-,其中1,2,3,n = (1)若n b n =且11a =,求数列{}n a 的通项公式;(2)若()112n n n b b b n +-=≥,且121,2b b ==时.①求数列{}n b 的前6n 项和;②设()60n n i c a n +=≥,(其中i 为常数且{}1,2,3,4,5,6i ∈),求{}n c 的前n 项和n T .。
2023-2024学年上海市向明中学高三上学期开学考试数学试卷含详解
向明中学2023学年第一学期高三年级数学开学考一、填空题:(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知全集{}1,2,3,4,5U =,集合{}4,5A =,则A =________.2.若22x =-,则x =________.3.函数lg y x =1110x ⎛⎫<≤ ⎪⎝⎭的值域为________4.已知sin m α=,则cos(π2)α-=___________.5.直线2y =与直线310x y -+=的夹角的正弦值为______.6.已知数列{}n a 的通项公式为6(3)377n n a n n a a n ---≤⎧=⎨>⎩,,,若{}n a 是递增数列,则实数a 的取值范围为_____.7.在()()5411x x +-的展开式中,3x 的系数是________.8.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是______.9.已知P 为双曲线221x y -=右支上的一个动点,若点P 到直线2y x =+的距离大于m 恒成立,则实数m 的取值范围是______.10.在平面直角坐标系中,O为原点,(1,0),(3,0)A B C -,动点D 满足1CD = ,则OA OB OD++ 的最大值是________.11.已知函数()()R f x x ∈是偶函数,且()()22f x f x +=-,当[]0,2x ∈时,()1f x x =-,则方程()11f x x=-在区间[]10,10-上的解的个数是________.12.已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3;②{}n a 为等比数列;③{}n a 为递减数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是__________.二、选择题:(本大题共有4题,满分18分,13、14题每题4分,15、16题每题5分)13.下列函数中,与函数y x =的奇偶性和单调性都一致的函数是()A.2y x = B.2log y x= C.tan y x= D.sin y x x=+14.明代数学家程大位(1533-1606年)所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二.试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度(即圆形半径)”(明代度量制:1步=5尺,1亩=240平方步,1丈=10尺,圆周率3.).A.6丈B.8丈C.12丈D.16丈15.椭圆2211618x y +=上有10个不同的点1210,,,P P P ,若点T 坐标为(1,0),数列{}(1,2,,10)= n TPn 是公差为d 的等差数列,则d 的最大值为()A.579- B.579+ C.29D.8916.若*n ∈N 时,不等式(6)ln(0n nx x-≥恒成立,则实数x 的取值范围是()A.[1,6]B.[2,3]C.[1,3]D.[2,6]三、解答题:(本大题共有5题,满分78分)17.如图,AB 是圆柱底面圆的一条直径,2AB =,PA 是圆柱的母线,3PA =,点C 是圆柱底面圆周上的点,30ABC ∠=.(1)求证:BC ⊥平面PAC ;(2)若点E 在PA 上且13EA PA =,求BE 与平面PAC 所成角的大小.18.设n S 为数列{}n a 的前n 项和,已知21122n n S n n na =-++.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.19.为发展业务,某调研组准备从国内()*n n ∈N个人口超过1000万的超大城市和8个人口低于100万的小城市中随机抽取若干个城市,对其使用A ,B 两个公司开发的扫码支付软件的情况进行统计,若一次抽取2个城市,全是小城市的概率为415.(1)求n 的值;(2)若一次抽取4个城市,①假设抽取的小城市的个数为X ,求X 的分布列和期望;②假设抽取的4个城市是同一类城市,求全为超大城市的概率.20.已知椭圆()2222:10x y a b a bΓ+=>>的离心率为13,其左右焦点为1F 、2F ,斜率为1的直线l 经过右焦点2F ,与椭圆Γ交于不同的两点A 、B ,1AF B △的周长为12.(1)求椭圆Γ的方程;(2)求1AF B △的面积;(3)过点2F 任作与坐标轴都不垂直的直线l 与椭圆交于M 、N 两点,在x 轴上是否存在一定点P ,使2PF 恰为MPN ∠的平分线?.21.已知函数32()2()f x ax x b x R =++∈,其中,a b R ∈,4()()g x x f x =+.(1)当103a =-时,讨论函数()f x 的单调性;(2)若函数()g x 仅在0x =处有极值,求a 的取值范围;(3)若对于任意的[]2,2a ∈-,不等式()1g x ≤在[]1,1-上恒成立,求b 的取值范围.向明中学2023学年第一学期高三年级数学开学考一、填空题:(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知全集{}1,2,3,4,5U =,集合{}4,5A =,则A =________.【答案】{}1,2,3【分析】根据补集的定义计算可得.【详解】解:因为全集{}1,2,3,4,5U =,集合{}4,5A =,所以{}1,2,3A =.故答案为:{}1,2,32.若22x =-,则x =________.【答案】【分析】将方程化为()22x =,即可解出该方程.【详解】()222x =-= ,x ∴=,因此,原方程的解为x =.故答案为:.【点睛】本题考查了二次方程虚根的求解,考查计算能力,属于基础题.3.函数lg y x =1110x ⎛⎫<≤ ⎪⎝⎭的值域为________【答案】(]1,0-【分析】利用对数函数的单调性易得函数lg y x =的值域.【详解】因为lg y x =在()0,+∞上单调递增,故在1,110⎛⎤ ⎥⎝⎦上也单调递增,所以1lg lg lg110x <≤,即1lg 0x -<≤,故lg y x =的值域为(]1,0-.故答案为:(]1,0-.4.已知sin m α=,则cos(π2)α-=___________.【答案】221m -##212m -+【分析】根据诱导公式结合二倍角公式求解即可.【详解】22cos(π2)cos 22sin 121m ααα-=-=-=-.故答案为:221m -5.直线2y =与直线310x y -+=的夹角的正弦值为______.【答案】31010【分析】依题意得到两直线的倾斜角的正切值,设两直线夹角为θ,则tan 3θ=,再根据同角三角函数的基本关系计算可得.【详解】设2y =的斜率为1k ,由2y =得11tan 0k θ==,设310x y -+=的斜率为2k ,由310x y -+=得22tan 3k θ==,设两直线夹角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦,则2tan tan 3θθ==,又sin tan 3cos θθθ==且22sin cos 1θθ+=,解得310sin 10θ=或310sin 10θ=-(舍去).故答案为:106.已知数列{}n a 的通项公式为6(3)377n n a n n a a n ---≤⎧=⎨>⎩,,,若{}n a 是递增数列,则实数a 的取值范围为_____.【答案】(2,3)【分析】根据数列{a n }是递增数列,由分段函数的性质,得a >1,且3-a >0,且78a a <,解不等式组即可得到结论.【详解】由()63377n n a n n a a n -⎧--≤=⎨>⎩,,是递增数列,∴78301a a a a ->⎧⎪>⎨⎪<⎩即231(3)73a a a a <⎧⎪>⎨⎪-⨯-<⎩解得23a <<故答案为(2,3)【点睛】本题考查分段函数单调性的应用,{a n }是递增数列,必须结合f (x )的单调性进行解题,但要注意{a n }是递增数列与f (x )是增函数的区别与联系.7.在()()5411x x +-的展开式中,3x 的系数是________.【答案】4-【分析】求得()()5411x x +-的展开式通项为()()54105,04,,kr kr k C C x r k r N k N +⋅-⋅≤≤≤≤∈∈,令3r k +=,然后分类讨论r 、k 的取值,可求出3x 项的系数,相加即可得出答案.【详解】()()5411x x +-的展开式通项为()()1,154541kkr r k r k r k r k T C x C x C C x +++=⋅⋅⋅-=⋅-⋅,其中05r ≤≤,04k ≤≤,r N ∈,N k ∈,令3r k +=.①当0r =,3k =时,系数为()3035414C C ⋅-=-;②当1r =,2k =时,系数为()21254130C C ⋅-=;③当2r =,1k =时,系数为()2154140C C ⋅-=-;④当3r =,0k =时,系数为()03054110C C ⋅-=.因此,在()()5411x x +-的展开式中,3x 的系数是43040104-+-+=-.故答案为:4-.【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,考查分类讨论思想的应用,属于中等题.8.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是______.【答案】16π【分析】根据题意,PD 的长度即为球半径,结合体积即可求得;再用球体的表面积计算公式即可得到结果.【详解】因为P ABCD -是正四棱锥,,高为r ,故11162333P ABCD V Sh r r -==⨯=⇒=,所以球O 的表面积244416S r πππ==⨯=.故答案为:16π.【点睛】本题考查球体表面积的求解,涉及正棱锥的几何性质,属综合基础题.9.已知P 为双曲线221x y -=右支上的一个动点,若点P 到直线2y x =+的距离大于m 恒成立,则实数m 的取值范围是______.【答案】(-∞【分析】把所求问题转化为求点P 到直线2y x =+的最小距离,结合平行线间的距离公式可求.【详解】双曲线221x y -=的渐近线方程为y x =±,而直线2y x =+与y x =平行,平行线间的距离d ==.由题意可知点P 到直线2y x =+的距离大于;所以m ≤故答案为:(-∞.【点睛】本题主要考查直线与双曲线的位置关系,双曲线上的点到直线的距离转化为平行直线间的距离,是这类问题的主要求解方向,侧重考查数学运算的核心素养.10.在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足1CD = ,则OA OB OD ++ 的最大值是________.【答案】1+【详解】试卷分析:设()()()22,,3,,1,31D x y CD x y CD x y =-=∴-+= ,表示以()3,0M 为圆心,r=1为半径的圆,而(1,OA OB OC x y ++=-+,所以OA OB OC t ++=,(1,,P PM ∴=,11PM r t PM r t ∴-≤≤+≤≤,故OA OB OD ++1+考点:1.圆的标准方程;2.向量模的运算11.已知函数()()R f x x ∈是偶函数,且()()22f x f x +=-,当[]0,2x ∈时,()1f x x =-,则方程()11f x x=-在区间[]10,10-上的解的个数是________.【答案】9【分析】由题设条件可得()f x 的奇偶性和周期性,结合()f x 在[]0,2上的解析式可作出()f x 在[]10,10-上的大致图像;构造函数()11g x x=-,利用奇偶性的判断及复合函数的单调性,可作出()g x 在[]10,10-上的大致图像;再分别考虑一下在[]0,2与[]2,4上()f x 与()g x 的交点情况,从而可作出()f x 与()g x 在[]10,10-上的交点情况,由此得解.【详解】因为函数()()R f x x ∈是偶函数,所以()()f x f x -=,又因为()()22f x f x +=-,令2t x -=-,则2x t =+,故()()22f t f t ++=-,即()()4f t f t +=-,即()()4f x f x +=-,所以()()4f x f x +=,即()f x 是周期为4的周期函数,因为当[]0,2x ∈时,()1f x x =-,利用()f x 的奇偶性可作出()f x 在[]2,2-上的图像,再利用()f x 的周期性可依次作出[][][][]10,6,6,2,2,6,6,10----上的图像,令()11g x x=-,由10x -≠得1x ≠±,故()g x 的定义域关于原点对称,又()()1111g x g x x x-===---,所以()g x 也是偶函数,当01x ≤<时,()11g x x =-,由1y t=与1t x =-易知()g x 在[)0,1上单调递增,()()min 01g x g ==;同理:当1x >时,()g x 在()1,+∞上单调递增,且()101g x x=<-恒成立;再利用()g x 的奇偶性,即可作出在[]10,10-上的图像,又因为当02x ≤≤时,由()11f x x =-得111x x-=-,解得0x =或2x =,故()f x 与()g x 在[]0,2上有两个交点,特别地,当24x ≤≤时,易知()3f x x =-,由()11f x x =-得131x x-=-,整理得()220x -=,即2x =,故()f x 与()g x 在[]2,4上只有一个交点,至此,利用()f x 与()g x 的奇偶性可作出两者的图像(含交点情况)如图,显然共有9个交点,所以方程()11f x x=-在区间[]10,10-上的解的个数为9.故答案为:9.12.已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3;②{}n a 为等比数列;③{}n a 为递减数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是__________.【答案】①③④【分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=,因为20a >,解得235332a -=<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q+=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错;当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对;假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=,所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对.故答案为:①③④.【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.二、选择题:(本大题共有4题,满分18分,13、14题每题4分,15、16题每题5分)13.下列函数中,与函数y x =的奇偶性和单调性都一致的函数是()A.2y x =B.2log y x= C.tan y x= D.sin y x x=+【答案】D【分析】根据函数的奇偶性,结合求导分析单调性判断即可.【详解】函数y x =为奇函数,且在定义域R 上单调递增.对A ,2y x =为偶函数,且在(],0-∞上单调递减,在()0,∞+上单调递增,故A 错误;对B ,2log y x =无奇偶性,在()0,∞+上单调递增,故B 错误;对C ,tan y x =为奇函数,在()πππ,π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,故C 错误;对D ,()sin f x x x =+,则()()()sin f x x x f x -=-+-=-,故()f x 为奇函数,且()1cos 0f x x '=+≥,故sin y x x =+为奇函数,且在定义域R 上单调递增,故D 正确.故选:D14.明代数学家程大位(1533-1606年)所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二.试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度(即圆形半径)”(明代度量制:1步=5尺,1亩=240平方步,1丈=10尺,圆周率3.).A.6丈 B.8丈C.12丈D.16丈【答案】B【分析】由题得已知圆的面积,求圆的半径即可,注意单位的转换即可.【详解】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=,取3π=则2256r =,16r =步,又1丈=10尺,1步=5尺,故1丈=2步,故16r =步8=丈,故选B【点睛】本题主要考查圆的面积公式,注意单位转换即可,属于简单题.15.椭圆2211618x y +=上有10个不同的点1210,,,P P P ,若点T 坐标为(1,0),数列{}(1,2,,10)= n TPn 是公差为d 的等差数列,则d 的最大值为()A.579- B.579+ C.29D.89【答案】C【分析】设椭圆上任意点()00,P x y ,则由题意TP =TP 的最大值与最小值,从而得出d 的最大值即可.【详解】设椭圆上任意点()00,P x y ,则220011618x y +=,即22009188x y =-.故TP ====.又2211618x y +=上044x -≤≤,则当()4,0P -时,TP 取最大值5;当()4,0P 时,TP 取最小值3.此时13TP =,105TP =,故10192TP TP d -==,29d =.故选:C16.若*n ∈N 时,不等式(6)ln(0n nx x-≥恒成立,则实数x 的取值范围是()A.[1,6] B.[2,3]C.[1,3]D.[2,6]【答案】B【详解】原式有意义所以0x >,设()()6,ln n f n xn g n x ⎛⎫=-=⎪⎝⎭,则()(),f n g n 均为增函数.欲使*n N ∈时,()(),f n g n 同号,只需两函数图像和横坐标轴(n 为自变量)交点间的距离不超过1,即61x x-≤,解得[]2,3x ∈,检验2,3x =两个端点符合题意,所以[]2,3x ∈.选B.三、解答题:(本大题共有5题,满分78分)17.如图,AB 是圆柱底面圆的一条直径,2AB =,PA 是圆柱的母线,3PA =,点C 是圆柱底面圆周上的点,30ABC ∠= .(1)求证:BC ⊥平面PAC ;(2)若点E 在PA 上且13EA PA =,求BE 与平面PAC 所成角的大小.【答案】(1)证明见解析(2)15arcsin5或10arccos 5或6arctan 2.【分析】(1)依据线面垂直判定定理证明BC ⊥平面PAC ;(2)证明线面垂直,作出辅助线,找到BE 与平面PAC 所成角,求出各边长,求出所成角的大小.