NEMA-NU-2-2007
单光子发射算机断层成像及计算机扫描系统技术参数与要求
1.2.10
手控盒
2个
1.2.11
机架上配有液晶控制触摸屏
具备
1.2.12
内置式质控点源支架
具备
1.2.13
心电触发装置
具备
1.2.14
机架孔径
≥70cm
1.2.15
机架重量(包括一对低能高分辨准直器)
≤4500kg
1.3
扫描床
1.3.1
完成全身及断层扫描
承重≥226kg
1.3.2
最大扫描范围
≥200cm
首次通过法心脏EF值计算, 计数曲线分析
有
4.2.2.6
心功能分析,相位分析
有
4.2.2.7
心肌定量分析
有
4.2.2.8
心脏灌注显像靶心图显示定量分析
有
4.2.2.9
门控心血池自动EF/手动EF
有
*4.2.2.10
心肌门控断层定量分析
有
4.2.2.11
最新Cedars心脏分析软件包
有
4.2.2.12
*2.8
扫描速度
≤0.5s/圈
2.9
CT扫描视野
≥50cm
*2.10
CT高对比分辨率
≥16 lp/cm@ 0% MTF
2.11
高压发生器功率
≥50KW
2.12
球管阳极热容量
≥5 MHU
2.13
扫描矩阵
≥512×512
2.14
球管最大管电流
≥340 mA
2.15
球管最小管电流
≤20mA
2.16
球管最大电压
有
4.2.1.3
可用图标或鼠标控制图像的放大/缩小/移位
uMI780PETCTNEMA性能指标测试研究
引言随着核医学影像设备学的发展,PET/CT 性能日益提升,已成为诊断恶性肿瘤的重要手段[1]。
临床精确诊断疾病需要高质量的PET 图像,周期性检测设备性能是持续获取高质量临床图像的重要保证。
目前,核医学PET 系统性能检测多参照国际通用的美国国家电气制造商协会(National Electrical Manufacturers Association ,NEMA )标准[2-3]。
本研究采用NEMA NU2-2007版测试方法对南京市第一医院核医学科uM780 PET/CT (上海联影医疗科技有限公司)进行性能检测,主要测试内容包括空间分辨率、灵敏度和散射/随机/计数率等指标。
1 材料与方法1.1 PET性能测试材料与性能指标1.1.1 测试材料 uMI 780 PET/CT (上海联影医疗科技有限公司)系统参数为:探测器环数112,晶体为硅酸钇镥(LYSO ),包含101920块晶体,尺寸为2.76 mm (环向)×2.59 mm (Z 向)×18 mm (厚度);探测器直径836 mm ,轴向视野300 mm ,孔径70 mm ,能量窗≥420 keV ,符合时间窗4.0 ns 。
放射性药物18F-FDG ,内径0.5 mm 的毛细玻璃管,空间分辨率模体uMI 780 PET/CT NEMA 性能指标测试研究徐磊1a ,孟庆乐1a ,杨瑞1a ,钱鑫宇1a ,蒋红兵1b, 21. 南京医科大学附属南京医院(南京市第一医院),a. 核医学科;b. 医疗设备处,江苏 南京 210006;2. 南京市卫生信息中心,江苏 南京 210003[摘 要] 目的 对uMI 780 PET/CT 性能指标进行测试研究。
方法 依据国家标准GB18988-1(NEMA NU2-2007)对PET 空间分辨率、灵敏度、等效噪声计数率、散射分数、符合计数率等指标进行测试。
结果 视野中心1 cm 处横向和轴向空间分辨率分别为3.11、3.17 mm ,10 cm 处分别为3.33、3.31 mm 。
SPECT应用质量评价指标的遴选
RESEARCH WORK引言单光子发射计算机断层扫描(Single-Photon Emission Computed Tomography,SPECT)装置是借助于单光子核素标记药物来实现体内功能和代谢显像的设备。
与普通CT、MRI和超声相比,SPECT的功能优势是可以显示脏器或病变的血流、功能和代谢的改变,有利于疾病的早期诊断、特异性诊断及诊疗效果的评估,已广泛应用于临床[1-2]。
SPECT是实现精准诊断的重要设备之一,其应用状态是成像质量和诊断结果的重要影响因素,对SPECT的应用质量全面检测和评价是保障图像质量和诊断水平的关键。
目前国内外颁布的SPECT质量控制标准主要针对SPECT验收检测和状态检测,针对SPECT日常检测相关标准研究很少,亦无完善的评价指标体系[3-4]。
国际上使用最多的SPECT质量控制标准是美国国家电气制造商协会颁布的NEMA NU 1-2007[5]。
我国标准主要有GB/T 18988.2-2013和GB/T 18988.3-2013[6-7]。
这些标准的检测通常需要技术复杂的检测方法和价格昂贵的检测工具,且检测耗时长、时效差。
因此,虽然SPECT质量控制标准对SPECT 应用质量评价有参考意义,但由于应用质量评价的特殊性,因此需要增减部分指标,使之适应临床实际应用环境。
本文根据SPECT临床使用特点和要求,遴选一套衡量SPECT应用质量的评价指标,并确定各指标的权重,为SPECT应用质量评价提供参考。
SPECT应用质量评价指标的遴选康婉星1,姚国庆1,2,郑小溪2,米永巍2,李涛2,郑诗强21. 东莞市厚街医院医务科,广东东莞 523900;2. 中国人民解放军中部战区总医院医学工程科,湖北武汉 430070[摘 要] 目的 遴选出一套衡量单光子发射计算机断层扫描(Single-Photon Emission Computed Tomography,SPECT)应用质量的评价指标,为临床评估SPECT应用状态提供参考依据。
NEMA1质控标准
NEMA NU-1 2007 具体测试方法 ----固有空间分辨率
测试条件
- 99mTc点源 - 窗宽15% - 计数率<20K
数字分辨和采集
- 垂直向≦0.1FWHM - 平行向<30mm - 在峰道上每个LSF采集数>1000
专用设备
NEMA NU-1 2007 具体测试方法 ----固有空间分辨率
NEMA NU-1 2007 具体测试方法 ----无散射系统空间分辨率
- 带有准直器
- 表述为FWHM和FWTM - 99mTc 线源,能窗15% - 毛细管1.0*(≥)30mm - 距离准直器表面100mm - Digital sampling 垂直向≤0.1FWHM 平行向<30mm - 计数每个LSF峰点≥10000
专用设备
-测量分辨率和线性的铅模型
计算分析
NEMA NU-1 2007 具体测试方法 ----固有能量分辨率
测试条件
- 99mTc点源
- 铜板厚度≥2mm
- 积分计数率≤20k - 数字分辨率≤0.05能峰
- 57Co作为参考源
- 二种源能谱分布存储 每个能谱在峰道上的采集计数>10000
计算
临床核医学的放射防护与评价
核医学科 张军
NEMA NU-1 2007的基本结构
相关出版物、定义以相机的次级(second)测试 不连续像素探头(discrete pixel detector)相 的测试
NEMA NU-1 2007的基本要求
计算和分析
NEMA NU-1 2007 具体测试方法 ----探头屏蔽
99mTc及高能核素 1~5cc塑料瓶 计数率1000~3000cps 探头与床距离20cm 每个位置计数>10000 计算LS 报告最大值
医疗机构放射诊疗设备安全防护与质量安全监测方案
医疗机构放射诊疗设备安全防护与质量安全监测方案一、监测范围每个试点地区选择15家医院开展放射诊疗设备安全防护与质量安全控制监测工作。
其中三级医院5家(包括省肿瘤医院、省人民医院)、二级医院5家(包括2家县人民医院)、一级医院5家(包括2家乡镇卫生院)。
监测医院应在试点城市中选择,如监测设备数量达不到要求,可适当扩大监测医院范围。
二、监测内容(一)放射治疗设备安全防护与质量安全控制监测。
1.监测数量。
每个试点地区监测放射治疗设备18台。
其中医用电子加速器10台,钴-60远距离治疗机3台,头部伽玛刀2台,后装治疗机3台。
2.监测依据的标准。
(1)医用电子加速器依据《医用电子加速器性能和试验方法》(GB 15213-94)。
(2)钴-60远距离治疗机依据《医用γ射束远距治疗防护与安全标准》(GBZ 161-2004)。
(3)头部伽玛刀依据《X、γ射线头部立体定向外科治疗放射卫生防护标准》(GBZ 168-2005)。
(4)后装治疗机依据《后装γ源治疗的患者防护与质量控制检测规范》(WS 262-2006)、《后装γ源近距离治疗放射卫生防护标准》(GB 16364-1996)。
3.监测指标。
(1)医用电子加速器(监测指标共13项,其中X射线7项,电子线6项)。
X射线的性能:辐射质、辐射野的均整度、辐射野与光野的重合、辐射野的对称性、剂量示值的重复性、剂量示值的线性、剂量示值的误差;电子线的性能:辐射质,辐射野的均整度,辐射野的对称性,剂量示值的重复性、剂量示值的线性,剂量示值的误差。
(2)钴-60远距离治疗机(监测指标共7项)。
准直器旋转中心,灯光野与照射野的重合性,半影区宽度,辐射野对称性,输出剂量的重复性,输出剂量的线性,治疗计划的吸收剂量偏差。
(3)头部伽玛刀(监测指标共7项)。
焦点剂量率,焦点计划剂量与实测剂量的相对偏差,机械中心与辐射野中心之间的距离,辐射野半影宽度,辐射野尺寸(FWHM)与标称值最大偏差,透过准直体的泄漏辐射,非治疗状态下杂散辐射。
基于国家标准及美国电气制造商协会测量程序的PET
Acceptance test of PET/CT based on national standard and the NEMA measurement program/Su Xuesong 1, Geng Jianhua 1, Zhang Chaokun 1, Guo Hao 2, Zheng Rong 1, Wang Xuejuan 11Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; 2Beijing Branch of Siemens Digital Healthineers Science and T echnique (Shanghai) Co., Ltd., Beijing 100102, China Corresponding author: [Abstract] Objective: T o perform acceptance test and performance assessment for Siemens Biograph Vision 600 positron-emission tomography/computed tomography (PET/CT) according to the national health industry standard WS 817-2023. Methods: Spatial resolution, sensitivity, scatter fraction, count loss and random coincidence, correction accuracy of count loss and random coincidence, time-of-flight(TOF) resolution of the PET component within the PET/CT system were tested through the measurement program (NU2-2018) of National Electrical Manufacturers Association (NEMA), which was installed inside of the equipment, in accordance with the requirement of national health industry standard WS 817-2023. The