电磁感应二轮复习题(有答案)
2021届高三物理二轮复习 电磁感应(全国I卷)
2021届高三物理 二轮复习 全国I 卷 电磁感应 1.如图甲所示,光滑平行金属导轨MN PQ 、所在平面与水平面成θ角,M P 、两端接一电阻R ,整个装置处于方向垂直于导轨平面向上的匀强磁场中.0t =时对金属棒施加一平行于导轨的外力F ,使金属棒由静止开始沿导轨向上运动,金属棒的电阻为r ,导轨电阻忽略不计.已知通过电阻R 的感应电流I 随时间t 变化的关系如图乙所示.下列关于导体棒运动速度v 、外力F 、流过R 的电荷量q 以及闭合回路中磁通量的变化率t Φ∆∆随时间变化的图像正确的是( )A. B. C. D.2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在t ∆时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B ,在此过程中,线圈中产生的感应电动势为( )A.22Ba t ∆ B.22nBa t ∆ C.2nBa t ∆ D.22nBa t ∆3.著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘圆盘上中部安一个线圈,并接有电源,圆盘的四周固定有许多带负电的小球,将整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间,下列关于圆盘的说法中正确的是( )A.圆盘将逆时针转动(俯视)B.圆盘将顺时针转动(俯视)C.圆盘不会转动D.圆盘先逆时针转再顺时针转(俯视)4.1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A.圆盘上没有产生感应电动势B.圆盘内的涡流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动5.如图所示,电路中A、B是两个完全相同的灯泡,L是一个自感系数很大、电阻可忽略的自感线圈,C是电容很大的电容器.当S闭合与断开时,A、B灯泡的发光情况是( )A.S刚闭合后,灯泡B亮一下又逐渐变暗B.S刚闭合后,灯泡A 亮一下又逐渐熄灭C.S闭合足够长时间后,灯泡A和B一样亮D.S闭合足够长时间后,灯泡A、B都熄灭6.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直,阻值为R的导体棒垂直于导轨静止放置.0t 时,将开关S由1掷到2.q i v、、和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和棒的加速度,则下列图像中正确的是( )A. B. C. D.7.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置沿水平向右方向以速度v匀速穿过磁场区域,下列图中线框A B、两端电压ABU与线框移动距离x 的关系图像正确的是( )A. B. C. D. 8.如图所示,有一个边界为正三角形的匀强磁场区域,边长为a ,磁感应3,宽为2a ,平行于纸面沿着磁场区域的轴线匀速穿过磁场区域,导体框中感应电流的正方向为逆时针方向,以导体框刚进入磁场时为0t =时刻,则导体框中的感应电流随时间变化的图象是( )A. B. C. D. 9.在光滑水平桌面上有一边长为l 的正方形线框,abcd bc 边右侧有一等腰直角三角形匀强磁场区域efg ,三角形腰长为l ,磁感应强度方向竖直向下,a b e f 、、、在同一直线上,其俯视图如图所示,线框从图示位置在水平拉力F 作用下向右匀速穿过磁场区域,线框中感应电流i t -图像正确的是(以逆时)( )针方向为电流的正方向,时间单位为lvA. B. C. D.10.如图所示,在光滑水平桌面上有一正方形导线框;在导线框右侧有匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.让线圈由位置1通过匀强磁场区域运动到位置2,下列说法中正确的是( )A.线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入的速度越大,感应电流越大B.整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的C.整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大D.线圈穿出匀强磁场区域的过程中,线圈中有逆时针方向的感应电流11.如图所示,单匝闭合金属线框abcd在匀强磁场中绕垂直于磁场的轴OO'匀速转动,设穿过线框的最大磁通量为mΦ,线框中产生的最大感应电动势为E,从线框平面与磁场平行时刻(图示位置)开始计时,下列说法正确的是( ) mA.线框转动的角速度为mm E ΦB.线框中的电流方向在图示位置发生变化C.当穿过线框的磁通量为m Φ时,线框中的感应电动势为m ED.若线框的转动周期减小一半,线框中的感应电动势也减小一半 12.如图所示,位于同一绝缘水平面内的两根固定金属导轨MN M N ''、电阻不计,两导轨之间存在竖直向下的匀强磁场.现将两根粗细均匀、电阻分布均匀的相同铜棒ab cd 、放在两导轨上,若两棒从图示位置以相同的速度沿MN 方向做匀速直线运动,运动过程中始终与两导轨接触良好,且始终与导轨MN 垂直,不计一切摩擦,则下列说法正确的是( )A.回路中有顺时针方向的感应电流B.回路中的感应电流不断增大C.回路中的热功率不断增大D.两棒所受安培力的合力不断减小 13.半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图甲所示.有一变化的磁场垂直于纸面,规定向里为正方向,变化规律如图乙所示.在0t =时刻,两平行金属板之间中心有一质量为m 、电荷量为q 的微粒恰好处于静止状态,则以下说法正确的是( )A.微粒带负电荷B.第2 s 内上极板带正电C.第3 s 内上极板带负电D.第2 s 末两极板之间的电场强度大小为20.2πV/m r d14.如图所示,相距为L 的两根足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,其余电路电阻都不计,匀强磁场垂直于导轨平面向下,磁感应强度大小为B .现将质量为m 的导体棒由静止释放,当棒下滑到稳定状态时,速度为v .下列说法错误的是( )A.导体棒达到稳定状态前做加速度减小的加速运动B.当导体棒速度达到3v 时加速度大小为2sin 3g θC.导体棒的a 端电势比b 端电势高D.导体棒达到稳定状态后,电阻R 产生的焦耳热等于重力所做的功15.如图所示,AB CD 、为两个平行的水平光滑金属导轨,处在方向竖直向下、磁感应强度为B 的匀强磁场中,AB CD 、的间距为L ,左右两端均接有阻值为R 的电阻.质量为m 、长为L ,且不计电阻的导体棒MN 放在导轨上,甲、乙为两根相同的轻质弹簧,弹簧一端与MN 棒中点连接,另一端均被固定.导体棒MN 与导轨接触良好.开始时,弹簧处于自然长度,导体棒MN 具有水平向左的初速度0v ,经过一段时间,导体棒MN 第一次运动到最右端,这一过程中,A C 、间的电阻R 上产生的焦耳热为Q ,则( )A.初始时刻导体棒所受的安培力大小为2202B L v RB.从初始时刻至导体棒第一次到达最左端的过程中,整个回路产生的焦耳热等于23Q C.当导体棒第一次到达最右端时,每根弹簧具有的弹性势能为20122mv Q -D.当导体棒第一次回到初始位置时,A C 、间电阻R 的热功率为016.如图甲所示,边长为0.1 m 的正方形单匝线框abcd 中存在垂直线框平面的匀强磁场,以垂直平面向里为正方向,磁场随时间变化的图像如图乙所示。
2020版高考物理大二轮复习试题:电磁感应规律及其应用(含答案)
回扣练12:电磁感应规律及其应用1.如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN 施力使它沿导轨方向以速度v 水平向右做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Blv ,流过固定电阻R 的感应电流由b 经R 到dB .U =Blv ,流过固定电阻R 的感应电流由d 经R 到bC .MN 受到的安培力大小F A =B 2l 2v 2R,方向水平向右 D .MN 受到的安培力大小F A =B 2l 2v R,方向水平向左 解析:选A.当MN 运动时,相当于电源.但其两边的电压是外电路的电压,假设导轨没电阻,MN 两端的电压也就是电阻R 两端的电压,电路中电动势为E =BlV ,MN 的电阻相当于电源的内阻,二者加起来为2R ,则电阻上的电压为12Blv ,再由右手定则,拇指指向速度方向,手心被磁场穿过,四指指向即为电流方向,即由N 到M ,那么流过电阻的就是由b 到d .故A 正确,B 错误.MN 受到的安培力F =BIl =B 2l 2v 2R;由左手定则可知,安培力的方向水平向左;故CD 错误.故选A.2.如图所示,两相邻有界匀强磁场的宽度均为L ,磁感应强度大小相等、方向相反,均垂直于纸面.有一边长为L 的正方形闭合线圈向右匀速通过整个磁场.用i 表示线圈中的感应电流,规定逆时针方向为电流正方向,图示线圈所在位置为位移起点,则下列关于i x 的图象中正确的是( )解析:选C.线圈进入磁场,在进入磁场的0~L 的过程中,E =BLv ,电流I =BLv R ,根据右手定则判断方向为逆时针方向,为正方向;在L ~2L 的过程中,电动势E =2BLv ,电流I =2BLv R,根据右手定则判断方向为顺时针方向,为负方向;在2L ~3L 的过程中,E =BLv ,电流I =BLv R,根据右手定则判断方向为逆时针方向,为正方向;故ABD 错误,C 正确;故选C.3.如图所示,表面粗糙的U 形金属线框水平固定,其上横放一根阻值为R 的金属棒ab ,金属棒与线框接触良好,一通电螺线管竖直放置在线框与金属棒组成的回路中,下列说法正确的是( )A .当变阻器滑片P 向上滑动时,螺线管内部的磁通量增大B .当变阻器滑片P 向下滑动时,金属棒所受摩擦力方向向右C .当变阻器滑片P 向上滑动时,流过金属棒的电流方向由a 到bD .当变阻器滑片P 向下滑动时,流过金属棒的电流方向由a 到b解析:选C.根据右手螺旋定则可知螺线管下端为N 极,而穿过回路的磁通量分为两部分,一部分为螺线管内部磁场,方向竖直向下,一部分为螺线管外部磁场,方向竖直向上,而总的磁通量方向为竖直向下,当变阻器滑片P 向上滑动时,滑动变阻器连入电路的电阻增大,螺线管中电流减小,产生的磁场变弱,即穿过回路的磁通量向下减小,根据楞次定律可得流过金属棒的电流方向由a 到b ,A 错误C 正确;当变阻器滑片P 向下滑动时,滑动变阻器连入电路的电阻减小,螺线管中电流变大,产生的磁场变强,即穿过回路的磁通量向下增大,根据楞次定律可得流过金属棒的电流方向由b 到a ,而导体棒所处磁场方向为竖直向上的,金属棒所受安培力方向向右,故摩擦力方向向左,故BD 错误.故选C.4.如图所示,处于竖直面的长方形导线框MNPQ 边长分别为L和2L ,M 、N 间连接两块水平正对放置的金属板,金属板距离为d ,虚线为线框中轴线,虚线右侧有垂直线框平面向里的匀强磁场.两板间有一个质量为m 、电量为q 的带正电油滴恰好处于平衡状态,重力加速度为g ,则下列关于磁场磁感应强度大小B 的变化情况及其变化率的说法正确的是( )A .正在增强,ΔB Δt =mgd qL 2 B .正在减小,ΔB Δt =mgd qL 2C .正在增强,ΔB Δt =mgd 2qL 2D .正在减小,ΔB Δt =mgd 2qL2 解析:选B.电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线框下端相当于电源的正极,感应电动势顺时针方向,感应电流的磁场方向和原磁场同向,根据楞次定律,可得穿过线框的磁通量在均匀减小;线框产生的感应电动势:E =ΔB Δt S =ΔB Δt L 2;油滴所受电场力:F =E 场q ,对油滴,根据平衡条件得:q E d=mg ;所以解得,线圈中的磁通量变化率的大小为:ΔB Δt =mgd qL2;故选B. 5.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止)( )A .感应电流所做的功为3mgdB .线圈的最小速度一定大于mgR B 2L 2C .线圈的最小速度一定是2g (h +L -d )D .线圈穿出磁场的过程中,感应电流为逆时针方向解析:选C.据能量守恒,研究从cd 边刚进入磁场到cd 边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q =mgd .cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,所以从cd 边刚穿出磁场到ab 边离开磁场的过程,线框产生的热量与从cd 边刚进入磁场到ab 边刚进入磁场的过程产生的热量相等,所以线圈从cd 边进入磁场到ab 边离开磁场的过程,产生的热量Q ′=2mgd ,感应电流做的功为2mgd ,故A 错误.线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg =B 2L 2v R ,解得可能的最小速度v =mgR B 2L2,故B 错误.因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg (h +L )=Q+12mv 2,解得最小速度v =2g (h +L -d ),故C 正确.线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D 错误.故选C.6.如图所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键S 从闭合状态突然断开时,下列判断正确的( )A .a 先变亮,然后逐渐变暗B .b 先变亮,然后逐渐变暗C .c 先变亮,然后逐渐变暗D .b 、c 都先变亮,然后逐渐变暗解析:选A.