【小问1详解】因为PA ⊥底面ABC ,BC ⊂平面ABC ,所以PA BC ⊥,因为AB 为直径,所以ACBC ⊥,因为PA AC A = ,,PA AC ⊂平面PAC ,所以BC ⊥平面PAC .【小问2详解】由(1)知,BEC ∠为BE 与平面PAC 所成角.因为3PA =,30ABC ∠=︒,13EA PA =所以131,1,322AE AC AB BC AB =====,由勾股定理得:222EC EA AC =+=,225EB CE CB =+=所以36tan 22BCBEC EC∠==所以BE 与平面PAC 所成角为6arctan2.或15sin 5BC BEC EB ∠==,所以BE 与平面PAC 所成角为15arcsin 5.或10cos 5EC BEC EB ∠==所以BE 与平面PAC 所成角为10arccos 5.所以BE 与平面PAC 所成角为15arcsin5或10arccos 5或6arctan 2.18.设n S 为数列{}n a 的前n 项和,已知21122n n S n n na =-++.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.【答案】(1)证明见解析(2)78-【分析】(1)由题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】证明:因为21122n n S n n na =-++,即222n n S n na n +=+①,当2n ≥时,2112(1)2(1)(1)n n S n n a n --+-=-+-②-①②得,221122(1)22(1)(1)n n n n S n S n na n n a n --+---=+----,即122122(1)1n n n a n na n a -+-=--+,即12(1)2(1)2(1)n n n a n a n ----=-,所以11n n a a --=,2n ≥且*n ∈N ,所以{}n a 是以1为公差的等差数列.【小问2详解】由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以()121113n a n n =-+-⨯=-,所以22(1)12512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以当12n =或13n =时,n S 取得最小值,()21213min1162578228n S S S ⎛⎫===⨯-=- ⎪⎝⎭.19.为发展业务,某调研组准备从国内()*n n ∈N个人口超过1000万的超大城市和8个人口低于100万的小城市中随机抽取若干个城市,对其使用A ,B 两个公司开发的扫码支付软件的情况进行统计,若一次抽取2个城市,全是小城市的概率为415.(1)求n 的值;(2)若一次抽取4个城市,①假设抽取的小城市的个数为X ,求X 的分布列和期望;②假设抽取的4个城市是同一类城市,求全为超大城市的概率.【答案】(1)7n =;(2)①分布列见解析,期望为3215;②13.【分析】(1)利用古典概型的概率计算公式列方程,由此求得n .(2)①利用超几何分布的分布列计算公式,计算出分布列并求得数学期望.②利用古典概型的概率计算出所求的概率.【详解】(1)共()8n +个城市,抽取2个城市的方法种数是28C n +,其中全是小城市的情况种数为28C ,故全是小城市的概率是()()2828C 874C 8715n n n +⨯==++,即()()87210n n ++=,得7n =.(2)①由题意,知X 的可能取值为0,1,2,3,4.()0487415C C 10C 39P X ===;()1387415C C 81C 39P X ===;()2287415C C 282C 65P X ===;()3187415C C 563C 195P X ===;()4087415C C 24C 39P X ===.故X 的分布列为X01234P139839286556195239()182856232012343939651953915E X =⨯+⨯+⨯+⨯+⨯=.②若4个城市全是超大城市,共有47C 种情况;若4个城市全是小城市,共有48C 种情况,故全为超大城市的概率为474487C 351C C 70353==++.20.已知椭圆()2222:10x y a b a bΓ+=>>的离心率为13,其左右焦点为1F 、2F ,斜率为1的直线l 经过右焦点2F ,与椭圆Γ交于不同的两点A 、B ,1AF B △的周长为12.(1)求椭圆Γ的方程;(2)求1AF B △的面积;(3)过点2F 任作与坐标轴都不垂直的直线l 与椭圆交于M 、N 两点,在x 轴上是否存在一定点P ,使2PF 恰为MPN ∠的平分线?.【答案】(1)22198x y +=;(2)48217;(3)存在.【分析】(1)由题意可得412a =,可得3a =,由离心率可求1c =,结合222a b c =+可求28b =,从而可得椭圆Γ的方程;(2)设()()1122,,,A x y B x y ,且120,0y y ><,由11212ABF AF F BF F S S S =+,可得()1121212ABF S F F y y =⨯⨯-△,联立直线与椭圆的方程,由韦达定理及12y y -=即可求解;(3)设()()1122,,,M x y N x y ,设()():10l y k x k =-≠,假设存在点P 满足题意,则0PM PN k k +=,根据韦达定理即可求解.【小问1详解】由题意得1AF B △的周长为12,即412a =,所以23,9a a ==,又椭圆Γ的离心率为13,即13c a =,所以21,1c c ==,又222a b c =+,所以28b =,所以椭圆Γ的方程为22198x y +=.【小问2详解】由(1)得()()121,0,1,0F F -,则直线l 的方程为1y x =-,设()()1122,,,A x y B x y ,且120,0y y ><,由221981x y y x ⎧+=⎪⎨⎪=-⎩,得21716640,Δ0y y +-=>,则12121664,1717y y y y +=-=-,所以1248217y y -=,因为11212ABF AF F BF F S S S =+ ,所以()112121482217ABF S F F y y =⨯⨯-= ,即1AF B △的面积为48217.【小问3详解】设()()1122,,,M x y N x y ,设()():10l y k x k =-≠,由()221981x y y k x ⎧+=⎪⎨⎪=-⎩,得()222298189720k x k x k +-+-=,所以2212122218972,9898k k x x x x k k -+==++.若点P 存在,设(),0P m ,由题意得0PM PN k k +=,所以()()12121212110k x k x y y x m x m x m x m--+=+=----,所以()()()()1221110x x m x x m --+--=,即()()()221212229721821221209898k k x x m x x m m m k k --+++=-++=++,所以161440m -=,得9m =,即在x 轴上存在一定点()9,0P ,使2PF 恰为MPN ∠的角平分线.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.已知函数32()2()f x ax x b x R =++∈,其中,a b R ∈,4()()g x x f x =+.(1)当103a =-时,讨论函数()f x 的单调性;(2)若函数()g x 仅在0x =处有极值,求a 的取值范围;(3)若对于任意的[]2,2a ∈-,不等式()1g x ≤在[]1,1-上恒成立,求b 的取值范围.【答案】(1)()f x 在2(0,)5内是增函数,在(,0)-∞,2,5⎛⎫+∞⎪⎝⎭内是减函数.(2)88[,]33-(3)(,4]-∞-【分析】(1)先求得导函数,代入a 的值,根据零点及自变量x 、()f x '、()f x 的变化情况即可求得单调区间.(2)根据极值点的()0g x '=,即可判断出24340x ax ++≥成立,进而利用判别式求得a 的取值范围.(3)根据条件[2,2]a ∈-,可知Δ0<,从而判断出()g x 在[1,1]-上的最大值,进而可得关于,a b 的不等式组,根据a 的范围即可求得b 的取值范围.【详解】(1)先求得导函数为2()34(34)f x ax x x ax =+=+'当103a =-时,()(104)f x x x -'=+.令()0f x '=,解得10x =,225x =当x 变化时,()f x ',()f x 的变化情况如下表:x(,0)-∞020,5⎛⎫⎪⎝⎭252,5⎛⎫+∞ ⎪⎝⎭()f x '-0+0-()f x ↘极小值↗极大值↘所以()f x 在2(0,)5内是增函数,在(,0)-∞,2,5⎛⎫+∞ ⎪⎝⎭内是减函数.(2)32()4()(434)g x x f x x x ax =+=++''显然0x =不是方程24340x ax ++=的根.为使()g x 仅在0x =处有极值,必须24340x ax ++≥成立即有29640a ∆=-≤.解不等式,得8833a -≤≤.这时,()g x 在(),0∞-单减,()0,∞+单增,(0)g b =是唯一极值.因此满足条件的a 的取值范围是88[,33-.(3)2()(434)g x x x ax ++'=由条件[2,2]a ∈-,可知29640a ∆=-<从而24340x ax ++>恒成立.在[1,1]-上,当0x <时,()0g x '<;当0x >时,()0g x '>因此函数()g x 在[1,1]-上的最大值是(1)g 与(1)g -两者中的较大者.为使对任意的[2,2]a ∈-,不等式()1g x ≤在[1,1]-上恒成立,当且仅当(1)1(1)1g g ≤⎧⎨-≤⎩即22b a b a≤--⎧⎨≤-+⎩在[2,2]a ∈-上恒成立所以4b ≤-,因此满足条件的b 的取值范围是(,4]-∞-。
2016-2017年上海市向明中学高二上开学考
向明中学高二开学考数学卷2016.09一、填空题1. 集合{}1,3,21A m =--,{}23,b m =,若B A ⊆,则实数m =____________2. 已知关于x 的不等式()250a b x a b -+->的解是107x <,则关于x 的不等式ax b >的解集是____________3. 指数函数x y a =图像经过点13,8⎛⎫⎪⎝⎭,比较大小()2.1f ______()2.2f 4. 函数()f x 是定义在R 上的奇函数,且()32f -=-,则()()03f f +=____________5. 函数lg 7x y -=____________6. 若1sin 63πθ⎛⎫-= ⎪⎝⎭,则2cos 23πθ⎛⎫+= ⎪⎝⎭____________7. △ABC 中,1c =,b =,ABCS =A =____________8. 若函数2sin 1y x x =++最小值为2-,则k =____________9. 函数212y x =+的值域是____________ 10. 数列{}n a 中,11a =,25a =,()*21n n n a a a n N ++=-∈,则2012a =____________11. 已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________12. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n N ∈,{}2,3n S ∈,则k 的最大值为____________二、选择题13. 已知22cos sin 22y x x ππθθ⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭在2x =时有最小值,则θ的一个值是( ) A. 4π B. 2π C. 23π D. 34π 14. 数列1、85、157、83的一个通项公式是( ) 2n 22n n +22n n +22n n +15. 对任意实数,()f x 均取41x +、2x +、24x -+三者中的最小值,则()f x 的最大值是( ) A. 13 B. 43 C. 53 D. 8316. 等差数列{}n a 中,若123a =,d Z ∈,60a >,70a <,则公差d 的值为( )A. 2-B. 3-C. 4-D. 5-三、解答题17. 已知2παπ<<,0πβ-<<,且1tan 3α=-,1tan 7β=-,求2αβ+的值18. 已知0,2x π⎛⎫∈ ⎪⎝⎭,求sin cos sin cos y x x x x =++的最大值19. 已知函数()()()22lg 111f x a x a x ⎡⎤=-+++⎣⎦. (1)若()f x 定义域为R ,求实数a 的取值范围;(2)若()f x 值域为R ,求实数a 的取值范围.20. 若无穷数列{}n a 满足:只要()*,p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由.21. 等差数列{}n a 首项和公差都是23,n S 为{}n a 的前n 项和. (1)写出()11,2,3,4,5S i =构成的集合A ;(2)若将n S 中的整数项按从小到大的顺序构成数列{}n c ,求{}n c 的一个通项公式.参考答案一、填空题1. 12. 3,5⎛⎫-∞ ⎪⎝⎭ 3. > 4. 2 5. (0,7) 6. 79- 7. 45°或135° 8. 5 9. 10,2⎛⎤ ⎥⎝⎦10. 5 11. 15 12. 4 二、选择题13. B 14. D 15. D 16. C三、解答题17. 74π 18. 12 19.(1)()5,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)51,3⎡⎤⎢⎥⎣⎦ 20.(1)16;(2){}n a 具有性质P21.(1)220,2,4,,1033A ⎧⎫=⎨⎬⎩⎭; (2)当n 为奇,()()1314nn n c ++=;当n 为偶,()324n n n c +=。
高三入学试卷.doc
A .B .C .从第1秒末到第3秒末合外力做功为4W 。
从第3秒末到第5秒末合外力做功为一2W 。
从第5秒末到第7秒末合外力做功为 从第3秒末到第4秒末合外力做功为一O.75W 。
D. 3.投影仪的光源是强光灯泡,发光时必须用风扇给予降温。
高三物理新生入学试卷 %1. 选择题。
(本题共有10小题;每小题5分,共50分。
在每小题给出的4个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选不全的得2分,有错选或不答的得0分。
) 1. 如图所示,绝热气缸直立于地而上,光滑绝热活塞封闭一定质量的气体并静止在A 位置,气体分子章 的作用力忽略不计。
现将一个物体轻轻放在活塞上,活塞最终静止在B 位置(图中未画出),则活塞()A. 在B 位置时气体的温度与在A 位置时气体的温度相同B. 在B 位置时气体的压强比在A 位置时气体的压强大C. 在B 位置时气体单位体积内的分子数比在A 位置时气体单位体积内的分子数少D. 在B 位置时气体的平均速率比在A 位置时气体的平均速率大2. 物体沿直线运动的V —t 关系如图所示,己知在第1秒内合外力对物体做的功为W,则() 电动机未启动,灯泡绝对不可以发光。
电动机的电路元件符号是4. 放在粗糙水平面上的物块A 、B 用轻质弹簧秤相连,如图所示,物块与水平面间的动摩擦因数均为 今对物块A 施加一水平向左的恒力F,使A 、B 一起向左匀加速运动,设A 、B 的质量分别为m 、M,则弹簧秤的示数 OMF MFA. —— -----B.mM + m C. F-四n + M)&M mD. FWM )g Mm + M5. 如图,卷扬机的绳索通过定滑轮用力F 拉位于粗糙而上的木箱,使之沿斜而加速 向上移动。
在移动过程中,下列说法正确的是()A. F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B. F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C .木箱克服重力所做的功等于木箱增加的重力势能D.F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和6. 如图所示,竖直环A 半径为尸,固定在木板B 上,木板B 放在水平地面上, B 的左右两侧各有一档板固定在地上,8不能左右运动,在环的最低点静放有 一小球C, A 、B 、C 的质量均为m 给小球一水平向右的瞬时冲量,使小球获 得初速度比在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使带动风扇的电动机先启动后,灯泡才可以发光;环在竖直方向上跳起,初速度uo必须满足()A.最小值皿B.最大值C.最小值D.最大值7gr7. 在真空中的光滑水平绝缘面上有一带电小滑块,开始时滑块处于静止状态.若在滑块所在空间加一水平 匀强电场心,持续一段时间后立即换成与&相反方向的匀强电场化.当电场&与电场心持续时间相同时, 滑块恰好回到初始位置,且具有动能出.在上述过程中,&对滑块的电场力做功为W”冲量大小为L ; &对滑块的电场力做功为1恤,冲量大小为龙.则A. W x = 0.20E K = 0.80E KB. Iy=2I\C. = 0.25E K W 2 =0.75E KD.8. 位于坐标原点的波源产生一列沿x 轴正方向传播的简谐横波,波速400m/5.已知t=0时,波刚好传 播到x=40 m 处,如图所示,在x=400m 处有一接收器(图中未画出),贝U ,下列说法正确的是()A.波源开始振动时方向沿y 轴正方向B 、 波源的振动周期为T=0.05 s 厂、 厂、C. 若波源向x 轴负方向运动,则接收器接收到的波的频率小于波源的频率67 Zo ;40D. 该简谐横波在传播过程中只有遇到尺寸小于或等于20 m 的障碍物时才会发生明显的衍射现象9. 我国绕月探测工程的预先研究和工程实施已取得重要进展。
上海市向明中学2016-2017学年高三三模考试英语试题
