海陵区实验中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海陵区实验中学2018-2019学年上学期高三数学10月月考试题
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为()
A.560m3B.540m3C.520m3D.500m3
2.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()
A.96 B.48 C.24 D.0
3.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()
A.6
B.9
C.12
D.18
4.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有()
A.27种B.35种C.29种D.125种
5.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()
A.1 B.2 C.3 D.4
6.下列结论正确的是()
A.若直线l∥平面α,直线l∥平面β,则α∥β.
B.若直线l⊥平面α,直线l⊥平面β,则α∥β.
C.若直线l1,l2与平面α所成的角相等,则l1∥l2
D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α
7.下列关系式中,正确的是()
A.∅∈{0} B.0⊆{0} C.0∈{0} D.∅={0}
8.已知集合A={y|y=x2+2x﹣3},,则有()
A.A⊆B B.B⊆A C.A=B D.A∩B=φ
9.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线
段记为,,将线段竖直放置在同一水平线上,则大致的图形是()
A
B
C
D
10.设,,a b c R ∈,且a b >,则( ) A .ac bc > B .
11
a b
< C .22a b > D .33a b > 二、填空题
11.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前16项和为 .
12.给出下列命题:
①存在实数α,使
②函数是偶函数
③
是函数
的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sin α<sin β
其中正确命题的序号是 .
13.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}
(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,
给出结论如下:
①若(1,4)(,)λμ-∈Ω,则1λμ==;
②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)
(,2)(1,5)μλΩΩ=;
⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .
14.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧
面11BCC B 内一点,若1AP 平行于平面
AEF ,则线段1A P 长度的取值范围是_________.
15.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔
小时各
服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的
,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)
三、解答题
17.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
18.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.
19.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.