电键S 闭合时,电感L 1中电流等于两倍L 2的电流,断开电键S 的瞬间,由于自感作用,两个电感线圈相当于两个电源,与三个灯泡构成闭合回路,通过b 、c 的电流都通过a ,故a 先变亮,然后逐渐变暗,故A 正确; b 、c 灯泡由电流i 逐渐减小,B 、C 、D 错误 .故选A.7.(多选)如图甲所示,宽度为L 的足够长的光滑平行金属导轨固定在水平面上,导轨左端连接一电容为C 的电容器,将一质量为m 的导体棒与导轨垂直放置,导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度为B .用与导轨平行的外力F 向右拉动导体棒,使导体棒由静止开始运动,作用时间t 1后撤去力F ,撤去力F 前棒内电流变化情况如图乙所示.整个过程中电容器未被击穿,不计空气阻力.下列说法正确的是 ( )A .有外力作用时,导体棒在导轨上做匀速运动B .有外力作用时,导体棒在导轨上做匀加速直线运动C .外力F 的冲量大小为It 1⎝ ⎛⎭⎪⎫BL +m CBL D .撤去外力F 后,导体棒最终静止在导轨上,电容器中最终储存的电能为零解析:选BC.对电容器Q =CU ,则ΔQ =C ΔU ,I =ΔQ Δt ;ΔU =ΔE =BL Δv ;解得I =CBL Δv Δt=CBLa ,则导体棒的加速度a 恒定,做匀加速运动,选项A 错误,B 正确;根据牛顿第二定律:F -BIL =ma ,则F =BIL +mI CBL ,则外力F 的冲量大小为I F =Ft 1=It 1⎝⎛⎭⎪⎫BL +m CBL ,选项C 正确;撤去外力F 后,导体棒开始时做减速运动,当导体棒产生的感应电动势与电容器两端电压相等时,回路中电流为零,此时安培力为零,导体棒做匀速运动,此时电容器两端的电压不为零,则最终储存的电能不为零,选项D 错误;故选BC.8.(多选)如图所示,在竖直平面内MN 、PQ 两光滑金属轨道平行竖直放置,两导轨上端M 、P 间连接一电阻R .金属小环a 、b 套在金属轨道上,质量为m 的金属杆固定在金属环上,该装置处在匀强磁场中,磁场方向垂直竖直平面向里.金属杆以初速度v 0从图示位置向上滑行,滑行至最高点后又返回到出发点.若运动过程中,金属杆保持水平,两环与导轨接触良好,不计轨道、金属杆、金属环的电阻及空气阻力.金属杆上滑过程和下滑过程相比较,以下说法正确的是( )A .上滑过程所用时间比下滑过程短B .上滑过程通过电阻R 的电量比下滑过程多C .上滑过程通过电阻R 产生的热量比下滑过程大D .上滑过程安培力的冲量比下滑过程安培力的冲量大解析:选AC. 如图所示,v t 图斜率代表加速度,其面积表示位移,上滑过程中,做加速度逐渐减小的减速运动,下滑过程中是加速度逐渐减小的加速运动,由于位移大小相等,可知上升时间小于下落时间,故A 正确;由q =ΔΦR,可知上滑过程通过电阻R 的电量等于下滑过程中电量,故B 错误;在相同位置,上滑时的速度大于下滑时的速度,则上滑过程安培力的平均值大于下滑过程安培力的平均值,导致上滑过程中导体棒克服安培力做功多,则上滑过程中电阻R 产生的热量大于下滑过程中产生的热量,故C 正确.安培力冲量I =BLq ,q =ΔΦR,可知上滑过程安培力的冲量等于下滑过程安培力的冲量,故D 错误.9.(多选)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面的夹角θ=30°,导轨电阻不计,整个装置处于磁感应强度大小为B 、方向垂直导轨平面向上的匀强磁场中.质量为m 、长为L 、电阻为R 的金属棒垂直导轨放置,且始终与导轨接触良好.金属导轨的上端连接一个阻值也为R 的定值电阻.现闭合开关K ,给金属棒施加一个平行于导轨斜向上、大小为F =2mg 的恒力,使金属棒由静止开始运动.若金属棒上滑距离s 时,金属棒开始匀速运动,则在金属棒由静止到刚开始匀速运动过程,下列说法中正确的是(重力加速度为g )( )A .金属棒的末速度为3mgRB 2L 2 B .金属棒的最大加速度为1.4gC .通过金属棒的电荷量为BLs RD .定值电阻上产生的焦耳热为34mgs -9m 3g 2R 24B 4L4 解析:选AD.设金属棒匀速运动的速度为v ,则感应电动势E =BLv ;回路电流I =E 2R =BLv2R ;安培力F 安=BIL =B 2L 2v 2R ;金属棒匀速时,受力平衡有F =mg sin 30°+F 安,即2mg =12mg +B 2L 2v 2R联立解得:v =3mgR B 2L2,故A 正确;金属棒开始运动时,加速度最大,即F -mg sin 30°=ma ,代入数据2mg -12mg =ma ,解得a =1.5g ,故B 错误;根据感应电量公式Q =ΔΦR 总=BLs 2R,故C 错误;对金属棒运用动能定理,有Fs -mgs sin 30°-Q =12mv 2,其中定值电阻上产生的焦耳热为Q R =12Q =34mgs -9m 3g 2R 24B 4L4,故D 正确;故选AD. 10.(多选)如图甲所示,光滑且足够长的金属导轨MN 、PQ 平行地固定在同一水平面上,两导轨间距L =0.2 m ,两导轨的左端之间连接的电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 的金属杆ab ,位于两导轨之间的金属杆的电阻r =0.1 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向竖直向下.现用一外力F 水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U 随时间t 变化的关系如图乙所示.则在金属杆开始运动经t = 5.0 s 时( )A .通过金属杆的感应电流的大小为1.0 A ,方向由b 指向aB .金属杆的速率为4.0 m/sC .外力F 的瞬时功率为1.0 WD .0~5.0 s 内通过R 的电荷量为5.0 C解析:选AC.导体棒向右切割磁感线,由右手定则知电流方向为b 指向a ,金属杆开始运动经t =5.0 s ,由图象可知电压为0.4 V ,根据闭合电路欧姆定律得I =U R =0.40.4 A =1 A ,故A 正确;根据法拉第电磁感应定律知E =BLv ,根据电路结构可知:U =R R +r E ,解得v =5 m/s ,故B 错误;根据电路知U =R R +r BLv =0.08v =0.08at ,结合U t 图象知导体棒做匀加速运动,加速度为a =1 m/s 2,根据牛顿第二定律,在5 s 末时对金属杆有:F -BIL =ma 解得:F =0.2 N ,此时F 的瞬时功率P =Fv =0.2×5 W=1 W 故C 正确;0~5.0 s 内通过R 的电荷量为q =It =E R +r t =ΔΦt (R +r )×t =ΔΦR +r =B ×12at 2R +r =12.5 C ,故D 错误;综上所述本题答案是AC.。
高考物理二轮复习 训练9 电磁感应现象及电磁感应规律的应用
训练9电磁感应现象及电磁感应规律的应用一、单项选择题1.如图9-15甲所示,固定在水平桌面上的光滑金属框架cdeg处于方向竖直向下的匀强磁场中,金属杆ab与金属框架接触良好.在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F作用在金属杆ab上,使金属杆由静止开始向右在框架上滑动,运动中杆始终垂直于框架.图乙为一段时间内金属杆中的电流随时间t的变化关系图象,则下列选项中可以表示外力F随时间t变化关系的图象是( ).图9-15图9-162.(2012·海南单科,5)如图9-16所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置I释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则( ).A.T1>mg,T2>mgB.T1<mg,T2<mgC .T 1>mg ,T 2<mgD .T 1<mg ,T 2>mg3.如图9-17所示,匀强磁场区域为一个等腰直角三角形,其直角边长为L ,磁场方向垂直纸面向外,磁感应强度大小为B ,一边长为L 、总电阻为R 的正方形导线框abcd ,从图示位置开始沿x 轴正方向以速度v 匀速穿过磁场区域.取沿a ―→b ―→c ―→d ―→a 的感应电流方向为正,则下图表示线框中电流i 随bc 边的位置坐标x 变化的图象正确的是( ).图9-174.(2012·全国卷,19)如图9-18所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( ).图9-18A.4ωB 0πB.2ωB 0πC.ωB 0π D.ωB 02π二、多项选择题5.如图9-19所示,电阻不计的光滑平行金属导轨MN 和OP 足够长,水平放置.MO 间接有阻值为R 的电阻,两导轨相距为L ,其间有竖直向下的匀强磁场,磁感应强度为B .有一质量为m ,长度为L ,电阻为R 0的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 向右的水平力拉动CD ,使之由静止开始运动.拉力的功率恒为P ,当导体棒CD 达到最大速度v 0时,下列判断中正确的是( ).图9-19A .最大速度数值为v 0=1LBP R +R 0B .导体棒上C 点电势低于D 点电势 C .克服安培力的功率等于拉力的功率P D .导体棒CD 上产生的电热功率为P6.(改编题)处于竖直向上匀强磁场中的两根电阻不计的平行金属导轨,下端连一电阻R ,导轨与水平面之间的夹角为θ,一电阻可忽略的金属棒ab ,开始时固定在两导轨上某位置,棒与导轨垂直.如图9-20所示,现释放金属棒让其由静止开始沿轨道平面下滑.就导轨光滑和粗糙两种情况比较,当两次下滑的位移相同时,则有( ).图9-20A .重力势能的减少量相同B .机械能的变化量相同C .磁通量的变化率相同D .产生的焦耳热不相同图9-217. (2012·常州模拟)有一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图9-21所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,方向如图所示.磁感应强度大小随时间的变化率为ΔB Δt=k (k <0).则( ).A .圆环中感应电流大小为krS2ρB .图中a 、b 两点的电势差U ab =⎪⎪⎪⎪14k πr 2C .圆环中产生逆时针方向的感应电流D .圆环具有扩张趋势 三、计算题图9-228.如图9-22所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计.空间存在着匀强磁场,磁感应强度B =0.20 T ,方向垂直轨道平面向上.导体棒ab 、cd 垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m =2.0×10-2kg 、电阻r =5.0×10-2Ω,金属轨道宽度l =0.50 m .现对导体棒ab 施加平行于轨道向上的拉力,使之沿轨道匀速向上运动.在导体棒ab 运动过程中,导体棒cd 始终能静止在轨道上.g 取10 m/s 2,求: (1)导体棒cd 受到的安培力大小; (2)导体棒ab 运动的速度大小; (3)拉力对导体棒ab 做功的功率.9.(2012·湖南衡阳联考25)如图9-23所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1 m,导轨的电阻可忽略.M、P 两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行于导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6.图9-23(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R的阻值;(3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t.10.如图9-24所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向垂直水平面向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左、右边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.图9-24(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时a、b两点间的电势差.(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率.(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t.参考答案1.B [金属杆由静止开始向右在框架上滑动,金属杆切割磁感线产生感应电动势E =BLv ,在回路内产生感应电流,I =E R =BLvR.由题图乙金属杆中的电流随时间t 均匀增大可知金属杆做初速度为零的匀加速运动,I =BLatR.由安培力公式可知金属杆所受安培力F 安=BIL ,根据牛顿第二定律F -F 安=ma ,可得外力F =ma +F 安=ma +BIL =ma +B 2L 2atR,所以正确选项是B.]2.A [金属圆环从位置Ⅰ到位置Ⅱ过程中,由楞次定律知,金属圆环在磁铁上端时受安培力向上,在磁铁下端时受安培力也向上,则金属圆环对磁铁的作用力始终向下,对磁铁受力分析可知T 1>mg ,T 2>mg ,A 项正确.]3.C [在0~L 过程中无电磁感应现象.在L ~2L 的过程中,线圈bc 边切割 磁感线的有效长度L 在线性增加,感应电动势e =BLv 及感应电流i =BLvR也在线性增加,在2L 点达最大值.且由右手定则得电流方向沿a ―→b ―→c ―→d ―→a ,为正,故选项D 错误.