2016学年第二学期向明中学高三英语质量检测第I卷(共100分)I. Listening Comprehension (1-10题,每题1分;11-20题,每题1.5分;共25分)Section ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. At a car shop. B. In a garage.C. At a gas station.D. In a parking lot.2. A. Guest and receptionist. B. Passenger and air hostess.C. Customer and shop assistant.D. Guest and waitress.3. A. Writing his term paper. B. Having a coffee break.C. Playing computer games.D. Attending an online school.4. A. To the bank. B. To a book store.C. To a shoe store.D. To the grocery.5. A. Walk to the station . B. Drive the woman to the station.C. Take a lift to the stationD. Take a walk with the woman.6. A. He missed it. B. He watched it.C. He disliked it.D. He would see it again.7. A. The woman is satisfied with her body shape.B. A relative will move in to live with them.C. The woman is expecting a baby.D. The woman is trying to lose weight.8. A. Go back to apply for the job again.B. Think about whether to quit the job.C. Get some training before quitting the job.D. Apply for another part-time job.9. A. The battery is not correctly positioned.B. The man doesn’t know how t he calculator works.C. The calculator needs a new battery.D. The man should enter the number in a different way.10. A. The job advertisement is written in French and Spanish.B. The notice appeared in French and Spanish newspapers.C. She would like to teach the man French and Spanish.D. French and Spanish are necessary for the job.Section BDirections: In Section B, you will hear several longer conversation(s) and short passage(s), and you will be asked several questions on each of the conversation(s) and the passage(s). The conversation(s) and passage(s) will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11. A. The couple beat the girl and abandoned her.B. The couple took the girl’s life.C. The couple hid the girl inside a freezer.D. The couple took the girl away from home in a suitcase.12. A. Jan.30 B. Jan.31 C. Feb.25 D. Feb.26.13. A. The couple will appear in court again on Feb. 25.B. The couple is accused of killing Kayleigh on Feb. 25.C. Krueger and Warner are currently at home.D. Both Krueger and Warner spoke for themselves during their first appearance in court.Questions 14 through 16 are based on the following story.14. A. Exercise leads only to modest weight loss without diet changes.B. Exercise can make people lose their weight as expected.C. Hoping to lose weight sometimes would be ruined due to bad habits.D. People can lose extra weight in an appropriate way.15. A. They didn’t get any check.B. They were unwilling to join the research.C. They were heart disease patients.D. They were heavy and young.16. A. The most exercised group lost more weight than expected.B. The non-exercise group gained five pounds in weight.C. The moderate exercises group lost the most of their weight.D. The three groups almost have no distinction.Questions 17 through 20 are based on the following conversation.17. A. Make an appointment for an interview.B. Send in an application letter.C. Fill in an application form.D. Make a brief self-introduction on the phone.18. A. Someone having a college degree in advertising.B. Someone experienced in business management.C. Someone ready to take on more responsibilities.D. Someone willing to work beyond regular hours.19. A. Travel opportunities. B. Handsome pay.C. Prospects for promotion.D. Flexible working hours.20. A. It depends on the working hours.B. It is about 500 pounds a week.C. It will be set by the Human Resources.D. It is to be negotiated.II. Grammar and Vocabulary (每题1分,共20分)Section ADirections:After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.Avocado(牛油果) imports soar as Chinese develop taste for “butter fruit”China’s soaring appetite for avocados, driven by demand from its health-conscious middle class, has made the “butter fruit” — unheard of a few years ago —the country’s star performe r in the (21) ______ (import) fruit market.Exports from Latin American nations such as Mexico and Chile are rising by about 250 per cent a year, (22) ______ (leap) from just 154 tonnes in 2012 to more than 25,000 tonnes in 2016.“More people are paying attention to healthy lifestyles and avocados meet that need,” said Zhang Hui, a sales manager at Fruitday, an online food delivery company.Even western fast-food brands such as KFC and McDonald’s are being forced to suit the changing tastes of their consumers.Yum China, which (23) ______ (operate) 5,000 KFC stores in the country, last month launched an “avocado series” of chicken burgers and wraps slathered with guacamole(鳄梨色拉) to help upgrade the image of (24) ______ fried chicken chain, sourcing the fruit from Mexico.“Avocado is viewed as a fruit (25) ______ nutritional value eclipses that of many other fruits,” said Joey Wat, Yum China’s chief operations officer. A planned three-week avocado promotion ended early due to high demand.China has almost no experience (26) ______ commercial avocado cultivation, meaning imports are likely (27) ______ (dominate) the market for years.In 2011, Mexico began exports to China, where the avocado was still “(28) ______ very rare fruit”, according to Alejandro Salas, a Mexican trade commissioner in Shanghai. He predicts that Chinese demand will help Mexico diversify away from the US, its top market. “This market will be the second (29) ______ (large)” he said.Mexican officials have held events to promote the fruit, teaching chefs about avocado and tofu smoothies — but last year the country was overtaken by Chile as the dominant exporter to China. Chile has the advantage of a free-trade agreement with China, (30) ______ Mexican fruit imports have a 10 per cent tariff(关税).Section BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.Counting the Cost of China’s Left-Behind ChildrenAs a growing number of village couples head to the cities in search of work, a generation of left-behind children is emerging in China. The number of these left-behind children living with their grandparents or great-grandparents is _____31_____ estimated at 60 million nationwide. These children often face ____32______ and emotional problems as well as challenges to their personal safety and ____33_____.In recent years, we have seen an increasing number of left-behind children suffering from death by drowning, poisoning, traffic accidents or fire incidents. Pan Lu, a researcher with the College of Humanities and Development Studies at China Agricultural University, points out that as their parents rush into cities for economic opportunities, they must rely on their children to take on some of the ____34______ of farming. Nevertheless, doing farm work at an early age makes children vulnerable to injury. Besides, the rights of these left-behind children are likely to be infringed upon(侵害). It is not ____35____ that they are beaten, threatened or even sexually assaulted.Education is yet another _____36_____. When the children are old enough, their parents will often putthem in packed boarding houses ____37______ to the public schools in order to finish their nine-year public education. However, because of the poor conditions of those houses, many left-behind children ____38______ to keep up. Some even end up ____39_____ school altogether. A survey conducted by the Population Development Center at China’s Renmin University, showed that only 88 percent of 14 year old left-behind children are still in school. Left-behind children are slowly becoming “lagging-behind” children. In the ____40_____ for economic opportunity and growth, these left-behind children are becoming victims. This is a social problem for which we must find a solution. An All-China Women’s Federation report suggests that the government should create a dynamic information system for the left-behind children and at the same time with the help of schools, families and communities set up a protection network the children can turn to.III. Reading(41 -55题,每题1分;56 – 66题,每题2分;67-70题,每题2分;Section D,10分;共55分) Section ADirections: For each blank in the following passages there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.The Psychology of DiscountingWhen retailers want to persuade customers to buy a particular product, they typically offer it at a discount. According to a new study to be published in the Journal of Marketing, they are missing a __41__.A team of researchers, led by Akshay Rao of the University of Minnesota’s Carlson School of Management, __42__consumers’ attitudes to discounting. Shoppers, they found, much prefer getting something extra free to getting something cheaper. The main reason is that most people are poor at fractions(分数).Consumers often struggle to realize, ___43__, that a 50% increase in___44__ is the same as a 33% discount in price. They overwhelmingly __45__the former is better value. In an experiment, the researchers sold 73% more hand lotion (护手霜) when it was offered in a bonus pack than when it carried an ___46___discount (even after all other effects, such as a desire to stockpile were controlled for).This ___47___ blind spot remains even when the deal __ 48____ favours the discounted product. In another experiment, this