与生活息息相关的“分段函数”学生版

合集下载

专题9 分段函数应用学生版

专题9 分段函数应用学生版

专题9 分段函数应用题一、考点课标要求:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。

在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

二、精典例题:电价问题:例1:(2001•沈阳)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?练习题1:某地在调整电价时,为了鼓励居民节约用电,采取了居民用电分段计价的办法:若每月每户用电量不超过80度,按0.48元∕度收费;用电量在80~180度(含180度)之间,超过80度的部分按0.56元∕度收费;用电量在180度以上,超过180度的部分按0.62元∕度收费.同时规定在实行调价的当月..收费中,用电量的13按原电价...0.42元∕度收费,用电量的23按调价后的分段计价....办法收费.以后各月的用电量全部按分段计价的办法收费.(1)已知在调价的当月..,小王家用电量按原电价部分所付的电费为12.60元,现请你求出小王家在调价的当月..共需付电费多少元?(2)若小王家在调价后的第三个月用电量为x度,请你写出小王家第三个月应付电费y(元)与用电量x(度)之间的函数关系式.练习题2:某市自来水公司为了鼓励市民节约用水,于2011年4月开始采用以用户为单位按月(2)若居民甲五月份用水x(吨),应交水费y(元),求y与x之间的函数关系式,并注明自变量x的取值范围;(3)试问居民甲五月份用水量x(吨)在什么范围内时,按新分段收费标准交的水费少于按原收费标准交的水费?练习题3:(2007•大连)为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的。

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究分段函数是指一种由两个或多个部分组成的函数,各个部分由不同的定义域和函数解析式。

在数学中,分段函数广泛应用于各种数学问题的求解,同时也在日常生活中有着丰富的应用研究。

1. 分段函数的概念分段函数是指在定义域上不同的区间内,函数有着不同的解析式。

通常来说,分段函数由若干段函数组成,每个段函数定义在一个区间上。

而这些段函数在各自的定义域上又具有不同的性质和特点。

在数学上,分段函数常常用于描述一些不连续的现象或问题,比如阶梯函数、绝对值函数等都是典型的分段函数的例子。

2. 分段函数在数学问题中的应用(1)优化问题在数学建模和优化问题中,分段函数常常被用来描述一些实际问题中的非线性关系。

某种产品的售价随销售数量而发生变化,可以用分段函数来描述其价格-数量关系,从而进行成本和利润的分析。

(2)几何问题在几何学中,分段函数也有着重要的应用。

比如描述线段、封闭图形等几何对象时,就可以用到分段函数。

这些分段函数可以描述线段在不同区间上的斜率、长度等特性,从而对几何问题进行分析和求解。

3. 分段函数在工程问题中的应用(1)控制系统在自动控制系统中,分段函数常常被用来描述控制信号和被控对象之间的关系。

在温度控制系统中,温度传感器检测到的温度信号会对应不同的控制策略,这时就可以用分段函数来描述温度信号和控制动作之间的关系。

(2)信号处理在通信系统或信号处理系统中,分段函数也有着重要的应用。

在调制解调过程中,对输入信号的不同部分可能需要不同的处理方式,这时就可以用到分段函数来描述输入信号和处理方式之间的关系。

4. 个人观点与总结从以上的介绍可以看出,分段函数在数学、工程和日常生活中都有着广泛的应用。

它不仅能够描述复杂的不连续关系,同时也能够对各种问题进行建模和求解。

在我看来,学习和理解分段函数的概念和应用,不仅可以帮助我们更好地理解数学和工程问题,同时也可以培养我们对复杂问题的分析和解决能力。

分段函数的几种常见题型及解法--学生版

分段函数的几种常见题型及解法--学生版

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值3.例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )22(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )y xACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31x f x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃必修一测试题一. 选择题(每题4分,共64分):1. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是( ) A. 1 B. 2 C. 7 D. 82.方程062=+-px x 的解集为M,方程062=-+q x x 的解集为N,且M ∩N={2},那么p+q 等于( ) A.21 B.8 C.6 D.73. 下列四个函数中,与y=x 表示同一函数的是( )A.()2x y = B.y=33x C.y=2x D.y=x x 24.已知A={x|y=x,x ∈R},B={y|2x y =,x ∈R},则A ∩B 等于( ) A.{x|x ∈R}B.{y|y ≥0}C.{(0,0),(1,1)}D.∅5.32)1(2++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( ) A. )1()2()3(->->f f f B. )1()2()3(-<-<f f fC. )1()3()2(-<<-f f fD. )2()3()1(-<<-f f f6. 已知函数⎩⎨⎧≤>=0,30,log )(2x x x x f x ,则)]41([f f 的值是( ) A. 91 B. 9 C. 9- D. 91-7. 已知A ba ==53,且211=+b a ,则A 的值是( )A. 15B. 15C. 15±D. 2258、f(x)=(m-1)x 2+2mx+3为偶函数,则f(x)在(2,5)上是( ) A.增函数 B.减函数 C.有增有减 D.增减性不确定9.函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( ) A . ),2[+∞ B .[2,4] C .(]2,∞- D. [0,2]10. 设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )11.已知f(x)是定义在R 上的奇函数,则f(0)= ( )A. 0B.1C. -1D.不存在 12.已知f(x)=3X -x1则f(x)是( ) A 奇函数 B 偶函数 C 既是奇函数又是偶函数 D 既不是奇函数也不是偶函数二. 填空题(每题5分:共20分)13. 函数()23log 32-=x y 的定义域为______________14.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则__________;若00()8,f x x ==则_________15. 函数xa y =(0>a ,且1≠a )在]2,1[上的最大值比最小值大2a,则a 的值是__________16、函数xy 3log =(x>0),则其反函数是三. 解答题(21、22各10分:23、24各12分;25、26各14分) 17.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1+x1,求:f(x),g(x)解析式(10分)18. 函数x x y 22+= x ∈[2, 3].求:函数的最大值和最小值 (10分)19. 设集合}023|{2=+-=x x x A ,}02|{2=+-=mx x x B ,若A B ⊆,求:实数m 的值组成的集合(12分)20. 已知全集U=}60|{≤<∈x N x ,集合A={}51|<<∈x N x ,集合B ={}62|<<∈x N x求(1)B A ⋂ (2) (A C U )B ⋃ (2) )()(B C A C U U ⋂ (12分)21.设244)(+=x xx f ,若10<<a ,试求:(1))1()(a f a f -+的值; (2))40114010()40113()40112()40111(f f f f ++++ 的值; (13分)22. 已知1222)(+-+⋅=x x a a x f )(R x ∈,若)(x f 满足)()(x f x f -=-, (1)求实数a 的值;(2)判断函数的单调性,并加以证明。