同理,在2L ~3L 的过程中,感应电流为负向的线性增加,故选项A 、B 均错误,选项C 正确.] 4.C [当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt=B 0ΔS R Δt =12πr 2B 0R πω=B 0r 2ω2R .当线圈不动,磁感应强度变化时,I 2=E R =ΔΦR Δt =ΔBS R Δt =ΔB πr 2Δt 2R,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确.]5.AC [根据右手定则可以判断D 点电势低于C 点电势,B 错误;导体棒CD达到最大速度时拉力F 与安培力合力为零,P =Fv 0,F =BIL ,所以P =BILv 0,C 正确;I =BLv 0R +R 0,解得v 0=1LBP R +R 0,A 正确;整个回路中导体棒和电阻R 上都要产生电热,D 错误.]6.AD [本题考查金属棒在磁场中的运动及能量转化问题.当两次下滑的位移相同时,知重力势能的减少量相同,则选项A 正确;两次运动的加速度不同,所用时间不同,速度不同,产生的感应电动势不同,磁通量的变化率也不同,动能不同,机械能的变化量不同,则产生的焦耳热也不同,故选项B 、C 均错误,选项D 正确.]7.BD [本题考查电磁感应的基本规律.根据电磁感应规律的推论:产生的力学现象阻碍磁通量减小,则题中线圈有扩张的趋势,D 正确.ab 部分是整个电路的外电路,ab 两端电压为外电压,占整个电动势的一半,U ab =12·kS =12·k πr 22=k πr 24,则选项B 正确.]8.解析 (1)导体棒cd 静止时受力平衡,设所受安培力为F 安,则F 安=mg sin θ, 解得F 安=0.10 N.(2)设导体棒ab 的速度为v 时,产生的感应电动势为E ,通过导体棒cd 的感应电流为I ,则E =Blv ;I =E2r;F 安=BIl联立上述三式解得v =2F 安rB 2l 2,代入数据得v =1.0 m/s.(3)导体棒ab 受力平衡,则F =F 安+mg sin θ,解得F =0.20 N ,拉力做功的功率P =Fv ,解得P =0.20 W.答案 (1)0.1 N (2)1.0 m/s (3)0.20 W9.解析 (1)金属杆做匀加速运动(或金属杆做初速度为零的匀加速运动). 通过R 的电流I =ER +r =BLvR +r,因通过R 的电流I 随时间均匀增大,即杆的速度v 随时间均匀增大,杆的加速度为恒量,故金属杆做匀加速运动. (2)对回路,根据闭合电路欧姆定律I =BLvR +r对杆,根据牛顿第二定律有:F +mg sin θ-BIL =ma将F =0.5v +2代入得:2+mg sin θ+⎝⎛⎭⎫0.5-B 2L 2R +r v =ma ,因a 为恒量与v 无关,所以a =2+mg sin θm=8 m/s 20.5-B 2L 2R +r=0,得R =0.3 Ω.(3)由x =12at 2得,所需时间t =2xa=0.5 s.答案 (1)匀加速运动 (2)0.3 Ω (3)0.5 s10.解析 (1)线框在离开磁场时,cd 边产生的感应电动势E =BLv ,回路中的 电流I =ER则a 、b 两点间的电势差U =IR ab =14BLv .(2)t 1时刻线框速度v 1=at 1设cd 边将要进入磁场时刻速度为v 2,则v 22-v 21=2aL 此时回路中电动势E 2=BLv 2回路的电功率P =E 22R ,解得P =B 2L 2a 2t 21+2aL R(3)设cd 边进入磁场时的速度为v ,线框从cd 边进入到ab 边离开磁场的时间为Δt ,则P 0T=⎝⎛⎭⎫12mv 2-12mv 20+Q ,P 0Δt =12mv 20-12mv 2,解得Δt =Q P 0-T .线框离开磁场时间还是T ,所以线框穿过磁场总时间t =2T +Δt =QP 0+T .答案 (1)14BLv (2)B 2L 2a 2t 21+2aL R(3)Q P 0T。
高考物理二轮提升卷电磁感应与电路(答案详尽,题目经典)
专题五电磁感应与电路提升卷时间:90分钟满分:95分一、选择题:本题共8小题,每小题6分,共48分.在给出的四个选项中,第1~3小题只有一个选项正确,第4~8小题有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(导学号:92274124)(2017·绵阳市二诊)如图所示是某兴趣小组用实验室的手摇发电机给小灯泡供电的装置示意图.在某次匀速转动手柄的过程中,他们发现小灯泡周期性的闪亮.以下判断正确的是()A.图示位置线框中产生的感应电动势最大B.若增大手摇发电机的转速,灯泡亮度将不变C.若增大手摇发电机的转速,灯泡闪亮的频率将变大D.小灯泡周期性闪亮的主要原因是电路接触不良2.(导学号:92274125)(2017·怀化市一模)电阻为1 Ω的矩形线圈绕垂直于磁场方向的轴在匀强磁场中匀速转动,产生的交变电动势随时间变化的图象如图所示.现把交流电加在电阻为9 Ω的电热丝上,则下列说法中正确的是() A.线圈转动的角速度为31.4 rad/sB .如果线圈转速提高一倍,则电流不会改变C .电热丝两端的电压U =100 2 VD .电热丝的发热功率P =1 800 W3.(导学号:92274126)如图为一种变压器的实物图,根据其铭牌上所提供的信息,以下判断错误的是( )A .这是一个降压变压器B .原线圈的匝数比副线圈的匝数多C .当原线圈输入交流电压220 V 时,副线圈输出直流电压12 VD .当原线圈输入交流电压220 V 、副线圈接负载时,副线圈中电流比原线圈中电流大4.(导学号:92274127)如图所示,边长为L 、电阻不计的n 匝正方形金属线框位于竖直平面内,连接的小灯泡的额定功率、额定电压分别为P 、U ,线框及小灯泡的总质量为m ,在线框的下方有一匀强磁场区域,区域宽度为l ,磁感应强度方向与线框平面垂直,其上、下边界与线框底边均水平.线框从图示位置开始静止下落,穿越磁场的过程中,小灯泡始终正常发光.则( )A .有界磁场宽度l <LB .磁场的磁感应强度应为mgU nPLC .线框匀速穿越磁场,速度恒为P mgD .线框穿越磁场的过程中,灯泡产生的焦耳热为mgL5.(导学号:92274128)(2017·马鞍山调研)如图所示,等腰直角三角形OPQ 区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场区域的OP 边在x 轴上且长为L .纸面内一边长为L 的单匝闭合正方形导线框(线框电阻为R )的一条边在x 轴上,且线框在外力作用下沿x 轴正方向以恒定的速度v 穿过磁场区域,在t =0时线框恰好位于图示的位置.现规定顺时针方向为导线框中感应电流的正方向,则下列说法正确的是( )A .在0~L v 时间内,线框中有正向电流B .在L v ~2L v 时间内,线框中有负向电流C .在L v ~2L v 时间内,流经线框某处横截面的电荷量为BL 22RD .在L v ~2L v 时间内,线框中最大电流为BL v R6.(导学号:92274129)(2017·黑龙江省五校高三下学期4月联考)(多选)如图所示,在匀强磁场中转动的单匝线圈电阻为1 Ω,外接电阻R =9 Ω,线圈匀速转动的周期为T =0.2 s ,从线圈中性面开始计时,理想交流电流表的读数为2 A ,那么( )A .穿过线圈的最大磁通量为22π WbB .任意时刻线圈中的感应电动势为e =202sin20πt VC .在线圈转过90°的过程中,外接电阻产生的焦耳热为1.8 JD .在线圈转动90°的过程中,通过电阻R 的电荷量为22π C7.(导学号:92274130)(2017·湖北省襄阳市高三调研)(多选)如图甲所示,理想变压器原线圈输入图乙所示的正弦交变电流,副线圈中的R 0、R 1为定值电阻,滑动变阻器的最大阻值为R ,且R 1<R 0.理想交流电压表V 1、V 2的示数分别为U 1、U 2;理想交流电流表A 1、A 2的示数分别为I 1、I 2;理想交流电压表V 2和理想交流电流表A 2示数变化的绝对值分别为ΔU 2、ΔI 2.下列说法正确的是( )A .t =0.01 s 时,理想交流电压表V 1的示数为零B .滑动变阻器滑片从最下端向上滑动,I 1增大,U 2减小C .滑动变阻器滑片从最下端向上滑动,ΔU 2ΔI 2不变 D .滑动变阻器滑片从最下端向上滑动,I 2U 2减小8.(导学号:92274131)(多选)如图所示为远距离输送交流电的示意图,变压器均为理想变压器.随着用户负载增多,发电机F 达到额定功率时,降压变压器输出功率仍然不足,用户的用电器不能正常工作.那么,在发电机以额定功率工作的情况下,为了适当提高用户的用电功率,可采取的措施是( )A .适当减小输电线的电阻rB .适当提高n 4n 3C .适当提高n 2n 1的同时,降低n 4n 3D .适当降低n 2n 1的同时,提高n 4n 3二、非选择题:本题共4小题,共47分.解答应写出必要的文字说明,方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.9.(导学号:92274132)(2017·大同质检)(10分)两导轨ab 和cd 互相平行,相距L=0.5 m,固定在水平面内,其电阻可忽略不计,ef是一电阻等于10 Ω的金属杆,它的两端分别与ab和cd保持良好接触,又能无摩擦地滑动.导轨和金属杆均处于磁感应强度B=0.6 T的匀强磁场中,磁场方向如图所示,导轨左边与滑动变阻器R1(最大阻值40 Ω)相连,R2=40 Ω.在t=0时刻,金属杆ef由静止开始向右运动,其速度v随时间t变化的关系为v=20sin(10πt) m/s.求:(1)杆ef产生的感应电动势随时间t变化关系式.(2)R2在1 min内最多能够产生多少热量?10.(导学号:92274133)(14分)如图所示,间距为d的两水平虚线L1、L2之间是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,正方形线圈abcd的边长为L(L<d)、质量为m、电阻为R,现将线圈在磁场上方高h处由静止释放,已知ab边刚进入磁场时线圈的速度和ab边刚离开磁场时的速度相同,运动过程中线圈平面保持竖直且ab边始终与L1平行.求:(1)线圈进入磁场时的感应电流的大小和方向;(2)线圈从ab边刚进入磁场到ab边刚离开磁场的过程中的最小速度v;(3)线圈进出磁场的全过程中产生的总焦耳热Q总.11.(10分)如图所示,MN、PQ是两条水平、平行放置的光滑金属导轨,导轨的右端接理想变压器的原线圈,变压器的副线圈与电阻R=20 Ω组成闭合回路,变压器的原副线圈匝数之比n1n2=110,导轨宽L=5 m.质量m=2 kg、电阻不计的导体棒ab垂直MN、PQ放在导轨上,在水平外力F作用下,从t=0时刻开始在图示的两虚线范围内往复运动,其速度随时间变化的规律是v=2sin20πt(m/s).垂直轨道平面的匀强磁场的磁感应强度B=4 T.导轨、导线和线圈电阻均不计.求:(1)ab棒中产生的电动势的表达式;ab棒中产生的是什么电流?(2)电阻R上的电热功率P.(3)从t=0到t1=0.025 s的时间内,通过外力F所做的功.12.(导学号:92274134)(13分)如图所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计.水平段导轨所处空间存在两个有界匀强磁场Ⅰ和Ⅱ,两磁场相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下.质量均为m、电阻均为R的金属棒a和b放置在导轨上,金属棒b置于磁场Ⅱ的右边界CD处.设两金属棒在导轨上运动过程中始终与导轨垂直且接触良好.(1)若水平段导轨粗糙,两金属棒与水平导轨间的最大静摩擦力均为15mg,将金属棒a从距水平面高度h处由静止释放.①求金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小;②若金属棒a在磁场Ⅰ内运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件;(2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,求金属棒a在磁场Ⅰ内运动的过程中,金属棒b 中可能产生的最大焦耳热.专题五电磁感应与电路提升卷1.C图示位置线框中产生的感应电动势最小,故A错误;若增大手摇发电机的转速,角速度将增大,频率将增大,产生的最大感应电动势E m=MBSω,故灯泡的亮度增大,故B错误、C正确;小灯泡周期性闪亮的主要原因是产生的电流为交流电,故D错误.2.D从图中可知:T=0.02 s,ω=2πT=314 rad/s,故A错误;其他条件不变,如果线圈转速提高一倍,角速度ω变为原来的两倍.由电动势最大值E m=NBSω得知,交流电动势的最大值变为原来的两倍,电压的有效值为原来的2倍,根据欧姆定律可知电流发生改变.故B错误.