time on his undergraduates, Mr Rao offered two ___49___on loose coffee beans: 33% extra free or 33% off the price. The discount is by far the better proposition, but the supposedly clever students viewed them as equivalent.Studies have shown other ways in which retailers can exploit consumers’ mathematical__50___. One is to ____51___them with double discounting. People are more likely to see a bargain in a product that has been reduced by 20%, and then by an additional 25%, than one that has been subject to an equivalent, one-off, 40% reduction.Marketing types can draw lessons beyond just___52___, says Mr Rao. When advertising a new car’s efficiency, for example, it is more ___53___ to talk about the number of extra miles per gallon it does, rather than the equivalent percentage___54____ in fuel consumption.There may be lessons for regulators too. Even ___55___shoppers are easily foxed. Sending everyone back to school for maths refresher-courses seems out of the question. But more noticeably displayed unit prices in shops and advertisements would be a great help.41. A. trick B. point C. guide D. method42. A. communicated with B. looked at C. concerned about D. engaged in43. A. by contrast B. after all C. for example D. as usual44. A. quantity B. catalogue C. quality D. variety45. A. indicate B. assume C. deny D. confess46. A. attractive B. adequate C. essential D. equivalent47. A. mathematical B. subjective C. inevitable D. impressive48. A. invisibly B. clearly C. objectively D. blindly49. A. deals B. discounts C. situations D. decisions50. A. inaccessibility B. failure C. illiteracy D. dependence51. A. equip B. connect C. confuse D. motivate52. A. bargaining B. pricing C. advertising D. retailing53. A. deceptive B. aggressive C. logical D. convincing54. A. fall B. usage C. volume D. increase55. A. reasonable B. well-educated C. flexible D. good-temperedSection BDirection:Read the following three passages. Each passage is followed by several questions or unfinished sattments. For each of them there are four choices markedA, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)What are pillows really stuffed with? Not physically, but symbolically? The question occurred to me with the photos in the news and social media from the 50 cities around the world that staged public celebrations for International Pillow Fight Day. Armed with nothing more than bring-our-own sacrificial cushions, strangers struck heavily each other in playful feather from Amsterdam to Atlanta, Warsaw to Washington DC. But why? Is there anything more to this delightful celebration?As a cultural sign, the pillow is deceptively soft. Since at least the 16th Century, the humble pillow has been given unexpected meanings. The Chinese playwright Tang Xianzu who tells a famous story about a wise man who meets a depressed young scholar at an inn and offers him a magic pillow filled with the most vivid dreams of a seemingly more fulfilling life. When the young man awakens to discover that his happy 50-year dream has in fact come and gone in the sh ort space of an afternoon’s nap, our impression of the pillow’s power shifts from wonder to terror.Subsequent writers have likewise seized upon the pillow. When the 19th-Century English novelist Charlotte Brontë poetically observed “a ruffled(不平的) mind ma kes a restless pillow”, she didn’t just change the expected order of the adjectives and nouns, but instead she made it unclear the boundaries between mind and matter – the thing resting and the thing rested upon.It’s a trick perhaps Brontë learned from th e Renaissance philosopher Montaigne, who once insisted that “ignorance is the softest pillow on which a man can rest his head”. On Montaigne’s thinking, intelligence and happiness confront each other forever in a pillow fight that only one can win.With the words of Tang, Brontë, and Montaigne, we can perhaps more easily measure the attraction of the global pillow fight. Like a ritual of release, the annual international pillow fight amounts to a kind of cleansing, a brushing off of daily worries: an emptyi ng of the world’s collective mind. Rather than a launch-pad for weightless rest, the pillow is a symbol of heavy thought: an anchor that drags the world’s soul down – one that must be lightened.56. The example of Tang Xianzu is used to illustrate that__________.A. pillows gives people satisfactory dreamsB. dreams are always wonderful while the real world is cruelC. people’s impression of pillows changes from wonder to terrorD. pillows symbolically conveys the meaning in contrast to their soft appearance57. Which of the following is TRUE about Charlotte Brontë according to the passage?A. She wrote poems about pillows.B. She regarded pillows as reflections of our minds.C. She shared same viewpoint with Tang Xianzu on pillows.D. She was likely influenced by the thoughts of Renaissance.58. The underlined phrase in the 4th paragraph “ignorance is the softest pillow on which a man can rest his head” most probably means __________?A. Pillows give us comforts.B. Ignorant people can easily fall asleep.C. Pillows make people more intelligent.D. People can win happiness in the pillow fight.59. According to the author, why is Pillow Fight Day so popular around the world?A. Because it is a ritual release.B. Because it makes life delightful.C. Because it comforts restless mindsD. Because it contains profound meaning of life.(B)Seek Out a Unique BeachVISITOregon. For sun and fun away from the crowded beaches of Florida, check out the Oregon coast and its 363 miles of gorgeous shoreline, stretching from the Columbia River south to the redwood forests of California. Every beach is public and free. “The coast is a perfect place to watch sea lions sun themselves or simply see the mighty Pacific waves crash in the sunset followed by a seafood feast in one of the busy fishing communities located between the coves (小海湾),” says Bramblett. July and August aren’t peak gray whale migration season, but there’s still a good chance you could catch a glimpse of some of the 200 whales that spend the summers off the Oregon coast.SLEEPNext to a lighthouse. Imagine yourself an ancient mariner when you book a room overlooking the Pacific Ocean at the Heceta Head Lighthouse Bed and Breakfast in Yachats, Oregon. The working lighthouse, which dated to 1894, cast a bright beam 21 miles out to sea, making it the brightest light on the Oregon coast. The cliff-top rooms at the Light Keeper’s home nearby aren’t cheap—you’ll shell out up to $385 for a weekend night during peak season (price includes a seven-course breakfast).BEW AREDangerous currents. Unless you love cold water (or wear a wet suit), you may not want to venture into the sea off the Oregon coast, even during the summer. But if you do, be prepared for tip currents. To get out of a dangero us current, don’t panic, warns Tom Grill, a spokesman for the U.S. Lifesaving Association. Swim parallel to the beach until you’re no longer being pulled out to sea, then swim diagonally(成对角线地) toward the shore.BRINGBaby powder. Use a generous amount of baby powder to remove sand from your hands, feet or hair. The powder quickly absorbs moisture, allowing sand to fall off easily.60. It can be inferred from the section SLEEP that __________.A. the price of one night stay remains the same all the year aroundB. those who stay there can have a free access to the beach and the lighthouseC. those who want to stay there have to pay more during a tourist seasonD. the price includes the breakfast for seven people.61. What is suggested by the leaflet if you want to enjoy your stay at the beach?A. Avoid wearing wet suits.B. Never dive into the cold water off the coast.C. Bring baby powder to protect your skin from sand scratches.D. Don’t swim straight toward the shore when there’re dangerous currents.62. Oregon coast will provide you with all the following experiences except __________.A. a perfect view of sea lionsB. a mariner like stay in the more than 100-year-old lighthouseC. a seafood feast in the popular local communityD. sun and fun of the less crowded beach.