分段函数在生活实际中的应用(解析版)-2023年中考数学重难点解题大招复习讲义-函数

分段函数在生活实际中的应用(解析版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.某公司专销产品A,第一批产品A上市40天内全部售完、该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(1)中的折线表示的是市场日销售量与上市时间的关系;图(2)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)写出每件产品A的销售利润z与上市时间t的关系式;(3)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解:(1)由图1可得,当0≤t≤30时,设市场的日销售量y=kt,∵点(30,60)在图象上,∴60=30k,∴k=2,即y=2t;当30<t≤40时,设市场的日销售量y=k1t+b,∵点(30,60)和(40,0)在图象上,∴解得k1=﹣6,b=240.∴y=﹣6t+240.故y=;(2)由图②可得:当0≤t≤20时,每件产品的日销售利润为z=3t;当20<t≤40时,每件产品的日销售利润为z=60;故z=;(3)①当0≤t≤20时,w=3t•2t=6t2.t=20时,w的最大值为2400(万元);②当20<t≤30时,w=2t•60=120t.t=30时,w的最大值为3600(万元);③当30<t≤40时,w=60(﹣6t+240)=﹣360t+14400∵k=﹣360<0,∴w随t的增大而减小.∴w<﹣360×30+14400即w<3600(万元)∴第30天取最大利润3600万元.变式训练【变1-1】.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为30件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?解:(1)∵日销售量y(件)与销售时间x(天)之间的关系式是y=,∴第15天的销售量为2×15=30件,故答案为:30;(2)由销售单价p(元/件)与销售时间x(天)之间的函数图象得:p=,①当0<x≤20时,日销售额=40×2x=80x,∵80>0,∴日销售额随x的增大而增大,∴当x=20时,日销售额最大,最大值为80×20=1600(元);②当20<x≤30时,日销售额=(50﹣x)×2x=﹣x2+100x=﹣(x﹣50)2+2500,∵﹣1<0,∴当x<50时,日销售额随x的增大而增大,∴当x=30时,日销售额最大,最大值为2100(元),综上,当0<x≤30时,日销售额的最大值为2100元;(3)由题意得:当0<x≤30时,2x≥48,解得:24≤x≤30,当30<x≤40时,﹣6x+240≥48,解得:30<x≤32,∴当24≤x≤32时,日销售量不低于48件,∵x为整数,∴x的整数值有9个,∴“火热销售期”共有9天.【变1-2】.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【例2】.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t(分钟)变化的函数图象如下.当0≤t≤10时,图象是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图象是线段.(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.解:(1)当0≤t≤10时,设抛物线的函数关系式为y=ax2+bx+c.由于它的图象经过点(0,25),(4,45),(10,60),所以,解得:,所以;(2)当20≤x≤40时,设函数解析式为:y=kx+d,将(20,60),(40,25)代入得:,解得:∴y=﹣x+95,令y=45,有45=﹣x+95,解得:x=28,即讲课后第28分钟时注意力不低于45,当0≤x≤10时,令y=45,有45=﹣x2+6x+25,解得:x1=4,x2=20(舍去),即讲课后第4分钟时,注意力不低于45,所以讲课后注意力不低于45的时间有28﹣4=24(分钟)>24(分钟),所以老师可以经过适当的安排,使学生在探究这道数学题时,注意力指数不低于45.变式训练【变2-1】.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,w随x的增大而增大,即当x=10时,w=18000元,最大值当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元,∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.【变2-2】.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第t天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时,w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)(﹣t+48﹣20)=t2﹣116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随t增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∵t为整数,图象是孤立的点,∴﹣>23.5,(见图中提示)∴n>6.75.又∵n<9,∴n的取值范围为6.75<n<9.1.为了节约水资源,自来水公司按分段收费标准收费,如图所示反映的是每月收取水费y (元)与用水量x(吨)之间的函数关系.按照分段收费标准,小颖家三、四月份分别交水费29元和19.8元,则四月份比三月份节约用水()A.2吨B.2.5吨C.3吨D.3.5吨解:当x<10时,设y=mx,将点(10,22)代入可得:22=10k,解得:k=2.2,即可得:y=2.2x,当x≥10时,设y与x的函数关系式为:y=kx+b(k≠0),当x=10时,y=22,当x=20时,y=57,将它们分别代入y=kx+b中得:,解得:,那么y与x的函数关系式为:y=3.5x﹣13,综上可得:y=,当y=29时,知道x>10,将y=29代入得29=3.5x﹣13,解得x=12,当y=19.8时,知道x<10,将y=19.8代入得19.8=2.2x,解得:x=9,即可得四月份比三月份节约用水:12﹣9=3(吨).故选:C.2.某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为18元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是y=2.4x﹣4.4.解:使用9立方米燃气,需要燃气费为:2×9=18(元);y=2×11+2.4(x﹣11),即所求的函数解析式为y=2.4x﹣4.4(x>11).故答案为:18;y=2.4x﹣4.43.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(2)小明家5月份用水30吨,则他家应交水费多少元?解:(1)由题意可得,当0≤x≤14时,y=2x,当x>14时,y=2×14+(x﹣14)×3.5=3.5x﹣21,由上可得,y与x的函数关系式为y=;(2)当x=30时,y=3.5×30﹣21=84,即小明家5月份用水30吨,则他家应交水费84元.4.某市近期公布的居民用天然气阶梯价格听证会方案如下:第一档天然气用量第二档天然气用量第三档天然气用量年用天然气量360立方米及以下,价格为每立方米2.53元年用天然气量超出360立方米,不超600立方米时,超过360立方米部分每立方米价格为2.78元年用天然气量600立方米以上,超过600立方米部分价格为每立方米3.54元例:若某户2019年使用天然气400立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400﹣360)=1022(元)(1)若小明家2019年使用天然气300立方米,则需缴纳天然气费为759元(直接写出结果);(2)若小红家2019年使用天然气560立方米,则小红家2019年需缴纳的天然气费为多少元?解:(1)由题意可得,300×2.53=759(元),即小明家2019年使用天然气300立方米,则需缴纳天然气费为759元,故答案为:759;(2)由题意可得,360×2.53+(560﹣360)×2.78=910.8+200×2.78=910.8+556=1466.8(元),答:小红家2019年需缴纳的天然气费1466.8元.5.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.解:(1)甲开始时的速度为:1000÷4=250(米/分钟),令250x=150(x+),解得,x=0.75,答:当x为0.75分钟时,两人第一次相遇;(2)当x=5时,乙跑的路程为:150×(5+)=825<1000,∴甲乙第二次相遇的时间为:5+=5.5(分钟),则当两人第二次相遇时,甲跑的总路程为:1000+(5.5﹣5)×=1100(米),答:当两人第二次相遇时,甲跑的总路程是1100米.6.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.7.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60度,则应缴费多少元?若该用户某月缴费125元时,则该用户该月用了多少度电?解:(1)当0≤x≤100时,设关系式为y=kx,把(100,65)代入得:k=0.65,∴y=0.65x(0≤x≤100)当x>100时,设y与x的函数关系式为y=kx+b,把(100,65)(130,89)代入得:,解得:k=0.8,b=﹣15,∴y=0.8x﹣15(x>100)答:当0≤x≤100和x>100时,y与x的函数关系式分别为y=0.65x(0≤x≤100),y=0.8x﹣15(x>100).(2)当0≤x≤100时,每度电收费0.65元,当x>100时,每度电收费0.8元.(3)当x=60时,代入y=0.65x=39元,当y=125时,代入y=0.8x﹣15得:x=175度,答:用电60度,则应缴费39元;月缴费125元时,则该用户该月用了175度电.8.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)当50≤x≤60时,y=﹣(x﹣100)2+3600;∵a=﹣1<0,且x的取值在对称轴的左侧,∴y随x的增大而增大,∴当x=60时,y有最大值2000;当60<x≤80时,y=﹣2(x﹣75)2+2450;∵a=﹣2<0,∴当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.9.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题.(1)甲,乙两地的距离为720km;慢车的速度为80km/h.(2)求CD段的函数解析式.