PET/CT registration accuracy was measured through Gantry_offset acquisition program that was built into the equipment. Results: The transversely and axially spatial resolutions of Biograph Vision 600 PET/CT were respectively 3.69 mm and 4.10 mm at 1 cm away from the center of visual field, and were respectively 4.26 mm and 4.89 mm at 10 cm away from the center of visual field, and were respectively 4.68 mm and 4.89 mm at 20 cm away from the center of visual field. The sensitivity of 10 cm away from center and radial of visual field were respectively 16.12 kcps/MBq and 16.00 kcps/MBq. The peak value of noise equivalent count rate (NECR) was 281.60 kcps, and the corresponding radioactivity concentration of peak value was 30.69 kBq/ml. The NECR peak value, scatter fraction and maximum value of the error of relative count rate were respectively 38.17% and 4.0%. The TOF resolution was 209.87 ps when the radioactivity concentration was 5.3 kBq/mL. The registration accuracy values of Biograph Vision 600 PET/CT were 0.347 mm, -0.226 mm and 3.659 mm at the directions of x, y and z axis. Conclusion: It is feasible to perform the acceptance test according to the WS 817—2023 standard through uses the NEMA NU2-2018 standard measurement program that is installed inside of the equipment. The performance indicators can meet requirement of standard as the current national standard GB/T 18988.1—2013 and the health industry standard WS 817-2023 that will being implemented in the test of Biograph Vision 600 PET/CT , which can pass acceptance.[Key words] Positron emission tomography (PET); Standard of National Electrical Manufacturers Association (NEMA); National health industry standard (WS 817-2023); Acceptance test; Performance assessment [摘要] 目的:按照国家卫生行业标准WS817-2023要求对Biograph Vision 600型PET/CT进行验收测试与性能评估。
【指导原则】正电子发射 X射线计算机断层成像系统同品种临床评价注册审查指导原则(2023年第31号)
附件正电子发射/X射线计算机断层成像系统同品种临床评价注册审查指导原则本指导原则旨在指导注册申请人对正电子发射/X射线计算机断层成像系统(下文简称PET/CT)开展同品种临床评价,同时也为技术审评部门审评PET/CT同品种临床评价资料提供参考。
本指导原则是对2020年发布《正电子发射/X射线计算机断层成像系统注册技术审查指导原则》临床评价相关要求的修订。
本指导原则是对PET/CT同品种临床评价的一般要求,申请人需依据产品的具体特性确定其中内容是否适用。
若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。
本指导原则是供注册申请人和技术审评人员使用的指导性文件,但不包括审评审批所涉及的行政事项,亦不作为法规强制执行,需在遵循相关法规的前提下使用本指导原则。
如果有能够满足相关法规要求的其他方法,也可以采用,但是需要提供详细的研究资料和验证资料。
本指导原则是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本指导原则的相关内容也将进行适时的调整。
一、适用范围本指导原则适用于PET/CT的同品种临床评价工作。
按现行《医疗器械分类目录》[1],PET/CT分类编码为06-17-02,管—1 —理类别为III类。
拟评价设备的CT部分可以参考《X射线计算机体层摄影设备同品种临床评价技术审查指导原则》[2]。
PET/MR的PET部分的同品种临床评价亦可参考本指导原则中的PET相关章节。
注册申请人需全面评价PET/CT的硬件、软件的功能。
考虑PET/CT功能的多样性,本指导原则仅就PET/CT的医学影像质量,有针对性地提出和规范了临床评价要求。
若拟申报产品与境内已上市产品相比,某关键器件(含软件)具有全新的技术特性,或拟申报产品具有全新的临床适用范围,若不能通过非临床研究数据、人体影像样本数据等证据资料证明申报产品的安全性和有效性,注册申请人需要考虑通过临床试验来获得临床数据。
按照NEMA NU2-2007标准测试Biograph mCT-S64 PET性能
视 野 中心 和偏 离 中心 1 0 c m处 ,在放 射 性 活 度 为
6 . 8 MB q 时开始测量 。 1 . 2 . 5 能量分辨率和 时间分辨率测试 模 型同灵敏度 测试 ,置于有效 视野 中心 ,能 窗
设为4 3 5 ~ 6 5 0 k e Y。
1 . 2 . 6 图像质量 、衰减和 散射校正精度 测试 使 用 躯 干型模 型P E T P h a n t o m— NE MA 2 0 0 7 /
腔 体 分 别 注入 活 度 为4 : 1 和8 : 1 的 F 而形成 “ 热”
L S O晶体 ( 4 mmX 4 mmX2 0 mm) 组成 , 机架孔径为
区和 “ 本底 ” ,2 个 大球 体 ( 直径 2 8 、3 7 mm )填 充 无 放 射 性 的水 形 成 “ 冷 ” 区 。严 格要 求 模 型 腔 体 本底 放射性活度为5 . 3 k B q / mL,按7 0 k g 受检者注
电器制 造商协会 ( Na t i o n a l E l e c t r i c a l Ma n u f a c t u r e r s A s s o c i a t i o n ,NE MA)专门制定 了NE MA NU 2 — 2 0 0 7 标 准 ,用 于 检测 该 晶体 P E T的性 能 。本 研 究 按 此 标 准对 本 科 室 具有 飞 行 时 间功 能 的5 2 环B i o g r a p h mC T . ¥ 6 4 . 4 R ( 简称 mC T)中的P E T 进行 相 关 测 试 ,并 与3 9环B i o g r a p h 1 6 H R( 简称1 6 H R) 进行 性
的专 用支架 。放射 性核素为 F 溶液 。
NEMA1质控标准
பைடு நூலகம்EMA NU-1 2007 具体测试方法 ----固有空间分辨率
测试条件
- 99mTc点源 - 窗宽15% - 计数率<20K
数字分辨和采集
- 垂直向≦0.1FWHM - 平行向<30mm - 在峰道上每个LSF采集数>1000
专用设备
NEMA NU-1 2007 具体测试方法 ----固有空间分辨率
专用设备
-测量分辨率和线性的铅模型
计算分析
NEMA NU-1 2007 具体测试方法 ----固有能量分辨率
测试条件
- 99mTc点源 - 铜板厚度≥2mm - 积分计数率≤20k - 数字分辨率≤0.05能峰 - 57Co作为参考源 - 二种源能谱分布存储
每个能谱在峰道上的采集计数>10000
计算和分析
NEMA NU-1 2007 具体测试方法 ----有散射的系统计数率特性
在引发散射条件下用衰变
方式测试计数率特性
- 99mTc 20%计数率丢失 最大计数率
- 装置 - 低能准直器 - 测本底 - 分段采集 - 计数:每时间点>100000或者10s - 每分隔点计数率下降10000 - 最后观察计数率<4000cps
NEMA NU-1 2007 具体测试方法
点源
----无无散射SPECT 重建空间分辨率
- 99mTc(15%)或者57Co(20%)
- 点源直径<2mm
- 点源计数率<20000cpm
- 尽可能球性对称体
探头旋转半径150±5mm
120个不同方向的投射角
每个投射角图像计数≥20000
一致
报告
- 按照特定的格式 - 标明测试结果是否“达到”或“超过”生产商标定的参数
卫生部办公厅关于开展医用辐射防护监测网试点工作的通知
卫生部办公厅关于开展医用辐射防护监测网试点工作的通知文章属性•【制定机关】卫生部(已撤销)•【公布日期】2010.06.13•【文号】卫办监督函[2010]478号•【施行日期】2010.06.13•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】卫生监督正文卫生部办公厅关于开展医用辐射防护监测网试点工作的通知(卫办监督函〔2010〕478号)北京市、内蒙古自治区、辽宁省、江苏省、山东省、河南省、湖北省、广东省、四川省卫生厅(局),中国疾病预防控制中心:为全面了解和及时掌握目前医用辐射防护现状,科学实施医疗机构放射诊疗防护监督管理,我部拟开展医用辐射防护监测网试点工作。
现对试点工作提出如下要求:一、各试点地区卫生监督和医疗服务监管部门要对试点工作给予充分的重视,根据《医用辐射防护监测网试点工作方案》(见附件)要求,结合本地区实际情况制订具体实施方案,并为试点工作提供必要的支持,保障试点工作顺利实施。
二、试点地区要按照工作方案的要求认真做好医用辐射防护监测工作,并做到监测数据及时录入、审核和上报,保证监测信息准确可靠和及时传输。
三、各试点地区要认真结合本地工作,探索加强医疗机构放射诊疗防护监管的模式和方法,进一步提高监管效能和水平。
同时要加强信息沟通,编制信息简报及时反映工作进展和存在的问题,促进试点工作顺利开展。
请各试点地区于2010年7月30日前将本地区试点工作实施方案及试点工作联系人和联系方式报我部监督局。
卫生部监督局放射卫生处联系人:张伟力联系电话:************卫生部医管司医疗质量安监处联系人:王乐陈联系电话:************附件:医用辐射监测网试点工作方案二O一O年六月十三日附件:医用辐射防护监测网试点工作方案医用辐射安全不仅关系到医务人员的身体健康,同时也影响到患者和受检者的身体健康和生命安全。