(C)With the coming of big data age, data science is supposed to be starved for, of which the adaption can point a profound change in corporate competitiveness. Companies, both born in the digital era and traditional world are showing off their skills in data science. Therefore, it seems to have been creating a great demand for the experts of this type.Mr Carlos Guestrin, machine learning professor from University of Washington argues that all software applications will need inbuilt intelligence within five years, making data scientists —people trained to analyze large bodies of information —key workers in this emerging “cognitive” technology economy. There are already critical applications that depend on machine learning, a subfield of data science, led by recommendation programs, fraud detection systems, forecasting tools and applications for predicting customer behavior.Many companies that are born digital —particularly internet companies that have a great number of real-time customer interactions to handle — are all-in when it comes to data science. Pinterest, for instance, maintains more than 100 machine learning models that could be applied to different classes of problems, and it constantly fields requests from managers eager to use this resource to deal with their business problem. The factors weighing on many traditional companies will be the high cost of mounting a serious machine-learning operation. Netflix is estimated to spend $150m a year on a single application and the total bill is probably four times that once all its uses of the technology are taken into account.Another problem for many non-technology companies is talent. Of the computer science experts who use Kaggle, only about 1,000 have deep learning skills, compared to 100,000 who can apply other machine learning techniques, says Mr Goldbloom. He adds that even some big companies of this type are often reluctant to expand their pay scales to hire the top talent in this field.The biggest barrier to adapting to the coming era of “smart” applications, however, is likely to be cultural. Some companies, such as General Electric, have been building their own Silicon Valley presence to attract and develop the digital skills they will need.Despite the obstacles, some may master this difficult transition. But companies that were built, from the beginning, with data science at their center, are likely to represent serious competition.63. Which one is obstacle for many traditional companies to popularize learning operation?A. Technological problem.B. Expert crisis.C. High cost.D. Customer interactions.64. What can not be inferred from the passage about the machine learning?A. Machine learning operations are costly in Netflix.B. Machine learning plays an important role in existent applications.C. Machine learning experts are not highly paid in some non-technology companies.D. Machine learning models are not sufficient to solve business problems in Pinterest.65. The underlined word in the 3rd paragraph “fields” most probably means __________.A. avoidsB. createsC. solvesD. classifies66. Which of the following is the best title for this passage?A. Data science: a forefront force in tech businessB. Corporate competition: an obstacle to the transitionC. Machine learning : a key to smart technologyD. Technique experts: a decisive factor of the coming eraSection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the box. EachTime to Tame Silicon ValleyThe company Uber brings into very sharp focus the question of whether corporations can be said to have a moral character. If any human being were to behave with the single-minded and greed of the company, we would consider them anti-social.__67__ Therefore, it has an arrangement with Unroll.me, a company which offered a free service for unsubscribing from junk mail, to buy the contacts Unroll.me customers had had with rival taxi companies. Beyond that, it keeps track of the phones that have been used to book its services even after the original owner has sold them, but attempts this with Apple’s phones is forbidden by the company.Uber has also adjusted its software so that regulatory agencies that the company regarded as hostile would, when they tried to hire a driver, be given false reports about the location of its cars. Uber management booked and then cancelled rides with a rival company which took their vehicles out of circulation. __68__ The punishment for this behavior was so small that it was not worth worrying about.Uber promised not to use this software against law enforcement. __69__ Travis Kalanick of Uber got a personal criticism from Tim Cook, who runs Apple, but the company did not prohibit the use of the app. Too much money was invested in that.The “sharing economy” encourages the insecure and exploited to exploit others equally insecure to the profit of a tiny group of billionaires. __70__ The outgoing CEO of Yahoo, Marissa Mayer, who is widely judged to have been a failure, is likely to get a $186m payout. This may not be a cause for panic. Yet there’s an urgent political task to tame these companies, to ensure they are punished when they break the law, that they pay their taxes fairly and that they behave responsibly.Section D.Summary WritingDirections: Read the following passage. Summarize the main idea and the main point(s) of the passage in no more than 60 words. Use your own words as far as possible.Bicycle SharingFor years, bike-sharing plans have been common in big cities around the world, including in China. Examples include Paris’s Vélib and London’s Santander Cycles (“Boris bikes”). But these require customers to return the bicycles to docking stations (泊车位). In China, a more user-friendly approach is spreading rapidly. It involves bikes that can be paid for using a smartphone and left anywhere. GPS tracking enables them to be located with a mobile app. A ride typically costs only one yuan ($0.15) on a bike in an eye-catching colour.The first such service was launched in June 2015 by a startup called Ofo. The company now has around 2.5m yellow-framed bikes in more than 50 cities in China. Its main rival, Mobike, which started up only a year ago, says it has “several million” of its orange-wheeled bikes spread across a similar area. Bluegogo has half a million bikes in six Chinese cities. It plans to add a new city every two weeks.However, the dockless system is easy to abuse. Some riders hide the bikes in or near their homes to prevent others from using them. Another trick involves scratching off a bike’s QR code to stop others from scanning it. A bigger problem for the new firms is persuading people to use bikes instead of cars. Thirty years ago, 63% of Beijingers cycled to work. Now, only 12% do. Many people think that cycling is only for the poor. A dating-show contestant famously said in 2010 that she would “rather cry in a BMW than smile on a bike.” Cycling i s also dangerous. About 40% of road accidents involve bicycles, according to a report in 2013. Some city authorities accuse the bike-sharing firms of causing congestion. This month, the southern city of Shenzhen ordered limits on the number of shared bikes. Other cities, including Shanghai and Beijing, are considering similar measures.Despite some disadvantages, such user-friendly services represent the kind of green innovation that China wants and may even bring “a revolution”.第II卷(共40分)I. Translation(1-2句,每句3分;第3句4分;第4句5分;共15分)Directions: Translate the following sentences into English, using the words given in the brackets.1. 在这家超市可以买到各种圣诞装饰品。
高中开学前测试题及答案
高中开学前测试题及答案一、选择题(每题2分,共20分)1. 请选出下列句子中没有语病的一项。
A. 我们一定要提高警惕,防止不再发生类似事故。
B. 他虽然成绩优异,但是非常谦虚。
C. 经过老师的耐心指导,他的数学成绩有了明显的提高。
D. 为了提高学生的阅读能力,学校决定增加课外阅读时间。
答案:C2. 下列关于化学元素的说法,正确的是:A. 氢是所有元素中最轻的元素。
B. 氧是所有元素中最重的元素。
C. 碳的原子序数是12。
D. 钠的化学符号是N。
答案:A3. 以下哪个历史事件标志着中国近代史的开端?A. 鸦片战争B. 辛亥革命C. 五四运动D. 抗日战争答案:A4. 根据地理知识,以下哪个城市位于长江下游?A. 重庆B. 南京C. 武汉D. 宜宾答案:B5. 以下哪个选项是正确的数学公式?A. (a+b)² = a² + b²B. a² + b² = (a+b)²C. (a+b)(a-b) = a² - b²D. a³ + b³ = (a+b)(a² - ab + b²)答案:C6. 以下哪部作品是莎士比亚的四大悲剧之一?A. 《哈姆雷特》B. 《罗密欧与朱丽叶》C. 《威尼斯商人》D. 《第十二夜》答案:A7. 以下哪个选项是正确的英语语法规则?A. 主语和谓语必须在数上一致。
B. 形容词修饰动词。
C. 副词修饰名词。
D. 介词后面只能跟名词。
答案:A8. 以下哪个选项是正确的物理概念?A. 光速是宇宙中最快的速度。
B. 能量守恒定律是物理学的基本定律之一。
C. 牛顿第一定律是关于物体运动状态的定律。
D. 所有的化学反应都是放热反应。
答案:B9. 以下哪个选项是正确的生物分类?A. 动物界、植物界、细菌界B. 动物界、植物界、真菌界C. 动物界、植物界、病毒界D. 动物界、植物界、微生物界答案:B10. 以下哪个选项是正确的计算机术语?A. 硬件是指计算机的软件部分。
2017届上海市向明中学高三高考模拟文科数学试题及答案
2017年向明中学高考模拟考数学试卷(文科)命题人: 汪昌辉 审题人:杨德胜一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式128x ≤≤的解是 . 2.计算23lim(2)n nn n →∞+++=+L .3.在等差数列{}n a 中,33a =,45a =,则13a = . 4.已知复数2i z i=+(i 为虚数单位),则z z ⋅= . 5.已知两条直线1l :230ax y --=,2l :0164=-+y x .若1l 的一个法向量恰为2l的一个方向向量,则=a .6.函数2cos 3sin cos y x x x =+的最小值为 . 7.二项式431(3)x x+的展开式的各项系数的和为p ,所有二项式系数的和为q ,则:p q 的值为 .8.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的表面积为___________9. 在5张卡片上分别写上数字1,2,3,4,5,然后把它们混合,再任意排成一行,组成5位数,则得到能被5整除的5位数的概率为______。