(不用写自变量的取值范围)(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.解:(1)甲、乙两地的距离为720km,慢车的速度为720÷9=80(km/h),故答案为:720,80;(2)∵快车的速度为﹣80=120(km/h),∴快车到达乙地所用时间为=6(h),此时慢车所行驶的路程是6×80=480(km),∴C(6,480),设CD段的函数解析式为y=kx+b,把C(6,480),D(9,720)代入得:,解得,∴CD段的函数解析式为y=80x;(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km,①相遇前:(80+120)x=720﹣500,解得x=1.1,②相遇后:∵点C(6,480),∴快车到达乙地后,慢车再行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),∴x=1.1h或6.25h,两车之间的距离为500km.10.某水产市场经营一种海产品,其日销售量y(kg)与销售单价x(元/千克)的函数关系如图所示.(1)分别求出当20≤x≤30,30<x≤35时,y与x之间的函数关系式.(2)当单价为32元/千克时,日销售量是多少?(3)当日销售量为80kg时,单价是多少?解:(1)当20≤x≤30时,设y与x之间的函数关系式是y=kx+b,∵点(20,100),(30,50)在该函数图象上,∴,解得,即当20≤x≤30时,y与x之间的函数关系式是y=﹣5x+200;当30<x≤35时,设y与x之间的函数关系式是y=ax+c,∵点(30,50),(35,0)在该函数图象上,∴,解得,即当30<x≤35时,y与x之间的函数关系式是y=﹣10x+350;(2)当x=32时,y=﹣10x+350=﹣10×32+350=30,即当单价为32元/千克时,日销售量是30千克;(3)当y=80时,80=﹣5x+200,解得x=24,即当日销售量为80kg时,单价是24元/千克.11.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE ﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.解:(1)由题意可得:小丽速度==16(km/h)设小明速度为xkm/h由题意得:1×(16+x)=36∴x=20答:小明的速度为20km/h,小丽的速度为16km/h.(2)由图象可得:点E表示小明到了甲地,此时小丽没到,∴点E的横坐标==,点E的纵坐标==∴点E(,)12.为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价.居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式,并写出自变量x的取值范围;(3)某户5月份按照阶梯水价应缴水费108元,其相应用水量为多少立方米?解:(1)由图可得,点B的实际意义是当用水25m3时,所交水费为90元;(2)设一级阶梯用水的单价为x元/m3,则二级、三级阶梯的用水单价分别为1.5x元/m3,2x元/m3,设点A的坐标为(a,45),则,解得,即点A的坐标为(15,45),设线段AB所在直线的表达式为y=kx+b,,解得,即线段AB所在直线的表达式为y=4.5x﹣(15<x≤25);(3)∵108>90,∴某户5月份的用水量超过25m3,设该用户5月份用水量为m立方米,90+(m﹣25)×3×2=108,解得m=28,答:其相应用水量为28立方米.13.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,.解得k=9,b=﹣20,即h=9d﹣20;(2)当h=196时,196=9d﹣20,解得d=24cm.14.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小王4月份上网20小时,他应付多少元的上网费用?(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少.解:(1)当x≥30时,设y与x之间的函数关系式为y=kx+b,由题意,解得,∴y=x+20.(2)若小王4月份上网20小时,由图象可知,他应付50元的上网费.(3)把y=98代入,y=x+20,解得x=78,∴若小王5月份上网费用为98元,则他在该月份的上网时间是78小时.15.为提高校园绿化率,美化校园,某示范高中准备购买一批樟树和樱花树,一共100棵,其中樟树不少于10棵.园林部门称樟树成活率为70%,樱花树的成活率为90%,学校要求这批树的成活率不低于80%.樟树的单价y1和购买数量x的函数关系以及樱花树的单价y2和购买数量x的函数关系如图所示.(1)写出y1关于x的函数关系式;(2)请你帮学校作个预算,购买这批树最少需要多少钱?解:(1)当0<x≤60时,设y1=k1x+b1(k1≠0),把(0,180),(60,60)代入得,,∴∴y1=﹣2x+180(0<x≤60);当60<x≤100时,y1=60.综上,y1=﹣2x+180(0<x≤60)或y1=60(60<x≤100);(2)设购买樟树x棵,则购买樱花树(100﹣x)棵,由≥80%,得x≤50,∴10≤x≤50.设购树所需费用为W元,当40≤x≤50时,W=(﹣2x+180)x+100(100﹣x)=﹣2(x﹣20)2+10800,W min=﹣2(50﹣20)2+10800=9000(元).当10≤x<40时,W=(﹣2x+180)x+70(100﹣x)=﹣2(x﹣27.5)2+2×27.52+7000,W min=﹣2×(10﹣27.5)2+2×27.52+7000=7900(元),综上所述,购树所需费用最少为7900元.16.A,B两地相距300km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回.如图是两车离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围.(2)若两车行驶5h相遇,求乙车的速度.解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:300=4k,解得:k=75,∴y=75x(0<x≤4)设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:,解得:k=﹣100,b=700,∴y=﹣100x+700(4<x≤7),答:甲车行驶过程中y与x之间的函数解析式为:y=75x(0<x≤4),y=﹣100x+700(4<x≤7),(2)设乙车速度为m千米/小时,则:5m=﹣100×5+700解得:m=40答:乙车的速度为40千米/小时.17.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.水果种植专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按2元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤500和x>500时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共1200千克,且甲种水果不少于400千克,但又不超过乙种水果的两倍.问经销商要确保完成收购计划,至少准备多少资金?解:(1)当0≤≤x≤500时,设y=k1x(k1≠0),根据题意得500k1=1500,解得k1=3;∴y=3x;当x>500时,设y=k2x+b(k2≠0),根据题意得,,解得,∴y=2.5x+250,∴y=;(2)购进甲种水果为x千克,则购进乙种水果(1200﹣x)千克,根据题意得:,解得400≤x≤800,当400≤x≤500时,w1=3x+2(1200﹣x)=x+2400.当x=400时.w min=2800元,当500≤x≤800时,w2=2.5x+250+2(1200﹣x)=0.5x+2650.当x=500时,w min=2900元,∵2900>2800,∴当x=400时,总费用最少,最少总费用为2800元.此时乙种水果1200﹣400=800(千克).答:购进甲种水果为400千克,购进乙种水果800千克,才能使经销商付款总金额w(元)最少,至少准备2800元资金.18.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,(1)分别求出x<2和x>2时y与x的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?解:(1)当x≤2时,设y=k1x,把(2,6)代入上式,得k1=3,∴x≤2时,y=3x;当x>2时,设y=k2x+b,把(2,6),(10,3)代入上式,得k2=﹣,b=.∴x≥2时,y=﹣x+.(2)把y=4代入y=3x,得x1=,把y=4代入y=﹣x+,得x2=.则x2﹣x1=6小时.答:这个有效时间为6小时.19.甲骑电瓶车,乙骑自行车从西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园,设乙行驶的时间为x(h),甲、乙两人距出发点的路程s甲、s乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度25km/h,乙的速度是10km/h;(2)对比图①、图②可知:a=10,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25km/h,乙的速度为:25÷2.5=10km/h,故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,25(b﹣0.5)=10b,得b=,故答案为:10,;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=,即乙出发h或h时,甲、乙两人路程差为7.5km.20.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度80米/分,乙出发时甲离小区的距离800米;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,求出当25≤x≤30时s关于x的函数关系式.解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),故答案为:80米/分,800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,∴乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),此时甲还要1分钟到学校,即甲离学校80米,∴当25≤x≤30时s关于x的函数的大致图象如图:当25≤x≤29时,设s=mx+n,将(25,700),(29,80)代入得:,解得,∴s=﹣155+4575;当29<x≤30时,设s=px+q,将(29,80),(30,0)代入得:,解得,∴s=﹣80x+2400,∴s=.。