该交流电压的最大值为200 V,所以有效值为100 2 V,则电热丝两端的电压为910×100 2 V=90 2 V,故C错误;根据P=U2R得:P=(902)29W=1 800 W,故D正确.3.C根据铭牌上所提供的信息可知:变压器的输入电压为220 V,输出电压为12 V,该变压器为降压变压器,故选项A、B正确;变压器的工作原理是电磁感应,故变压器的原、副线圈上的电压都为交流电压,选项C错误;由理想变压器的输出功率等于输入功率,且原线圈的电压大于副线圈的电压,故副线圈接负载时,副线圈中电流比原线圈中电流大,选项D正确.4.BC因线框穿越磁场的过程中小灯泡正常发光,故线框匀速穿越磁场,且线框长度L和磁场宽度l相同,A错误;因线框匀速穿越磁场,故重力和安培力相等,mg=nBIL=nB PU L,得B=mgUnPL,B正确;线框匀速穿越磁场,重力做功的功率等于电功率,即mg v=P,得v=Pmg,C正确;线框穿越磁场时,通过的位移为2L,且重力做功完全转化为焦耳热,故Q=2mgL,D错误.5.CD在0~Lv时间内,线框中磁通量增加,感应电流沿逆时针方向,选项A、B错误;在Lv~2Lv时间内线框中磁通量变化量为ΔΦ=BL22,流过线框某一截面的电荷量为q=ΔΦR=BL22R,选项C正确;Lv~2Lv时间内线框中最大电流为BL vR,选项D正确.6.AC因电流表的读数2 A为有效值,则电流的最大值为I m=2I有效=2 2A,E m=I m(R+r)=20 2 V,又E m=Φmω,ω=2πT,所以Φm=22Wb,故选项A正确;任意时刻线圈中的感应电动势为e=202sin10πt(V),故选项B错误;线圈转过90°时,外接电阻产生的焦耳热为Q=I2有效Rt=1.8 J,故选项C正确;从中性面开始计时,转动90°的过程中,感应电动势的平均值为E=ΔΦt,I=ER+r,q=I t=25πC,故选项D错误.7.BC电压表示数为有效值,而不是瞬时值,选项A错;根据U1U20=n1n2可知副线圈两端电压U20不变,滑片上滑,副线圈电路电阻减小,副线圈中电流I2增大,由变压器原理可知I1增大,原线圈两端电压U1不变,则副线圈两端电压U20不变,由U2=U20-I2R0知U2减小,则I2U2乘积不能确定,选项B对、D错;U20=U2+I2R0,U20不变,则U2变化的绝对值和定值电阻R0两端电压变化的绝对值相等,则ΔU2ΔI2=R0不变,选项C对.8.AC当发电机输出功率一定时,为使远距离用户得到更多的功率,需减小输电线上的功率损失,根据ΔP=I2线r,可以减小输电线的电阻r,A对;也可以通过提高输电电压,减小输送电流,即提高n2n1,这样使线圈n3两端电压变大,为使用户的用电器正常工作需要适当降低n4n3,C对.9.解:(1)杆ef产生的感应电动势随时间t变化的关系式为e=BL v=0.6×0.5×20sin(10πt)V=6sin(10πt)V(2)当变阻器的滑动触头到变阻器的上端时,在相同时间内,R2产生的热量达到最大值.外电路总电阻R =R 22=20 Ω电源为交流电,周期T =2πω=2π10πs =0.2 st =1 min =60 s 为T 的整数倍.外电路电压的有效值为U =R R +r E =2020+10·62 V =2 2 V R 2能够产生的热量最大值为Q =U 2R 2t =(22)240×60 J =12 J10.解:(1)由楞次定律可知,刚进入磁场时线圈中的电流方向为abcda由mgh =12m v 20得v 0=2ghE =BL v 0I =E R =BL 2gh R .(2)如图所示,线圈在从2位置到3位置的过程中,可能全程做减速运动,也可能先减速后匀速,而从3位置到4位置线圈做自由落体运动,所以3位置时线圈速度一定最小,因此有v 20-v 2=2g (d -L )得v =2g (h +L -d )(3)由能量守恒定律知,进磁场的过程产生的热量Q 1=mgd由于线圈完全处于磁场中时不产生电热,线圈进入磁场过程中产生的电热Q 就是线圈从2位置到3位置产生的电热,而2、4位置速度相同,线圈离开磁场的运动状态与线圈进入磁场的运动状态变化相同,产生的热量相等,.即Q 2=Q 1=mgd产生的总热量为Q 总=Q 1+Q 2=2mgd .11.(1)见解析(2)4×103 W (3)104 J 解析:(1)ab 棒中产生的电动势的表达式为E =BL v =40sin20πt (V)故ab 棒中产生的是正弦交变电流.(2)设原线圈上电压的有效值为U 1,则U 1=E m 2=20 2 V 设副线圈上电压的有效值为U 2,则U 1U 2=n 1n 2 解得U 2=200 2 V电阻R 上的电热功率P =U 22R =4×103 W(3)由以上分析可知,该正弦交流电的周期T =2πω=0.1 s .从t =0到t 1=0.025s ,经历了四分之一个周期.设在这段时间内电阻R 上产生的热量为Q ,则Q =U 22R ·T 4=100 J在t 1=0.025 s 时刻,ab 棒的速度为v ,则则v =2sin20πt 1=2 m/s由能量守恒定律可得这段时间内外力F 做的功 W =Q +12m v 2=104 J12.解析:(1)①金属棒在弯曲光滑导轨上运动的过程中,机械能守恒,设其刚进入磁场Ⅰ时速度为v 0,产生的感应电动势为E ,电路中的电流为I .由机械能守恒有mgh =12m v 20,解得v 0=2gh 感应电动势E =BL v 0,对回路I =E 2R解得I =BL 2gh2R②对金属棒b ,其所受安培力F =2BIL又因I =BL 2gh2R金属棒b 棒保持静止的条件为F ≤15mg解得h ≤gm 2R 250B 4L 4(2)金属棒a 在磁场Ⅰ中减速运动,感应电动势逐渐减小,金属棒b 在磁场Ⅱ中加速运动,感应电动势逐渐增加,当两者相等时,回路中感应电流为0,此后金属棒a 、b 都做匀速运动.设金属棒a 、b 最终的速度大小分别为v 1、v 2,整个过程中安培力对金属棒a 、b 的冲量大小分别为I a 、I b .由BL v 1=2BL v 2,解得v 1=2v 2设向右为正方向:对金属棒a ,由动量定理有-I a =m v 1-m v 0对金属棒b ,由动量定理有-I b =-m v 2-0由于金属棒a 、b 在运动过程中电流始终相等,则金属棒b 受到的安培力始终为金属棒a 受到安培力的2倍,因此有两金属棒受到的冲量的大小关系I b =2I a解得v 1=45v 0,v 2=25v 0根据能量守恒,回路中产生的焦耳热Q =12m v 20-⎣⎢⎡⎦⎥⎤12m ⎝ ⎛⎭⎪⎫25v 02+12m ⎝ ⎛⎭⎪⎫45v 02=110m v 20=15mgh Q b =12Q =110mgh。
2020年高考物理二轮复习经典试题: 电磁感应规律及其应用 Word版含解析 Word版含答案
2022年高考物理二轮复习经典试题电磁感应规律及其应用一、选择题(本题共8小题,每小题8分,共64分,其中第2、3、4、5、7、8小题为多选题.)1.[2021·湖北七市联考]奥斯特发觉了电流的磁效应,揭示了电现象和磁现象之间存在着某种联系,法拉第发觉了电磁感应定律,使人们对电和磁内在联系的生疏更加完善.关于电磁感应,下列说法中正确的是()A. 运动的磁铁能够使四周静止的线圈中产生电流B. 静止导线中的恒定电流可以使四周静止的线圈中产生电流C. 静止的磁铁不行以使四周运动的线圈中产生电流D. 运动导线上的恒定电流不行以使四周静止的线圈中产生电流解析:依据感应电流产生条件,运动的磁铁能够使四周静止的闭合线圈中产生电流,选项A正确.静止导线中的恒定电流不行以使四周静止的线圈中产生电流,选项B错误.静止的磁铁可以使四周运动的闭合线圈中产生电流,选项C错误.运动导线上的恒定电流可以使四周静止的闭合线圈中产生电流,选项D错误.答案:A2.[2021·武汉调研]如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B,线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A. 闭合开关S时,B中产生图示方向的感应电流B. 闭合开关S时,B中产生与图示方向相反的感应电流C. 断开开关S时,电磁铁会连续吸住衔铁D一小段时间D. 断开开关S时,弹簧K马上将衔铁D拉起解析:闭合开关S时,线圈B的磁通量增大,由楞次定律知,线圈B中产生与图示方向相反的感应电流,选项A错误,B正确;断开开关S时,线圈B中的磁通量减小,线圈B产生感应电流,感应电流的磁场连续吸引衔铁D一小段时间,选项C正确,D错误.答案:BC3.如图,水平的平行虚线间距为d=60 cm,其间有沿水平方向的匀强磁场.一个阻值为R的正方形金属线圈边长l<d,线圈质量m=100 g.线圈在磁场上方某一高度处由静止释放,保持线圈平面与磁场方向垂直,其下边缘刚进入磁场和刚穿出磁场时的速度相等.不计空气阻力,取g =10 m/s 2.则( )A. 线圈下边缘刚进磁场时加速度最小B. 线圈进入磁场过程中产生的电热为0.6 JC. 线圈在进入磁场和穿出磁场的过程中,电流均为逆时针方向D. 线圈在进入磁场和穿出磁场的过程中,通过导线截面的电荷量相等 解析:由于线圈下边缘刚进入磁场和刚穿出磁场时的速度相等,且线圈全部在磁场中运动时有一段加速阶段,则可推断出线圈下边缘刚进入磁场时安培力大于重力,线圈做减速运动,加速度渐渐减小,选项A 错误;线圈进入磁场过程中,由能量守恒定律得Q =ΔE p =mgd =0.1×10×0.6 J =0.6 J ,选项B 正确;线圈进入磁场过程中电流为逆时针方向,线圈离开磁场过程中,电流为顺时针方向,选项C 错误;线圈进入磁场和穿出磁场过程中,通过导线截面的电荷量均为q =Bl 2R ,选项D 正确.答案:BD4.上海磁悬浮列车于2003年10月1日正式运营.如图所示为其磁悬浮原理,B 是用高温超导材料制成的超导圆环,A 是圆柱形磁铁,将超导圆环B 水平放在磁铁A 上,它就能在磁场力作用下悬浮在磁铁A 的上方空中.以下推断正确的是( )A. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流消逝B. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流仍存在C. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的N 极朝上D. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的S 极朝上解析:当B 环靠近A 时,穿过B 环中的磁通量增大,在该环中会产生感应电流.由于超导体(电阻率为零)没有电阻,所以B 环中的电流不会变小,永久存在,故选项A 错、B 对;由安培定则可推断出B 环的下面是N 极,因此A 的N 极朝上,故选项C 对、D 错.答案:BC5.如图所示,正方形匀强磁场区域内,有一个正方形导线框abcd ,导线粗细均匀,导线框平面与磁感线垂直,导线框各边分别与磁场边界平行.第一次将导线框垂直磁场边界以速度v 匀速拉出磁场,其次次朝另一个方向垂直磁场边界以速度3v 匀速拉出磁场,则将导线框两次拉出磁场的过程中( )A. 导线框中产生的感应电流方向相同B. 导线框中产生的焦耳热相同C. 导线框ad 边两端电势差相同D. 通过导线横截面的电量相同。
高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)
高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t 1时刻F N >GB.t 2时刻F N >GC.t 3时刻F N <GD.t 4时刻F N =G 解析:t 1时刻,Q 中电流正在增大,穿过P 的磁通量增大,P 中产生与Q 方向相反的感应电流,反向电流相互排斥,所以F N >G ;t 2时刻Q 中电流稳定,P 中磁通量不变,没有感应电流,F N =G ;t 3时刻Q 中电流为零,P 中产生与Q 在t 3时刻前方向相同的感应电流,而Q 中没有电流,所以无相互作用,F N =G ;t 4时刻,P 中没有感应电流,F N =G .答案:AD6.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是()图12-7A.U a <U b <U c <U dB.U a <U b <U d <U cC.U a =U b <U d =U cD.U b <U a <U d <U c 解析:线框进入磁场后切割磁感线,a 、b 产生的感应电动势是c 、d 电动势的一半.而不同的线框的电阻不同.设a 线框电阻为4r ,b 、c 、d 线框的电阻分别为6r 、8r 、6r ,则4343BLv r r BLv U a =⋅=,,6565BLv r r BLv U b =⋅=,23862BLv r r Lv B U c =⋅= .34642Blv r r Lv B U d =⋅=所以B 正确. 答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动,从槽口右侧射入的带电微粒的速度是v 2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r 和周期T 分别为()图12-8 A.g v g v v 2212,π B.g v g v v 1212,π C.g v g v 112,π D.gv g v 212,π 解析:金属板折成“”形的金属槽放在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11Bv lBlv d U E ===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1g qBv g qE m ==向心力由洛伦兹力提供,所以,222r v m B qv =得gv m qB mv r 212==,周期gv v r T 1222ππ==,故B 项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B nE ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),tn E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv 由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.BlsCQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。
高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)
高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)电磁感应1.如图所示,一导线弯成半径为a 的半圆形闭合回路。
虚线MN 右侧有磁感应强度为B 的匀强磁场。
方向垂直于回路所在的平面。
回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。