10.已知实数x y ,满足33010x x y x y ≤⎧⎪+-≥⎨⎪-+≥⎩,则22x y +的最小值是 .11.设P 为双曲线2213x y -=虚轴的一个端点,Q 为双曲线上的一个动点,则PQ 的最小值为 .12.已知曲线C :922=+y x )0,0(≥≥y x 与直线4x y +=相交于点1122()()A x y B x y ,,,,则1221x y x y +的值为 .13.已知正方形ABCD 的边长为1,记以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a .若,{1,2,3}i j ∈且i j ≠,则()CD +⋅u u u ri j a a 的所有可能取值14. 定义一个对应法则f :()()/,,0,0P m n P m n →≥≥.现有点()/1,3A 与()/3,1B 点,点/M 是线段//A B 上一动点,按定义的对应法则f :/M M →。
2024-2025学年上海向明中学高三上学期数学月考试卷(2024.10)(含答案)
1向明中学2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知全集,集合,则_________.2.直线的倾斜角为_________. 3.等差数列的前7项的和为28,则_________.4.的展开式中,常数项为_________.5.已知关于方程的解_________.6.若,则_________.7.已知,,则_________.8.已知向量,,则在上的数量投影为3,则_________.9.已知函数,则_________.10.已知,若上恰有两个不相等的实数、满足,则实数的取值范围是_________.11.设函数的定义域关于原点对称,且不恒为0,下列结论:①若是奇函数或偶函数,则满足的奇函数与偶函数中恰有一个为常函数,其函数值为0;②若既不是奇函数也不是偶函数,则满足的奇函数与偶函数不存在;③若为奇函数,则满足的奇函数与偶函数存在无数对;④若为偶函数,则满足的奇函数与偶函数存在无数对.其中{}|2U x x =<{}|1A x x =<-A =230x y --={}n a 4a =322x x ⎛⎫- ⎪⎝⎭21,1,()1, 1.x x f x x x ⎧->=⎨-≤⎩x ()2f x =x =1z i =+1zi +=cos α=(0,)α∈πtan 2α=(1,)a x = (0,sin 2)b = a bx =2()(1)x f x e f x '=+(1)f '=()sin (0)f x x =ωω>0,2π⎡⎤⎢⎣⎦s t ()()2f s f t +=ω()f x ()f x ()f x ()()()f x p x q x =+()p x ()q x ()f x ()()()f x p x q x =+()p x ()q x ()f x ()()()f x p x q x =()p x ()q x ()f x ()(())f x q p x =()p x ()q x2正确的是_________.(填写序号).12.已知平面向量,,,,,两两都不共线.若,,2,3,4,5),则的最大值是_________.二、选择题(共4题,13~14题每题4分,15~16题每题5分,满分18分)13.“两个非零向量与共线”是“,,成等比数列”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.在一次试验中,随机事件,满足,,则( )A .事件,一定互斥B .事件,一定不互斥C .事件,一定互相独立D .事件,一定不互相独立15.已知函数的导函数,若函数有一极大值点为,则实数的取值范围为( )A . B .C .D .16.已知集合是由某些正整数组成的集合,且满足:若,则当且仅当(其中、,),或(其中正整数、且).现有如下命题:①;②集合,则下列选项中正确的是( )A .①是假命题,②是假命题 B .①是真命题,②是假命题C .①是假命题,②是真命题D .①是真命题,②是真命题三、解答题(本大题共5是,共分)17.(分)在正三棱柱中,,,求:(1)异面直线与所成角的大小;1a 2a 3a 4a 5a 6a111i i a a a +=-=1i i a a +⋅=1i =123456()a a a a a a ⋅++++ (,)x a b = (,)y b c =a b c A B 1()2P A =2()3P B =A B A B A B A B ()f x 2()(2)()f x x x x m '=+++()f x 2-m (2,0)-(]4,2--(,4)-∞-(,2)-∞-S a S ∈a m n =+m n S ∈m n ≠a p q =+p q S ∉p q ≠4S ∈{}|35,x x n n N S =+∈⊆141414181878++++=7714+=111ABC A B C -1AB =12BB =11B C 1A C3(2)四棱锥的体积.18.(分)已知,,分别为三个内角,,的对边,且.(1)求;(2)若是锐角三角形,求的最大值.19.(分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献生产口罩的固定成本为400万元,每生产万箱,需另投入成本万元,当产量不足60万箱时,;当产量不小于60万箱时,,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润(万元)关于产量(万箱)的函数关系式;(3)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?111A B BCC -6814+=a b c △ABC A B C 22cos b c a C =+A a =△ABC 1)b c ++6814+=x ()p x 31()50150p x x x =+6400()1011860p x x x=+-y x420.(分)如图所示,在平面直角坐标系中,椭圆的左、右焦点分别为、,设是第一象限内上的一点,、的延长线分别交于点、.(1)求的周长;(2)求面积的取值范围;(3)设、分别为、的内切圆半径,求的最大值.46818++=22:12x y Γ+=1F 2F P Γ1PF 2PF Γ1Q 2Q 12△PF Q 12△PF Q 1r 2r 12△PF Q 21△PF Q 12r r -521.(分)已知定义域为的函数,其导函数为,若对任意的都有,则称函数为“导可控函数”.(1)请说明是否为“导可控函数”;(2)若函数为“导可控函数”,且存在正数,使在上恒成立,试判断函数的零点个数,并说明理由;(3)若函数为“导可控函数”,且存在、,使得,证明:对任意的实数、,都有.46818++=R ()y f x =()y f x ''=x R ∈()1f x '<()y f x =()sin 2xf x x =-()y f x =M ()f x M ≤x R ∈()y f x x =-()y f x =a ()b a b <()()f a f b =1x 2[]x a,b ∈12()()2b af x f x --<6参考答案一、填空题1.;2.;3.;4.;5.;;7.; 8.-3; 9.; 10.; 11. ①③④ 12.11.设函数的定义域关于原点对称,且不恒为0,下列结论:①若是奇函数或偶函数,则满足的奇函数与偶函数中恰有一个为常函数,其函数值为0;②若既不是奇函数也不是偶函数,则满足的奇函数与偶函数不存在;③若为奇函数,则满足的奇函数与偶函数存在无数对;④若为偶函数,则满足的奇函数与偶函数存在无数对.其中正确的是 (填写序号).【答案】①③④【解析】对于①,则,当为奇函数时, 则即;当为偶函数时,则即即满足的奇函数与偶函数中恰有一个为常函数, 其函数值为 0 , 故①正确;对于②,当时,不具有奇偶性,满足的奇函数与偶函数存在, 故②错误;对于③为奇函数时,令奇函数,[)1,2-1arctan 24122log 31-或43e -[)5,912()f x ()f x ()f x ()()()f x p x q x =+()p x ()q x ()f x ()()()f x p x q x =+()p x ()q x ()f x ()()()f x p x q x =()p x ()q x ()f x ()(())f x q p x =()p x ()q x ()()(),f x p x q x =+()()()()()f x p x q x p x q x -=-+-=-+()f x ()()()20,f x f x q x +-==()0q x =()f x ()()()20,f x f x p x --==()0,p x =()()()f x p x q x =+()p x ()q x ()()2,,f x x x p x x =+=()2q x x =()f x ()()()f x p x q x =+()p x ()q x (),f x ()()1,1p x f x n N n =∈+7偶函数则,因为,故存在无数对奇函数与偶函数, 满足, 故③正确;对于④为偶函数,令奇函数, 偶函数则,因为,故存在无数对奇函数与偶函数, 满足.故④正确.故选:①③④.12.已知平面向量,,,,,两两都不共线.若,,2,3,4,5),则的最大值是 .【答案】【解析】由于, 于是的最大值就是在上的投影之和最大值,由,知,相邻两向量夹角为, 以相邻两向量的模为边长的第三边长度为 1 ,取, 作出图象如下图所示,则, 由图可知, 当时, 所有向量在上的投影之和最大,故答案为:.二、选择题13.C14.B15.D16.C15.已知函数的导函数,若函数有一极大值点为()1,q x n n N =+∈()()()p x q x f x =n N ∈()p x ()q x ()()()f x p x q x =(),f x ()121,n p x xn N +=∈()()21,,n q x f x n N +=∈()()()121n q p x qx f x -⎛⎫== ⎪⎝⎭n N ∈()p x ()q x ()()()f x q p x =1a 2a 3a 4a 5a 6a111i i a a a +=-= 1i i a a +⋅=1i =123456()a a a a a a ⋅++++ 1211a = ()123456•a a a a a a ++++23456,,,,a a a a a 1a 111i i a a a +=-={})1•12345i i a a ,,,,+=∈ 6π1a OA =2416,,OB a OD a OF a === 351,a OC a OE ==OA()1234563•12a a a a a a ∴++++≤++1310222--=12()f x 2()(2)()f x x x x m '=+++()f x8,则实数的取值范围为( )A . B .C .D .【答案】C【解析】由题意得的根为,, 且, 解得. 故选C.16.已知集合是由某些正整数组成的集合,且满足:若,则当且仅当(其中、,),或(其中正整数、且).现有如下命题:①;②集合,则下列选项中正确的是( )A .①是假命题,②是假命题 B .①是真命题,②是假命题C .①是假命题,②是真命题D .①是真命题,②是真命题【答案】C【解析】因为若, 则当且仅当(其中,且, 或(其中,且),且集合是由某些正整数组成的集合,所以,因为, 满足(其中,且), 所以,因为, 且, 所以, 故①是假命题;记,当时,, 因为,, 所以;下面讨论元素与集合的关系,当时,, 当时,,, 所以,当时,, 所以,当时,, 所以,依次类推,2-m (2,0)-(]4,2--(,4)-∞-(,2)-∞()'0f x=2,-2<-<4m <-S a S ∈a m n =+m n S ∈m n ≠a p q =+p q S ∉p q ≠4S ∈{}|35,x x n n N S =+∈⊆a S ∈a m n =+m n S ∈)m n ≠a p q =+,,p q S p ∉*q Z ∈p q ≠S 1,2S S ∉∉312=+a p q =+,,p q S p ∉*q Z ∈p q ≠3S ∈413=+1,3S S ∉∈4S ∉{}|35A x x n ,n N ==+∈0n =5A ∈514,1S =+∉4S ∉5S ∈()31n n …S 1n =3S ∈2n =624=+2,4S S ∉∉6S ∈3n =936,3,6S S =+∈∈9S ∈4n =1239,3,9S S =+∈∈12S ∈9当时,,, 所以,下面讨论时,集合中元素与集合的关系,因为, 有且, 所以,综上所述,, 有,即, 故②是真命题.故选:.三.解答题17.(1) (218.(1) (2)19.(1)(2)当生产80万箱时,可获得最大利润1300万元.20.(分)如图所示,在平面直角坐标系中,椭圆的左、右焦点分别为、,设是第一象限内上的一点,、的延长线分别交于点、.(1)求的周长;(2)求面积的取值范围;(3)设、分别为、的内切圆半径,求的最大值.【答案】(1)(2)(3)【解析】(1)为椭圆的两焦点, 且为椭圆上的点,3n …()3331,3n n S =+-∈()31n S -∈3n S ∈1n …A S x A ∀∈35,3,5x n n S S =+∈∈35n ≠x S ∈x A ∀∈x S ∈{}|35x x n ,n N S =+∈⊆C 3A π=+31504000601506400146060x x x y x x x ⎧-+-<<⎪⎪=⎨⎪--+≥⎪⎩46818++=22:12x y Γ+=1F 2F P Γ1PF 2PF Γ1Q 2Q 12△PF Q 12△PF Q 1r 2r 12△PF Q 21△PF Q 12r r -(01312,F F C 2,P Q10, 从而得到的周长为.由题意, 得, 即的周长为(2) 由题意可设过的直线方程为,联立, 消去得则所以令则时等号成立, 即时),所以故面积的取值范围为.(3) 设, 直线的方程为将其代入椭圆的方程可得整理可得,则,得,故当时, 直线的方程为将其代入椭圆方程并整理可得同理, 可得,因为1221222PF PF Q F Q F a ∴+=+=21PQ F ∆4a 4a =12PF Q ∆2PQ 1x my =+()()0022200,,,(0,0)P x y Q x y x y >>22122x my x y =+⎧⎨+=⎩x ()222210,m y my ++-=02022221,,22m y y y y m m +=-⋅=-++02y y -==211(0),22t t m =<≤+02y y -=≤12t =0m =121202020211222PF Q S F F y y y y y y ∆=-=⨯⋅-=-≤12PF Q ∆(0()111Q x ,y 1F P ()0011y y x x =++Γ()()2220201121y x x x ++=+()222000234340x x y x x x ++--=2000103423x x x x x --=+0103423x x x +=-+0001000341,12323y x y y x x x ⎛⎫+=-+=- ⎪+++⎝⎭0010034.2323x y Q ,x x ⎛⎫+-- ⎪++⎝⎭01x ≠2F P ()0011y y x x =--()2220000234340x x y x x x -+--+=00200342323x y Q ,x x ⎛⎫- ⎪--⎝⎭12211211,22PF Q PF Q S S ∆∆=⨯=⨯11所以当且仅当时, 等号成立.轴时, 易知,综上,的最大值为.21.(1)不是导可控函数(2)1个(3)略12r r -===00002323y y x x ⎫==--=⎪+-⎭00=≤13=00x y ==2PF x ⊥11,P y ⎛= ⎝2y =1215r r -===12r r -13。
2017学年第一学期向明中学期末考
2017学年第一学期向明中学期末考一、填空题1. 函数()lg 2x f x x =-的定义域为 2.函数y =3. 函数()()20f x x x =<的反函数()1f x -=4. 函数()24-30,1x y a a a +=>≠的图像经过定点5. 若函数()2122f x x x =++,则函数()f x 的值域为 6. 设函数()212 1222x x x f x x x x +≤-⎧⎪-<<⎨⎪≥⎩,若()5f x =,则x =7. 若7log 3a =,7log 4b =,用a b 、表示7log 42=8. 若函数()()2log 43f x ax x a =-+-的值域为R ,则实数a 的取值范围是 9. 若函数()f x =是奇函数,则实数a 的值是10. 函数()02 01x x f x x ≥⎧=⎨<⎩,则满足不等式()()212f x f x ->的x 的范围是 11. 若()2log f x x m =-有两个零点1x ,2x (12x x >),则22124x x +的最小值为 12. 设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数),若函数()g x =像上存在点()00,x y 使()()00ff y y =,则a 的取值范围是二、选择题13. 下列函数中,既是偶函数,又是在区间()0,+∞上单调递减的是( ) A.21y x= B.2x y = C.ln y x = D.3y x =- 14. 若01a <<,1b <-,则函数()x f x a b =+的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限15. 若函数()2y f x =-的图像与函数log 2xy =的图像关于直线y x =对称,则()f x =( )A.223x -B.213x -C.23xD.213x +16. 已知函数()()1221log 1123x x x n f x n x m ---⎧-≤≤⎪=⎨≤≤⎪-⎩(n m <)的值域是[]1,1-,有下列结论:①当0n =时,(]0,2m ∈;②当12n =时,1,22m ⎡⎫∈⎪⎢⎣⎭;③当10,2n ⎛⎤∈ ⎥⎝⎦时,(]1,2m ∈;④当10,2n ⎛⎤∈ ⎥⎝⎦时,(],2m n ∈; 其中结论正确的所有序号是( )A.①②B.③④C.②③D.②④三、简答题17. (本题满分7分)已知函数()2log f x x =,解函数方程()()213f x f x +=-。
2023届上海市向明中学高三上学期开学考试数学试题(解析版)