生活中的分段函数

生活中的分段函数

例 2:某气象研究中心观测到一场沙尘暴从发生到结束的
全过程,开始时平均增速 2km/h。4h 后,沙尘暴经过开阔荒漠
地,风速变为平均增速 4km/h,一段时间,风速保持不变,当沙
尘暴遇到绿色植被区时,其风
速平均每小时减少 1km/h,最终
停止,结合风速与时间的图象,
回答下列问题:
(1)在(
)内 填 入 相
每毫升 6ug(1ug=10-3mg),接着逐步衰减,10h 时血液中含药量为
每毫升 3ug,每毫升血液中含药量 y(ug)随时间 x(h)的变化如图
所示,当成人按规定剂量服药后:
(1)分别求出 x≤2 和 x≥2 时,y 与 x 之间的函数关系式。
(2)如果每毫升血液中含药量为 4ug 或 4ug 以上时,治疗
(3)令 10x=5x+20,解得 x=4,所以当 x=4 时,甲、乙两队在 施工过程中所挖河渠的长度相等。
四、油箱加油问题
导入语:随着科学技术的迅猛发展,手工劳动已逐步被机 械自动化代替,从而大大提高了工作效率,为国民经济的逐年 增长提供了良好的基础。
例 4:某工人用一种自动控制加工机械做一批工件,该机 器运行过程中分为加油过程和加工过程;加工过程中,当油箱 中油量为 10 升时,机器自动停止加工进入加油过程,将油箱加 满后继续加工,如此往复,已知机器运行 185 分钟才能将这批 工件加工完。下图是邮箱中油量 y(升)与机器运行时间 x(分) 之间的函数图象。根据图象回答下列问题:
2014 年1 月 总第 304 期
生活中的分段函数
张小艳
(迁安市杨店子镇初级中学,河北 唐山 064402)
教学研究
一次函数是初中数学中最基本的知识点之一,是历届中考

2 第2课时 分段函数 学生版

2 第2课时 分段函数 学生版

第2课时分段函数问题导学预习教材P68-P71,并思考以下问题:1.什么是分段函数?2.分段函数是一个函数还是多个函数?1.分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.■名师点拨(1)分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.(2)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.(3)分段函数的定义域是所有自变量取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.2.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.■名师点拨在画每一段函数图象时,可以先不管定义域的限制,用虚线作出其图象,再用实线保留其在该段定义区间内的相应图象即可,即“分段作图”.判断正误(正确的打“√”,错误的打“×”)(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0是分段函数.( )(3)分段函数的定义域是各段上自变量取值的并集.( ) 下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1D .2函数y =⎩⎪⎨⎪⎧x 2,x >0,-2,x <0的定义域为______________,值域为______________.分段函数的定义域、值域(1)已知函数f (x )=|x |x ,则其定义域为( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0)∪(0,+∞)(2)函数f (x )=⎩⎪⎨⎪⎧-x 2+1,0<x <1,0,x =0,x 2-1,-1<x <0的定义域为________,值域为________.(1)分段函数定义域、值域的求法①分段函数的定义域是各段函数定义域的并集; ②分段函数的值域是各段函数值域的并集.(2)绝对值函数的定义域、值域通常要转化为分段函数来解决.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,则函数的定义域为________,值域为________.分段函数求值问题已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.试求f (-5),f (-3),f ⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-25f 的值.(变问法)本例条件不变,若f (a )=3,求实数a 的值.(1)分段函数求函数值的方法①确定要求值的自变量属于哪一段区间;②代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.(2)已知函数值求字母取值的步骤 ①先对字母的取值范围分类讨论; ②然后代入到不同的解析式中; ③通过解方程求出字母的值;④检验所求的值是否在所讨论的区间内.1.已知函数f (x )=⎩⎪⎨⎪⎧x -2,x <2,f (x -1),x ≥2,则f (2)=( )A .-1B .0C .1D .22.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.若f (x )>2,求x 的取值范围.分段函数的图象及应用 角度一 分段函数图象的识别(2019·济南检测)函数y =x 2|x |的图象的大致形状是( )角度二 分段函数图象的画法分别作出下列分段函数的图象,并写出定义域及值域. (1)y =⎩⎪⎨⎪⎧1x ,0<x <1,x ,x ≥1.(2)y =⎩⎪⎨⎪⎧3,x <-2,-3x ,-2≤x <2,-3,x ≥2.角度三 分段函数图象的应用某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)关于用电量x (度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)求y 关于x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应交费多少元?若该用户某月交费105元,则该用户该月用了多少度电?分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.已知函数f (x )=|x |-x2+1(-2<x ≤2).(1)利用绝对值及分段函数知识,将函数解析式写成分段函数; (2)在坐标系中画出该函数的图象,并写出函数的值域.1.函数f (x )=y =⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .{y |0≤y ≤2或y =3}2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是 ( )A .-2B .2或-52C .2或-2D .2或-2或-523.函数y =x +|x |x的图象是( )4.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值.[A 基础达标]1.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.1393.(2019·广东深圳中学期中考试)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,x 2,0<x ≤3,若f (x )=3,则x 的值是( )A. 3 B .9 C .-1或1 D .-3或 34.函数f (x )=x 2-2|x |的图象是( )5.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛31f 等于 ( )A .-13B.13 C .-23D.236.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f (f (n +5)),n <10,则f (8)=________.7.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2-ax ,x ≥1,若f (f (0))=a ,则实数a =________.8.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象;(2)若f (x )≥14,求x 的取值范围;(3)求f (x )的值域.9.已知函数f (x )=⎩⎪⎨⎪⎧x +4,x ≤0,x 2-2x ,0<x ≤4,-x +2,x >4.(1)求f (f (f (5)))的值; (2)画出函数f (x )的图象.[B 能力提升]10.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是( )A .{x |x ≤1}B .{x |x ≤2}C .{x |0≤x ≤1}D .{x |x <0}11.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.12.如图,△OAB 是边长为4的正三角形,记△OAB 位于直线x =t (0<t <6)左侧的图形的面积为f (t ),求函数f (t )的解析式.13.设集合A =⎥⎦⎤⎢⎣⎡210,,B =⎥⎦⎤⎢⎣⎡1,21,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A ,且f (f (x 0))∈A ,求x 0的取值范围.[C 拓展探究]14.讨论方程x 2-4|x |+5=m 的实根的个数.。

分段函数在生活中的应用 (1)

分段函数在生活中的应用 (1)

分段函数在生活中的应用安徽省马鞍山市学大教育培训学校花良平分段函数在生活中的应用既能很好地考查学生对一些基本函数、基础知识的掌握情况, 又能考查学生灵活运用知识解决实际问题的能力, 同时又能考查学生是否能运用运动与静止、变化与不变、特殊与一般的辩证思想. 解答这类问题的关键是要紧扣题设条件( 分段函数) , 根据自变量的不同取值范围, 实施分类解答, 做到不重不漏, 分层讨论求解.一、生活中的用水用电问题例1 为了鼓励节能降耗, 某市规定如下用电收费标准: 每户每月的用电量不超过120 度时, 电价为a 元/ 度; 超过120 度时, 不超过部分仍为a元/ 度, 超过部分为b元/ 度. 已知某用户五月份用电115 度, 交电费69 元, 六月份用电140 度, 交电费94 元.(1)求a , b 的值;(2)设该用户每月用电量为x ( 度) , 应付电费为y ( 元) .①分别求出0 ≤x ≤120 和x > 120 时, y与x 之间的函数关系式;②若该用户计划七月份所付电费不超过83 元, 问该用户七月份最多可用电多少度?( 2007 年福建省三明市)解: ( 1) 根据题意, 得115 a = 69 ,120 a + 20 b = 94 .a = 0 . 6解这个方程组, 得b = 1 . 1 .(2) ①当0 ≤x ≤120 时, y = 0 . 6 x .当x > 120 时, y = 120 ×0 . 6 + 1 . 1 ( x2120) ,即y = 1 . 1 x260 .②∵83 > 120 ×0 . 6 = 72 , ∴y 与x 之间的函数关系式为y = 1 . 1 x260 .由题意, 得1 . 1 x260 ≤83 , x ≤130 .∴该用户七月份最多可用电130 度.二、生活中的通讯网络问题例2 某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租每10 元;每月拔打市内电话在120 分钟内时, 每分钟收费0 . 2 元, 超过120 分钟的每分钟收费0 . 1 元; 不足1 分钟时按1 分钟计费. 则某用户一个月的市内电话费用y ( 元) 与拔打时间t ( 分钟) 的函数关系用图象表示正确的是( )解: ∵固定电话需月租费10 元, ∴排除 A , 又∵每月拔打市内电话在120 分钟内时, 每分钟收费0 . 2 元, 则可排除C ,再根据: 在120 分钟内时, 每分钟收费0 . 2 元, 超过120 分钟的每分钟收费0 . 1 元, 也可排除D , ∴本题应选B .三、生活中的医疗保险问题例3 为了增强农民抵御大病风险的能力, 政府积极推行农村医疗保险制度. 我市某县根据本地的实际情况, 制定了纳入医疗保险的农民住院医疗费用的报销规定: 享受医保的农民可在定点医院住院治疗, 由患者先垫付医疗费用, 住院治疗结束后凭发票到县医保中心报销.住院医疗费用的报销比例标准如下表:(1)设某位享受医保的农民在一次住院治疗中的医疗费用为x 元( x > 100) , 按规定报销的医疗费用为y 元, 试写出y 与x 的函数关系式;(2)若该农民在这次住院治疗中的医疗费用为1000 元, 则他在这次住院治疗中报销的医疗费用和自付的医疗费用各为多少元. ( 2007 年邵阳市)解: ( 1) y = ( x-100) ×60 % = 0 . 6 x-60 ( x> 100)(2) 当x = 1000 元时, y = 0 . 6 ×1000 260 =600 260 = 540 ( 元)1000 2540 = 460 ( 元)答: 他在这次住院治疗中报销的医疗费用和自付的医疗费用各为540 元和460 元.四、生活中的义务纳税问题例4 新《个人所得税》规定, 公民全月工薪不超1600 元的部分不必纳税, 超过1600 元的部分为全月应纳税所得税额, 此项税款按下表分段累进计算:1600 < x < 2100,范围内?解( 1) ( 1800 21600) ×5 % = 200 ×5 % =10 ( 元)(2) y = ( x21600) ×5 % = 0 . 05 x280 ( 1600< x < 2100)(3) 160 ≤500 ×0 . 05 + ( x22100) ×10 % ≤1753450 ≤x ≤3600答: ( 1) 他应缴纳税金为10 元.(2)y 与x 的函数关系式为y = 0 . 05 x -80 (1600 < x < 2100)(3)费先生该月的工薪在不少于3450 元,也不多于3600 元范围之内.五、生活中的营销盈利问题例5 化工商店销售某种新型化工原料, 其市场指导价是每千克160 元( 化工商店的售价还可以在市场指导价的基础上进行浮动) , 这种原料的进货价是市场指导价的75 %.(1) 为了扩大销售量, 化工商店决定适当调整价格, 调整后的价格按八折销售, 仍可获得实际售价的20 % 的利润. 求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2) 化工商店为了解这种原料的月销售量y ( 千克) 与实际售价x ( 元/ 千克) 之间的关系, 每个月调整一次实际售价, 试销一段时间后, 部门负责人把试销情况列成下表:①请你在所给的平面直角坐标系中, 以实际售价x ( 元/ 千克) 为横坐标, 月销售量y ( 千克) 为纵坐标描出各点, 观察这些点的发展趋势, 猜想y 与x 之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y 与x 之间的函数表达式, 并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450 千克, 请你求出化工商店这个月销售这种原料的利润是多少元? ( 2007 年沈阳市)解: ( 1) 依题意, 每千克原料的进货价为160 ×75 % = 120 ( 元)设化工商店调整价格后的标价为x 元, 则0 . 8 x2120 = 0 . 8 x ×20 % 解得x = 187 . 5187 . 5 ×0 . 8 = 150 ( 元)∴调整价格后的标价是187 . 5 元, 打折后的实际售价是150 元.(2) ①描点画图, 观察图象, 可知这些点的发展趋势近似是一条直线, 所以猜想y 与x 之间存在着一次函数关系.图 4②根据①中的猜想, 设y 与x 之间的函数表达式为y = kx + b, 将点( 150 ,500) 和( 160 ,480) 代入表达式,得500 = 150 k + b解得480 = 160 k + bk = 22b = 800 .∴y 与x 的函数表达式为y = 22 x + 800 .将点( 168 ,464) 和( 180 ,440) 代入y = 22 x + 800 均成立, 即这些点都符合y = 22 x + 800 的发展趋势∴①中猜想y 与x 之间存在着一次函数关系是正确的.③设化工商店这个月销售这种原料的利润为w 元, 当y = 450 时, x = 175∴w = (175 2120) ×450 = 24750 ( 元)答:化工商店这个月销售这种原料的利润为24750 元.六、生活中的出租车收费问题例6 在市区内, 我市乘坐出租车的价格y(元) 与路程x ( km) 的函数关系图象如图5 所示.图 5(1)请你根据图象写出两条信息;(2)小明从学校出发乘坐出租车回家用了13 元, 求学校离小明家的路程.解: ( 1) 在0 到2km 内都是5 元;2km 后, 每增加0 . 625km 加 1 元. ( 答案不唯一)(2) 设射线的表达式为y = kx + b. 依题设装运A 种脐橙的车辆数为x , 装运B 种脐橙的车辆数为y , 求y 与x 之间的函数关系式;(1)如果装运每种脐橙的车辆数都不少于4 辆, 那么车辆的安排方案有几种?并写出每种安排方案;(2)若要使此次销售获利最大, 应采用哪种安排方案? 并求出最大利润的值. ( 2007 年重庆市)解: ( 1) 根据题意, 装运A 种脐橙的车辆数为x , 装运 B 种脐橙的车辆数为y , 那么装运C种脐橙的车辆数为( 20 2x2y ) , 则有:6 x + 5 y + 4 ( 20 2x2y ) = 100整理得: y = 22 x + 20(2) 由( 1) 知, 装运A 、B 、C 三种脐橙的车辆数分别为x 、22 x + 20 、x , 由题意得:, 解得: 4 ≤x ≤8 .x ≥422 x + 20 ≥4因为x 为整数, 所以x 的值为4 、5 、6 、7 、8 , 所以安排方案共有5 种.方案一: 装运A 种脐橙4 车, B 种脐橙12车, C 种脐橙4 车;方案二: 装运A 种脐橙5 车, B 种脐橙10车, C 种脐橙5 车;方案三: 装运A 种脐橙6 车, B 种脐橙8 车,C 种脐橙6 车;方案四: 装运A 种脐橙7 车, B 种脐橙6 车,C 种脐橙7 车;方案五: 装运A 种脐橙8 车, B 种脐橙4 车,5 = 2 k + b ,意, 得解得: k = 8 , b = 9 .C 种脐橙8 车;6 = 2 . 625 k + b.得y = 8 x + 9 .5 5 (3) 设利润为W ( 百元) 则:W = 6 x ×12 + 5 ( 22 x + 20) ×16 + 4 x ×105 5= 248 x + 1600将y = 13 代入上式, 得x = 7 .所以小明家离学校7km.七、生活中最优化问题例7 我市某镇组织20 辆汽车装运完A 、B 、C 三种脐橙共100 吨到外地销售. 按计划,20 辆汽车都要装运, 每辆汽车只能装运同一种脐橙, 且必须装满. 根据下表提供的信息, 解答以下问题:∵k = 248 < 0 ∴W 的值随x 的增大而减小, 要使利润W 最大, 则x = 4 , 故选方案一W 最大= 248 ×4 + 1600 = 1408 ( 百元)= 14 . 08 ( 万元)答: 当装运A 种脐橙4 车, B 种脐橙12 车, C种脐橙4 车时,获利最大,最大利润为14. 08 万元.。

分段函数在生活方面的应用

分段函数在生活方面的应用

一l 1 . 9 x 一4 . 9 . X>7
二 ,生活 中的通讯网络 问题
例2 :中 国移动 有 三种 业 务方 式 ,分 别 是全 球 通 ,动 感地 带 和
神 州 行 。其 中 , “ 动 感 地 带 ” ,使 用 者需 交 5 O 元 月 租 费 ,并 且 每 通话1 分 钟 ,付 话费 0 . 4 元 ( 指市 内通 话 ); “ 神 州行 ” ,不交 月 租 费 ,每 通话 1 分 钟 ,付话 费 0 . 6 元, ( 指 市 内通话 )。 “ 全 球通 ” , 使 用者 固定 交 1 2 0 元 月租 费 ,并 且通 话 不 收费 。某 用 户 的每月 通话 时 间大 约为 1 9 0 分钟 。请 问该用 户选 择哪种 付 费方式更 合算 。 解 :设 通话 时间X 分钟 ,费用 为Y 元 ,则 函数关 系式 为 :
3 0 ‘ % 一6 3 3 0 . 3 8 5 0 0< ≤5 8 5 0 0 3 5 ‘ % 一3 7 0 5 . 5 8 5 0 0< ≤8 3 5 0 0 4 5 % 一3 3 0 . >8 3 5 0 0
水处 理 费.
试 写 出用 户用 水量 X( m ’ ) 与 应交 水费 Y( 元) 之 间 的 函数 关 系 式。
分 析 : 由题 意看 出 ,用 水量 不 超 过7 m 的部 分 和 用水 量 超 过 7 m 的 部 分 的计 费 标 准是 不 相 同 的 。 因此 ,需 要 分别 在 两 个 范 围 内
研究。
解 :分别 研究 在两个 范 围内的 计费标 准 ,列 出表格 :
综 合 以上两种 情况 ,将 函数写 作
f 1 . 2 x . 0<x 7
f r ,、 一
( 1 )陈 老师 在某 月 的基 本工 资 为 3 5 5 0 元 ,该 月 的上 课 津贴 为

简述分段函数在生活中的应用(教案)

简述分段函数在生活中的应用(教案)

简述分段函数在生活中的应用【学情分析】:随着我国教育体制改革的不断深化,课堂教学更加重视知识的实际应用。

数学应用意识的考查是高考命题的指导思想,考查应用意识是通过解答应用问题来体现的,考查的重点是客观事物的数学化,这个过程主要是依据现实生活的背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决。

本文将这部分内容与分段函数进行有机整合,利用分段函数的性质来解决实际问题,旨在为将生活中的问题具象为数学函数内容,并希望能够帮助学生很好地利用函数来解决实际问题。

文章提供了四类不同情境下的分段函数和问题。

【文章概要】:本文详细介绍的内容主要有四点:1.分段函数在生活中的运用—用电问题2.分段函数在生活中的运用—醉酒驾车问题3.分段函数在生活中的运用—工作安排问题4.分段函数在生活中的运用—企业的生产问题【相关知识点】:分段函数的定义、应用【阅读目标】:利用分段函数的性质,提供不同情境下的生活问题,提高学生提取信息、分析问题、解决问题的能力,加深学生对分段函数的理解。

【难点】:需要学生对分段函数的概念和性质有足够的概念和熟悉度,;引导同学们通过解读材料中的信息点进行归纳、分类和整合,利用分段函数解决问题;在每类情境下预留相关问题给学生思考和解答,注意回顾函数的单调性和最值。

【课程过程设计】:课程环节教学活动教学意图一、复习引入问题一:请同学们回顾函数的定义和性质;回顾分段函数的概念。

函数定义:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:A→B.其中,b称为a在映射f下的象,记作:b=f(a);a称为b关于映射f的原象.集合A中所有元素的象的集合记作f(A).函数性质:单调性、奇偶性、最值分段函数:即函数在它的定义域中,对于自变量的不同取值范围,对应不同的法则。

67 分段函数同步(学生版)

67 分段函数同步(学生版)

高一同步课程 “分段函数” 学生姓名授课日期 教师姓名授课时长知识定位本讲内容:分段函数的概念及其定义域和值域的确定、分段函数的图像掌握目标:掌握分段讨论的思想,会结合图像讨论函数性质。

重点及难点:能掌握分段讨论思想,数形结合思想考试分析:在往届高考及其模拟考中,分段函数大多出现在应用题或是与奇偶性同时进行考核。

每年最多一题。

难度要求理解。

知识梳理➢ 知识点一:分段函数的基本概念分段函数定义:对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数。

分段函数定义域:各段函数定义域的并集。

分段函数值域:各段函数值域的并集。

涉及的题型:1. 求分段函数的定义域和值域;2. 求分段函数的函数值;3. 求分段函数的最值;4. 求分段函数的解析式。

注意:含有绝对值的函数,按绝对值定义展开就是分段函数。

【试题来源】【题目】求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【试题来源】【题目】函数221(0)()(0)x x f x xx ⎧+≥⎪=⎨-<⎪⎩的值域【试题来源】2005年浙江理科高考 【题目】已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【试题来源】【题目】若f (x )=,则f (﹣2)的值为( )A. 0B. 1C. 2D. -2【试题来源】【题目】求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【试题来源】【题目】在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )【选项】222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)x x x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩【试题来源】【题目】某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率P 与日产量x (件)之间大体满足关系:⎪⎩⎪⎨⎧∈>∈≤≤-=),(32),1(961N x c x N x c x x P (其中c 为小于96的正常数) 注:次品率生产量次品数=P ,如0.1P =表示每生产10件产品,约有1件为次品.其余为合格品.已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损2A 元,故厂方希望定出合适的日产量.(1)试将生产这种仪器每天的盈利额T (元)表示为日产量x (件)的函数;(2)当日产量为多少时,可获得最大利润?【试题来源】2011年湖北高考【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)➢ 知识点二:分段函数的图像画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;涉及到的题型:1. 作分段函数的图像2. 解分段函数的不等式3. 解分段函数的方程【试题来源】【题目】已知函数y=⎪⎩⎪⎨⎧>+-≤<-≤+.4,2,40,2,0,42x x x x x x x(1)求f{f [f(5)]}的值;(2)画出函数的图象.【试题来源】2010•宁夏【题目】已知函数,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6) C.(10,12) D .(20,24)【试题来源】 【题目】设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )【选项】.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【试题来源】【题目】已知函数y=|x 2−1|x−1的图象与函数y=kx 的图象恰有两个交点, 则实数k 的取值范围是 .课后练习【试题来源】【题目】已知函数f(x)=|x-a|(1)若f(x)≤m 的解集为{x|-1≤x ≤5},求实数a,m 的值。

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究

标题:深度探索分段函数及其在日常生活中的应用研究一、概述分段函数作为数学中重要的概念,其在日常生活中的应用也是不可忽视的。

从简单的数学模型到复杂的实际问题,分段函数都能够提供有力的分析工具。

在本文中,我们将深入探讨分段函数的定义、性质以及在日常生活中的具体应用,并结合个人观点来全面了解这一概念。

二、分段函数的定义和性质1. 分段函数的定义分段函数是指在定义域的若干个子区间内,其函数值由不同的函数式子来定义的函数。

一般来说,分段函数可以分为线性分段函数、二次分段函数等不同类型。

当x≥0时,y=x;当 x<0 时,y=-x。

这就是一个简单的分段函数的定义。

2. 分段函数的性质分段函数的性质包括函数值的连续性、导数的计算以及函数图像的绘制等方面。

在任意一给定区间,分段函数都具有各自的函数式子和定义域,因此在计算导数和绘制函数图像时需要考虑到这一点。

这些性质对于从简单到复杂的分段函数来说都是通用的。

三、分段函数在日常生活中的应用1. 交通流量模型在城市交通规划中,常常需要通过分段函数来模拟不同时间段内的车辆流量。

早晚高峰期和平常时间的车辆密度就可以用分段函数来描述。

这对于优化交通信号灯的设置和道路设计都有着重要的指导意义。

2. 财务风险评估在金融领域,分段函数也经常被用来评估某个金融产品或投资组合的风险。

通过将不同的市场情况划分为不同的区间,可以更准确地评估风险的发生概率和程度,为投资决策提供科学依据。

3. 健康体能评估体育锻炼中,训练强度和时长的关系也可以用分段函数来描述。

通过分段函数模型,可以帮助运动员或普通人更合理地安排训练计划,避免过度或不足的训练对身体造成的不利影响。

四、个人观点和理解作为一种常见的数学模型,分段函数在解决实际问题中具有广泛的应用价值。

从数学原理到实际应用,我深刻认识到了分段函数的重要性。

通过深入学习和实际应用,我相信分段函数将对我的学习和工作产生深远的影响。

五、总结与回顾分段函数不仅仅是数学中的一个抽象概念,更是一个具有深刻应用价值的数学工具。

6寒假复习必修一之分段函数(学生版)

6寒假复习必修一之分段函数(学生版)

第六讲 分段函数一 知识梳理:1.概念:在函数的定义域内,对于自变量的不同取值范围,有着不同的解析式, 这样的函数叫做分段函数2.定义域:分段函数的定义域是自变量的各段取值范围的并集3.函数值:求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.4.函数图像:分段函数的图像是各段上图像的和二 知识运用: 例1.如图所示,是某分段函数y=f (x )的图像,试求其定义域、值域。

例2.画出函数 1 0() 1 0x x y f x xx -<⎧==⎨+≥⎩的图像,并求f (2)、f (-1)。

练习:画出函数()[)2 1 ,0() 2 1 0,x x y f x x x ⎧-∈-∞⎪==⎨+∈+∞⎪⎩的图像,并求f (2)、f (-2)。

例3.画出函数y x =的图像,并求f (2)、f (-2)练习:画出函数2y x =+的图像,并求f (2)、f (-2)例4画出函数()[](](]212,01 0,21 2,5x x x y f x x x ⎧+∈-⎪∈-==⎨⎪-∈⎩的图像,并求f f f (1),(2) 。

例5.求分段函数23(0)3(01)5(1)x x y x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值课堂练习:1.已知函数 求f(1);f(0);f(-3);f{f[f(-2)]} ;2.画出函数 的图像3. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B. 14 C.-4 D-14【课后作业】1.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = .2. 已知函数 (1)求 的值;(2)若f(a)=3,求a 的值.2(1),0,,0.x xy x x ⎧+≤=⎨->⎩22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩1(2),()2f f 22,1,(),122,2;x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩。

实际生活中的分段函数问题

实际生活中的分段函数问题

实际生活中的分段函数问题1、保护生态环境,建设绿色社会已经从理念变为人们的行动。

某化工厂2009年1月的利润为200万元。

设2009年1月为第1个月,第个月的利润为万元。

由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,与成反比例。

到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如下图)(1)分别求该化工厂治污期间及治污改造工程完工后与之间对应的函数关系式。

(2)治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?2、某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水龙头,后来因故障关闭一个放水龙头。

假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量与按水时间的函数图像如图所示(1)问前15位同学接水结束共需要几分钟?(2)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟。

”你说可能吗?请说明理由。

3、为预防“流感”,某单位对办公室进行“药熏消毒”。

已知药物燃烧时,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与成x反比例。

现测得药物8分钟燃烧毕,此时办公室内每立方米空气中含药量为6mg, 据以上信息:(1)分别求燃烧时和燃烧后,y与x的函数关系式;(2)研究表明,当空气中含药量低于1.6mg/m3时,工作人员才能回到办公室,那么从消毒开始,经多长时间,工作人员才可以回到办公室?4、某工厂用一种自动控制加工机械作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10L时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复。

已知机器需运行185min才能将这批工件加工完。

下图是油箱中油量y(L)与机器运行时间x(min)之间的函数图象。

青岛版数学九年级下册_例析生活中的分段函数及其图像

青岛版数学九年级下册_例析生活中的分段函数及其图像

例析生活中的分段函数及其图像
图像法是表示实际生活中的情境时使用最普遍的一种方法。

下面我们举例说明有关函数图像问题的解决方法,供大家参考.
例1 如图1是韩老师早晨出门散步时,离家的距离y与时间x的函数图像.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )
图1
析解:本题考查函数图像在实际生活中的应用.要想知道韩老师散步行走的路线,关键是要搞清楚本题中“距离”的概念,它不同于散步行走的路程.而本题的突破口是图中有一段时间离家的距离不变,从函数图像可以看出,(A)、(B)、(C)三条路线均不具备这一特征,只有(D)可以和图1中给出的函数图像相符,故应选(D)。

例2 乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,下列图像中最符合故事情景的是()。

析解:由题意可知,乌鸦看到瓶子后先沉思了一段时间,所以函数一开始水位应该是不变的,但是(C)不具备这一特征,所以可以排除(C)。

乌鸦衔
落石子后水位直接上升,没有下降的过程,所以应排除(A)。

最后乌鸦喝剩的水不可能比一开始还要低,故应排除(B),因此应选(D)。

练习:如图,一个蓄水桶,60分钟可将一满桶水放干,其中,
水位h(㎝)随着放水时间t(分)的变化而变化.设开始时水桶
中的水是满的,请画出水位h关于放水时间t的函数图像.。

案例七分段函数应用举例_图文.docx

案例七分段函数应用举例_图文.docx

分段函数的实际应用教学目标(1)知识目标:能够根据简单的实际问题,建立分段函数的关系式,会应分段函数的图象并求简单的分段函数的定义域和值域。

(2)能力目标:引导学生理解数学建模的方法,培养学生观察、分析、归纳等思维能力,休会分类讨论思想以及从一般到特殊等学习数学的方法;加强学生对实际生活中的数学背景知识及应用的认知,学生不仅可以将其应用到专业学习上, 更能从数学的角度提升对各种问题知识感性认识和理解分析能力。

的数学模型,培养学生分析问题及概括总结的能力,形成主动探求知识、合作交流的意识与品质。

教学重难点重点:1、根据数学建模的方法,建立实际问题的分段函数关系式,解决问题。

2、分段函数图像的做法。

难点:建立实际问题的分段函数关系式。

教学过程的设计教学过程教师活动学生活动设计意图一、课前复习1. 分段函数的定义。

2. 作出以下分段函数的图像,分别求岀f(-2), f(0), f⑶的值。

[x.XE (0,+oo)> (~oo,0]提问:回忆下什么是分段函数,求值并作出所给出的函数的图像。

(11:学住黑板作出,并用PPT讲解)回忆分段函数定义;在练习本上作练习。

复习上节课所学知识,为本节课内容奠定基础。

(3)情感态度与价值观:引导学生将实际问题用数学语言抽象概括,建立相应二、新课讲解应用1:用水收费问题我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准: 1•首先提问学生当用水量分别是8 m3, 10m3,12n?时应缴多少水费?2. 引导学生思考若用水量设为X,应交水费设为y,怎样写出函数的解析式?3. 利用多媒体进行用水量的动态演示分析,引导学生寻找发现y与x规律,同时注重培养学生的分类讨论的思想。

4. 提问:学*思考的结果,并让学生在黑板写出答案,画出该函数的图彖。

5. 教师点评。

学生冋答问题的。

学牛读题,分析思考。

最新初二数学一次函数的应用分段函数专题

最新初二数学一次函数的应用分段函数专题

初二数学一次函数的应用分段函数专题-------5月11日作业
一、话费中的分段函数
1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:
(1)月通话为100分钟时,应交话费元;
(2)当x≥100时,求y与x之间的函数关系式;
(3)月通话为280分钟时,应交话费多少元?
二、水费中的分段函数
例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.
(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;
(2)若某户该月用水21吨,则应交水费多少元?
三、电费中分段函数
3、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?。

分段函数的应用总结

分段函数的应用总结

分段函数的应用总结分段函数是数学中常见的一种函数形式,它在不同的定义域区间上有不同的表达式。

在实际问题中,我们经常遇到需要用分段函数来描述的情况。

本文将总结几个常见的应用场景,以帮助读者理解和应用分段函数。

一、电费计算电费计算是一个常见的应用分段函数的例子。

在电费计算中,电费的计算方式通常与用电量有关。

比如,一个城市的电价标准规定如下:当用电量小于等于100度时,电费为每度0.5元;当用电量大于100度且小于等于200度时,电费为每度0.6元;当用电量大于200度时,电费为每度0.7元。

我们可以用以下分段函数来表示电费的计算方式:\[ f(x) = \begin{cases}0.5x, & \text{if } 0 \leq x \leq 100 \\0.6x, & \text{if } 100 < x \leq 200 \\0.7x, & \text{if } x > 200\end{cases}\]其中,x表示用电量,f(x)表示对应的电费。

通过这个分段函数,我们可以根据不同的用电量来计算相应的电费,帮助人们合理使用电力资源。

二、阶梯药价阶梯药价是医疗领域中常用的分段函数应用。

在一些国家或地区,医疗费用的计算方式与购买的药品数量有关。

通常情况下,每种药品购买的数量越多,单价就越低。

以某种药品为例,假设其价格规定如下:当购买数量小于等于10盒时,单盒价格为30元;当购买数量大于10盒且小于等于50盒时,单盒价格为25元;当购买数量大于50盒时,单盒价格为20元。

我们可以用以下分段函数来表示阶梯药价的计算方式:\[ f(x) = \begin{cases}30x, & \text{if } 0 \leq x \leq 10 \\25x, & \text{if } 10 < x \leq 50 \\20x, & \text{if } x > 50\end{cases}\]其中,x表示购买的盒数,f(x)表示对应的药品费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与生活息息相关的“分段函数” 姓名_______
在我们的日常生活中经常会遇到像缴水电费、打电话、打的、上网、纳税等实际问题,这些问题经常要用到一次函数(特别是分段函数)来解决,下面举例说明,供参考.
一、话费问题
例1.从A 地向B 地打长途电话,按时收费3分钟内(包括3分钟)收费2.4元,以后每增加1分钟加收1元(不足1分钟按1分钟计)写出所收费用y (元)与通话时间t (分钟)之间的函数关系式,并画出函数图象.
解:
二、水费问题
例2.2004年6月3日,中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2元计算; (2)若每月每户居民用水超过4立方米,则超过的部分按每立方米4.5元计算(不超过的部分仍按按每立方米2元计算),现假设该市某户居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图象表示正确的是( ). 解:




三、电费问题
例3.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (度)与应付电费y(元)的关系如图:
(1)根据图象,请分别求当0≤x≤50和x>50时,y与x的函数关系式;
(2)请回答:当每月用电量不超过50度时收费标准是;
当每月用电量超过50度时收费标准是.
解:
x
四、上网收费问题
例4.通过电脑拨号上“因特网”的费用是由话费和上网费两部分组成,以前我市通
过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,
后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”
的费用调整为电话费0.22元/3分钟,上“因特网”的费用为每月不超过60小时,按4
元/小时计算,超过60小时,按8元/小时计算.
(1)根据调整后的规定:将每月上“因特网”的费用y(元)表示为上“因特网”的费用
x(小时)的函数;
(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”的费用调整后,晓刚要想不超过其家庭经济预算中上网费用支出,他现在每月至多可上网多少小时?
(3)从资费调整后的角度分析,比较我市网民上网的支出情况.
解:
五、打的问题
例5.某校组织学生到距学校6千米的光明科技馆参观,学生王红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去明科技馆,出租车收费标准如下:
(1)写出出租车行驶的里程数x与费用y之间的函数关系式;
(2)王红同学身上仅有14元钱,乘出租车到科技馆的车费够不够?请说明理由.解:
六、纳费问题
例6.《中华人民共和国个人所得税》规定:公民月工资、薪金所得不超过800元部分不必钠税,超过800元的部分为全月纳税所得额,此项税款按下表累计计算:
(纳税款=应纳税所得额×对应的税率)
按此规定解答下列问题:
(1)设某甲的月工资、薪金所得为x元(1300<x<2800=需缴交的所得税款为y(元),试写出y与x的关系式;
(2)若某乙一月份应缴交税款95元,那么他一月份的工资、薪金是多少元?
解:
以上仅举了生活中用分段函数,来解决的六个方面,诸如类似的问题还有许多,如:邮资、保险、批发、托运、分期付款等常见问题,它们均源于生活,希望同学们会用数学的眼光认识世界,分析周围的问题,增强用数学的意识和能力.。

相关文档
最新文档