从D 点到达边界开始到C点进入磁场为止,下列结论正确的是 A .感应电流方向不变 B .CD 段直线始终不受安培力 C .感应电动势最大值E =Bav D .感应电动势平均值14E Bav =π 2.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示.线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则 ( )A .铝环不断升高B .铝环停留在某一高度C .铝环跳起到某一高度后将回落D .如果电源的正、负极对调,观察到的现象不变3.如图所示,矩形闭台线圈放置在水平薄板上,有一块蹄形磁铁如图所示置于平板的正下方(磁极间距略大于矩形线圈的宽度)当磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到薄扳的摩擦力方向和线圈中产生感应电流的方向(从上向下看)是( )A .摩擦力方向一直向左B .摩擦力方向先向左、后向或右C .感应电流的方向顺时针→逆时针→逆时针→顺时针D .感应电流的方向顺时针→逆时针4.如图所示,A 为水平放置的橡胶圆盘,在其侧面带有负电荷─Q ,在A 正上方用丝线悬挂一个金属圆环B (丝线未画出),使B 的环面在水平面上与圆盘平行,其轴线与橡胶盘A的轴线O 1O 2重合。
现使橡胶盘A 由静止开始绕其轴线O 1O 2按图中箭头方向加速转动,则( )A .金属圆环B 有扩大半径的趋势,丝线受到拉力增大BB .金属圆环B 有缩小半径的趋势,丝线受到拉力减小C .金属圆环B 有扩大半径的趋势,丝线受到拉力减小D .金属圆环B 有缩小半径的趋势,丝线受到拉力增大5.如图所示,一矩形线框竖直向上进入有水平边界的匀强磁场,磁场方向垂直纸面向里,线框在磁场中运动时只受重力和磁场力,线框平面始终与磁场方向垂直。
适用于新高考新教材2024版高考物理二轮复习专题电磁感应规律及综合应用(含答案)
适用于新高考新教材高考物理二轮复习专题:专题分层突破练11 电磁感应规律及综合应用A组基础巩固练1.(2023山东烟台一模)智能手表通常采用无线充电方式充电。
如图甲所示,充电基座与交流电源相连,智能手表放置在充电基座旁时未充电,将智能手表压在充电基座上,无需导线连接,智能手表便可以充电(如图乙所示)。
已知充电基座与智能手表都内置了线圈,则()A.智能手表和充电基座无导线连接,所以传输能量时没有损失B.用塑料薄膜将充电基座包裹起来,之后仍能为智能手表充电C.无线充电的原理是利用充电基座内的线圈发射电磁波传输能量D.充电时,充电基座线圈的磁场对智能手表线圈中的电子施加力的作用,驱使电子运动2.(2023山东德州模拟)某课题组要测量某金属材料的电阻率,他们先取适量该金属材料切割成如图所示的长方体,长方体的三条边长分别为a、b、c,长方体上、下表面与电流传感器用导线相连,导线左端紧贴长方体上、下表面。
虚线框左侧有垂直于长方体前、后表面的匀强磁场,磁感应强度大小为B。
使匀强磁场以大小为v的速度向左运动时(长方体全部处于磁场中),电流传感器显示回路中的电流大小为I。
不计电流传感器及导线的电阻,则该金属材料的电阻率为()A.BvabI B.Bvab2IcC.Bvbc2IaD.Bvcb2Ia3.(2023江苏卷)如图所示,圆形区域内有垂直纸面向里的匀强磁场,OC导体棒的O端位于圆心,棒的中点A位于磁场区域的边缘。
现使导体棒绕O点在纸面内逆时针转动。
O、A、C点电势分别为φO、φA、φC,则()A.φO>φCB.φC>φAC.φO=φAD.φO-φA=φA-φC4.(多选)(2023辽宁沈阳模拟)如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里。
有一半径为R的线圈,其单位长度上的电阻为r,线圈平面与磁场方向垂直,线圈直径MN垂直磁场边界于M点。
现以M点为轴在纸面内,线圈沿顺时针方向匀速旋转90°,角速度为ω,则()A.感应电流方向为顺时针方向B.感应电动势的最大值为BR2ωC.感应电流的最大值为2BR 2ωrD.通过线圈任意横截面的电荷量为BR4r5.(2023湖南娄底模拟)轻质细线吊着一质量为m=1 kg、边长为0.2 m、电阻R=1 Ω、匝数n=10的正方形闭合线圈abcd,bd为正方形闭合线圈的对角线,bd下方区域分布着匀强磁场,如图甲所示。
备考2024年中考科学二轮复习-物质的运动与相互作用_电和磁_电磁感应-单选题专训及答案(二)
备考2024年中考科学二轮复习-物质的运动与相互作用_电和磁_电和磁_电磁感应-单选题专训及答案(二)电磁感应单选题专训1、(2020河东.中考模拟) 如图所示的四个实验装置,其相关分析正确的是()A . 如图甲,该实验可以探究通电导线的周围是否存在磁场B . 如图乙,闭合开关,通电螺线管右端为S极C . 如图丙,该实验是探究导体在磁场中运动时产生感应电流的条件D . 如图丁,该实验原理与电动机的工作原理相同2、(2020大连.中考模拟) 下列设备中,利用电磁感应现象工作的是()A . 电磁铁B . 电铃C . 电动机D . 发电机3、(2019宿迁.中考真卷) 如图是研究电磁现象的四个实验装置。
相关说法正确的是()A . 图能证明通电导体周围有磁场,这个现象是法拉第首先发现的B . 图中开关闭合,磁场中的导体棒会受力运动,该过程机械能转化为电能C . 图是研究电磁感应现象的实验装置,当导体棒AB上下运动时电流计指针偏转 D . 图是电磁继电器的原理图,电磁继电器被广泛应用于自动控制领域4、(2016抚顺.中考模拟) 我国最新研制的反潜机能将潜艇经过海域引起的磁场强弱变化转化为强弱变化的电流,从而发现潜艇的存在,图中与其原理相同的是()A .B .C .D .5、(2016江苏.中考模拟) 利用干电池、导线、小灯泡、电动机、铅笔芯、橡皮、塑料尺探究:⑴物质导电性;⑵电动机转向;⑶电磁感应;⑷电阻与长度的关系.能够完成的实验个数有 ( )A . 1个B . 2个C . 3个D . 4个6、(2017和平.中考模拟) 如图所示,在下列有关电与磁实验的装置图中,能应用于发电机的原理的是()A .B .C .D .7、(2017广东.中考模拟) 关于如图甲、乙所示的实验,下列说法正确的是()A . 甲图是探究磁场对通电导线的作用,根据该现象制成了发电机B . 甲图中,只要让铜棒ab运动,灵敏电流表的指针就会发生偏转C . 甲图的实验现象说明磁能生电,乙图的实验结果说明电能生磁D . 乙图是探究导体在磁场中产生电流的条件,据此制成了电动机8、(2017宜兴.中考模拟) 超市的商品上贴有磁性标签,当未消磁的标签通过超市门口的安全门时,安全门上的线圈会产生电流触发警报器,达到防盗目的,图中的实验与超市防盗装置的工作原理相符的是()A .B .C .D .9、(2017武进.中考模拟) 不久前,日本一项清理太空垃圾的试验性任务宣告失败.其核心方案是,通过一条700m长的电线,给高速飞行的太空垃圾通电,利用地球的磁场,使其减速后坠落于大气层燃烧殆尽.该方案能使太空垃圾减速的原因是()A . 电磁感应现象B . 电流的热效应C . 磁场对电流的作用D . 通电可使太空垃圾的重力变大10、(2017武城.中考模拟) 如图所示的充电鞋垫,利用脚跟起落驱动磁性转子旋转,线圈中就会产生电流,从而就能给鞋面上的充电电池充电,这种充电鞋垫的工作原理是()A . 电磁感应现象B . 电流的磁效应C . 磁极间的相互作用D . 通电线圈在磁场里受力转动11、(2017南山.中考模拟) 下列四幅图对应的说法正确的是()A . 图甲:通电导线周围存在磁场,将小磁针移走,该磁场消失B . 图乙:电流一定时,线圈的匝数越多,电磁铁的磁性越强C . 图丙:改变电流方向并对调磁体的N、S极,导体摆动方向发生改变D . 图丁:闭合开关后,只要导体在磁场中运动,电路中就一定会有感应电流12、(2017龙华.中考模拟) 如图甲所示,是一个POS刷卡机。
高考二轮复习 - 电磁感应(答案附后面)
第10讲 电磁感应1.如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B 等于( )A.54B.32C.74D .2 2.(多选)如图2,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( ) A .开关闭合后的瞬间,小磁针的N 极朝垂直纸面向里的方向转动 B .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向里的方向 C .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向外的方向D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 3.如图3,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为32l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可能是( )4.(多选)如图4(a),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图(b)所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( ) A .在t =T4时为零B .在t =T2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向5.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图5所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右振动的衰减最有效的方案是( )6.如图6所示,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B1=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图6(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.考点1 楞次定律与电磁感应定律的应用1.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”. (5)感应电流产生的“结果”阻碍引起感应电流的“原因”. 2.求感应电动势大小的五种类型 (1)磁通量变化型:E =n ΔΦΔt .(2)磁感应强度变化型:E =nS ΔBΔt .(3)面积变化型:E =nB ΔSΔt .(4)平动切割型:E =Bl v (v ⊥B ).(5)转动切割型:E =12Bl 2ω.注意:公式E =nS ΔB Δt 中的ΔBΔt 等于B -t 图象的斜率.3.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源. (2)在电源内部电流由负极流向正极. (3)电源两端的电压为路端电压.(多选) 2017年9月13日,苹果在乔布斯剧院正式发布旗下三款iPhone 新机型,除了常规的硬件升级外,三款iPhone 还支持快充和无线充电.图7甲为兴趣小组制作的无线充电装置中的受电线圈示意图,已知线圈匝数n =100、电阻r =1 Ω、横截面积S =1.5×10-3 m 2,外接电阻R =7 Ω.线圈处在平行于线圈轴线的匀强磁场中,磁场的磁感应强度随时间变化如图乙所示,则( )A .在t =0.01 s 时通过R 的电流发生改变B .在t =0.01 s 时线圈中的感应电动势E =0.6 VC .在0~0.02 s 内通过电阻R 的电荷量q =1.5×10-3 C D .在0.02~0.03 s 内R 产生的焦耳热为Q =1.8×10-3 J(多选)如图8甲,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图乙所示规律变化时()A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流1.(多选)如图9甲所示,在足够长的光滑的斜面上放置着金属线框,垂直于斜面方向的匀强磁场的磁感应强度B随时间的变化规律如图乙所示(规定垂直斜面向上为正方向).t=0时刻将线框由静止释放,在线框下滑的过程中,下列说法正确的是()A.线框中产生大小、方向周期性变化的电流B.MN边受到的安培力先减小后增大C.线框做匀加速直线运动D.线框中产生的焦耳热等于其机械能的损失2.如图10所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒,ab和cd用导线连成一个闭合回路,当ab棒向左运动时,cd棒受到向下的磁场力.则有()A.由此可知d电势高于c电势B.由此可知Ⅰ是S极C.由此可知Ⅰ是N极D.当cd棒向下运动时,ab棒不受到向左的磁场力考点2电磁感应中的图象问题1.磁场变化产生感应电动势或感应电流时一般由B-t图象或Φ-t图象,判断I-t或E-t 关系(1)注意正方向的规定.(2)B-t图象、Φ-t图象的斜率不变时,E、I大小方向不变;反之电流、电动势恒定时,B(Φ)随时间均匀变化.(3)安培力大小与B、I、L有关,当I、L不变,B随时间均匀变化时安培力随时间均匀变化.2.导体棒、线框切割磁感线时有效切割长度:导体首尾连线在垂直磁场、垂直切割速度方向上的投影长度.(多选)如图11所示,abcd为一边长为l的正方形导线框,导线框位于光滑水平面内,其右侧为一匀强磁场区域,磁场的边界与线框的cd边平行,磁场区域的宽度为2l,磁感应强度为B,方向竖直向下.线框在一垂直于cd边的水平恒定拉力F作用下沿水平方向向右运动,直至通过磁场区域.cd边刚进入磁场时,线框开始匀速运动,规定线框中电流沿逆时针时方向为正,则导线框从刚进入磁场到完全离开磁场的过程中,a、b两端的电压U ab及导线框中的电流i随cd边的位移x变化的图线可能是()图11(多选)如图12所示,在倾角为θ的光滑斜面上,存在着磁感应强度大小为B的匀强磁场,磁场方向垂直斜面向上,磁场的宽度为2L.