2023届上海市向明中学高三上学期开学考试数学试题一、单选题 1.函数232()log 2xf x x x+=-的大致图象是( ) A . B .C .D .【答案】D【分析】探讨给定函数的性质,结合当(0,2)x ∈时函数()f x 值的符号即可判断作答.【详解】函数232()log 2x f x x x+=-定义域为(2,2)-,232()()log ()2x f x x f x x --=-=-+, 则有函数()f x 是奇函数,其图象关于原点对称,选项B ,C 不满足; 当(0,2)x ∈时,212xx +>-,即32log 02x x+>-,因此()0f x >,选项A 不满足,D 符合条件. 故选:D2.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是( )A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态 【答案】D【分析】根据T 与lg P 的关系图可得正确的选项.【详解】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误. 当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<, 故此时二氧化碳处于超临界状态,故D 正确. 故选:D3.设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论错误的是( )A .当04x =时,||PF 的值为6B .当02x =时,抛物线C 在点P 处的切线方程为220x y --= C .||||PA PF +的最小值为3D .||||PA PF -【答案】B【分析】由焦半径求出||PF 的值判断A ,利用导数的几何意义可得切线方程判断B ,利用抛物线定义结合图象可判断CD.【详解】当04x =时,02y =,故04246PF y =+=+=,故A 正确;当02x =时,012y =,由228,8x x y y ==可得4x y '=,所以212x y ='=, 所以抛物线C 在点P 处的切线方程为()11222y x -=-,整理得:210x y --=,故B 错误;如图,过点P 作PB ⊥准线于点B ,则由抛物线定义可知:PF PB =,则PA PF PA PB +=+,当A 、P 、B 三点共线时,和最小,最小值为1+2=3,故C 正确;由题意得:()0,2F ,连接AF 并延长,交抛物线于点P ,此点即为||||PA PF -取最大值的点,此时415PA PF AF -=+ 其他位置的点P ',由三角形两边之差小于第三边得:5P A P F AF ''-< 故||||PA PF -5D 正确. 故选:B.4.直线1y =与函数π()2sin 26f x x ⎛⎫=- ⎪⎝⎭的图像在y 轴右侧交点的横坐标从左到右依次为12n a a a 、、、,下列结论:①π2cos 23f x x ⎛⎫-=- ⎪⎝⎭;②()f x 在π5π,612⎡⎤⎢⎥⎣⎦上是减函数;③12n a a a 、、、为等差数列;④121234πa a a +++=.其中正确的个数是( ) A .3 B .2C .1D .0【答案】C【分析】利用图像的平移变换、诱导公式、三角函数的整体代换技巧以及正弦函数的图像与性质、等差数列的概念进行判断求解.【详解】因为函数π()2sin 26f x x ⎛⎫=- ⎪⎝⎭,所以πππ5π2sin 2()2sin 22cos 23366f x x x x ⎛⎫⎛⎫⎛⎫-=--=-≠- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故①错误;当π5π,612x ⎡⎤∈⎢⎥⎣⎦,ππ2π2[,]663x -∈,因为2sin y x =在π2π[,]63上不单调,故②错误;因为1y =与π()2sin 26f x x ⎛⎫=- ⎪⎝⎭的图像在y 轴右侧交点的横坐标从左到右依次为12n a a a 、、、,即π2sin 216x ⎛⎫-= ⎪⎝⎭,解得ππ6x k =+或ππ2k +,Z k ∈,因为0x >,所以1242ππππ,,π,π,6262a a a a ==+=+=,不是等差数列,故③错误;因为1242ππππ,,π,π,6262a a a a ==+=+=,所以1212ππππππ(π)(π)(5π)(5π)626262a a a +++=++++++++⨯++⨯ ππ662(12345)π34π62=⨯+⨯+⨯++++⨯=,故④正确.故A ,B ,D 错误. 故选:C.二、填空题5.已知集合{2,3,5},{1,5}A B ==,则A B ⋃=_________. 【答案】{1,2,3,5}【分析】利用集合的并集运算求解. 【详解】因为集合{2,3,5},{1,5}A B ==, 所以{1,2,3,5}A B ⋃=. 故答案为:{1,2,3,5}. 6.已知R a ∈,则“1a >”是“11a<”的___________条件. 【答案】充分不必要 【分析】根据题意解出11a<,通过逻辑推理得到答案. 【详解】因为1111001a a a a a a--<⇔<⇔>⇔>或a <0, 所以“1a >”是“11a<”的充分不必要条件. 故答案为:充分不必要. 7.复数21iz i=-(i 是虚数单位)的虚部是_______. 【答案】【详解】试题分析:因21i z i=-,故其虚部为,应填.【解析】复数的有关概念和运算.8.已知向量a 与b 的夹角为120︒,3a =,13+=a b ,则b =________________. 【答案】4【详解】试题分析:向量a 与b 的夹角为120︒, 313a a b =,+=,则3··cos1?202a b a b b ︒=-=, 222||2a b a a b b +⋅++=.所以21393b b =-+,则1b =- (舍去)或4b =.【解析】平面向量的数量积.9.若n S 为等差数列{}n a 的前n 项和,且()1522,22n n a a S n a n +==-+,则数列{}n a 的通项公式是______________. 【答案】41n a n =-,*N n ∈【分析】根据已知,利用等差数列的性质以及通项公式求解. 【详解】因为等差数列{}n a 满足1522a a +=, 所以3222a =,所以311a =, 又因为()22n n S n a n =-+,所以()2122=2=+2S a a a -,即214a a =+,所以4d =, 所以3(3)11(3)441n a a n d n n =+-=+-⋅=-,*N n ∈. 故答案为:41n a n =-,*N n ∈.10.过点(2,3)-作圆224x y +=的切线,则切线方程是_____________. 【答案】512260x y +-=或2x =-【分析】对斜率是否存在进行分类讨论,利用待定系数法,根据切线的性质进行求解. 【详解】当切线l 的斜率存在时,设切线方程为3(2)y k x -=+, 即230kx y k -++=,又圆224x y +=的圆心为(0,0),半径2r =, 所以221d k ==+,解得512k =-,所以切线l 的方程为512260x y +-=, 当切线l 的斜率不存在时,切线方程为2x =-,与圆224x y +=相切,满足题意,所以切线l 的方程为2x =-. 故答案为:512260x y +-=或2x =-.11.某医院从7名男医生(含一名主任医师),6名女医生(含一名主任医师)中选派4名男医生和3名女医生支援抗疫工作,若要求选派的医生中有主任医师,则不同的选派方案数为_________________. 【答案】550【分析】分选派的主任医师只有一名男主任,只有一名女主任,男,女主任医师均选派,三种情况,结合组合知识进行求解,再相加即可.【详解】若选派的主任医师只有一名男主任,此时再从剩余的6名男医生选派3名男医生,从5名女医生(主任医师除外)选派3名医生,有3365C C 200=种,若选派的主任医师只有一名女主任,此时再从剩余的6名男医生(主任医师除外)中选派4名男医生,从5名女医生中选派2名医生,有4265C C 150=种,若男,女主任医师均选派,此时再从剩余的6名男医生中选派3名,5名女医生中选派2名,有3265C C 200=种,综上:不同的选派方案有200+150+200=550种. 故答案为:55012.某地区教研部门开展高三教师座谈会,每名教师被抽到发言的概率均为p ,且是否被抽到发言相互独立,已知某校共有8名教师参加座谈会,记X 为该校教师中被抽到发言的人数,若()169D X =,且()4E X >,则()E X =_____. 【答案】163【分析】根据题意得到随机变量()~8,X B p ,结合二项分布的期望与方差的计算公式,求得23p =,进而求得()E X 的值. 【详解】由题意,每名教师被抽到发言的概率均为p ,且是否被抽到发言相互独立, 所以随机变量()~8,X B p , 因为()169D X =,可得()16819p p -=,解得13p =或23p =, 又因为()4E X >,可得()84E X p =>,所以23p =, 所以()216833E X =⨯=.故答案为:163. 13.在三棱锥P ABC -中,2PA PB PC ===,且PA PB PC 、、两两互相垂直,则三棱锥P ABC -的外接球的体积为__________.【答案】【分析】根据题意,将三棱锥补形为立方体,从而求出立方体的体对角线即为外接球的直径,求出半径,进而求出外接球的体积.【详解】因为2PA PB PC ===,且PA PB PC 、、两两互相垂直,所以三棱锥P ABC -可补形为立方体,三棱锥P ABC -的外接球即为立方体的外接球, 则立方体的体对角线为其外接球的直径,设三棱锥P ABC -的外接球的半径为r ,则2r所以r =34π3==V r .故答案为:14.已知由样本数据(),(1,2,3,,10)i i x y i =组成的一个样本,得到回归直线方程为ˆ20.4yx =-,且2x =,其中发现两个歧义点(2,1)-和(2,1)-偏差过大,去除这两点后,得到新的回归直线的斜率为3,则新的回归直线方程为______________.【答案】ˆ33yx =- 【分析】由题可得 3.6y =,进而可得新的平均数,根据回归直线方程过样本中心结合条件即得.【详解】因为ˆ20.4yx =-,且2x =, 所以220.4 3.6y =⨯-=,去除两个歧义点(2,1)-和(2,1)-后新的平均数为: 210582X ⨯==, 3.610982Y ⨯==,又新的回归直线的斜率为3, 所以95ˆ3322a=-⨯=-, 所以新的回归直线方程为ˆ33y x =-. 故答案为:ˆ33yx =-. 15.已知a ,b 为正实数,直线y =x -a 与曲线y =ln(x +b )相切于点(x 0,y 0),则11a b+的最小值是_______________. 【答案】4【分析】由题意结合导数的几何意义、导数的运算可得01x b =-、00y =,进而可得1b a +=,再利用()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解.【详解】对()ln y x b =+求导得1y x b'=+, 因为直线y =x -a 与曲线y =ln(x +b )相切于点(x 0,y 0), 所以011x b=+即01x b =-, 所以()()00ln ln 10y x b b b =+=-+=,所以切点为()1,0b -, 由切点()1,0b -在切线y =x -a 上可得10b a --=即1b a +=,所以()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭,当且仅当12b a ==时,等号成立. 所以11a b+的最小值是4. 故答案为:4.【点睛】本题考查了导数的运算、导数几何意义的应用,考查了基本不等式求最值的应用及运算求解能力,属于中档题.16.已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【分析】把函数零点问题转化为两函数交点问题,再结合函数图像,利用导数求切线进行求解.【详解】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩,因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点, ,0y ax x =->与ln y x =必有2个交点,设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.三、解答题17.记关于x 的不等式1101a x +-<+的解集为P ,不等式23x +<的解集为Q . (1)若3a =,求P ;(2)若P Q Q ⋃=,求实数a 的取值范围. 【答案】(1)()1,3- (2)[]5,1-【分析】(1)当3a =时,分式不等式化为301x x -<-,结合分式不等式解法的结论,即可得到解P .(2)由含绝对值不等式的解法,得(5,1)Q =-,并且集合P 是Q 的子集,由此建立不等式关系,即可得到a 的取值范围. 【详解】(1)当3a =时,1101a x +-<+,即1140x -<+,化简得301x x -<+,即(3)(1)0x x -+<,所以13x , 所以不等式的解集为(1,3)-,由此可得(1,3)P =-.(2){}{}{}2332351Q x x x x x x =+<=-<+<=-<<,可得(5,1)Q =-, P Q Q ⋃=,得P Q ⊆,再解1101a x +-<+,即()()10-+<x a x ①当1a =-时,()210x +<无解,P =∅,满足P Q ⊆;②当1a >-时,解得1x a -<<,此时(1,)(5,1)a -⊆-,由此可得11a -<≤,即a 的取值范围是(]1,1-.③当1a <-时,解得1a x <<-,此时(,1)(5,1)a -⊆-,由此可得51a -≤<-,即a 的取值范围是[)5,1--.综上所述,a 的取值范围是[]5,1-18.某工厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本()C x ,当年产量不足80千件时,21()103C x x x =+(万元);当年产量不小于80千件时,10000()511450C x x x=+-(万元).通过市场分析,若每件售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利涧L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)L (x )=2**140250,080,3100001200,80,x x x x N x x x N x ⎧-+-<<∈⎪⎪⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩(2)100【分析】(1)分别求出0<x <80、x ≥80时L (x )的解析式,最后用分段函数表示即得解; (2)分别借助二次函数的最值和均值不等式求出0<x <80、x ≥80时L (x )的最大值,比较即可得到答案.【详解】(1)当0<x <80,x ∈N 时, L (x )=500100010000x ⨯13-x 2-10x -250=13-x 2+40x -250,当x ≥80,x ∈N 时,L (x )=500100010000x⨯-51x -10000x +1 450-250=1 200-10000x x ⎛⎫+ ⎪⎝⎭,∴L (x )=2**140250,080,3100001200,80,x x x x N x x x N x ⎧-+-<<∈⎪⎪⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩. (2)当0<x <80,x ∈N 时,L (x )=13-(x -60)2+950, ∴当x =60时,L (x )取得最大值L (60)=950,当x ≥80,x ∈N 时,L (x )=1 200-10000x x ⎛⎫+ ⎪⎝⎭≤1 200-2 =1 200-200=1 000,∴当x =10000x,即x =100时, L (x )取得最大值L (100)=1 000>950,综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大.19.在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等,更要精心设计问卷,设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝回答,或不提供真实情况.某调查中心为了调查中学生在考试中有无作弊现象,随机选取150名男学生和150名女学生进行问卷调查.问卷调查中设置了两个问题:①你是否为男生?②你是否在考试中有作弊现象.调查分两个环节,第一个环节:确定回答的问题,让被调查者从装有3个红球,3个黑球(除颜色外完全相同)的袋子中随机摸取两个球,摸到同色两球的学生如实回答第一个问题,摸到异色两球的学生如实回答第二个问题.第二个环节:填写问卷(问卷中不含问题,只有“是”与“否”).已知统计问卷中有70张答案为“是”.(1)根据以上的调查结果,利用你所学的知识,估计中学生在考试中有作弊现象的概率;(2)据核实,以上的300名学生中有20名学生在考试中有作弊现象,其中男生15人,女生5人,试判断是否有97.5%的把握认为中学生在考试中有无作弊现象与性别有关. 参考公式和数据如下:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)118; (2)有97.5%的把握认为中学生在考试中有无作弊现象与性别有关.【分析】(1)由题可得摸到同色两球的概率,进而可得回答第一个问题的人数及选择“是”的人数,再利用古典概型概率公式即得;(2)通过计算2K ,进而即得.【详解】(1)因为摸到同色两球的概率223326C C 2C 5P +==, 所以回答第一个问题的人数为23001205⨯=,回答第二个问题的人数为180. 因为男女人数相等,是等可能的, 所以回答第一个问题,选择“是”的同学人数为1120602⨯=, 则回答第二个问题,选择“是”的同学人数为10, 所以估计中学生在考试中有作弊现象的概率为10118018=. (2)由题知,22⨯列联表如下:因为22300(151455135)75 5.357 5.0241501502028014K ⨯⨯-⨯==≈>⨯⨯⨯, 所以有97.5%的把握认为中学生在考试中有无作弊现象与性别有关.20.设有椭圆方程2222:1(0)x y a b a bΓ+=>>,直线:0l x y +-=,Γ下端点为A ,M 在l 上,左、右焦点分别为())12,F F .(1)2a =,AM 的中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM 中有一内角余弦值为35,求b ;(3)在椭圆Γ上存在一点P 到l 距离为d ,使126PF PF d ++=,随a 的变化,求d 的最小值.【答案】(1)(32,2)M (2)324b =2 (3)83【分析】(1)由题意可得椭圆方程为22142x y +=,从而确定M 点的纵坐标,进一步可得点M 的坐标;(2)由直线方程可知(0,42)B ,分类讨论3cos 5BAM ∠=和3cos 5BMA ∠=两种情况确定b 的值即可;(3)设(cos ,sin )P a b θθ,利用点到直线距离公式和椭圆的定义可得|cos sin 42|622a b a θθ+-=-,进一步整理计算,结合三角函数的有界性求得513a 即可确定d 的最小值.【详解】(1)解:由题意可得2,2a b c ===22:1,(0,2)42x y A Γ+=-, AM 的中点在x 轴上,M ∴2,代入420x y +-=得(32,2)M ;(2)解:由直线方程可知(0,42)B ,c s 2o ABM ∠ ①若3cos 5BAM ∠=,则4tan 3BAM ∠=,即24tan 3OAF ∠=,∴234OA OF =∴34b =②若3cos 5BMA ∠=,则4sin 5BMA ∠=,4MBA π∠=,∴34cos()55MBA AMB ∠+∠=∴cos BAM ∠=tan 7BAM ∴∠=,即2tan 7OAF ∠=,∴OA ,∴b综上,34b =7; (3)解:设(cos ,sin )P a b θθ,结合已知条件,由椭圆的定义及点到直线距离公式可得62d a ==-,显然椭圆在直线的左下方,则62a =-,即)θϕ+=,222a b =+,∴)θϕ+=-)22a θϕ+=-, ∴|sin()|1θϕ+,整理可得(1)(35)0a a --,即513a , ∴58626233d a =--⨯=,即d 的最小值为83.。
上海市向明中学2022届高三上学期9月月考数学试题(讲解版)
则 ,将其代入 ,
可得: ,令 ,可得
(2) 是“ 型— 函数”
则 ,将其代入 ,
可得: ,
,周期为:
函数 是周期函数
(3) ,
令 及 ,
则 ,
不妨设 ,则 是周期为 的函数.