为全面了解医用辐射防护现状,科学实施医疗机构放射诊疗防护监督管理,依据《放射诊疗管理规定》及相关标准,开展医用辐射防护监测网试点工作,逐步推进全国医用辐射防护监测网络和数据信息平台建设,提高放射诊疗防护监管水平,有效保障人民群众健康安全。
PET-CT性能检测技术的研究进展
PET-CT性能检测技术的研究进展张鹏; 张璞; 孙劼; 李成伟; 刘文丽【期刊名称】《《中国医疗设备》》【年(卷),期】2019(034)011【总页数】5页(P11-15)【关键词】正电子计算机发射断层显像仪; 电子计算机断层扫描; 性能检测; 图像质量; 模体【作者】张鹏; 张璞; 孙劼; 李成伟; 刘文丽【作者单位】中国计量科学研究院医学与生物计量研究所北京 100029【正文语种】中文【中图分类】R472; R814.42引言正电子计算机发射断层显像仪(Positron Emission Tomography,PET)自20 世纪70 年代诞生以来,为神经系统、肿瘤和心血管系统等疾病的早期临床诊断提供了非常有效的手段[1]。
但由于PET 设备自身分辨力较低,不能提供足够清晰的解剖结构图像,因此经常出现病灶精准定位困难的问题。
而电子计算机断层扫描(Computed Tomography,CT)可以清晰地显示人体的断层影像,准确描述病变的大小、位置、形态等解剖学特性,但对有些病灶性质难以做出准确判定。
随着临床需求的不断增加和技术的快速发展,1998 年第一台PET-CT 原型机在美国匹兹堡大学医学中心问世[2]。
两种设备同机整合、两种图像同机融合,不仅可以反映病灶的功能性变化,还可以进行精确的解剖学定位诊断,使影像医学的发展向前迈出了具有历史意义的一步[3]。
此后,PET-CT 技术发展迅猛,硬件和软件方面均有显著进步。
硅酸镥晶体(LSO)、硅酸镥铱晶体(LYSO)和基于镥元素的混合晶体(LBS)等新型探测器闪烁晶体的应用使探测器效率得到提高,PET-CT 的采集速度加快。
电子准直技术使得数据采集方式由2D 升级为3D,灵敏度提高了10 倍以上,采集时间大大缩短[3-4]。
早期的PET 一般采用滤波反投影法(Filtered Back Projection,FBP)进行图像重建,但因其生成图像噪声较高、分辨率和定位精度较差,该方法逐渐被有序子集最大期望值法(Ordered Subsets Expectation Maximization,OSEM)所替代;OSEM 能够在重建过程中加入多种条件约束,并对空间分辨力的不均匀性进行校正,以提高图像质量[4-5]。
NEMANU1-2007标准对基于碲锌镉探测器SPECT性能测试的适用性
中国医学装备2017年11月第14卷第11期 China Medical Equipment 2017 November Vol.14 No.11
NEMA NU1-2007标准 对基于碲锌镉探测器SPECT性能测试的适用性*
冯 健① [文章编号] 1672-8270(2017)11-0016-04 [中图分类号] R197.39 [文献标识码] A
目前,绝大多数核医学制造商使用美国制造商协 会(National Electrical Manufacturers Association, NEMA)编制的NEMA NU1-2007标准进行性能测 试。由于NEMA NUห้องสมุดไป่ตู้-2007标准的性能条款主要针 对单晶体探测器,如NaI(Tl)晶体,因此对于使用CZT 探测器的SPECT系统,不能完全引用NEMA NU12007标准的条款进行测试 [13] 。基于此,本研究依据 CZT探测器与单晶体探测器在结构组成上的区别,阐 明如何选择及修改采用NEMA NU1-2007标准对使用 CZT探测器的SPECT设备进行性能测试。 1 CZT探测器与单晶体探测器的区别 单晶体探测器使用一整块晶体,γ光子入射到 晶体后,会在一定区域内转化成光,经由光导进入 PMT进行光电倍增,然后由定位线路对入射光子进 行定位[14-15]。由此可见,即便是一束非常窄的入射γ 1.1 单晶体探测器成像特点
1996年,具有临床使用价值的半导体探测器碲 锌镉(cadmium zinc telluride,CZT)替代NaI晶体 的单光子发射计算机断层成像装置(single photon emission computed tomography,SPECT)问世,标 志着核医学仪器硬件上的新突破
[1-3]
mCT-Flow PETCT性能测试及与mCT-S64-4R和16HR的比较
欢迎关注本刊公众号《肿瘤影像学》2021年第30卷第2期Oncoradiology 2021 Vol.30 No.265·论 著·mCT-Flow PET/CT性能测试及与mCT-S64-4R和16HR的比较潘禾戎1, 2, 3,姚 杰4,戚 鸣1, 2, 3,茅娟莉5,姚之丰1, 2, 3,宋少莉1, 2, 3, 6,章英剑1, 2, 3, 6,张建平1, 2, 3, 6, 71. 复旦大学附属肿瘤医院核医学科,复旦大学上海医学院肿瘤学系,上海 200032;2. 复旦大学生物医学影像研究中心,上海 200032;3. 上海分子影像探针工程技术研究中心,上海 200032;4. 上海市疾病预防控制中心,上海 200336;5. 海军军医大学附属长海医院核医学科,上海 200433;6. 上海市质子重离子医院核医学科,上海 201315;7. 复旦大学核物理与离子束应用教育部重点实验室,上海 200433[摘要] 目的:研究mCT-Flow 正电子发射计算机体层显像仪(positron emission tomography and computed tomography ,PET/CT )性能,并将其性能的各项指标与mCT-S64-4R (简称mCT )和16HR 进行比较。
方法:PET 部分使用专用测试模体,测试PET 的空间分辨率、散射分数、真符合计数率、散射符合计数率、随机符合计数率、噪声等效计数率(noise equivalent count rate ,NECR )和系统灵敏度。
所得结果与mCT 和16HR PET/CT 的相应指标进行比较。
CT 部分测试定位光精度、噪声、图像均匀性、重建层厚偏差、高对比分辨率、低对比可探测能力、CT 值线性、诊断床定位精度、CT 剂量指数和水的CT 值等性能参数。
结果:mCT-Flow PET 在偏视野(filed of view ,FOV )中心1和10 cm 处横向和轴向空间分辨率分别为4.51和4.41 mm 及5.14和5.99 mm ,另10 cm 处的横断切向空间分辨率为4.60 mm ;设备的散射分数为35%;NECR 在18F 溶液浓度为0.021 MBq/mL 及k =1时峰值为117 kcps ;在浓度为0.027 MBq/mL 及k =0时峰值为165 kcps 。
正电子发射_X射线计算机断层成像系统注册技术审查指导原则
附件2正电子发射/X射线计算机断层成像系统注册技术审查指导原则本指导原则旨在指导注册申请人提交正电子发射/X射线计算机断层成像系统的注册申报资料,同时规范该类产品的技术审评要求。
本指导原则是对正电子发射/X射线计算机断层成像系统的一般性要求,注册申请人应根据申报产品的特性提交注册申报资料,判断指导原则中的具体内容是否适用,不适用内容应详述理由。
注册申请人也可采用其他满足法规要求的替代方法,但应提供详尽的研究资料和验证资料。
本指导原则是在现行法规和标准体系以及当前认知水平下、并参考了国外法规与指南、国际标准与技术报告制定的。
随着法规和标准的不断完善,以及认知水平和技术能力的不断提高,相关内容也将适时进行修订。
本指导原则是对注册申请人和审查人员的指导性文件,不包括审评、审批所涉及的行政事项,亦不作为法规强制执行,应在遵循相关法规的前提下使用本指导原则。
一、范围本指导原则适用于正电子发射/X射线计算机断层成像系统,按照《医疗器械分类目录》,产品属于目录06医用成像器械,一—1 —级产品类别为17组合功能融合成像器械,二级产品类别为02正电子发射/X射线计算机断层成像系统,按第三类医疗器械管理。
正电子发射/X射线计算机断层成像系统(Imaging system of positron emissionand X-ray computed tomography,本文简称“PET/CT”)组合了正电子发射计算机断层扫描系统(PET)和X 射线计算机体层扫描系统(CT),提供生理和解剖信息的配准与融合。
二、综述资料(一)概述申报产品的管理类别、分类编码及名称的确定依据。
(二)产品描述1.产品工作原理描述产品工作原理,重点介绍探测器工作原理、重建算法、图像后处理方法等。
对于新型探测器、新算法、新应用等应着重介绍。
2.结构组成产品总体结构示意图、实物图。
产品各组成部分的介绍,各部分的工作原理、在系统中的功能作用、结构示意图、电路原理示意图(如有必要)、产品实物图、各部分之间的物理连接、功能交互。
SPECT固有计数率、固有均匀性质量控制检测
SPECT固有计数率、固有均匀性质量控制检测刘洪阳;赵力;张海英;姚帅墨;李昌文【摘要】Objective To evaluate whether SPECT conforms to the requirements of national standards by testing its performance indicators in order to ensure the accuracy of clinical diagnosis.Methods The inherent counting rate and intrinsic uniformity of SPECT were detected by RGRMS-2012 performance phantom of SPECT. According to related standards, the test results were judged and the indicators which did not meet the requirements of the standards were corrected in order to ensure the accuracy of diagnosis.Results The inherent counting rate and intrinsic uniformity of SPECT conforms to the requirements of related standards.Conclusion Wear and ageing of equipment will affect its performance, which indicates that the state inspection of related equipment should be conducted regularly in order to ensure the reliability service of related equipment.%目的:检测单光子发射计算机断层成像系统(SPECT)的性能指标,评价其是否符合相关标准,确保临床诊断的准确性。
DSA等建设项目职业病危害放射防护评价-福建肿瘤医院