一边长为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH 进入磁场瞬间和刚越过MN穿出磁场瞬间速度刚好相等.从ab边刚越过GH处开始计时,规定沿斜面向上为安培力的正方向,则线框运动的速率v与线框所受安培力F随时间变化的图线中,可能正确的是()3.一正三角形导线框ABC(高为a)从如图13所示的位置沿x轴正方向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、磁场方向相反且均垂直于平面、宽度均为a.则感应电流I与线框移动距离x的关系图线可能是(以逆时针方向为感应电流的正方向)()图13考点3 电磁感应中的动力学与能量问题1.电磁感应与动力学综合题的解题策略(1)做好电路分析,明确电源与外电路,可画等效电路图.(2)做好受力分析,把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3)做好运动过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”. 2.电磁感应中能量的三种求解方法(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功. 其他形式的能量――――――→克服安培力做功电能――――→电流做功焦耳热或其他形式的能量(2)利用能量守恒定律求解:若只有电能和机械能参与转化,则机械能的减少量等于产生的电能.(3)利用电路的相关公式——电功公式或电热公式求解:若通过电阻的电流是恒定的或电流的有效值已知,则可直接利用电功公式或焦耳定律求解焦耳热.特别提醒:注意区分回路中某个元件的焦耳热和回路总焦耳热,不能混淆.如图14所示,两根半径为r的四分之一圆弧轨道间距为L,其顶端a、b与圆心处等高,轨道光滑且电阻不计,在其上端连有一阻值为R的电阻,整个装置处于辐向磁场中,圆弧轨道所在处的磁感应强度大小均为B.将一根长度稍大于L、质量为m、电阻为R0的金属棒从轨道顶端ab处由静止释放.已知当金属棒到达图示的cd位置(金属棒与轨道圆心连线和水平面夹角为θ)时,金属棒的速度达到最大;当金属棒到达轨道底端ef时,对轨道的压力为1.5mg.求:(1)当金属棒的速度最大时,流经电阻R的电流大小和方向;(2)金属棒滑到轨道底端的整个过程中流经电阻R的电荷量.(3)金属棒滑到轨道底端的整个过程中电阻R上产生的热量.如图15,两条间距L=0.5 m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B =0.4 T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab=0.1 kg、m cd=0.2 kg的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2 Ω,导轨电阻不计.ab在沿导轨所在斜面向上的外力F作用下,沿该斜面以v=2 m/s的恒定速度向上运动.某时刻释放cd,cd 向下运动,经过一段时间其速度达到最大.已知重力加速度g=10 m/s2,求在cd速度最大时,(1)abdc回路的电流强度I以及F的大小;(2)abdc回路磁通量的变化率以及cd的速率.4.(多选)如图16甲所示,一粗细均匀的单匝正方形铜线框,质量m=1 kg,放置在光滑绝缘水平面上,两平行虚线间存在与水平面垂直的匀强磁场,磁场边界线与线框ab边平行.现用垂直于ab边的水平恒力F拉动线框,线框到达位置Ⅰ时开始计时,此时线框开始进入匀强磁场,速度v0=3 m/s,线框中感应电动势为2 V.在t=3 s时线框到达位置Ⅱ,线框开始离开匀强磁场,此过程中线框v-t图象如图乙所示,那么()A.t=0时,ab间的电压为0.75 VB.恒力F的大小为0.5 NC .线框进入磁场与离开磁场的过程中线框内感应电流的方向相同D .线框完全离开磁场瞬间的速度大小为2 m/s5.(多选)如图17,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,固定在水平面上,右端接一个阻值为R 的定值电阻,平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场,质量为m 、电阻也为R 的金属棒从高为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好,则金属棒穿过磁场区域的过程中(重力加速度为g )( )A .金属棒中的最大电流为Bd 2gh2RB .金属棒克服安培力做的功为mghC .通过金属棒的电荷量为BdL2RD .金属棒产生的电热为12mg (h -μd )考点4 电磁感应与动量结合的问题如图18所示,一个质量为m 、电阻不计、足够长的光滑U 形金属框架MNQP ,位于光滑绝缘水平桌面上,平行导轨MN 和PQ 相距为L .空间存在着足够大的方向竖直向下的匀强磁场,磁感应强度的大小为B .另有质量也为m 的金属棒CD ,垂直于MN 放置在导轨上,并用一根绝缘细线系在定点A .已知,细线能承受的最大拉力为F T0,CD 棒接入导轨间的有效电阻为R .现从t =0时刻开始对U 形框架施加水平向右的拉力,使其从静止开始做加速度为a 的匀加速直线运动. (1)求从框架开始运动到细线断裂所需的时间t 0及细线断裂时框架的瞬时速度v 0大小;(2)若在细线断裂时,立即撤去拉力,求此后过程中回路产生的总焦耳热Q.6.如图19所示,相距为d的平行导轨固定在光滑绝缘的水平面上,导轨右端通过电键K连接一直流电源.质量为m的电阻不能忽略的金属棒MN与导轨接触良好并通过长为L的绝缘细线悬挂起来,此时细线竖直且处于张紧状态,空间有竖直方向的磁感应强度为B的匀强磁场(图中没画出).现闭合电键K,金属棒MN向左摆起到最高点时细线与竖直方向夹角为θ.已知重力加速度为g,则下列说法错误的是()A .匀强磁场方向竖直向上B .金属棒摆到最大高度时重力势能的增加量等于mgL (1-cos θ)C .金属棒离开导轨前通过的电荷量等于m 2gL (1-cos θ)BdD .金属棒离开导轨前电源提供的电能等于mgL (1-cos θ)1.(多选)如图1所示,将若干匝线圈固定在光滑绝缘杆上,另一个金属环套在杆上与线圈共轴,当合上开关时线圈中产生磁场,金属环就可被加速弹射出去.现在线圈左侧同一位置处,先后放置形状、大小相同的铜环和铝环(两环分别用横截面积相等的铜和铝导线制成),且铝的电阻率大于铜的电阻率,闭合开关S 的瞬间,下列描述正确的是( ) A .从左侧看环中感应电流沿顺时针方向 B .线圈沿轴向有伸长的趋势C .铜环受到的安培力大于铝环受到的安培力D .若金属环出现断裂,不会影响其向左弹射2.如图2所示装置中,线圈A 、B 彼此绝缘绕在一铁芯上,B 的两端接有一电容器,A 的两端与放在匀强磁场中的导电轨道连接,轨道上放有一根金属杆ab .要使电容器上板带正电,金属杆ab 在磁场中运动的情况可能是( )①向右减速滑行 ②向右加速滑行 ③向左减速滑行 ④向左加速滑行 以上选项正确的为( )A .①④B .②③C .①②D .③④3.(多选)如图3甲所示,光滑“∠”型金属支架ABC 固定在水平面里,支架处在垂直于水平面向下的匀强磁场中,一金属导体棒EF 放在支架上,用一轻杆将导体棒与墙固定连接,导体棒与金属支架接触良好,磁场随时间变化的规律如图乙所示,则下列说法正确的是( ) A .t 1时刻轻杆对导体棒的作用力最大 B .t 2时刻轻杆对导体棒的作用力为零C .t 2到t 3时间内,轻杆对导体棒的作用力先增大后减小D .t 2到t 4时间内,轻杆对导体棒的作用力方向不变4.(多选) 1831年10月28日,法拉第展示了他发明的圆盘发电机,其示意图如图4所示,水平铜盘可绕竖直转轴转动,两铜片M 、N 分别与铜盘边缘和转轴连接,使整个铜盘处于竖直向上的匀强磁场中,M 和N 之间连接阻值为R 的导体和滑动变阻器R P ,若从上往下看,铜盘转动的方向为顺时针方向.已知铜盘的半径为L ,铜盘转动的角速度为ω,铜盘连同两铜片的等效电阻为r ,磁感应强度为B ,下列说法正确的是( ) A .导体R 中的电流方向从a 到bB .铜盘转动产生的感应电动势大小为12BL 2ωC .导体R 的最大功率为B 2L 4ω2R4(R +r )2D .如果R P =R +r ,则滑动变阻器的最大功率为B 2L 4ω216(R +r )5.(多选)如图5所示,竖直光滑导轨上端接入一定值电阻R ,C 1和C 2是半径都为a 的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C 1中磁场的磁感应强度随时间按B 1=b +kt (k >0)规律变化,C 2中磁场的磁感应强度恒为B 2,一质量为m 、电阻为r 、长度为L 的金属杆AB 穿过C 2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则( )A .通过金属杆的电流大小为mgB 2LB .通过金属杆的电流方向为从B 到AC .定值电阻的阻值为R =2πkB 2a 3mg -rD .整个电路的热功率P =πkamg2B 26.如图6所示,铜线圈水平固定在铁架台上,铜线圈的两端连接在电流传感器上,传感器与数据采集器相连,采集的数据可通过计算机处理,从而得到铜线圈中的电流随时间变化的图线.利用该装置探究条形磁铁从距铜线圈上端某一高度处由静止释放后,沿铜线圈轴线竖直向下穿过铜线圈的过程中产生的电磁感应现象.两次实验中分别得到了如图7甲、乙所示的电流-时间图线.条形磁铁在竖直下落过程中始终保持直立姿态,且所受空气阻力可忽略不计.则下列说法中正确的是( )图6 图7A .若两次实验条形磁铁距铜线圈上端的高度不同,其他实验条件均相同,则甲图对应实验条形磁铁距铜线圈上端的高度大于乙图对应实验条形磁铁距铜线圈上端的高度B .若两次实验条形磁铁的磁性强弱不同,其他实验条件均相同,则甲图对应实验条形磁铁的磁性比乙图对应实验条形磁铁的磁性强C .甲图对应实验条形磁铁穿过铜线圈的过程中损失的机械能小于乙图对应实验条形磁铁穿过铜线圈的过程中损失的机械能D .两次实验条形磁铁穿过铜线圈的过程中所受的磁场力都是先向上后向下7.(多选)在绝缘的水平桌面上固定有MN 、PQ 两根平行的光滑金属导轨,导轨间的距离为l .金属棒ab 和cd 垂直放在导轨上,两棒正中间用一根长l 的绝缘细线相连,棒ab 右侧有一直角三角形匀强磁场区域,磁场方向竖直向下,三角形的两条直角边长均为l ,整个装置的俯视图如图8所示,从图示位置在棒ab 上加水平拉力,使金属棒ab 和cd 向右匀速穿过磁场区,则金属棒ab 中感应电流i 和绝缘细线上的张力大小F 随时间t 变化的图象,可能正确的是(规定金属棒ab 中电流方向由a 到b 为正)( )图88.(多选)如图9所示.间距为L 的光滑平行金属轨道上端用电阻R 相连.其平面与水平面成θ角,整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直轨道平面向上,质量为m 、接入电路的电阻为r 的金属杆ab (长度略大于L ),以初速度v 0从轨道底端向上滑行,滑行到距底端高h 的位置后又返回到底端,运动过程中,金属杆始终与导轨垂直且接触良好,不计金属轨道的电阻,已知重力加速度为g ,则以下说法正确的是( ) A .杆ab 先匀减速上滑,之后匀加速下滑,且上滑过程的加速度大于下滑过程的加速度 B .杆ab 运动过程中安培力做功的功率等于电阻R 的热功率C .杆ab 上滑过程中通过R 的电荷量与下滑过程中通过R 的电荷量相等D .杆ab 上滑到最高点的过程中电阻R 上产生的焦耳热等于R R +r⎝⎛⎭⎫12m v 02-mgh 9.(多选)如图10甲所示,固定在水平面上电阻不计的光滑金属导轨间距d =0.5 m ,导轨右端连接一阻值为4 Ω的小灯泡L ,在CDEF 矩形区域内有竖直向上的匀强磁场.磁感应强度B 随时间t 变化如图乙所示,CF 长为2 m .在t =0时,金属棒ab 在恒力F 作用下从图中位置由静止开始向右运动,t =4 s 时进入磁场,并恰好以v =1 m/s 的速度在磁场中匀速运动到EF 位置.已知ab 金属棒电阻为1 Ω.下列分析正确的是( )A .0~4 s 内小灯泡的功率为0.04 WB .恒力F 的大小为0.2 NC .金属棒的质量为0.8 kgD .金属棒进入磁场后小灯泡的功率为0.06 W10.如图11所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ .两导轨间距为l .电阻均可忽略不计,在M 与Q 之间接有一阻值为R 的电阻器,导体棒ab 质量为m ,电阻为r ,并与导轨接触良好,整个装置处于方向竖直向上、磁感应强度为B 的匀强磁场中.现给ab棒一个初速度v 0,使棒向右运动,ab 棒最后停在导轨上.下列说法正确的是( ) A .ab 棒将做匀减速运动直到静止,整个过程回路产生的热量为12m v 02B .ab 棒速度减为v 03时,ab 棒加速度大小a =2B 2l 2v 03m (R +r )C .ab 棒速度减为v 03时,通过电阻器的电荷量q =m v 03BlD .ab 棒速度减为v 03时,ab 棒的位移为x =2m (R +r )v 03B 2l 211.(多选)如图12所示,两间距为d 的平行光滑导轨由固定在同一水平面上的导轨CD -C ′D ′和竖直平面内半径为r 的14圆弧导轨AC -A ′C ′组成,水平导轨与圆弧导轨相切,左端接阻值为R 的电阻;仅水平导轨处于磁感应强度大小为B 、方向竖直向上的匀强磁场中.导体棒甲静止于CC ′处,导体棒乙从AA ′处由静止释放,沿圆弧导轨运动,与甲相碰后粘合在一起,并在到达水平导轨左端前停止.两棒的质量均为m ,导体棒及导轨的电阻均不计,重力加速度大小为g .下列判断正确的是( ) A .两棒粘合前瞬间,乙棒速度大小为gr B .两棒相碰并粘合在一起后瞬间的速度大小为gr2C .两棒粘合后受到的最大安培力为B 2d 2gr2RD .从乙开始下滑至两棒静止的过程中,回路产生的焦耳热为12mgr12.