∵ 时,
,对任意 ,
对任意 ,取 使
,对任意 ,
综上,取 , ,
则 对任意 成立
【点睛】本题解题关键是理解 为“ 型— 函数”定义和周期的求法,考查了分析能力和计算能力,属于难题.
【点睛】本题主要考查了子集的定义,涉及元素的互异性,属于基础题.
2.函数 的最小正周期为________
【答案】
【分析】利用 的最小正周期为 求解即可.
【详解】因为 的最小正周期为 ,
所以函数 的最小正周期为
故答案为:
【点睛】本题主要考查正切函数的周期公式,属于基础题.
3.不等式 的解集是________
【详解】由题得 ,
当且仅当 ,即 时,等号成立.
故答案为: .
【点睛】本题主要考查利用基本不等式求最值,熟记基本不等式即可,属于常考题型.
8.已知直线 与圆 相交于A、B两点,且 ,则直线l的倾斜角为___________.
【答案】0或
【分析】求出圆心到直线的距离,再由圆的半径,圆心到直线的距离和弦长之间的关系求出k的值,进而求出直线l的倾斜角.
所以 ,
则当 时, ,当 时, .
18.如图,在直三棱柱 中, , ,点P、Q分别为 、BC 中点, 与底面ABC所成的角为 .
(1)求异面直线BP与 所成角的大小(结果用反三角函数表示);
(2)求点C与平面 的距离.
上海市重点高中向明中学高三第二学期(高三下)开学考
向明中学高三下开学考试卷一、填空题1. 函数y =的定义域是____________.2. 函数22cos sin y x x =-的最小正周期T =____________. 3. 集合{}{}2230,2A x x x B x x a =-->=+≤,若AB =R ,则a =____________.4. 已知正三角形ABC 的边长为2,,D E 为BC 的三等分点,D 离B 较近,则AD BE ⋅=____________.5. 已知函数()()arcsin 2110y x x =+-≤≤,则16fπ-⎛⎫= ⎪⎝⎭____________. 6. 某校一天要上语文、数学、外语、历史、政治、体育六节课,在所有可能的安排中,数学不排在最后一节课,体育不排在第一节课的概率是____________.7. 复数(),,0z a bi a b b =+∈≠R ,若24z bz -是实数,则有序实数对(),a b 可以是____________.(写出一个有序实数对即可)8. 设()8,1a ax ∈-R 的二项展开式中含3x 项的系数为7,则()2lim n n a a a →∞+++=____________.9. 一条直线经过点()4,3M -,其倾斜角是直线280x y -+=的倾斜角的两倍,则此直线方程为____________.10. 设地球的半径为R ,同处于北纬60°的A 、B 两地之间的球面距离为3Rπ,若A 地的经度为东经30°,那么B 地的经度为____________.11. 根据函数的单调性可以得到不等式23xx +>的解集为{}1x x >,根据这一性质,不等式111lg 212x x x -+≥++的解集为____________. 12. 已知函数()2ln 020xx f x x x x >⎧=⎨-+≤⎩,若不等式()1f x ax ≥-恒成立,则实数a 的取值范围是____________.二、选择题13. 已知,m n 是两条不同直线,α是平面,下列命题中正确的是( ) A. 若//,//m n m α,则n α⊂ B. 若//,//m n n α,则//m α14. 要得到函数sin 2y x =的图像,只需将sin 23y x π⎛⎫=-⎪⎝⎭的图像( ) A. 向右平移3π个单位 B. 向左平移3π个单位 15. 已知ABC 三条边分别是,,a b c ,且()*,,a b c a b c <<∈N ,若当()*b n n =∈N 时,记满足条件的所有三角形的个数为n a ,则数列{}n a 的通项公式为( )A. 21n a n =-B. 22n n na +=C. 317612n n n a +-=D. 21n a n n =-+16. 设圆1O 和圆2O 是两个外离的圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹可能是①两个双曲线;②一个双曲线和一条直线;③一个双曲线和一个椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向明中学高三开学考
2017.9
一. 填空题 1. 31
lim
3n n n
2. 已知函数()21f x x (0)x ,则()f x 的反函数1()f x
3. 在5(1)x 的二项展开式中,3x 的系数是
4. 已知抛物线22x py (0)p 上的点(,3)m 到焦点的距离为5,则p
5. 已知
12a i
i (i 是虚数单位)是实数,则实数a 6. 已知i 、j 为平面内所有向量的一组基,且a i j ,b j ,4c i j ,若用a 、b
表 示c ,则c
7. 若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n S 8. 已知函数()y f x 是定义在R 上的偶函数,且在[0,) 上是增函数,若()(4)f a f , 则实数a 的取值范围是
9. 从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为 (结果用数值表示)
10. 若函数2arcsin(cos )y x 的定义域是2[,
]33
,
则它的值域为
11. 在如图所示的正方体1111ABCD A B C D 中,异 面直线1A B 与1B C 所成角的大小为
12. 记矩阵201101061300A
中的第i 行第j 列上的元素为,i j a ,现对矩阵A 中的元素按如
下算法所示的步骤作变动(直到不能变动为止):若,1,i j i j a a ,则,i j p a ,,1,i j i j a a ,1,i j a p ;若,1,i j i j a a ,则不变动,这样得到矩阵B . 再对矩阵B 中的元素按如下算法
所示的步骤作变动(直到不能变动为止):若,,1i j i j a a ,则,i j q a ,,,1i j i j a a ,
,1i j a q ;若,,1i j i j a a ,则不变动,这样得到矩阵C ,则C
二. 选择题
13. 用数学归纳法证明:2
2
1
111n n a a a a
a
(1,)a n *N ,在验证1n 成立时, 计算左边所得结果是( )
A. 1
B. 1a
C. 21a a
D. 231a a a 14. 经过点00(,)P x y ,且方向向量为(,)d u v
的直线方程是( ) A.
00x x y y u v B. 00x x u
y y v
C. 00()v
y y x x u
D. 00()()u y y v x x 15. 在△ABC 中,已知4cos 5B ,5
sin 13
C ,则cos A ( )
A. 6365
B. 3365
C. 6365或3365
D. 以上答案都不对
16. 对于函数()f x ,若存在区间[,]A m n ,使得{|(),}y y f x x A A ,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”. 给出下列四个函数: ①()sin(
)2
f x x
;② 2()21f x x ;③ ()|12|x f x ;④ 2()log (22)f x x .
其中存在唯一“可等域区间”的“可等域函数”为( ) A. ①②③ B. ②③ C. ①③ D. ②③④
三. 解答题
17. 如图,直三棱柱111ABC A B C 中,12AB AC AA ,45ABC . (1)求直三棱柱111ABC A B C 的体积;
(2)若D 是AC 的中点,求异面直线BD 与1A C 所成的角.
18.
已知向量3,)a x y ,(,cos3)b m x m ()m R ,且0a b
,设()y f x .
(1)求()f x 的表达式,并求函数()f x 在2[
,
]189
上图像最低点M 的坐标;
(2)若对任意[0,9
x
,()91f x t x 恒成立,求实数t 的范围.
19. 某企业2016年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不能进行技术改造,预测从今年(2017年)起每年比上一年纯利润减少20万元,今年初 该企业一次性投入资金600万元进行技术改造,预计在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为1
500(1)2n
万元(n 为正整数). (1)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元(须扣除技术改造资金),求n A 、n B 的表达式;
(2)以上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
20. 已知函数3()log ()f x ax b 的图像过点(2,1)A 和(5,2)B . (1)求函数()f x 的解析式; (2)若32
()log ()1
f x t x 在(1,3)上有解,求t 的最小值; (3)记()
3f n n a ()n *N ,是否存在正数k
,使得12111
(1)(1(1)n
a a a 对一切n *N 均成立?若成立,求出k 的最大值;若不存在,说明理由.
21. 对于双曲线2222:1x y C a b (0,0)a b ,定义22
122:1x y C a b
为其伴随曲线,记双曲
线C 的左、右顶点为A 、B .
(1)当a b 时,记双曲线C 的半焦距为c ,其伴随椭圆1C 的半焦距为1c ,若12c c ,求 双曲线C 的渐近线方程;
(2)若双曲线C 的方程为22
142
x y ,弦PQ x 轴,记直线P A 与直线QB 的交点为M ,
求动点M 的轨迹方程;
(3)过双曲线22:1C x y 的左焦点F ,且斜率为k 的直线l 与双曲线C 交于1N 、2N 两
点. 求证:对任意114
4
[2,2]k ,在伴随曲线1C 上总存在点S ,使得2
12FN FN FS .
参考答案
一. 填空题 1. 3 2.
12x (1)x 3. 10 4. 4 5. 1
2
6. 45a b
7. 25766n n
8. [4,4]
9. 4
5
10. [,]3 11. 3
12. 000001111236
二. 选择题
13. C 14. D 15. B 16. B
三. 解答题
17.(1)4;(2
)10
. 18.(1)()2sin(3)6
f x x
,2(
,1)9
M
;(2)0t . 19.(1)249010n A n n ,500
5001002n n B n
;(2)4年. 20.(1)3()log (21)f x x ;(2)5;(3
21.(1
)5y x ;(2)22142
x y ;(3)略.。