货物和服务项目公开招标文件项目名称:DSA等建设项目职业病危害放射防护评价福建省肿瘤医院二O一七年三月目录第一部分报价须知前附表---------------3第二部分投标须知--------------------- 4-5 第三部分投标文件内容-----------------6-10 第四部分评价方案内容-----------------11-12 第五部分报价文件格式---------------- 13-17第一部分报价须知前附表地址:福建省福州市福马路420号省肿瘤医院设备科邮编: 350014电话: 83660063-8276联系人:唐天梅第二部分投标须知一、总则(一)招标内容(1) DSA等建设项目职业病危害放射防护评价项目;(2)评价项目的具体要求和内容详见第三章;(二)定义本询价文件使用的下列词语具有如下规定的意义:(1)“招标人”福建省肿瘤医院,DSA等建设项目职业病危害放射防护评价项目;(2)“投标人”指向招标人提交投标文件的公司;(3)“中标人”指由招标人发出中选通知书的投标人;(4)“投标文件”指由招标人发出的本文件、附件、资料及本文件的补充文件;(三)招标文件的编写1、招标文件语言招标文件应用中文书写,各种计量单位及符号应采用国际上统一使用的公制计量单位和符号。
2、投标文件的组成(1)报价承诺函(2)授权委托书(3)报价一览表(4)保密承诺(四)招标有效期招标有效期为递交文件截止日后 90 个日历日。
(五)投标人资格(1)投标人应具有核医学、医用加速器、TOMO等大型设备的质量控制检测和控制效果评价相关经验并提供相关业绩证明;(2)投标人应具有国家卫生计生委放射诊疗建设项目职业病危害放射防护评价(甲级)资质;(3)投标人需严格按照国家有关法律标准进行放射治疗设备的各项检测工作,如GBZ121-2002《后装γ源近距离治疗卫生防护标准》、GB15213-94《医用电子加速器性能和试验方法》、GBZ 126-2011《电子加速器放射治疗放射防护要求》、GBZ 130-2013《医用X射线诊断放射防护要求》、GBZ 165-2012《X射线计算机断层摄影放射防护要求》、GB17589-2011《X射线计算机断层摄影装置质量保证检测规范》、GB18871-2002《电离辐射防护与辐射源安全基本标准》、GB/T 14056.1-2008《表面污染测定》、GBZ 178-2014《低能γ射线粒籽源植入治疗放射防护要求与质量控制检测规范》、GB/T18988.2-2013《放射性核素成像设备性能和试验规则》、GBZ 120-2006《临床核医学放射卫生防护标准》、NEMA NU2-2007《正电子发射断层成像装置性能测试》等;(4)本招标项目不允许联合体投标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NEMA NU 2-2007P ERFORMANCEM EASUREMENTS OF P OSITRON E MISSION T OMOGRAPHS--`,`,````,``,,,`,,,,``,,````,``-`-`,,`,,`,`,,`---NEMA Standards Publication NU 2-2007Performance Measurements of Positron Emission TomographsPublished by:National Electrical Manufacturers Association1300 N. 17th Street, Suite 1752Rosslyn, VA 22209© Copyright 2007 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.NU 2-2007Page iiNOTICE AND DISCLAIMERThe information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed.Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.NU 2-2007Page iCONTENTSForeword (iii)Section 1DEFINITIONS, SYMBOLS, AND REFERENCED PUBLICATIONS (1)1.1Definitions (1)1.2Standard Symbols (1)1.3REFERENCED PUBLICATIONS (3)Section 2GENERAL (4)2.1Purpose (4)2.2Purview (4)2.3Units of Measure (5)2.4Consistency (5)2.5Equivalency (6)Section 3SPATIAL RESOLUTION (7)3.1General (7)3.2Purpose (7)3.3Method (7)3.3.1Symbols (7)3.3.2Radionuclide (7)3.3.3Source Distribution (7)3.3.4Data Collection (8)3.3.5Data Processing (8)3.4Analysis (8)3.5Report (9)Section 4SCATTER FRACTION, COUNT LOSSES, AND RANDOMS MEASUREMENT (11)4.1General (11)4.2Purpose (11)4.3Method (11)4.3.1Symbols (12)4.3.2Radionuclide (12)4.3.3Source distribution (12)4.3.4Data collection (12)4.3.5Data processing (13)4.4Analysis (13)4.4.1Analysis with Randoms Estimate (14)4.4.2Alternative Analysis with No Randoms Estimate (16)4.5Report (17)4.5.1Count rate plot (17)4.5.2Peak count values (17)4.5.3System scatter fraction (18)Section 5SENSITIVITY (19)5.1General (19)5.2Purpose (19)5.3Method (19)5.3.1Symbols (19)5.3.2Radionuclide (19)5.3.3Source distribution (20)5.3.4Data Collection (20)5.4Calculations and Analysis (20)5.4.1System Sensitivity (20)5.4.2Axial Sensitivity Profile (20)5.5Report (21)NU 2-2007Page iiSection 6ACCURACY: CORRECTIONS FOR COUNT LOSSES AND RANDOMS (23)6.1General (23)6.2Purpose (23)6.3Method (23)6.3.1Symbols (23)6.3.2Radionuclide (23)6.3.3Source Distribution (23)6.3.4Data Collection (24)6.3.5Data Processing (24)6.4Analysis (24)6.5Report (25)Section 7IMAGE QUALITY, ACCURACY OF ATTENUATION, AND SCATTER CORRECTIONS (26)7.1General (26)7.2Purpose (26)7.3Method (26)7.3.1Symbols (26)7.3.2Radionuclide (26)7.3.3Source Distribution (27)7.3.4Data Collection (27)7.3.5Data Processing (28)7.4Analysis (28)7.4.1Image Quality (28)7.4.2Accuracy of Attenuation and Scatter Corrections (29)7.5Report (29)NU 2-2007Page iiiForewordReason for ChangesThe regulations regarding the maintenance of standards by NEMA requires that the standards be reviewed and, if necessary, updated every five years. This standards publication was developed by the Coincidence Imaging Task Force chartered by the Nuclear Standards and Regulatory Committee. Committee approval of the standard does not necessarily imply that all committee members voted for its approval or participated in its development. At the time it was approved, the task force was composed of the following members:Amy Perkins - Philips Medical Systems, Philadelphia, PACharles Stearns - GE Healthcare, Waukesha, WIJames Chapman - Siemens Medical Solutions, Hoffman Estates, ILJeffrey Kolthammer - Philips Medical Systems, Cleveland, OHJohn J. Williams - GE Healthcare, Waukesha, WIMichael Casey - Siemens Medical Solutions, Knoxville, TNIn the preparation of this Standards Publication, input of users and other interested parties has been sought and evaluated. Inquiries, comments, and proposed or recommended revisions should be submitted to the concerned NEMA product Section by contacting the:Vice President, Engineering DepartmentNational Electrical Manufacturers Association1300 North 17th Street, Suite 1752Virginia22209Rosslyn,The Major Changes to TestsThe dominant reason for changes is to improve the inclusion of cameras with intrinsically radioactive components. The philosophy of these changes is discussed inJournal of Nuclear Medicine, vol. 45, no. 5, 2004. Watson CC, Casey ME, Eriksson L, Mulnix T, Adams D and Bendriem B. “NEMA NU 2 Performance Tests for Scanners with IntrinsicRadioactivity.” pp. 822-826.The affected tests are:Section 4: Count Losses and Randoms. An alternate measurement method,applicable to devices with intrinsic radioactivity, has been introduced.Section 5: Sensitivity. Requirements relating to source strength and counting losseshave been refined, and the option to measure using randoms correction added.Additionally, Spatial Resolution (section 3) has been expanded to include the measurement and reporting of source position.Appendix A has been deleted.NU 2-2007Page ivScopeThe philosophy and rationale of the standards measurements, and illustrative examples of the analysis and results, are presented inJournal of Nuclear Medicine, vol. 43, no. 10, 2002. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Meuhllehner G, Simcic V, Stearns CW, Adam L-E, Kohlmyer S and Sossi V. “PET Performance Measurements Using the NEMA NU 2-2001 Standard.” pp. 1398-1409. The standards committee has attempted to specify methods that can be performed on all currently available positron emission tomographs. These include single and multiple slice, discrete and continuous detector, time-of-flight instruments, multi-planar and volume reconstruction models, and dedicated positron emission tomographs as well as other coincidence-capable imaging systems. Wherever possible, future developments that could be readily anticipated were taken into account. The committee has not specified methods that may be particularly appropriate for evaluating time-of-flight instruments, pending further evaluation of those instruments by the clinical and scientific communities.NU 2-2007Page 1Section 1DEFINITIONS, SYMBOLS, AND REFERENCED PUBLICATIONS1.1 DEFINITIONSaxial field-of-view (FOV): The maximum length parallel to the long axis of a positron emission tomograph along which the instrument generates transaxial tomographic images.prompt counts: Coincidence events acquired in the standard coincidence window of a positron emission tomograph. Prompt counts include true, scattered, and random coincidence events.sinogram: A two dimensional projection space representation of a transaxial image where one dimension refers to radial distance from the center, and the second dimension refers to projection angle.transverse field-of-view (FOV): The maximum diameter circular region perpendicular to the long axis of a positron emission tomograph within which objects might be imaged.test phantom: Components for each measurement are defined in the description of that measurement.1.2 STANDARDSYMBOLSSymbolic expressions for certain quantities are used throughout this standards publication. Symbols that use any one of the standard subscripts to further specify a basic quantity are identified by the subscript string xxx. All quantities expressed as a function of some independent variable shall be symbolically represented as Q(x), where x is a lower case letter representing the variable as defined in the related text.Only those symbols that are used in multiple sections of the standard are listed in this section. Symbols that are only used in one section are described in that section.counts(C xxx): The number of coincidence events:a. C ROI – events in a planar region of interestb. C TOT– total number of eventsc. C m– maximum number of eventsd. C r+s– random plus scatter event counte. C L– event count at left edge of projection area of interestf. C R– event count at right edge of projection area of interestg. C H– counts in a hot region of interesth. C B– counts in a background region of interesti. C C– counts in a cold region of interestradioactivity (A xxx): A nuclear decay rate in units of megaBecquerels, i.e., in units of 1 million disintegrations per second, and optionally expressed in units of milliCuries, i.e., in units of 37 million disintegrations per second:a. A0– initial radioactivity at T0b. A ave,j– average radioactivity for j th acquisitionc. A cal – radioactivity at time T calThe initial radioactivity at the beginning T0of an acquisition shall be found using the activity A cal as recorded in the dose calibrator or well counter at time T cal according to: --` , ` , ` ` ` ` , ` ` , , , ` , , , , ` ` , , ` ` ` ` , ` ` -` -` , , ` , , ` , ` , , ` ---NU 2-2007 Page 2⎟⎟⎠⎞⎜⎜⎝⎛−=2ln TT T exp A A 2/10cal cal 0Where: T 1/2 is the half-life of the radioisotope.The average radioactivity for a particular acquisition shall be found using the activity, A 0, at the beginning of the acquisition, the half-life of the radionuclide, T 1/2, and the duration of the acquisition, T acq , according to:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=2ln T T exp 1T T 2ln A A 2/1acq acq2/10aveThe initial radioactivity A j shall be determined by the dose calibrator or well counter activity measure A cal , decay corrected to the starting time, T j of the j th acquisition, using the following equation:⎟⎟⎠⎞⎜⎜⎝⎛−=2ln TT T exp A A 2/1jcal cal jradioactivity concentration (a xxx ): A nuclear decay rate per unit volume in units of megaBecquerels per milliliter, i.e., in units of 1 million decays per second per milliliter, and optionally expressed in units of milliCuries per milliliter, i.e., in units of 37 million decays per second per milliliter:a. a t,peak – radioactivity concentration at peak true event rateb. a eff – effective average activity concentration of a line source in a solid cylinderc. a H – radioactivity concentration in a hot sphered. a B – radioactivity concentration in the backgrounde. a NEC,peak – radioactivity concentration at the peak NECR rateThe radioactivity concentration of a quantity of radioactivity distributed uniformly through a volume V shall be found by dividing the activity, A xxx , by the volume V within which the activity is uniformly distributed, according to:⎟⎟⎠⎞⎜⎜⎝⎛=V A a xxx xxxThe average radioactivity concentration is thus⎟⎟⎠⎞⎜⎜⎝⎛=V A a ave aveNote that in computing the effective radioactivity concentration, a eff , the volume to be used is the volume of the solid cylinder, not the volume of its line source insert.radioisotopic half-life (T 1/2): The interval of time during which half of the nuclei of a radionuclide are likely to decay. For the isotope 18F, the half-life is 6588 seconds (or 109.8 minutes or 1.830 hours).rate (R xxx ): A coincidence event rate measured in events per second, defined as the coincidence counts divided by the time interval T acq :a. R ROI – rate in a planar region of interestb. R TOT – total event ratec. R Extr – potential event rate (no losses)d. R t – true event rate--`,`,````,``,,,`,,,,``,,````,``-`-`,,`,,`,`,,`---NU 2-2007Page 3e. R s– scatter event ratef. R r– random event rateg. R t,peak– true event rate where R t saturatesh. R NEC– noise equivalent count ratei. R NEC,peak– peak noise equivalent count ratej. R CORR– decay-corrected count ratetime(T xxx): A time measured in seconds:a. T1/2– a time interval of one half-lifeb. T acq– duration of an acquisitionc. T j– starting time of acquisition jd. T cal– time of well counter measuremente. T T,E– the total time interval of transmission and emission acquisitionsvolume (V): A physical volume measured in milliliters.PUBLICATIONS1.3 REFERENCEDJournal of Nuclear Medicine, vol. 43, no. 10, 2002. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Meuhllehner G, Simcic V, Stearns CW, Adam L-E, Kohlmyer S and Sossi V. “PET Performance Measurements Using the NEMA NU 2-2001 Standard,” pp. 1398-1409.Journal of Nuclear Medicine, vol. 28, no. 11, 1987. Daube-Witherspoon ME and Muehllehner G. “Treatment of axial data in three-dimensional PET.” pp. 1717-1724.IEEE Transactions on Nuclear Science, vol. 37, no. 2, 1990. Strother SC, Casey ME and Hoffman EJ. “Measuring PET Scanner Sensitivity: Relating Countrates to Image Signal-to-Noise Ratios using Noise Equivalent Countrates.” pp. 783-788Journal of Nuclear Medicine, vol. 45, no. 5, 2004. Watson CC, Casey ME, Eriksson L, Mulnix T, Adams D and Bendriem B. “NEMA NU 2 Performance Tests for Scanners with Intrinsic Radioactivity.” pp. 822-826.NU 2-2007Page 4Section 2GENERAL2.1 PURPOSEThe intent of this standards publication is to specify procedures for evaluating performance of positron emission tomographs. The resulting standardized measurements can be cited by manufacturers to specify the guaranteed performance levels of their tomographs. As these measures become available throughout the industry, potential customers may compare the performance of tomographs from various manufacturers. The standard measurement procedures can be used by customers for acceptance-testing of tomographs before and after installation of the equipment.In defining this standard, language referring to levels of standard such as “Class Standard” versus “performance Standard” or “typical values” versus “meet or exceed” has been avoided. Determining the frequency of sampling of systems for each test is left to the manufacturer. Because both the difficulty of performing the various measurements and the accuracy of each test’s results vary, the decision of quoting a result as a typical or met/exceeded value is also left to the manufacturer. Thus for each result quoted, it should be specified that:• The measured value is assured to meet or exceed the specified value, or• The specification is typical of system performance.2.2 PURVIEWIt is assumed that every system to be tested under this standard is able to create sinograms and transverse slice images, define and manipulate two-dimensional regions of interest with circular and rectangular boundaries, and extract such parameters as coincidence event counts detected within specified intervals of time. The system is also assumed to have transverse fields of view suitable for human subjects. For all of the procedures, except for the Image Quality test, the scanner must have an accessible diameter of at least 260 millimeters. The test phantom for all of the procedures, except for the Image Quality test, is 70.0 cm in length and is suitable for performing measurements in all slices of tomographs with an axial field of view of less than 65 cm. The Image Quality test, which requires a different test phantom, can only be performed on a scanner with an accessible diameter of at least 350 millimeters. While this precludes the performance of the Image Quality test on some brain-only scanners, it is important to note that the Image Quality test is designed to emulate whole-body imaging performance, and therefore is not appropriate for a brain-only tomograph.The intent of this standard is to provide a set of measurements that permit the comparison of positron emission tomograph performance. Though it may be useful to have tests tailored to specific tasks or patient geometries, such additional tests do not add substantial value in the comparison of systems. The range of tests in this standard is not intended to restrict or discourage alternative tests.A specific example would be the NU 2-1994 Scatter Fraction and Count Rate test. The source geometry in this test is a better approximation to the human brain than the 70 cm source length in the current standard. However, for the purposes of general comparison, a system that performs better on the method in this standard will also be better on the geometry-specific test. A comprehensive comparison in different geometries is a valid topic for the research literature, but is not suitable for a test standard that may be applied to a production environment.The measurements described in this standards publication have been designed with a primary focus on whole body imaging for oncologic applications. As such, these measurements may not accurately represent the performance of a positron emission tomograph in brain imaging applications. These specifications represent a subset of measurements that define the performance of positron emission tomographs. Furthermore, the scope of this standard is limited to measurement of the performance of the positron emission tomograph component of multi-modality imaging systems.NU 2-2007Page 52.3 UNITS OF MEASURESystème International d’Unités (SI) units shall be used in all reports of positron emission tomograph performance measurements. Customary units such as milliCuries may be optionally reported as auxiliary values in parenthetical statements with the standard specifications for individual performance reports. 2.4 CONSISTENCYAll measurements must be performed without altering any of the instrument’s parameters that are mutually exclusive, unless otherwise directed for a particular measurement. These include, but are not limited to, the following parameters: energy discrimination windows (including the utilization of multiple energy windows in photopeak-Compton imaging modes), coincidence timing window(s), pulse integration time, reconstruction algorithm with associated parameters, pixel size, slice thickness, axial acceptance angle, and axial averaging or smoothing. If multiple operating modes are supported by the instrument, the operating mode used for each measurement shall be clearly specified.For instruments with movable detector elements the detector positions and trajectories shall be those recommended by the manufacturer and shall remain the same for all acquisitions. These motions include, but are not limited to, the detector separation distance, orbit trajectory around the patient to produce a full tomographic data set, and motions to increase sampling such as detector wobble or table displacements. The reconstruction algorithm, with its associated parameters, matrix, and pixel size shall be that recommended by the manufacturer and shall remain fixed for all of the NEMA measurements of tomograph performance unless otherwise directed for a particular measurement.Most systems organize the raw measurements into parallel projection matrices corresponding to transverse slices before performing a 2-D tomographic image reconstruction. This can lead to errors in positioning depending on the axial acceptance angle, particularly in the axial direction, as the radial distance from the center increases. Some systems can change the axial acceptance angle by adjusting the septa shielding, while others specify the angle in software. For systems that acquire and reconstruct 3-D measurements, it is assumed that the volume imaged can be oriented into transaxial slices for data analysis. The acceptance angle shall be that recommended by the manufacturer and shall remain fixed for all of the NEMA measurements of tomograph performance.Some measurements explicitly require volumetric data to be resorted into transverse sinograms using the single-slice rebinning method, as described in Daube-Witherspoon, M.E. and Muehllehner, G., “Treatment of axial data in three-dimensional PET,” Journal of Nuclear Medicine 28:1717-1724, 1987, for all other measurements, the manufacturer’s recommended treatment of volumetric data shall be used. The energy window or windows used for these measurements must be specified. If multiple windows are used in a photopeak-Compton imaging mode, that mode shall also be specified. These window settings shall be those recommended by the manufacturer and shall remain fixed during all of the NEMA measurements of a tomograph’s performance.Each measurement procedure specifies the method of source support, whether the source is to be suspended in the field of view or supported by some means. For those measurements in which the source is to be supported, the source shall be placed on the patient table.Unless specified otherwise in the description of a particular measurement, phantom positioning instructions carry a nominal tolerance of 5 mm in both the transaxial and the axial directions.NU 2-2007Page 62.5 EQUIVALENCY18F is specified for all of the tests. For some measurements, substitution of another radionuclide, such as 68Ga, can lead to significantly different results due to such factors as positron range and activity calibration. If, for quality assurance or other purposes, a manufacturer employs measurement methods other than those prescribed, the manufacturer shall demonstrate traceability between the methods prescribed for the measurement and those employed for testing.It is assumed that the dose calibrator or well counter used for these measurements has been calibrated using either a National Institute of Standards and Technology reference source, or one whose activity has been closely related or traceable to a reference source.NU 2-2007Page 7Section 3SPATIAL RESOLUTION3.1 GENERALThe spatial resolution of a system represents its ability to distinguish between two points after image reconstruction. The measurement is performed by imaging point sources in air, and then reconstructing images with no smoothing or apodization. Although this does not represent the condition of imaging a subject in which tissue scatter and a limited number of acquired events require the use of a smooth reconstruction filter, the measured spatial resolution provides a best-case comparison among scanners, indicating the highest achievable performance.3.2 PURPOSEThe purpose of this measurement is to characterize the widths of the reconstructed image point spread functions (PSF) of compact radioactive sources. The width of the spread function is measured by its full width at half-maximum amplitude (FWHM) and full width at tenth-maximum amplitude (FWTM).3.3 METHODFor all systems, the spatial resolution shall be measured in the transverse slice in two directions (e.g. radially and tangentially). In addition, an axial resolution also shall be measured.The transverse field-of-view and image matrix size determine the pixel size in the transverse slice. In order to measure the width of the point spread function as accurately as can practically be achieved, its FWHM should span at least three pixels. The pixel size should be made no more than one-third of the expected FWHM in all three dimensions during reconstruction and should be indicated as a condition for the spatial resolution measurement.3.3.1 SymbolsResolution (RES) — The measurement of the size of the reconstructed image of a point source. Resolution is specified as the full width at half maximum (FWHM) or full width at tenth maximum (FWTM) of the point source response.3.3.2 RadionuclideThe radionuclide for this measurement shall be 18F, with an activity less than that at which either the percent dead time losses exceed 5% or the random coincidence rate exceeds 5% of the total event rate.3.3.3 SourceDistributionThe point shall consist of a small quantity of concentrated activity inside a glass capillary with an inside diameter of 1 mm or less and an outside diameter of less than 2 mm. The axial extent of the activity in the capillary shall be less than 1 mm.The sources shall be fixed parallel to the long axis of the tomograph and located at 6 points as follows:• In the axial direction, along planes(1) at the center of the axial FOV and(2) one-fourth of the axial FOV from the center of the FOV.NU 2-2007Page 8• In the transverse direction the source shall be positioned(1) 1 cm vertically from the center (to represent the center of the FOV, but positioned toavoid any possible inconsistent results at the very center of the FOV),(2) at x=0 and y=10 cm, and(3) at x=10 cm and y=0.The source arrangement is shown diagrammatically in Figure 3-1.(2) at1/4FOV(1) atFOVcenterFigure 3-1POSITIONS OF SOURCE FOR RESOLUTION MEASUREMENT3.3.4 DataCollectionMeasurements shall be collected at all six positions specified above. At least one hundred thousand counts shall be acquired in each response function. Measurements can be taken with multiple sources. Finer sample size may be selected than typically used in clinical studies.3.3.5 Data ProcessingReconstruction by filtered backprojection with no smoothing or apodization shall be employed for all spatial resolution data.3.4 ANALYSISThe spatial resolution (FWHM and FWTM) of the point source response function in all three directions shall be determined by forming one-dimensional response functions, along profiles through the image volume in three orthogonal directions, through the peak of the distribution. The width of the response functions in the two directions at right angles to the direction of measurement shall be approximately two times the FWHM.。