(多选)如图13所示,足够长的光滑平行金属导轨MN 、PQ 与水平面成30°角固定放置,导轨间距为1 m ,导轨所在平面有磁感应强度大小为100 T 、方向垂直导轨平面向上的匀强磁场,导轨的上端M 与P 间接有电容为200 μF 的电容器.质量为1 kg 的金属棒ab 垂直放置在导轨上,对金属棒施加一沿导轨平面向下、大小为10 N 的恒力F 作用,使其由静止开始运动.不计导轨和金属棒的电阻,取重力加速度g =10 m/s 2.则下列说法正确的是( )A.金属棒先做变加速运动,后做匀速运动B.金属棒运动过程中通过其电流方向从b到a,大小恒定为0.1 AC.金属棒由静止开始运动至t=1 s时电容器所带电荷量为10 CD.金属棒由静止开始运动至t=1 s时电容器储存的电场能为25 J13.如图14所示,在方向竖直向上、磁感应强度大小为B的匀强磁场中,有两条相互平行且相距为d的光滑固定金属导轨P1P2P3和Q1Q2Q3,两导轨间用阻值为R的电阻连接,导轨P1P2、Q1Q2的倾角均为θ,导轨P2P3、Q2Q3在同一水平面上,P2Q2⊥P2P3,倾斜导轨和水平导轨用相切的小段光滑圆弧连接,其长度可以略去不计.质量为m的金属杆CD从倾斜导轨上由静止释放,下滑距离L到达P2Q2处时的速度恰好达到最大,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,空气阻力、导轨和杆CD的电阻均不计,重力加速度大小为g,求:(1)杆CD到达P2Q2处的速度大小v m;(2)杆CD沿倾斜导轨下滑的过程通过电阻R的电荷量q1以及全过程中电阻R上产生的焦耳热Q;(3)杆CD沿倾斜导轨下滑的时间Δt1及其停止处到P2Q2的距离s.第10讲电磁感应1.如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图1A.54B.32C.74D .2 【考点定位】 电磁感应、法拉第电磁感应定律【点评】 应用二级结论:q =n ΔΦR 可快速解题,重点是磁通量的计算【难度】 中等 答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有 E 1=ΔΦ1Δt 1=B ⎝⎛⎭⎫12πr 2-14πr 2Δt 1。
[精选]高考物理二轮复习专题训练:电磁感应新人教版-试卷及答案
[精选]高考物理二轮复习专题训练:电磁感应新人教版-试卷及答案精选文档可编辑修改电磁感应(附参考答案)1.矩形导线框固定在匀强磁场中,如图甲所示。
磁感线的方向与导线框所在平面垂直,规定磁场的正方向为垂直纸面向里,磁感应强度B随时间t变化的规律如图乙所示,则 A. 从0到t1时间内,导线框中电流的方向为abcda B. 从O到t1时间内,导线框中电流越来越小C. 从0到t2时间内,导线框中电流的方向始终为adcbaD. 从0到t2时间内,导线框ab边受到的安培力越来越大答案:C解析:由楞次定律,从0到t2时间内,导线框中电流的方向始终为adcba,选项A错误C正确;由法拉第电磁感应定律和闭合电路欧姆定律,从O到t1时间内,导线框中电流恒定,选项B错误;由安培力公式,从0到t2时间内,导线框ab边受到的安培力先减小后增大,选项D错误。
2.长直导线与闭合金属线框位于同一平面内,长直导线中的电流i随时间t的变化关系如右图所示。
0?在TT?T2时间内,直导线中电流向上。
则在2时间内,线框中感应电流的方向与所受安培力情况是()A.感应电流方向为顺时针,线框受安培力的合力方向向左 B.感应电流方向为顺时针,线框受安培力的合力方向向右 C.感应电流方向为逆时针,线框受安培力的合力方向向右 D.感应电流方向为逆时针,线框受安培力的合力方向向左 2.答案:BT?T2解析:在时间内,由楞次定律可知,线框中感应电流的方向为顺时针,由左手定则可判断线框受安培力的合力方向向右,选项B正确。
3.两根足够长的光滑导轨竖直放置,间距为L,顶端接阻值为R的电阻。
质量为m、电阻为r的金属棒在距磁场上边界某处静止释放,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示,不计导轨的电阻,重力加速度为g 则A. 金属棒在磁场中运动时,流过电阻R的电流方向为a→bB2L2vB. 金属棒的速度为v时,金属棒所受的安培力大小为R?r mg?R+r?BLC. 金属棒的最大速度为:?mg???BL??R D. 金属棒以稳定的速度下滑时,电阻R的热功率为答案:BD解析:金属棒在磁场中向下运动时,由楞次定律,流过电阻R的电流方向为b→a,选项A错误;金属棒的速度为v时,金属棒中感应电动势E=BLv,感应电流I=E/(R+r)所受的安培力大小为- 1 - 精选文档可编辑修改2精选文档可编辑修改B2L2vF=BIL=R?r,选项B正确;当安培力F=mg时,金属棒下落速度最大,金属棒的最大速度为mg?R+r?B2L2,选项C错误;金属棒以稳定的速度下滑时,电阻R和r的热功率为v=?mg??mg?????BLBL????R,选项D正确。
2021年 中考物理二轮复习强基训练4-电磁感应探究实验(有答案)
2021年中考物理二轮复习强基训练4-电磁感应探究实验1、如图所示是探究“感应电流的产生条件”实验过程的示意图.(1)实验过程中应注意观察磁铁的磁场方向、导体棒在磁场中的____和灵敏电流计指针的____.(2)观点“只要闭合电路中的一部分导体在磁场中运动,就会产生感应电流”是否正确?____(填“正确”或“不正确”),图____(填图片序号)即可验证.(3)比较图甲和乙的实验现象,可以得出结论:____.(4)比较图乙和丁的实验现象,可以得出结论:____.(5)由能量观点分析,感应电流的产生过程是____能转化为电能的过程.2、小明用如图所示的装置来探究感应电流产生的条件(图中灵敏电流计的指针偏转方向相反即表示通过的电流方向相反).(1)导体ab静止悬挂,闭合开关,灵敏电流计的指针不偏转,说明电路中______(选填“有”或“无”)电流产生.(2)继续探究,记录观察到的现象如下表:序号ab运动方向电流计指针偏转情况1 沿磁场方向运动(不切割磁感线)不偏转2 水平向左(切割磁感线)向右偏转3 水平向右(切割磁感线)向左偏转①比较1、2(或1、3)实验现象可知,闭合电路的一部分导体在磁场中做____________运动时,电路中就会产生感应电流.②比较2、3实验现象还发现,产生的感应电流的方向跟________________有关.(3)若在整理器材时未断开开关,先水平向左撤去蹄形磁铁(导体ab不动),则灵敏电流计的指针________(选填“会”或“不会”)偏转.3、小明在探究“怎样产生感应电流”的实验中,用导线将金属棒、开关、灵敏电流计连接成如图所示的电路.请你参与探究并回答下列问题:(1)悬挂金属棒静置于U形磁铁的磁场中,此时两极正对区域磁感线的箭头方向是竖直向________(选填“上”或“下”).(2)灵敏电流计的作用是用来检测________的.若闭合开关后并未发现电流计指针偏转,经检查器材均完好,各器材间连接无误,那么接下来你认为最应该关注的器材是________.(3)小明认为是原来磁铁的磁性太弱所致,他提出更换磁性更强的磁铁,就在他移动原磁铁时,你发现电流计的指针出现了晃动,你认为接下来最应该做什么来找到让电流计指针偏转的原因______________________________.(仅写出最应该进行的一步操作)(4)就根据上述探究过程,小明就说:“我们找到产生感应电流的秘密了!”此时你对小明的“成果发布”作何评价?______________________________________.4、小明用如图示的实验装置探究“产生感应电流的条件”.(1)实验中,通过观察__________________________来判断电路中是否有感应电流.(2)小明闭合开关后进行了如下操作:A. 只让导体ab在水平方向左右运动B. 只让导体ab在竖直方向上下运动C. 只让蹄形磁体在水平方向左右运动D. 只让蹄形磁体在竖直方向上下运动其中一定能产生感应电流的是________(填字母).(3)在探究中还发现,导体ab水平向左(或向右)缓慢运动时,灵敏电流表的指针偏转角度较小;导体ab水平向左(或向右)快速运动时,灵敏电流表的指针偏转角度较大,说明感应电流的大小与_______________________有关. (4)该实验的结论是:闭合电路的一部分导体,在磁场中做_____________运动时,导体中就会产生感应电流.根据这种现象人们发明了_____________.(5)如果将灵敏电流表换成________,可以观察磁场对通电导体的作用.5、图1是探究什么情况下磁可以生电的装置。
高考物理第二轮专题复习测试题(电磁感应中能量专题)附参考答案
高三物理第二轮复习测试题 电磁感应中能量专题(附参考答案)一.选择题(4×10;每题至少有一个正确答案,不选或错选得0分;漏选得2分)1.光滑曲面与竖直平面的交线是抛物线,如图12—3—20所示,抛物线的方程是y =x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示).一个小金属块从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后( )A .mgbB .21mv2C .mg (b -a )D .mg (b -a )+21mv22.如图所示,相距为d 的两水平虚线1L 和2L 分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B ,正方形线框abcd 边长为L(L<d)、质量为m 。
将线框在磁场上方高h 处由静止开始释放,当ab 边进入磁场时速度为o ν,cd 边刚穿出磁场时速度也为o ν。
从ab 边刚进入磁场到cd 边刚穿出磁场的整个过程中 ( ) A .线框一直都有感应电流 B .线框有一阶段的加速度为g C .线框产生的热量为mg(d+h+L) D .线框作过减速运动3.如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( )A .mghB .2mghC .大于mgh ,小于2mghD .大于2mgh4. 如图所示,挂在弹簧下端的条形磁铁在闭合线圈内振动,如果空气阻力不计,则: ( )A .磁铁的振幅不变B .磁铁做阻尼振动C .线圈中有逐渐变弱的直流电D .线圈中逐渐变弱的交流电5.如图所示,图中回路竖直放在匀强磁场中磁场的方向垂直于回路平面向内。
导线AC 可以贴着光滑竖直长导轨下滑。
设回路的总电阻恒定为R ,当导线AC 从静止开始下落后,下面有关回路能量转化的叙述中正确的是 ( ) A.导线下落过程中,机械能守恒;B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能; D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能6.如图所示,虚线框abcd 内为一矩形匀强磁场区域,ab=2bc ,磁场方向垂直于纸面;实线框a'b'c'd'是一正方形导线框,a'b'边与ab 边平行。
高中物理电磁感应现象习题二轮复习含答案解析
高中物理电磁感应现象习题二轮复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t ∆Φ=产生的平均电流为E I R=流过MN 杆的电量q It =代入数据解得25C 2BLat q R==(2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为E BLv =MN 杆运动的时间为v t a=代入数据解得224s MgRt B L a==3.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
整章二轮复习专题练习(二)附答案高中物理选修3-2电磁感应
高中物理专题复习选修3-2电磁感应单元过关检测考试范围:单元测试;满分:100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.(单选)如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC 沿水平方向; PQ金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上,空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q2.(单选)如图所示,闭合线圈上方有一竖直放置的条形磁铁。
当磁铁向下运动(但未插入线圈内部)时,线圈中()A.没有感应电流B.感应电流的方向与图中箭头方向相反C.感应电流的方向与图中箭头方向相同D.感应电流的方向不能确定3.(单选)有关磁通量的论述,下列说法正确的是(A)在同等条件下,线圈的匝数越多,穿过线圈的磁通量就越大(B)磁感强度越大的位置,线圈面积越大,则穿过线圈的磁通量越大(C)若穿过线圈的磁通量为零,则该处磁感强度一定为零(D)匀强磁场中,穿过线圈的磁感线条数越多,则磁通量就越大4.(单选)下列装置中利用电磁感应原理工作的是()A.电动机 B.发电机 C.电磁铁 D.电磁继电器5.(单选)如图所示,L为自感系数很大、直流电阻不计的线圈,D1、D2、D3为三个完全相同的灯泡,E为内阻不计的电源,在t = 0时刻闭合开关S,当电路稳定后D1、D2两灯的电流分别为I1、I2。
当时刻为t1时断开开关S,若规定电路稳定时流过D1、D2的电流方向为电流的正方向,则下图能正确定性描述电灯电流i与时间t关系的是6.(单选)如图所示,两个垂直于纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动,此拉力F的大小随时间t的变化关系如图(乙)所示。
求①匀加速运动的加速度及ab棒与导轨间的滑动摩擦力。
②如果已知拉力在前2秒作功29焦,求这2秒内通过ab杆电流的有效值。
(2)若从t=0开始,调动磁感应强度的大小,使其以 的变化率均匀增加,求经过多长时间ab棒开始滑动?此过程中通过ab棒的电量是多少?
E2= (3)
代入数据得:
E2=10V
图象如右表所示:
(3)设线圈的感应电动势的有效值为U,则:
(4)
得:U2=125 V2
则小灯泡消耗的电功率P= (5)
代入数据得:P=112.5W
5.水平放置的金属框架abcd,宽度为0.5 m,匀强磁场与框架平面成30°角,如图所示,磁感应强度为0.5 T,框架电阻不计,金属杆MN置于框架上可以无摩擦地滑动,MN的质量0.05 kg,电阻0.2 Ω,试求当MN水平匀速运动的速度为多大时,它对框架的压力恰为零,此时水平拉力应为多大?(g取10 m/s2)
9.(1)以ab杆为研究对象,当磁感强度均匀增大时,闭合电路中有恒定的感应电流I。ab杆受到的安培力逐渐增大,静摩擦力也随之增大。当磁感强度增大到ab所受安培力F与最大摩擦力fm相等时开始滑动。
F=BIlB=B0+
F=fm,由以上各式解得经时间t=17.5s后ab棒开始滑动,此时通过ab棒的电流大小为I=0.5A,根据楞次定律可判断出,电流的方向为从b到a
(2)设金属棒与导轨间的动摩擦:F1-μmg-BI1L=ma1
则P0=F1·v1
C点:棒达到最大速度vm=10m/s,
Em=BLvmIm=
由牛顿第二定律:F2-μmg-BImL=0
则P额=F2·vm
联立,代入为数据解得:μ=0.2,R=0.4Ω
(3)在0—12s内通过的位移:s1= (0+v1)t1=54m
线圈所受安培力大小为Ff=Bil,方向沿x负方向
因线圈被匀速拉出,所以F=Ff
解上各式得F=x-x2
(2)当x=r时,拉力F最大,最大值为F0=
图线如图所示.
2.半径为a的圆形区域内有均匀磁场,磁感应强度为B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计.
8.解:(1)设金属框下降h=0.50m时获得的速度为v,根据能量守恒,有 ,v=1.0m/s,此时金属框中的感应电流
由楞次定律可判断出感应电流的方向为a→b→c→d→a
(2) ,假设所施加的外力方向竖直向下,对金属框进行受力分析,有
,当0≤t<0.2s时,外力竖直向上,当t>0.2s时,外力竖直向下
联立④⑤可得Qab=0.9J⑥
(2)细绳被拉断瞬时,对ab棒有:
Fm=mg+BIabL⑦
又有IR=RabIab/R⑧
Icd=Iab+Icd⑨
又由闭合欧姆定可得
BLv=Icd[Rcd+RabR/(Rab+R)]⑩
联立⑦⑧⑨⑩可得v=1.88m/s
(3)由功能关系得
Mgh= Q总+1/2mv2
即可得h=3.93m
5.解:当金属杆对框架无压力时受力如图所示,根据平衡条件得此时水平拉力为
F=mgtan30°=0.05×10× N=0.29 N
安培力大小为
F安= ①
MN中产生的感应电动势为
E=BLvsin30°②
闭合电路中的感应电流为
I= ③
安培力为F安=BIL④
由①②③④解得金属杆匀速运动的速度为
v=
= m/s=3.7 m/s
E=BLv=0.2×2×0.4×5V=0.8V
当不计棒与环的电阻时,直径 两端的电压U=E=0.8V,所以通过灯L1的电流为
I1=
(2)右半圆环向上翻转90o后,穿过回路的磁场有效面积变为原来的一半,即 = .
磁场变化时在回路中产生的感应电动势为
=2×(0.4)2V=0.32V
由于L1、L2两灯相同,圆环电阻不计,所以每灯的电压均为 ,L1的功率为
试求:
⑴下落距离为r/2时棒的加速度,
⑵从开始下落到经过圆心的过程中线框中产生的热量.
6.(1)R1===①
F=BIL==0.12 N②
由mg-F=ma③
a=g-=8.8(m / s2)④
(2)mgr-Q=mv22– 0⑤
Q=mgr-mv22=0.44 J⑥
7.如图所示,足够长的两根光滑导轨相距0.5m竖直平行放置,导轨电阻不计,下端连接阻值为1Ω的电阻R,导轨处在匀强磁场B中,磁场的方向垂直于导轨平面向里,磁感应强度为0.8T。两根质量均为0.04kg、电阻均为0.5Ω的水平金属棒ab、cd都与导轨接触良好,金属棒ab用一根细绳悬挂,细绳允许承受的最大拉力为0.64N,现让cd棒从静止开始落下,直至细绳刚好被拉断,在此过程中电阻R上产生的热量为0.2J,g=10/s2。求:
(1)此过程中ab棒和cd棒分别产生的热量Qab和Qcd。
(2)细绳被拉断时,cd棒的速度。
(3)细绳刚被拉断时,cd棒下落的速度。
7.解:(1)金属棒cd从静止开始运动直至细绳刚好被拉断的过程中有:
Qab=U2t/Rab①
QR=U2t/R②
联立①②可得Qab=0.4J③
Qcd=I2Rcdt④
Qab+ QR=I2RRabt/(Rab+R)⑤
①在0— 的时间内,通过小灯泡的电荷量
②画出感应电动势随时间变化的图象
以abcda方向为正方向,至少画出一个完整的周期)
③小灯泡消耗的电功率。
4.解:(1)通过小灯泡的电荷量q= (1)
(2)ab边在磁场里切割磁感线时最大感应电动势为
E1= (2)
代入数据得:
E1=20V
cd边在磁场里切割磁感线时最大感应电动势为:
(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径 的瞬时,(如图),MN中的电动势和流过灯L1的电流.
(2)撤去中间的金属棒MN,将右面的半圆环 以 为轴向上翻转90o,若此时磁场随时间均匀变化,其变化率为 ,求L1的功率.
2.解:(1)棒滑过圆环直径时切割磁感线的有效长度L=2a,棒中产生的感应电动势为
9.如图(甲)所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间宽L=0.50米,一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab棒的电阻为R=0.10Ω,其它各部分电阻均不计。开始时,磁感应强度B0=0.50T。
P1=
3.有8根长为L= m =0.157m的金属丝(编号分别是a、b、c、d、e、f、g、h),其中a、c的电阻为Ra=Rc=9Ω,其他金属丝的电阻忽略不计。把每根金属丝都弯成半径为r=0.1m的四分之一圆弧,并用它们焊接成两个圆圈。然后用4根长都为l=0.05m的直金属电阻丝(编号分别是1、2、3、4)连接两个圆圈上的焊点,焊接成如图甲所示的金属架,直电阻丝的电阻R1=R2=R3=R4=3Ω,图中OO’是通过两个圆心的轴线,且垂直于两个圆的平面。用一个绝缘架(图中没有画出)把金属架固定在一根过OO’的轴上,使整个装置可绕oo’转动。有一对强磁极如
8.一质量为0.10kg,电阻为0.10Ω的矩形金属框abcd由静止开始释放,沿竖直向下的方向进入匀强磁场,磁场方向如图所示,磁感应强度为0.50T。已知金属宽为l=0.20m,长足够长。刚释放时,ab边恰与磁场的上边缘重合。当金属框下降了h=0.50m时,已产生了0.45J的热量,这时金属框的cd边仍在磁场外。求:⑴此时金属框中感应电流的大小和方向;⑵从此时开始,在金属框上施加一个竖直方向的外力,使它开始作匀加速运动,在t=1/3s的时间里,经过s=0.75m的距离。求此外力随时间的变化关系,并说明外力的方向。设在此过程中cd边始终在磁场外。
图乙所示放置,磁极的宽度为d=0.01m,可以认为两磁极间为匀强磁场,磁感应强度为1T,且磁极外没有磁场。在金属架转动时,直电阻丝1、2、3、4的全长都可依次进入磁场中切割磁感线,且可以认为直电阻丝在切割磁感线的过程中速度方向始终垂直于磁感线的方向。在外力的作用下,金属架绕OO’轴匀速转动,转动方向为在图11所示位置时电阻丝1、2向下运动,电阻丝3、4向上运动,转动一周的时间是T= s=0.0628s。求:(1)金属架匀速转动,在某一根直电阻丝切割磁感线时产生的感应电动势的数值和此时这根直电阻丝中电流的方向;(2)从图12所示的位置开始,金属架匀速转动一周的过程中,电流在电阻丝1上所产生的热。
3.(1)E=Blv
感应电流方向用右手定则可确定水平向左。
(2)每根电阻丝切割时间为t,
①当电阻丝2切割时,E=BlV=0.5V,等效电路结构如图所示
②当电阻丝1切割时,等效电路图如图所示,与电阻丝1切割类似,
③当电阻丝4切割时,等效电路结构如图所示:
④当电阻3切割时,等效电路结构如图所示
4.一矩形线圈abcd放置在如图所示的有理想边界的匀强磁场中(oo′的左边有匀强磁场,右边没有),线圈的两端接一只灯泡。已知线圈的匝数n=100,电阻r=1.0Ω,ab边长L1=0.5m,ad边长L2=0.3m,小灯泡的电阻R=9.0Ω,磁场的磁感应强度B=1.0×10-2T。线圈以理想边界oo′为轴以角速度ω=200rad/s按如图所示的方向匀速转动(OO′轴离ab边距离 ),以如图所示位置为计时起点。求: