Molecular Characterization and Expression Analysis of NAC Family

合集下载

碱性磷酸酶-基因实验

碱性磷酸酶-基因实验

内蒙古大学生命科学学院生物系
基因工程实验室
本科基因工程实验论文开题报告
论文题目:碱性磷酸酶基因表达载体的
构建及在大肠杆菌中的表达
学生姓名:
年级:
专业:
指导教师:
二〇一三年八月十二日
二、实验方案
1.实验内容和实验目标,拟解决的关键问题:
实验内容:包括质粒提取、PCR扩增、转化大肠杆菌、凝胶回收、感受态制备、IPTG 诱导、SDS-PAGE鉴定等。

关键问题:IPTG诱导量及诱导时间的优化;
超声破碎的方案优化。

2. 实验思路、方法、技术路线、实验方案及可行性分析:
实验思路:依据技术路线完成试验。

实验方法:实验室常用技术。

技术路线:
实验方案:详细方案已于讲义给出。

可行性分析:实验室相关技术成熟,实验人员熟悉相关的实验内容以及方法,
实验的可行性很高。

注:本报告务必在实验开始前交实验室教师审查,审查合格后方可开始实验。

病毒学术语中英文对照

病毒学术语中英文对照

A single- generation study 单项包括两代(生殖毒性)的研究 Acentric fragment 无着丝点片段Acridine orange 吖啶橙 Active metabolite 活性代谢产物 Additional test 附加试验 Adduct 加合物 ADME 吸引、分布、代谢、排泄 Administration period 给药期 Advers effect 不良反应 Against humanized proteins serum antibodies 抗人源蛋白血清抗体 Aginal smear 阴道涂片 Air righting reflex 空中翻正反射 Alkylating electrophilic cernter 浣化亲电子中心Allele 基因突变产生的遗传因子 Allergic reactions 过敏性反应(变应性反应) Altenative validated test 有效替代试验 Altered growth 生长改变 Ammoniun sulphide staining of the uterus 子宫硫化胺染色 Analogue 类似物(同系物) Analogue series of substance 同系物Analytical method 分析方法 Anaphase 分裂后期 Aneuploidy 非整倍体 Aneuploidy inducer 非整倍体诱导剂 Antigenic specificity 抗原特异性Art and ethical standards 技术和伦理标准Assessment of genotoxicity 遗传毒性评价 AUC 曲线下面积Auditory startle reflex 惊愕反射(听觉惊跳反射) Autoimmune 自身免疫 Autoradiographic assessment 放射自显影评价Autoradiography 放射自显影 Bacterial mutagenicity test 细菌致突变试验 Bacterial reverse mutation test 细菌回复突变试验 Bacterial strains 菌株 Bacterial test organisms 微生物试验菌 Base pairs 碱基对Base set of strains 基本菌株 Base substitution 碱基置换 Bioanalytical method 生物学分析方法 Bioavailability 生物利用度 Biological method 生物学意义Biotechnological products 生物技术产品 Biotechnoloty-derived pharmaceuticals 生物技术药物 Body burden 机体负担 Bone marrow cell 骨髓细胞 Bouin's fixation 包氏液固定Breakage of chromatid 染色单体断裂 Brealage of chromosome 染色体断裂 Bridging character 桥梁作用 C(time) 一定剂量、某一时间的浓度 Carcinogen 致癌物质Carcinogenesis 致癌性 Carcinogenic hazard 致癌性危害 Carcinogenicity bioassay 致癌性生物检测 Carcinogenicity potential of chemical 化合物的潜在致癌性 Carcinoginicity (oncogenicity) 致癌(致瘤) Cardiovascular 心血管 Case-by-case 个例 Cell proliferation 细胞增殖 Cell cultures 细胞培养 Cell line 细胞系 Cell membrane lipid 细胞膜脂质层 Cell replication system 细胞复制系统 Cell suspension 细胞悬液 Cell-mediated immunity 细胞介导的免疫 Cellular therapy 细胞治疗 Central nervous systems 中枢神经系统 Cerebral spinal fluid 脑脊液 Chemical nature 化学性质 Chinese hamster V79 cell 中国仓鼠V79细胞Chromatide 染色单体 Chromosomal aberration 染色体畸变 Chromosomal damage 染色体损伤 Chromosomal integrity 染色体完整性 Chronic toxicity testing 慢性毒性试验 Classfical biotransformation studies 经典的生物转化试验 Clastogen 染色体断裂剂 Clastogenic 致染色体断裂的 Clinical indication 临床适应证 Cloning efficiency 克隆形成率Closure of the hard palate 硬腭闭合 Cmax 峰浓度 Colony sizing 集落大小 Comparative trial 对比试验Complement binding 补体结合 Completely novel compound 全新化合物 Compound bearing structural alerts 结构可疑化合物 Concentration threshold 阈浓度 Concomitant toxicokinetics 相伴毒代动力学 Continuous treatment 连续接触 Corpora lutea 黄体 Corpora lutea count 黄体数 Cross-linking agent 交联剂 Culture condition 培养条件 Culture confluency 培养克隆率 Culture confluenty 培养融合 Culture medium 培养基 Cytogenetic change 细胞遗传学改变 Cytogenetic evaluation 细胞遗传学评价 Cytokines 细胞因子 Cytotoxicity 细胞毒Degradation 降解 Deletion 缺失 Descriptive statistics 描述性统计 Detection of bacterial mutagen 细菌诱变剂检测 Detection of clastogen 染色体断裂剂检测 Determination of metabolites 测定代谢产物 Developmental toxicity 发育毒性Direct genetic damage 直接遗传损伤 Distribution 分布DNA adduct DNA加合物DNA damage DNA损伤DNA repair DNA 修复DNA strand breaks DNA链断裂 Dose escalation 剂量递增 Dose dependence 剂量依赖关系 Dose level 剂量水平 Dose-limiting toxicity 剂量限制性毒性 Dose-raging studies 剂量范围研究 Dose-relatived mutagenicity 剂量相关性诱变性 Dose-related 剂量相关Dose-relatived cytotoxicity 剂量相关性细胞毒性 Dose-relatived genotoxic activity 剂量相关性遗传毒性 Dose-response curve 剂量-反应曲线 Dosing route 给药途径Embryo-fetal toxicity 胚胎-胎仔毒性 Endogenous components 内源性物质 Endogenous gene 内源性基因Endonuclease 核酸内切酶 Emdpmiclease release from lysosomes 溶酶体释放核酸内切酶End-point 终点 Epitope 抗原决定部位 Error prone repair 易错性修复 Escalation 递增Escherichia coli strain 大肠杆菌菌株 Escherichia coli 大肠杆菌Evaluation of test result 试验结果评价 Exaggerated pharmacological response 超常增强的药理作用 Exposure assessment 接触剂量评价 Exposure period 接解期 External metabolizing system 体外代谢系统F1-animals 子一代动物 False positive result 假阳性结果 Fecundity 多产 Fertility studies 生育力研究 Fetal abnormalities 胎仔异常 Fetal and neonatal parameters 胎仔和仔鼠的生长发育参数 Fetal development and growth 肿仔发育和生长 Fetal period 胎仔期 Fetotoxicity 胎仔毒性First pass testing 一期试验Fluorescence in situ hybridization(FISH) 原位荧光分子杂交 Foetuses 胎仔 Formulation 制剂 Frameshift mutation 移码突变 Frameshite point mutation 移码点突变 Free-standing 独立Fresh dissection technique 新鲜切片技术 Funtional deficits 切能缺陷 Functional test 功能试验 Functional indices 功能性指标 Fusion proteins融合蛋白 Gametes 配子 Gender of animals 动物性别 Gender-specific drug 性别专一性药物Gene knockout 基因剔除 Gene therapy 基因治疗 Gene mutation 基因突变 Genetic 遗传Genetic change 遗传学改变 Genetic damage 遗传学损伤 Genetic endpoint 遗传终点Genetic toxicity 遗传毒性 Genotoxic activity 遗传毒性作用 Genotoxic carcinogen 遗传毒性致癌剂 Genotoxic effect 遗传毒性效应 Genotoxic hazard 遗传毒性危害 Genotoxic potential 潜在遗传毒性 Genotoxic rodent carcinogen 啮齿类动物遗传毒性致癌剂 Genotoxicity 遗传毒性 Genotoxicity test 遗传毒性试验 Genotoxicity test battery 毒性试验组合 Genotoxycity evaluation 遗传毒性评价 Germ cell mutagen 生殖细胞诱变剂 Germ line mutation 生殖系统突变 GLP 临床前研究质量管理规范 Gross chromosomal damage 染色体大损伤 Gross evaluation of placenta 胎盘的大体评价 Growth factors 生长因子 Haemotoxylin staining 苏木素染色 Half-life 半衰期 Hematopoietic cells 造血细胞 Heptachlor 七氯化合物 Heritable 遗传 Heritable defect 遗传缺陷 Heritable disease 遗传性疾病 Heritable effect 遗传效应High concentration 高浓度Histologic appearance of reproductive organ 生殖器官的组织学表现 Histopathological chang 组织病理学改变 Homologous proteins 同系蛋白 Homologous series 同系 Host cell 宿主细胞 Human subjects 人体 Human carcinogen 人类致癌剂Human lymphoblastoid TH6cell 人成淋巴TK6细胞 Human mutagen 人类致突变剂 Humoral immunity 体液免疫 Immature erythrocyte 未成熟红细胞Immediate and latent effect 速发和迟发效应 Immunogenicity 免疫原性 Immunopathological effects 免疫病理反应immunotoxicity 免疫毒性 Implantation 着床 Implantation sites 着床部位 In vitro 体外 In vitro test 体外试验 In vivo 体内 In vivo test 体风试验Incidence of polyploidy cell 多倍体细胞发生率 Incisor eruption 门齿萌发 Independent test 独立试验 Individual fetal body weight 单个胎仔体重 Induced and spontaneous models of disease 诱发或自发的疾病模型Inducer of micronuclei 微核诱导剂 Inhalation 吸入 Inhibitor of DNA metabolism DNA代谢抑制剂 Intact animals 完整动物(整体动物) Internal control 内对照 Interphase nuclei 分裂间期细胞核 Intra-and inter-individual 个体与个体间 Isolated organs 离休器官Juvenile animal studies 未成年动物研究 Kinetic profile 动力学特点 Kinetics 动力学 Lactation 授乳、哺乳Large deletion event 大缺失事件 Late embryo loss 后期胚胎丢失 Level of safety 安全水平Libido 性欲 Life threatering 危及生命 Lipophilic compound 亲脂性化合物 Litter size 每窝胎仔数目 Live and deal conceptuese 活胎和死胎 Live offspring at birth 出生时存活的子代Local tolerance studies 局部耐受性研究 Local toxicity 局部毒性 Locu 位点 Long-termcarcinogenicity study 长期致癌性研究Loss of the tk gene tk基因缺失Major organ formation 主要器官形成 Male fertility 雄性生育力 Male fertility assessment 雄性生育力评价Mammalian sells 哺乳动物细胞 Mammalian species 哺乳类动物 Mammalian sell mutation test 哺乳动物细胞致突变试验 Marketing approval 上市许可 Maternal animal 亲代动物Mating behavior 交配行为 Mating period 交配期 Mating ratio 交配比例 Matrices 基质Maximum tolerated dose(MTD) 最大耐受剂量 Mechanism of genotoxicity 遗传毒性机制Mechanistic investigation 机制研究 Metabolic activation 代谢活化 Metabolic activation pathway 代谢活化途径 Metabolic activation system 代谢活化系统 Metabolism 代谢Metabolites profile 代谢物的概况 Metaphase 中期 Metaphase analysis 分裂中期相分析Metaphase cell 分裂中期相细胞 Micronucleus 微核 Micronucleus formation 微核形成Microtitre 微滴定 Mictotitre method 微滴定法 mimicking 模拟 Mitotic index 有丝分裂指数Molecular characterization 分子特性 Molecular technique 分子技术 Monitor 监测Monoclonal antibodies 单克隆抗体 Non-toxic compound 无毒化合物 Mouse lymphoma L5178Y cell 小鼠淋巴瘤L5178Y细胞 Mouse lymphoma tk assay 小鼠淋巴溜tk检测Mutagen 诱变原 Mutagenic carcinogen 诱变性致癌剂 Mutagenic potential of chemical 化合物的潜在致突变性 Mutant colony 突变体集落 Mutation 突变 Mutation induction in transgenes 转基因诱导突变Necropsy(macroscopic examination) 解剖(大体检查) Negative control 阴性对照 Negative result 阴性结果 Newcleated 有核 Non rodent 非啮齿类Non-clinical 非临床 Non-genotoxic carcinogen 非遗传毒性致癌剂 Non-genotoxic mechanism 非遗传毒性机制 Non-human primate 非人灵长类 Non-linear 非线性 No-toxic-effect dose level 无毒性反应剂量水平 Nucleated bone marrow cell 有核骨髓细胞 Nucleoside analogue 核苷酸同系物 Number of live and dead implantation 宫内活胎和死胎数 Numerical chromosomal aberration 染色体数目畸变 Numerical chromosome changes 染色体数目改变Oligonucleotide grugs 寡核苷酸药物 One ,twe,three generation studies 一、二、三子代研究Paraffine embedding 石蜡包埋 Parameter 参数 Parent compound 母体化合物 Parenteral 非肠道 Particulate material 颗粒物 Peripheral blood erythrocyte 外周血红细胞Pharmacodynamic effects 药效作用 Pharmacodynamics 药效学(药效动力学) Pharmacokinetic 药代动力学 Phenylene diamine 苯二胺 Physical development 身体发育 Physiological stress 生理应激 Pilot studies 前期研究 Pinna unfolding 耳廓张开 Plasmid 质粒 Plasminogen activators 纤维蛋白溶解酶原激活因子 Ploidy 整倍体 Point mutation 点突变 Polychromaticerythrocyte 嗜多染色红细胞 Polycyclic hydrocarbon 多环芳烃 Polymer 聚合物 Polyploidy cell 多倍体细胞 Polyploidy 多倍体 Polyploidy induction 多倍体诱导 Poorly soluble compound 难溶化合物 Positive control 阳性对照 Positive result 阳性结果 Post meiotic stages 减数分裂后期 Post-approval 批准后 Postcoital time frame 交配后日期Postimplantation deaths 着床后死亡 Postnatal deaths 出生后死亡 Postweaning development and growth 断奶后发育和生长 Potential 潜在性 Potential immunogenecity 潜在免疫原性Potential target organs for toxicity 潜在毒性靶器官Pre-and post-natal development study 围产期的发育研究 Pre-and postweaning survival and growth 断奶前后的存少和生长 Precipitate 沉淀期 Precision 精密度 Preclinical safety evaluation 临床前安全性评价 Predetermined criteria 预定标准 Prediction of carcinogenicity 致癌性预测Pregnant and lactation animals 怀孕与哺乳期动物 Preimplantation stages of the embryo 胚胎着床前期 Preliminary studies 预试验 Pre-screening 预筛选 Prevalence of abnormalities 异常情况的普遍程度 Primary active entity 主要活性实体 Priority selection 优先选择 Pro-drug 前体药物 Protocol modification 试验方案修改 Quantification of mutant 突变体定量 Racemate 消旋体 Radiolabeled proteins 放射性同位素标记蛋白 Radiolabelled compounds 放性性同位素标记化合物 Range-finding test 范围确定试验 Rate of preimplantation deaths 着床关死亡率 Rational study design 合理的试验设计 Receptor properties 受体性质 Recombinant DNA proteins DNA重组蛋白Recombinant DNA technology DNA重组技术 Recombination 重组 Recombinant plasma factors 重组血浆因子 Reduction in the number of revertants 回复突变数的减少 Relative plating efficiency 相对接种效率 Relative suspension growth 相对悬浮生长率 Relative total growth 相对总生长率 Relevant animal species 相关动物种属 Relevant dose 相关剂量Relevant factor 相关因素 Repeated-dose toxicity studies 重复剂量毒性研究 Reproductive toxicity 生殖毒性 Reproductive/developmental toxicity 生殖/发育毒性 Reverse mutation 回复突变 Reversibility 可恢复性(可逆性) Risk assessment 危险度评价 Rodent hematopoietic cell 啮齿类动物造血细胞 Route of administration 给药途径 Routine testing 常规试验S9-mix constituent S9混合液成分 Safeguards 安全监测 Safety pharmacology 安全药理学Safety margin 安全范围 Salmonella typhimurium 鼠伤寒沙门菌 Sampling time 采样时间Satellite groups 卫星组 Saturation of absorption 吸收饱和 Sensory functions and reflexes 感觉功能和反射Short term toxicity 短期毒性Short or medium-term carcinogenicity study 短或中期致癌性研究 Short treatment 短期处理 Sighting studies 预试验 Singledose(acute)toxicity 单剂量(急性)毒性 Single study design 单一研究设计 Site-specific targeted delivery 定位靶向释放 Small colony 小集落 Small colony mutant 小集落突变体Soft agar method 软琼脂法 Soluble genotoxic impurity 可溶性遗传毒性杂质 Solvent control 溶剂对照 Somatic cell 体细胞 Somatic cell test 体细胞试验 Species 种属 Specificity 特异性 Species specificity 种属特异性 Spindle apparatus 纺缍体 Stages of reproduction 生殖阶段Standard battery of test 标准试验组合Standard 3-test battery 标准三项试验组合 Standard battery 标准组合 Standard battery system 标准组合系统 Standard procedure 标准规程Standard protocol 标准试验方案Standard set of strains 标准菌株组Standard set of tests 标准试验组 Standard test battery 标准试验组合 Statistical evaluation 统计学评价 Steady-state levels 稳态浓度 Step-by-step 逐步 Stepwise process 阶梯式程序 Strain 品系 Structural changes 结构改变 Structural chromosomal aberration 染色体结构畸变 Subgroups 亚组Supravital staining 体外活动染色 Surface righting reflex 平面翻正反射 Survival 存活率suspension 悬浮物 Systemic exposure 全面接触 Target organs 靶器官 Target cell 靶细胞Target histidine genes 组氨酸目的基因 Target tissue 靶组织Target tissue exposure 靶组织接触 Teratogenic response 致畸胎反应 Terminal sacrifice 终末期处死 Test of carcinogenicity 致癌试验 Test approach 试验方法Test battery approach 试验组合方法 Test compound 受试物 Test model 试验模型 Test strategy 试验策略 Test systems 试验系统 Tester strain 试验菌株 Therapeutic 治疗 Therapeutic confirmatory 疗效确定 Therapeutic exploratory 疗效探索Therapeutic indication 治疗适应证 Time course 时程 Timing conventions 分段计时方法Tissue cross-reactivity 组织交叉反应 Tissue distribution 组织分布 Tissue exposure 组织接触Tissue uptake 组织吸收 Tk locus tk位点 Top concentration 最高浓度 Topical 局部的Topoisomerase inhibitor 拓朴异构酶抑制剂 Total erythrocyte 总红细胞Total litter loss 整窝丢失 Toxicity to reproduction 生殖毒性 Toxicokinetics 毒代动力学(毒物代谢动力学) Transgene 转基因 Transgenic animals 转基因动物 Transgenic plants 转基因植物Translocation 移位 Treatment regimen 实施方案 Tubal transport 输卵管运输 Tumor induction 肿瘤诱导 Tumor response 肿瘤反应 Tumor-related gene 肿瘤相关基因 Two or three phase approach 分段(二段或三段)研究 Two study design 分段(两段)研究设计Ovulation rate 排卵率 Unbound concentration 未结合浓度 Unexpected finding 非预期结果Unscheduled DNA synthesis(UDS) 程序外DNA合成 Unstable epoxide 不稳定过氧代物Whole blood 全血。

热休克蛋白90α 与胃癌的研究进展

热休克蛋白90α 与胃癌的研究进展

热休克蛋白90α 与胃癌的研究进展王鹏【期刊名称】《检验医学与临床》【年(卷),期】2018(015)016【总页数】4页(P2511-2514)【关键词】热休克蛋白;胃癌;抑制剂;客户蛋白【作者】王鹏【作者单位】内蒙古科技大学包头医学院第一附属医院检验科 ,内蒙古包头014010【正文语种】中文【中图分类】R446热休克蛋白(HSP)是广泛存在于细菌、动物和人体中的热应激蛋白质大家族,主要由热休克或其他一些应激源诱导而发生表达。

在生物体内主要能发挥协助蛋白质的折叠、转运、跨膜、稳定构象及细胞的信号传导、损伤保护等“分子伴侣”的功能[1-2]。

按相对分子质量分为HSP27、HSP60、HSP40、HSP70、HSP90,HSP110等[3-4]。

HSP90是HSPs家族中重要的成员之一,据研究显示,HSP90常用于在肿瘤中调控突变或高表达的“客户蛋白”,如蛋白激酶B(AKT)、肝细胞生长因子受体C-Met、人类表皮生长因子受体2(HER2)、细胞周期蛋白依赖性激酶4(CDK4)、表皮生长因子受体(EGFR)、雄激素受体(AR),同时,其在肿瘤细胞的增殖、分化、侵袭、凋亡等分子通路中发挥重要作用[5]。

HSP90α是HSP90的两种异构体形式之一,在细胞内外非常稳定并且发挥主要的“伴侣蛋白”作用。

胃癌是全球常见的恶性肿瘤之一,胃癌的早期诊断是提高诊断效率和治愈率的关键。

HSP90α的底物蛋白涉及几乎所有的细胞过程,其可能具有潜在的临床用途,并作为癌症诊断的生物标记物,用于评估疾病进展和癌症的治疗靶点,现将HSAP90α 与胃癌的研究进展综述如下。

1 HSP90α特性与功能HSP90主要位于细胞质中,以二聚体的形式存在,其基本结构由3部分组成:N端结构域(25 kDa)、中间域(40 kDa)、C端结构域(12 kDa)。

HSP90是一种三磷酸腺苷酶(ATP)依赖的分子伴侣,其家族成员依赖ATP分子内的ATP酶活性,有助于蛋白质折叠、蛋白质的转运。

DiI (细胞膜红色荧光探针)说明书

DiI (细胞膜红色荧光探针)说明书

DiI (细胞膜红色荧光探针)产品编号 产品名称包装 C1036DiI (细胞膜红色荧光探针)10mg产品简介:DiI 即DiIC 18(3),全称为1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate ,是最常用的细胞膜荧光探针之一,呈现橙红色荧光。

DiI 是一种亲脂性膜染料,进入细胞膜后可以侧向扩散逐渐使整个细胞的细胞膜被染色。

DiI 在进入细胞膜之前荧光非常弱,仅当进入到细胞膜后才可以被激发出很强的荧光。

DiI 被激发后可以发出橙红色的荧光,DiI 和磷酯双层膜结合后的激发光谱和发射光谱参考下图。

其中,最大激发波长为549nm ,最大发射波长为565nm 。

DiI 的分子式为C 59H 97ClN 2O 4,分子量为933.88,CAS number 为41085-99-8。

DiI 可以溶解于无水乙醇、DMSO 和DMF ,其中在DMSO 中的溶解度大于10mg/ml 。

发现较难溶解时可以适当加热,并用超声处理以促进溶解。

DiI 被广泛用于正向或逆向的,活的或固定的神经等细胞或组织的示踪剂或长期示踪剂(long-term tracer)。

DiI 通常不会影响细胞的生存力(viability)。

被DiI 标记的神经细胞在体外培养的条件下可以存活长达4周,在体内可以长达一年。

DiI 在经过固定的神经元细胞膜上的迁移速率为0.2-0.6mm/day ,在活的神经元细胞膜上的的迁移速率为6mm/day 。

DiI 除了最简单的细胞膜荧光标记外,还可以用于检测细胞的融合和粘附,检测发育或移植过程中细胞迁移,通过FRAP(Fluorescence Recovery After Photobleaching)检测脂在细胞膜上的扩散,检测细胞毒性和标记脂蛋白等。

用于细胞膜荧光标记时,DiI 的常用浓度为1-25µM ,最常用的浓度为5-10µM 。

病毒学术语中英文对照

病毒学术语中英文对照

A single- generation study 单项包括两代(生殖毒性)的研究 Acentric fragment 无着丝点片段Acridine orange 吖啶橙 Active metabolite 活性代谢产物 Additional test 附加试验 Adduct 加合物 ADME 吸引、分布、代谢、排泄 Administration period 给药期 Advers effect 不良反应 Against humanized proteins serum antibodies 抗人源蛋白血清抗体 Aginal smear 阴道涂片 Air righting reflex 空中翻正反射 Alkylating electrophilic cernter 浣化亲电子中心Allele 基因突变产生的遗传因子 Allergic reactions 过敏性反应(变应性反应) Altenative validated test 有效替代试验 Altered growth 生长改变 Ammoniun sulphide staining of the uterus 子宫硫化胺染色 Analogue 类似物(同系物) Analogue series of substance 同系物Analytical method 分析方法 Anaphase 分裂后期 Aneuploidy 非整倍体 Aneuploidy inducer 非整倍体诱导剂 Antigenic specificity 抗原特异性Art and ethical standards 技术和伦理标准Assessment of genotoxicity 遗传毒性评价 AUC 曲线下面积Auditory startle reflex 惊愕反射(听觉惊跳反射) Autoimmune 自身免疫 Autoradiographic assessment 放射自显影评价Autoradiography 放射自显影 Bacterial mutagenicity test 细菌致突变试验 Bacterial reverse mutation test 细菌回复突变试验 Bacterial strains 菌株 Bacterial test organisms 微生物试验菌 Base pairs 碱基对Base set of strains 基本菌株 Base substitution 碱基置换 Bioanalytical method 生物学分析方法 Bioavailability 生物利用度 Biological method 生物学意义Biotechnological products 生物技术产品 Biotechnoloty-derived pharmaceuticals 生物技术药物 Body burden 机体负担 Bone marrow cell 骨髓细胞 Bouin's fixation 包氏液固定Breakage of chromatid 染色单体断裂 Brealage of chromosome 染色体断裂 Bridging character 桥梁作用 C(time) 一定剂量、某一时间的浓度 Carcinogen 致癌物质Carcinogenesis 致癌性 Carcinogenic hazard 致癌性危害 Carcinogenicity bioassay 致癌性生物检测 Carcinogenicity potential of chemical 化合物的潜在致癌性 Carcinoginicity (oncogenicity) 致癌(致瘤) Cardiovascular 心血管 Case-by-case 个例 Cell proliferation 细胞增殖 Cell cultures 细胞培养 Cell line 细胞系 Cell membrane lipid 细胞膜脂质层 Cell replication system 细胞复制系统 Cell suspension 细胞悬液 Cell-mediated immunity 细胞介导的免疫 Cellular therapy 细胞治疗 Central nervous systems 中枢神经系统 Cerebral spinal fluid 脑脊液 Chemical nature 化学性质 Chinese hamster V79 cell 中国仓鼠V79细胞Chromatide 染色单体 Chromosomal aberration 染色体畸变 Chromosomal damage 染色体损伤 Chromosomal integrity 染色体完整性 Chronic toxicity testing 慢性毒性试验 Classfical biotransformation studies 经典的生物转化试验 Clastogen 染色体断裂剂 Clastogenic 致染色体断裂的 Clinical indication 临床适应证 Cloning efficiency 克隆形成率Closure of the hard palate 硬腭闭合 Cmax 峰浓度 Colony sizing 集落大小 Comparative trial 对比试验Complement binding 补体结合 Completely novel compound 全新化合物 Compound bearing structural alerts 结构可疑化合物 Concentration threshold 阈浓度 Concomitant toxicokinetics 相伴毒代动力学 Continuous treatment 连续接触 Corpora lutea 黄体 Corpora lutea count 黄体数 Cross-linking agent 交联剂 Culture condition 培养条件 Culture confluency 培养克隆率 Culture confluenty 培养融合 Culture medium 培养基 Cytogenetic change 细胞遗传学改变 Cytogenetic evaluation 细胞遗传学评价 Cytokines 细胞因子 Cytotoxicity 细胞毒Degradation 降解 Deletion 缺失 Descriptive statistics 描述性统计 Detection of bacterial mutagen 细菌诱变剂检测 Detection of clastogen 染色体断裂剂检测 Determination of metabolites 测定代谢产物 Developmental toxicity 发育毒性Direct genetic damage 直接遗传损伤 Distribution 分布DNA adduct DNA加合物DNA damage DNA损伤DNA repair DNA 修复DNA strand breaks DNA链断裂 Dose escalation 剂量递增 Dose dependence 剂量依赖关系 Dose level 剂量水平 Dose-limiting toxicity 剂量限制性毒性 Dose-raging studies 剂量范围研究 Dose-relatived mutagenicity 剂量相关性诱变性 Dose-related 剂量相关Dose-relatived cytotoxicity 剂量相关性细胞毒性 Dose-relatived genotoxic activity 剂量相关性遗传毒性 Dose-response curve 剂量-反应曲线 Dosing route 给药途径Embryo-fetal toxicity 胚胎-胎仔毒性 Endogenous components 内源性物质 Endogenous gene 内源性基因Endonuclease 核酸内切酶 Emdpmiclease release from lysosomes 溶酶体释放核酸内切酶End-point 终点 Epitope 抗原决定部位 Error prone repair 易错性修复 Escalation 递增Escherichia coli strain 大肠杆菌菌株 Escherichia coli 大肠杆菌Evaluation of test result 试验结果评价 Exaggerated pharmacological response 超常增强的药理作用 Exposure assessment 接触剂量评价 Exposure period 接解期 External metabolizing system 体外代谢系统F1-animals 子一代动物 False positive result 假阳性结果 Fecundity 多产 Fertility studies 生育力研究 Fetal abnormalities 胎仔异常 Fetal and neonatal parameters 胎仔和仔鼠的生长发育参数 Fetal development and growth 肿仔发育和生长 Fetal period 胎仔期 Fetotoxicity 胎仔毒性First pass testing 一期试验Fluorescence in situ hybridization(FISH) 原位荧光分子杂交 Foetuses 胎仔 Formulation 制剂 Frameshift mutation 移码突变 Frameshite point mutation 移码点突变 Free-standing 独立Fresh dissection technique 新鲜切片技术 Funtional deficits 切能缺陷 Functional test 功能试验 Functional indices 功能性指标 Fusion proteins融合蛋白 Gametes 配子 Gender of animals 动物性别 Gender-specific drug 性别专一性药物Gene knockout 基因剔除 Gene therapy 基因治疗 Gene mutation 基因突变 Genetic 遗传Genetic change 遗传学改变 Genetic damage 遗传学损伤 Genetic endpoint 遗传终点Genetic toxicity 遗传毒性 Genotoxic activity 遗传毒性作用 Genotoxic carcinogen 遗传毒性致癌剂 Genotoxic effect 遗传毒性效应 Genotoxic hazard 遗传毒性危害 Genotoxic potential 潜在遗传毒性 Genotoxic rodent carcinogen 啮齿类动物遗传毒性致癌剂 Genotoxicity 遗传毒性 Genotoxicity test 遗传毒性试验 Genotoxicity test battery 毒性试验组合 Genotoxycity evaluation 遗传毒性评价 Germ cell mutagen 生殖细胞诱变剂 Germ line mutation 生殖系统突变 GLP 临床前研究质量管理规范 Gross chromosomal damage 染色体大损伤 Gross evaluation of placenta 胎盘的大体评价 Growth factors 生长因子 Haemotoxylin staining 苏木素染色 Half-life 半衰期 Hematopoietic cells 造血细胞 Heptachlor 七氯化合物 Heritable 遗传 Heritable defect 遗传缺陷 Heritable disease 遗传性疾病 Heritable effect 遗传效应High concentration 高浓度Histologic appearance of reproductive organ 生殖器官的组织学表现 Histopathological chang 组织病理学改变 Homologous proteins 同系蛋白 Homologous series 同系 Host cell 宿主细胞 Human subjects 人体 Human carcinogen 人类致癌剂Human lymphoblastoid TH6cell 人成淋巴TK6细胞 Human mutagen 人类致突变剂 Humoral immunity 体液免疫 Immature erythrocyte 未成熟红细胞Immediate and latent effect 速发和迟发效应 Immunogenicity 免疫原性 Immunopathological effects 免疫病理反应immunotoxicity 免疫毒性 Implantation 着床 Implantation sites 着床部位 In vitro 体外 In vitro test 体外试验 In vivo 体内 In vivo test 体风试验Incidence of polyploidy cell 多倍体细胞发生率 Incisor eruption 门齿萌发 Independent test 独立试验 Individual fetal body weight 单个胎仔体重 Induced and spontaneous models of disease 诱发或自发的疾病模型Inducer of micronuclei 微核诱导剂 Inhalation 吸入 Inhibitor of DNA metabolism DNA代谢抑制剂 Intact animals 完整动物(整体动物) Internal control 内对照 Interphase nuclei 分裂间期细胞核 Intra-and inter-individual 个体与个体间 Isolated organs 离休器官Juvenile animal studies 未成年动物研究 Kinetic profile 动力学特点 Kinetics 动力学 Lactation 授乳、哺乳Large deletion event 大缺失事件 Late embryo loss 后期胚胎丢失 Level of safety 安全水平Libido 性欲 Life threatering 危及生命 Lipophilic compound 亲脂性化合物 Litter size 每窝胎仔数目 Live and deal conceptuese 活胎和死胎 Live offspring at birth 出生时存活的子代Local tolerance studies 局部耐受性研究 Local toxicity 局部毒性 Locu 位点 Long-termcarcinogenicity study 长期致癌性研究Loss of the tk gene tk基因缺失Major organ formation 主要器官形成 Male fertility 雄性生育力 Male fertility assessment 雄性生育力评价Mammalian sells 哺乳动物细胞 Mammalian species 哺乳类动物 Mammalian sell mutation test 哺乳动物细胞致突变试验 Marketing approval 上市许可 Maternal animal 亲代动物Mating behavior 交配行为 Mating period 交配期 Mating ratio 交配比例 Matrices 基质Maximum tolerated dose(MTD) 最大耐受剂量 Mechanism of genotoxicity 遗传毒性机制Mechanistic investigation 机制研究 Metabolic activation 代谢活化 Metabolic activation pathway 代谢活化途径 Metabolic activation system 代谢活化系统 Metabolism 代谢Metabolites profile 代谢物的概况 Metaphase 中期 Metaphase analysis 分裂中期相分析Metaphase cell 分裂中期相细胞 Micronucleus 微核 Micronucleus formation 微核形成Microtitre 微滴定 Mictotitre method 微滴定法 mimicking 模拟 Mitotic index 有丝分裂指数Molecular characterization 分子特性 Molecular technique 分子技术 Monitor 监测Monoclonal antibodies 单克隆抗体 Non-toxic compound 无毒化合物 Mouse lymphoma L5178Y cell 小鼠淋巴瘤L5178Y细胞 Mouse lymphoma tk assay 小鼠淋巴溜tk检测Mutagen 诱变原 Mutagenic carcinogen 诱变性致癌剂 Mutagenic potential of chemical 化合物的潜在致突变性 Mutant colony 突变体集落 Mutation 突变 Mutation induction in transgenes 转基因诱导突变Necropsy(macroscopic examination) 解剖(大体检查) Negative control 阴性对照 Negative result 阴性结果 Newcleated 有核 Non rodent 非啮齿类Non-clinical 非临床 Non-genotoxic carcinogen 非遗传毒性致癌剂 Non-genotoxic mechanism 非遗传毒性机制 Non-human primate 非人灵长类 Non-linear 非线性 No-toxic-effect dose level 无毒性反应剂量水平 Nucleated bone marrow cell 有核骨髓细胞 Nucleoside analogue 核苷酸同系物 Number of live and dead implantation 宫内活胎和死胎数 Numerical chromosomal aberration 染色体数目畸变 Numerical chromosome changes 染色体数目改变Oligonucleotide grugs 寡核苷酸药物 One ,twe,three generation studies 一、二、三子代研究Paraffine embedding 石蜡包埋 Parameter 参数 Parent compound 母体化合物 Parenteral 非肠道 Particulate material 颗粒物 Peripheral blood erythrocyte 外周血红细胞Pharmacodynamic effects 药效作用 Pharmacodynamics 药效学(药效动力学) Pharmacokinetic 药代动力学 Phenylene diamine 苯二胺 Physical development 身体发育 Physiological stress 生理应激 Pilot studies 前期研究 Pinna unfolding 耳廓张开 Plasmid 质粒 Plasminogen activators 纤维蛋白溶解酶原激活因子 Ploidy 整倍体 Point mutation 点突变 Polychromaticerythrocyte 嗜多染色红细胞 Polycyclic hydrocarbon 多环芳烃 Polymer 聚合物 Polyploidy cell 多倍体细胞 Polyploidy 多倍体 Polyploidy induction 多倍体诱导 Poorly soluble compound 难溶化合物 Positive control 阳性对照 Positive result 阳性结果 Post meiotic stages 减数分裂后期 Post-approval 批准后 Postcoital time frame 交配后日期Postimplantation deaths 着床后死亡 Postnatal deaths 出生后死亡 Postweaning development and growth 断奶后发育和生长 Potential 潜在性 Potential immunogenecity 潜在免疫原性Potential target organs for toxicity 潜在毒性靶器官Pre-and post-natal development study 围产期的发育研究 Pre-and postweaning survival and growth 断奶前后的存少和生长 Precipitate 沉淀期 Precision 精密度 Preclinical safety evaluation 临床前安全性评价 Predetermined criteria 预定标准 Prediction of carcinogenicity 致癌性预测Pregnant and lactation animals 怀孕与哺乳期动物 Preimplantation stages of the embryo 胚胎着床前期 Preliminary studies 预试验 Pre-screening 预筛选 Prevalence of abnormalities 异常情况的普遍程度 Primary active entity 主要活性实体 Priority selection 优先选择 Pro-drug 前体药物 Protocol modification 试验方案修改 Quantification of mutant 突变体定量 Racemate 消旋体 Radiolabeled proteins 放射性同位素标记蛋白 Radiolabelled compounds 放性性同位素标记化合物 Range-finding test 范围确定试验 Rate of preimplantation deaths 着床关死亡率 Rational study design 合理的试验设计 Receptor properties 受体性质 Recombinant DNA proteins DNA重组蛋白Recombinant DNA technology DNA重组技术 Recombination 重组 Recombinant plasma factors 重组血浆因子 Reduction in the number of revertants 回复突变数的减少 Relative plating efficiency 相对接种效率 Relative suspension growth 相对悬浮生长率 Relative total growth 相对总生长率 Relevant animal species 相关动物种属 Relevant dose 相关剂量Relevant factor 相关因素 Repeated-dose toxicity studies 重复剂量毒性研究 Reproductive toxicity 生殖毒性 Reproductive/developmental toxicity 生殖/发育毒性 Reverse mutation 回复突变 Reversibility 可恢复性(可逆性) Risk assessment 危险度评价 Rodent hematopoietic cell 啮齿类动物造血细胞 Route of administration 给药途径 Routine testing 常规试验S9-mix constituent S9混合液成分 Safeguards 安全监测 Safety pharmacology 安全药理学Safety margin 安全范围 Salmonella typhimurium 鼠伤寒沙门菌 Sampling time 采样时间Satellite groups 卫星组 Saturation of absorption 吸收饱和 Sensory functions and reflexes 感觉功能和反射Short term toxicity 短期毒性Short or medium-term carcinogenicity study 短或中期致癌性研究 Short treatment 短期处理 Sighting studies 预试验 Singledose(acute)toxicity 单剂量(急性)毒性 Single study design 单一研究设计 Site-specific targeted delivery 定位靶向释放 Small colony 小集落 Small colony mutant 小集落突变体Soft agar method 软琼脂法 Soluble genotoxic impurity 可溶性遗传毒性杂质 Solvent control 溶剂对照 Somatic cell 体细胞 Somatic cell test 体细胞试验 Species 种属 Specificity 特异性 Species specificity 种属特异性 Spindle apparatus 纺缍体 Stages of reproduction 生殖阶段Standard battery of test 标准试验组合Standard 3-test battery 标准三项试验组合 Standard battery 标准组合 Standard battery system 标准组合系统 Standard procedure 标准规程Standard protocol 标准试验方案Standard set of strains 标准菌株组Standard set of tests 标准试验组 Standard test battery 标准试验组合 Statistical evaluation 统计学评价 Steady-state levels 稳态浓度 Step-by-step 逐步 Stepwise process 阶梯式程序 Strain 品系 Structural changes 结构改变 Structural chromosomal aberration 染色体结构畸变 Subgroups 亚组Supravital staining 体外活动染色 Surface righting reflex 平面翻正反射 Survival 存活率suspension 悬浮物 Systemic exposure 全面接触 Target organs 靶器官 Target cell 靶细胞Target histidine genes 组氨酸目的基因 Target tissue 靶组织Target tissue exposure 靶组织接触 Teratogenic response 致畸胎反应 Terminal sacrifice 终末期处死 Test of carcinogenicity 致癌试验 Test approach 试验方法Test battery approach 试验组合方法 Test compound 受试物 Test model 试验模型 Test strategy 试验策略 Test systems 试验系统 Tester strain 试验菌株 Therapeutic 治疗 Therapeutic confirmatory 疗效确定 Therapeutic exploratory 疗效探索Therapeutic indication 治疗适应证 Time course 时程 Timing conventions 分段计时方法Tissue cross-reactivity 组织交叉反应 Tissue distribution 组织分布 Tissue exposure 组织接触Tissue uptake 组织吸收 Tk locus tk位点 Top concentration 最高浓度 Topical 局部的Topoisomerase inhibitor 拓朴异构酶抑制剂 Total erythrocyte 总红细胞Total litter loss 整窝丢失 Toxicity to reproduction 生殖毒性 Toxicokinetics 毒代动力学(毒物代谢动力学) Transgene 转基因 Transgenic animals 转基因动物 Transgenic plants 转基因植物Translocation 移位 Treatment regimen 实施方案 Tubal transport 输卵管运输 Tumor induction 肿瘤诱导 Tumor response 肿瘤反应 Tumor-related gene 肿瘤相关基因 Two or three phase approach 分段(二段或三段)研究 Two study design 分段(两段)研究设计Ovulation rate 排卵率 Unbound concentration 未结合浓度 Unexpected finding 非预期结果Unscheduled DNA synthesis(UDS) 程序外DNA合成 Unstable epoxide 不稳定过氧代物Whole blood 全血。

materials characterization 分区

materials characterization 分区

materials characterization 分区Materials characterization can be broadly divided into several categories based on the techniques used:1. Structural Characterization: This involves studying the atomic or molecular arrangement of a material. Techniques include X-ray diffraction, electron diffraction, and neutron scattering.2. Chemical Characterization: This involves determining the chemical composition of a material. Techniques include elemental analysis (e.g., X-ray fluorescence), spectroscopy (e.g., infrared spectroscopy), and chromatography.3. Morphological Characterization: This involves studying the shape, size, and distribution of particles or features within a material. Techniques include microscopy (e.g., electron microscopy, atomic force microscopy), particle size analysis, and surface analysis (e.g., scanning probe microscopy).4. Mechanical Characterization: This involves studying the mechanical properties of a material, such as its strength, elasticity, and hardness. Techniques include tensile testing, hardness testing, and impact testing.5. Thermal Characterization: This involves studying the thermal behavior of a material, such as its melting point, thermal conductivity, and thermal expansion. Techniques include differential scanning calorimetry, thermogravimetric analysis, and thermal conductivity measurement.6. Electrical Characterization: This involves studying the electrical properties of a material, such as its conductivity, resistivity, and dielectric constant. Techniques include electrical conductivity measurement, impedance spectroscopy, and dielectric spectroscopy.7. Magnetic Characterization: This involves studying the magnetic properties of a material, such as its magnetization, magnetic susceptibility, and coercivity. Techniques include magnetic susceptibility measurement, magnetometry, and Mössbauer spectroscopy.These are just some of the main categories of materials characterization, and there can be overlap between different techniques and methods depending on the specific material and property of interest.。

白来航鸡干扰素刺激基因12 PCR扩增

白来航鸡干扰素刺激基因12 PCR扩增

与试验研究白来航鸡干扰素刺激基因12 PCR 扩增张淑萍1葛中东2张凯2夏宇欣2姜莉莉2樊兆斌2**基金项目:山东省自然科学基金项目“J3-半乳糖凝集素在禽网状内皮组织增生症病毒感染作用机制研究” (ZR2019MC036);菏泽学院培育基金项目野ATP1B1对禽网状内皮组织增生症病毒复制影响研究(XY18PY01)”。

作者简介:张淑萍(1965.11-),女,濮阳市清丰人,研究方向:药品检测及动物疫病。

*通信作者。

(1,菏泽市食品药品检验检测研究院274000; 2,菏泽学院药学院274715)摘要:本试验拟克隆白来航鸡干扰素刺激基因12 (ISG12),并对其进行生物信息学预测分析。

根据ncbi 发表的原鸡ISG12基因序列(登录号:BN000223.1),设计ISG12基因特异性扩增引物。

提取白来航鸡的肝脏、脾脏RNA ,并反转录为cD- NA ,利用RT-PCR 技术扩增白来航鸡ISG12基因序列,并利用生物软件对其编码蛋白进行生物信息学分析预测。

结果显示,白来航鸡ISG12基因CDS 区为324bp ,编码107个氨基酸遥ISG12编码蛋白理论分子量为10.28 kD ,理论等电点(PI ) 为10.18,不稳定系数为59.46,脂肪系数为41.12遥存在3个明显的亲水区,整条多肽链表现为亲水性;无信号肽,不存在跨膜区;存在21个潜在的磷酸化位点,6个潜在的O-糖基化位点,不含N-糖基化修饰位点;含有3个抗原决定簇区域。

本试验成功克隆了白来航鸡ISG12基因,为深入了解ISG12编码蛋白的功能及进一步阐述其抗病毒的机理提供了科学依据。

关键词:ISG12基因;基因克隆;序列分析干扰素刺激基因(Interferon-stimulated genes, ISGs )是干 扰素(IFN )下游的效应分子,IFN 作用于靶细胞表面受体后, 通过一系列信号传导激活ISGs 的转录、表达m 2],在宿主免疫 调节及抗病毒过程中发挥重要功能叫IFN 通过ISGs 发挥包括 抗病毒、凋亡、抗增殖、抗肿瘤和免疫调节在内的多种细胞和生理功能|4]遥不同的ISGs 可以针对病毒从入侵到释放的不同阶段发挥抑制作用 叫 以往针对ISGs 的研究主要集中在ISG15、 Mx1、PKR 等|6-11],对ISG12的研究相对较少遥 ISG12蛋白作为一个潜在的重要细胞因子,参与了机体的抗病毒过程。

人源化单克隆抗体制备工艺

人源化单克隆抗体制备工艺
优点:其一是可以获得具有人体性质的单克隆抗体, 其二是分离抗体的
速度极快, 最快在1 周内即可完成抗体的分离工作。
核糖体展示技术
1997 年Hanes 等在Mattheakis 等的多聚核糖体展示技术的基础上 进行改进建立了核糖体展示技术。
基本ne,September 26, 2012
一、Molecular Modeling and Structural Analysis of D9 Fv
D9 VH and VL mRNA was extracted from D9 hybridoma cells, amplified by Reverse Transcription-PCR and then sequenced. The deduced amino acid sequences are shown here.
抗体药物市场销售额增势不减,世界各国纷纷投入巨资开发这座“金 矿”,全球医药巨头,如辉瑞、罗氏、诺华等更是不惜重金开发抗体 药物。国内方面,成都康弘的郎沐表现出色,2014年上市8个月实现销 售额1亿元,2015年销售额约3亿元。
在临床实践中,抗体药物也呈现愈发活跃的状态。美国詹森研究开发 有限责任公司副总裁威廉·R·斯特罗尔表示,过去十年间,多种抗体治 疗方法和新平台已被设计研发,未来抗体治疗的范围将进一步扩大。 “目前一些针对免疫肿瘤学的抗体已被研发,即将进入临床,为癌症 患者、免疫功能紊乱、代谢障碍等患者提供更多治疗方法。”
抗体的现状
从1992年首个抗体药物Orthoclone上市以来,截至2016年03月,欧美日 等主要市场共上市了61个抗体药物。2014年上市了6个抗体药物,2015 年上市了9个抗体药物,连续两年打破历史记录。2015年,61个抗体药 物合计销售额达到906亿美元,与2014年相比增长了8.2%。从销售数据 来看,前21位的抗体药物都超过了10亿美元。

鉴定新生淋巴管的特异性的内皮标志物

鉴定新生淋巴管的特异性的内皮标志物

鉴定新⽣淋巴管的特异性的内⽪标志物2019-06-13【摘要】在淋巴管新⽣的研究中,最后如何来确定新⽣的管道是否是真正的淋巴管,⼀⽅⾯就需要检测淋巴管内⽪细胞特异性标记物的表达。

淋巴管内⽪细胞特异性表达Prox-1,LYVE-1,Podoplanin和VEGFR-3,并且这些受体和因⼦对淋巴管的新⽣起重要的调节作⽤。

【关键词】淋巴管;淋巴系统;特异性;标志物淋巴管作为⼈体淋巴系统的⼀部分,发挥重要作⽤,⽐如,维持体内的微环境稳态,免疫反应和淋巴结转移等。

临床淋巴管先天性发育障碍、⼿术创伤等均会导致淋巴管的缺失或阻塞,导致引流不畅,是引发肢体慢性淋巴⽔肿主要的原因。

例如,近年来,乳腺癌的发病率正在上升,⽽乳腺癌根治术需要清扫腋窝淋巴结,切断了⼤批的淋巴管,导致并发上肢淋巴⽔肿的约占15%-20%[1],轻者通过建⽴侧⽀循环⽽缓解,严重的则会导致上肢功能的障碍,影响他们的⽣活质量。

然⽽,长期以来,国内外,主要采⽤烘绑绷带、⼿术和其他治疗⽅法促进淋巴回流,很难从根本上治疗淋巴⽔肿。

其实,促进淋巴管的新⽣是治疗淋巴⽔肿的关键问题。

因此,研究淋巴管新⽣对于治疗淋巴⽔肿及相关疾病具有重要意义。

在研究中,最后在鉴定新⽣淋巴管时,需要检测淋巴管内⽪细胞特异性标记物的表达,本⽂就对⼏种重要的淋巴管内⽪特异性标志物进⾏概述。

1.Prox-1Oliver等⼈于1993年在⼤⿏中发现同源异形盒转录因⼦Prox-1,主要在发育中的中枢神经系统、视⽹膜、晶状体、胰腺、肝脏和⼼脏表达[2]。

1997年,Hassan等⼈⾸次从同源果蝇基因-普洛斯彼罗基因,克隆出Prox-1基因[3]。

Wigle and Oliver在后来的研究中表明,⿏胚胎发育的第9.5天,在主静脉腹侧部内⽪细胞的⼀个亚群出现Prox-1的表达;在实施Prox-1基因敲除的⿏胚胎,发育到11.5-12.0天时,淋巴管内⽪细胞停⽌从主静脉出芽,最终不能形成淋巴管,导致出⽣后不久死亡,但是,发现⾎管发育没有受到影响;因此,认为主静脉内⽪细胞出芽及细胞向淋巴管内⽪细胞转化的过程中,Prox-1的存在都是必需的,对于淋巴管的发⽣起关键作⽤[4]。

Materials Characterization

Materials Characterization

Materials Characterization Materials characterization is a crucial aspect of scientific research and development, allowing researchers to understand the properties and behavior of materials at the atomic and molecular levels. By analyzing the structure, composition, and properties of materials, scientists can gain valuable insightsinto their performance and potential applications in various industries. This process involves a combination of techniques such as microscopy, spectroscopy, and diffraction to provide a comprehensive understanding of the material under study. One of the key reasons why materials characterization is essential is its role in quality control and assurance. By thoroughly analyzing the composition andstructure of materials, researchers can ensure that they meet the required specifications and standards for a particular application. This is particularly important in industries such as aerospace, automotive, and electronics, where the performance and reliability of materials are critical for safety and functionality. Without proper characterization, manufacturers run the risk of producing substandard products that could lead to costly recalls and potential safety hazards. Furthermore, materials characterization plays a crucial role in the development of new materials with enhanced properties and performance. By understanding the structure-property relationships of materials, researchers can design and engineer materials with specific characteristics tailored to meet the demands of modern technology. This has led to the development of advancedmaterials such as carbon nanotubes, graphene, and shape memory alloys, which have revolutionized various industries and opened up new possibilities for innovation. In addition to quality control and material development, materialscharacterization also plays a vital role in failure analysis and forensic investigations. When materials fail in real-world applications, it is essential to identify the root cause of the failure to prevent future incidents. By using techniques such as scanning electron microscopy and X-ray diffraction, researchers can analyze the fracture surfaces and microstructures of failed materials to determine the mechanisms of failure. This information is invaluable for improving the design and performance of materials in various applications. Moreover, materials characterization is essential for environmental and sustainabilityconsiderations. By understanding the environmental impact of materials throughout their lifecycle, researchers can develop sustainable materials with minimal ecological footprint. Techniques such as life cycle assessment and environmental impact analysis allow scientists to evaluate the environmental impact of materials from raw material extraction to end-of-life disposal. This holistic approach to materials characterization is crucial for promoting sustainable practices and reducing the environmental impact of industrial processes. Overall, materials characterization plays a critical role in scientific research, technological advancement, and industrial applications. By providing valuable insights into the properties and behavior of materials, researchers can optimize their performance, develop new materials, and ensure quality control in manufacturing processes. The interdisciplinary nature of materials characterization, combining physics, chemistry, and engineering, highlights its importance in advancing our understanding of materials and driving innovation in various industries. As technology continues to evolve, the demand for advanced materials with tailored properties will only increase, making materials characterization an indispensable tool for researchers and engineers alike.。

犬食道异物诊断与治疗

犬食道异物诊断与治疗

与试验研究犬食道异物诊断与治疗曹百灵1陆优兰2(1,上海骐奇动物诊疗有限公司201499;2,上海三米宠物用品有限公司201107)摘要:犬食道异物是临床常见病,因为异物体积太大而不能通过食道或其尖端刺入食道黏膜里,异物通常在胸腔入口、心肌或膈区域,因为这些部位的食道外解剖位置限制了食道膨胀。

本文通过一只7个月的约克夏犬的临床病例诊治,总结并分析了犬食道异物的病因、临床症状及诊断方法,并介绍手术治疗本病的方法、诊治要点及对本病的治疗体会。

关键词:犬食道异物;诊断;治疗犬食道异物是指犬吞下难以排岀或消化的东西(如骨头、布料、玩具、石头、果核、木块、塑料瓶盖、针线等),因无法通过比较狭窄的食道而引起食道梗阻,临床表现为拒食、呕吐、咳喘、流口水、吞咽困难、消瘦、衰竭等急、慢性临床症状。

在临床当中食道异物可以引起完全梗阻和不完全梗阻,异物在食道内不完全梗阻使大多数动物表现为食欲不振、呕吐、少量饮水,消瘦、衰竭、局部血液循环不良、缺血和坏死。

发生完全梗阻时,食欲废绝、精神萎靡、咳喘,并伴有呼吸困难、消瘦、衰竭、局部血液循环不良等情况,病程发展迅速。

由于异物压迫,局部血液循环不良、缺血、食道水肿、缺氧、作者简介:曹百灵(1983.9-),女,甘肃省平凉市人,大学本科,兽医师,坏死,甚至引起食道穿孔破裂,最终休克、衰竭而死亡。

1基本信息约克夏犬,8个月,公犬,最近几天有咳嗽,干呕,呕吐有白沫,大便少,没食欲,精神不佳,免疫驱虫全。

2病因该犬由于长期饮食比较单一,平时以人吃的东西为主,包括吃一些骨头之类的东西,而就在5d前主人刚好饲喂过排骨,怀疑由于吃排骨时误吞造成食道梗阻。

3症状该犬来我院诊治时已经5d不吃东西,精神状况较差,刚开始主要从事兽医诊疗工作。

[5]Crosse KM,Monson EA,Beard MR,Helbig KJ.Interferon-StimulatedGenes as Enhancers of Antiviral Innate Immune Signaling[J].J Innate Immun,2018,10(2):85-93.[6]Wang Y,Ren K,Li S,Yang C,Chen L.Interferon stimulated gene15pro­motes Zika virus replication through regulating Jak/STAT and ISGylation pathways[J].Virus Res,2020,287:198087.[7]Singh PK,Singh S,Farr D,Kumar A.Interferon-stimulated gene15(ISG15)restricts Zika virus replication in primary human corneal ep­ithelial cells[J].Ocul Surf,2019,17(3):551-559.[8]Li Y,Li S,Duan X,Chen Y,Jiao B,Ye H,Yao M,Chen L.Interferon-Stimu-lated Gene15Conjugation Stimulates Hepatitis B Virus Production In­dependent of Type I Interferon Signaling Pathway In Vitro[J].Mediators Inflamm,2016:7417648.[9]Langley C,Goodwin O,Dzimianski JV,Daczkowski CM,Pegan SD.Structureof interferon-stimulated gene product15(ISG15)from the bat species Myotis davidii and the impact of interdomain ISG15interactions on viral protein engagement[J].Acta Crystallogr D Struct Biol,2019Jan1;75(Pt1): 21-31.[10]Freitas BT,Scholte FEM,Bergeron佴,Pegan SD.How ISG15combatsviral infection[J].Virus Res,2020,286:198036.[11]Chandrakar K,Jain A,Khan JR,Jain T,Singh M,Mishra OP.Molecularcharacterization and expression profile of interferon-stimulated gene15 (ISG15)in the endometrium of goat(Capra hircus)[J].Theriogenology, 2020,15(142):348-354.[12]Martensen PM,Justesen J.Small ISGs coming forward[J].J Interferon Cy­tokine Res,2004,24(1):1-19.[13]Chen Y,Jiao B,Yao M,Shi X,Zheng Z,Li S,Chen L.ISG12a inhibits HCVreplication and potentiates the anti-HCV activity of IFN-琢through ac­tivation of the Jak/STAT signaling pathway independent of autophagy and apoptosis[J].Virus Res,2017,2(227):231-239.[14]Bigger CB,Brasky KM,Lanford RE.DNA microarray analysis of chim­panzee liver during acute resolving hepatitis C virus infection[J].J Vi-rol,2001,75(15):7059-66.[15]Feng M,Tan Y,Dai M,Li Y,Xie T,Li H,Shi M,Zhang X.EndogenousRetrovirus ev21Dose Not Recombine with ALV-J and Induces the Expression of ISGs in the Host[J].Front Cell Infect Microbiol,2016,25(6):140.[16]Liu N,Long Y,Liu B,Yang D,Li C,Chen T,Wang X,Liu C,Zhu H.ISG12amediates cell response to Newcastle disease viral infection[J].Virology, 2014,462-463:283-94.44・国禽业2021.4试验研究空有呕吐,现在没有呕吐,但食欲废绝,已消瘦很多,无大便,偶尔有咳喘现象。

真核延长因子eEF1A功能研究进展

真核延长因子eEF1A功能研究进展

真核延长因子eEF1A功能研究进展程君;芮耀诚【摘要】真核延长因子( eEFs)是一类在蛋白质合成过程中发挥肽链延伸作用的重要分子,在真核生物体内它有eEF1和eEF2两个亚型.其中在肽链延伸过程中起主要作用的eEF1A是eEF1的一个亚型,它不但能促进氨酰基-tRNA( aa-tRNA)与核糖体的A位点结合,发挥肽链延伸功能;而且近年来大量的研究表明它在细胞凋亡、肿瘤的发生、细胞内信号转导及心血管系统的调节方面均发挥了重要作用,而且这些作用与它在蛋白合成中的功能无关;这表明eEF1A是一个多功能蛋白,能够成为一个潜在的疾病防治的靶点.本文就国内外近几年来有关eEF1A的研究做一综述,介绍真核延长因子eEF1A功能研究的进展.%Eukaryotic elongation factors (eEFs) was a kind of important molecules that assist in elongating the polypeptide chain in the protein biosynthesis of the organisms. It had two subtypes in eukaryotic organism : eEF1 and eEF2. One subtype of eEF1 : eEF1 A played the main functions in elongating the peptide chain, which carried the aminoacyl-tRNA ( aa-tRNA ) on the A site of the ri-bosome.and many studies indicated that eEFIA played another roles range from cell apoptosis,tumorigenesis,signal transduction to the regulation of the cardiovascular system, and these functions were not related to the protein synthesis. All of this demonstrated eEF1 A was a multifunction protein, which could be a potential target of the disease prevention and cure. The advance in function of the eukaryotic elongation factor eEFIA in recently years were introduced in this article.【期刊名称】《药学实践杂志》【年(卷),期】2012(030)002【总页数】4页(P89-91,124)【关键词】真核延长因子eEF1A;蛋白合成;细胞凋亡;肿瘤;心血管系统【作者】程君;芮耀诚【作者单位】第二军医大学药学院药理学教研室,上海200433;第二军医大学药学院药理学教研室,上海200433【正文语种】中文【中图分类】R591.2蛋白质的翻译是一个非常复杂的过程,需要多种因子的参与才能完成,主要可分为起始、延长、中止3个阶段,其中真核延长因子(eukaryotic elongation factors,eEFs)在延长过程中发挥了重要作用。

2株毒力不同M.bovis差异表达蛋白的定量检测及分析

2株毒力不同M.bovis差异表达蛋白的定量检测及分析

6 中国兽医杂志2021年(第57卷)第1期Chine r e of Veterinaro Medicine2株毒力不同!・bovis 差异表达 蛋白的定量检测及分析李梦莹1,田 帅1,董玉惠2,马小静1,张淮瑜1,宋阿北1,周向梅2,许立华1(1.宁夏大学农学院,宁夏银川750021 ; 2.中国农业大学动物医学院,北京海淀100193)摘要:为研究牛分枝杆菌N 和C68004菌株间蛋白水平的差异表达对其致病性的影响,本试验采用串联质谱标记 (TMT )定量蛋白组学技术,对2个菌株的毒力及其致病性进行鉴定与分析。

结果分析得到2 174个共有蛋白,其中有479个 差(P<0.05)$ GO 分, 差 的功能 化、结合、运输、转录调控以及分子,特别是对内部或的反应。

KEGG 分, 差主要参和生物过程的调节。

导致N 菌致病性增强的毒力基因可能是mmaA4%ecce1 %IpqY %hspO %Mpb63和mmp!A o 并且N 菌的耐药基因rpoA 、rpoB 和rpoC量于C68004,可以推断N 菌对抗结核一物的耐药性可能比C68004更强$随 和免疫应答的 山菌在适应环境过程中,、DNA 复制以及 的 差异$关键词:牛分枝杆菌;学;差;毒力差中图分类号:Q939. 13o 1 文献标志码:A 文章编号:0529—6005(2021)01—0006—04Qcanhtative Determination and Analysis of Differentially Expressen Proteins inTwo Strains of Mycobacterium, bovis with Differeet VirulenceLI Meng-ying 1,TIAN Shuai 1,DONG Yu-hui 2,MA Xiao-jing 1,ZHANG Huai-yu 1,SONG A-bei 1,ZHOU Xiang-mei 2,XU Li-hua 1(1. Agriculture Colleac ,Ningxia University ,Yinchuan 750021 ,China ; 2. Colleac of Veterinaro Medicine ,ChinaAgeicueeueaeUnieeesie , Beiiing100193 , China )Abstract : In order to study the influence of di-erent protein expression levels on the pathogenicity of Mycobacterium bovis N andC68004 seeains , ehisseudyused eandem ma s eag ( TMT ) speceeomeeeyeoequaneieaeieepeoeeomicseechnoeogyeoideneieyand anaeyye eheeieueenceand paehogenicieyoeeheewoseeains.Resueesshowed ehaeeheeeweee2 174 common peoeeinsand 479 di e eeneia e y ei-peessed peoeeinswieh P <0.05.GOanaeysiseesueesshowed ehaeeheeunceionsoeehedi e eeneia e y eipee s ed peoeeinsinceuded caeaey-sis , binding , eeanspoee , eeansceipeionaeeegueaeion and moeecueaeseeuceuee-eeeaeed eoees , especia e y in eesponseeoineeenaeoeeieeenaestiduUtion. KEGG analysis results showed that the diderentia0u expressed proteins were mainly invelved in the reaulation of memboi-io and biologicoi processes. The virulence genes that caused increased pathooenicith in M. bovis N might be mmaA4,eccel ,pqY , hspX ,Mpb63,and mmp2. In addition ,the expression levels of epob ,rpoB and rpoC of N were sianificantly highco than that ofC68004, suggesing/ha//heeesisanceoeN oeieampicin , /heeies-eine/ubeecueosisdeug , isseongee/han /ha/oeC68004.Wih eee-quen/ceinicaemedicaion and changesin immuneeesponse , /heeipee s ion oepeoeinseeeaed omeaboeic , DNAeepeicaion and deugeesisanceoeNwasdi e een/in /hepeocessoeadap aion o/heeneieonmen/Key words : M . bonus ; proteomics ; ddferentially expressed proteins ( DEPs ) ; virulence dCferencoCorresponding acthors :XU Li-hua ,E-mat : littlezhe99@ 163. com ; ZHOU Xiang-mei ,E-mat : zhouxm@cau. edu. cn蛋白组学技术串联质谱标记(Tandem mas s taa ,收稿日期:2020—02—12基金项目:国家自然科学基金项目(31560687, 31760722,2017YFD0500901);宁夏大学研究生创新项目(GIP2019006)作者简介:李梦莹(1994 -),女, ,从事动物传染病诊断与防治,E-mail :441790017@ qq. com通信作者:许立华,E-mait : nttlezhe99 @ 163. com ;周向梅,E-mait : zhouxm@ cau. edu. cnTMT )与液相色谱质谱联用(Liquid chromatographe-tandem mass spectrometro ,LC-MS^MS "相结合是一种于标 量的新技术,可以对多个样品进质和多肽的定量分析[1] $ TMT 是定量蛋白质组学中最 的 素标记方法,它对 质的相对 量提供 性和可重复性。

荞麦研究进展综述

荞麦研究进展综述

荞麦研究进展综述摘要综述国内外近年来对荞麦的研究进展,主要集中在荞麦的化学成分和蛋白质提取物的生物活性方面,以为荞麦的研究和开发提供参考。

AbstractResearch progress of Fagopyrum esculentum Moench in recent years of the world was summerized.That was concentratedmainly on chemical composition and protein activity. It could provide references for the research and utilization of Fagopyrum esculentum Moench.Key wordsFagopyrum esculentum Moench;research progress荞麦起源于中国,在世界各地广为栽培利用。

荞麦为蓼科荞麦属一年生草本植物,生育期短,一般60~80 d就能成熟,包括甜荞麦和苦荞麦。

甜荞(Fagopyrum esculentum Moench)又名普通荞麦。

苦荞(Fagopyrum tataricum(L.)Gaertn.)又名鞑靼荞麦(F.tataricum),是双子叶植物。

苦荞麦喜凉爽,耐瘠薄,多生长在高寒山区,籽粒供食用,香味淡、略有苦味;在世界上主要分布在我国西南和华北等地山区,产地主要为四川、云南、贵州和山西等省份。

荞麦具有很高的营养价值和药用价值,历来作为药食兼用的作物进行种植。

历年来对荞麦的研究一直很多,现以近年来国内外对其的研究进展作综述,以为荞麦的研究和应用提供参考。

1化学成分1.1醛和酮Jane?觢等[1]用石油醚、戊烷或甲醇3种溶剂提取苦荞,用GC-MS分析其香气成分,表明苦荞中发香的物质主要是2,5-二甲基-4-羟基-3(2H)呋喃酮(2,5-dimethyl-4-hydroxy-3(2H)-furanone)、(E,E)-2,4-癸二烯醛[(E,E)-2,4-decadienal]、苯乙醛(phenylacetaldehyde)、2-甲氧基-4-乙烯苯酚(2-methoxy-4-vinylphenol)、反式-2-壬醛[(E)-2-nonenal] 、癸醛(decanal)、己醛(hexanal)、4-(二乙氨基)水杨醛(salicylaldehyde)和2-羟基-4-二乙氨基苯甲醛(2-hydroxybenzaldehyde)。

猫血巴尔通氏体病的流行与诊断

猫血巴尔通氏体病的流行与诊断

2020年第05期猫血巴尔通氏体病的流行与诊断霍畅媛︵辽宁省绥中县农业事务服务中心,辽宁绥中125200︶关键词:猫血巴尔通氏体;病原;流行病学;症状及诊断;预防DOI:10.3969/J.ISSN .1671-6027.2020.05.171猫血巴尔通氏体病(Haemobar Tonellosis )又称猫传染性贫血,是由猫血巴尔通氏体引起的一种以贫血、脾肿大为特征的支原体疾病。

已有许多国家确认了猫血巴尔通氏体病,对此病我国近年来也多有报道。

1病原猫血巴尔通氏体(Mycoplasma felis)主要寄生于猫的红细胞表面或游离于血浆中,无细胞壁,形态可表现为环形、球形、盘形,有时呈链状或短杆状,电镜下直径大小约为0.5~0.6μm ,革兰氏染色呈阴性,瑞特氏染色呈蓝紫色,姬姆萨染色呈紫红色。

Splitter E 等发现,有两种形体不同的血尔通氏体存在于猫的体内,后来被称为大型猫血巴尔通氏体(H.felis Large-form )和小型猫血巴尔通氏体(H.felis Small-form ),其代表株分别为H.felis-Ohio-Florida 株(简称H.felis-OH 株)和H.felis -California 株(简称H.felis-CA 株),但两者是2个独立的种且毒力也有所不同,其中H.felis-OH 株致性病较强,可引起猫传染性贫血;H.felis-CA 株致病性弱,受感染的猫常无临床症状或仅表现轻微症状。

2005年,Willi B 报道了一株新的猫血巴尔通氏体(Candidtus mycoplasma turicensi ),是引发猫发生温和性贫血的病原。

2流行病学本病的传染源为感染血巴尔通氏体的猫,主要通过静脉接种病猫血液或是吸血昆虫叮咬传播,也可经猫的抓伤、咬伤而感染、通过胎盘垂直传播。

Haefner M 等研究发现虎也是能是猫血巴尔通氏体的宿主之一。

所有年龄段的猫均可感染本病,吕艳等人对云南部分地区猫血巴尔通氏体感染状况的监测,对不同养殖模式和不同年龄进行感染因素分析表明感染率在不同养殖模式和不同年龄段之间有显著的差异(P<0.05),感染率与猫的年龄大小有密切关系,年龄也大的猫越容易感染。

生物制药研究员英语求职信

生物制药研究员英语求职信

生物制药研究员英语求职信Dear [Recipient's Name], I am writing to express my interest in the position of a biopharmaceutical research scientist at [Company Name], as advertised on [source of job listing]. With my educational background and hands-on experience in biopharmaceutical research, I believe I possess the necessary skills and expertise to contribute to the success of your team.I recently completed my Ph.D. in Biotechnology from [University Name], where I specialized in the development and characterization of biologic therapeutics. During my doctoral research, I had the opportunity to work on various projects related to the design and optimization of antibody-based drugs for the treatment of autoimmune diseases. My expertise lies in molecular biology techniques, protein expression,purification, and characterization, as well as in vitro andin vivo assay development.As a research scientist at [Previous Company], I gained valuable experience in the field of biopharmaceuticals. I was actively involved in the development and production of recombinant protein-based therapeutics. My responsibilities included designing and implementing experiments, analyzing data, and presenting findings to cross-functional teams. Ialso worked collaboratively with external partners to conduct technology transfer and managed a team of research associates.I am confident that my strong background in biopharmaceutical research, coupled with my skills in experimental design and data analysis, will make me avaluable asset to [Company Name]. I am well-versed in the cGMP regulations and have a track record of adhering toquality standards while maintaining efficient research workflows. Moreover, my ability to effectively communicatecomplex scientific concepts to both technical and non-technical audiences would be an asset in collaborative projects and potential interactions with regulatory authorities.I am impressed by [Company Name]'s reputation for innovation and its commitment to developing cutting-edge therapeutics. I am particularly drawn to the opportunity to contribute to the advancement of novel treatments in areas of unmet medical need. Joining your team would be an ideal platform for me to apply my scientific expertise and contribute to the development of breakthrough therapies.I have attached my resume for your review. I would appreciate the opportunity to further discuss how my skills align with the needs of [Company Name]. Thank you for considering my application. I look forward to the possibility of contributing to your organization's mission to improve patient outcomes through biopharmaceutical innovation.。

摩根摩根菌致足趾脓肿1例

摩根摩根菌致足趾脓肿1例

甘肃医药2021年40卷第1期Gansu Medical Journal ,2021,Vol.40,No.1摩根摩根菌(Morganella morganii )属只有摩氏摩根菌一个种,符合肠杆菌科的一般定义,革兰氏阴性。

见于人、狗、其他动物和爬虫等的粪便,常引起尿路和术后伤口医院感染[1]。

近来有报道引起肝脓肿[2]、腹膜炎[3]、败血症、脑膜炎等医院感染的临床报道,是一种重要的医院性感染致病菌。

本例患者系摩根摩根菌感染导致左踇趾以及右足第二足趾化脓感染,经药物及手术治疗后好转。

1临床资料患者,女,53岁,于1年前左足踇趾以及右足第二趾修剪过深致局部破溃,反复破溃流脓,迁延不愈,患趾疼痛,行走时疼痛加重。

遂于2019年5月16日入院。

查体:T :36.7℃P :25次/分R :18次/分BP :198/150mmHg 。

患者左足踇趾甲边缘自远端向近端向甲沟内嵌入,甲沟及周围红肿、压痛,挤压时可见脓液流出(图1)。

患者既往有慢性肾功能衰竭、高血压。

辅助检查:尿素:17.1mmol/L 、胱抑素C :3.3mg/L 、血肌酐:216.2μmol/L 、尿酸:446μmol/L 、内生肌酐清除率:25mL/min 、白细胞:14.9×109/L 、中性粒细胞:0.85、淋巴细胞:15.5%。

踇趾脓液病原菌培养:金黄色葡萄球菌,药敏试验报告对呋喃妥因、头孢呋辛钠、多西环素、恩诺沙星敏感,对庆大霉素和克林霉素中等耐药,对氨苄西林较强的耐药性。

初步诊断:(1)嵌甲合并甲沟炎;(2)慢性肾功能衰竭;(3)高血压病(Ⅲ级极高危)。

入院后继续给予替米沙坦片40mg 口服qd ;氨氯地平5mg 口服qd 降压治疗,百令胶囊3粒口服qd 保肾治疗以及头孢呋辛钠1.5g ivgtt bid 抗感染治疗。

5月17日,患者血压控制良好,遂予当天行局麻下行左足踇趾及右足第二足趾部分拔甲术+清创引流:将患甲于其上方约3mm 位置纵行切开,最大限度减少手术对甲床组织的损伤。

分子生物学学科的英语意思

分子生物学学科的英语意思

分子生物学学科的英语意思The English Meaning of the Discipline of Molecular BiologyDefinition and BackgroundMolecular biology is a branch of science that explores the structure, function, and interactions of biological macromolecules, such as DNA, RNA, and proteins, at the molecular level. It involves the study of various processes within cells, including replication, transcription, translation, and gene expression. Through understanding the fundamental mechanisms of life, molecular biology provides insights into genetic diseases, evolutionary relationships, and the development of new therapeutic interventions.Etymology and OriginsThe term "molecular biology" originated in the early 20th century. The word "molecular" refers to the smallest fundamental units of a substance, while "biology" pertains to the study of life. The combination of these two concepts reflects the focus of molecular biology on elucidating the molecular basis of biological phenomena.Historical MilestonesThe history of molecular biology can be traced back to numerous key discoveries and technological advancements. In 1953, James Watson and Francis Crick proposed the double-helix structure of DNA, which revolutionized the field and provided a framework for understanding how genetic information is stored and transmitted. In the following years, the development of techniques such as polymerase chain reaction (PCR), DNAsequencing, and recombinant DNA technology allowed scientists to manipulate and analyze genetic material with unprecedented precision. These breakthroughs paved the way for significant advancements in the understanding of molecular biology.Interdisciplinary NatureMolecular biology draws upon various scientific disciplines, including genetics, biochemistry, biophysics, and cell biology. The integration of knowledge from these fields enables researchers to comprehend the complex mechanisms underlying biological processes at the molecular level. By combining theoretical concepts with experimental approaches, scientists in molecular biology can unravel the intricate details of cellular functions.Application in BiotechnologyThe knowledge gained from molecular biology research has numerous practical applications. In the field of biotechnology, molecular biology techniques are utilized for the production of recombinant proteins, development of genetically modified organisms (GMOs), and gene therapy. Through genetic engineering, scientists are able to manipulate and modify the genetic makeup of organisms, leading to advancements in agriculture, medicine, and environmental conservation.Disease Research and Drug DevelopmentIn the context of human health, molecular biology plays a crucial role in disease research and drug development. By studying the molecular mechanisms underlying diseases, scientists can identify genetic markers, develop diagnostic tests, and design targeted therapies. Additionally,molecular biology techniques contribute to the identification and characterization of potential drug targets, facilitating the discovery of new treatments for various disorders.Evolutionary StudiesMolecular biology also contributes to our understanding of evolutionary processes. By comparing DNA sequences among different species, scientists can reconstruct evolutionary relationships and study the factors driving genetic variation and adaptation. This field, known as molecular evolution, sheds light on the origins of life and the diversification of species across time.Future PerspectivesAs technology continues to advance, the field of molecular biology is likely to witness further progress. Emerging techniques, such as next-generation sequencing, genome editing, and single-cell analysis, offer unprecedented opportunities to delve deeper into the molecular intricacies of life. Moreover, the integration of molecular biology with other fields, such as artificial intelligence and nanotechnology, may open up new avenues for scientific exploration and innovation.In conclusion, the discipline of molecular biology focuses on understanding the molecular basis of life, encompassing the study of DNA, RNA, proteins, and their interactions within cells. With its interdisciplinary nature and practical applications, molecular biology plays a pivotal role in various scientific and technological advancements. By continuously unraveling the mysteries of the molecular world, researchers in this field contribute to the progress of science and the betterment of human life.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORIGINAL PAPERMolecular Characterization and Expression Analysis of NAC Family Transcription Factors in TomatoXiaohong Kou&Shuang Wang&Mengshi Wu&Runzi Guo&Zhaohui Xue&Nan Meng&Xiaomin Tao&Mimi Chen&Yifei Zhang#Springer Science+Business Media New York2013Abstract The NAC family is considered one of the largest plant-specific transcription factors families,and functions in diverse and vital physiological processes during development. In the present study,we performed a complete bioinformatics analysis of the NAC family transcription factors in tomato,and annotated the non-redundant SlNAC1-74proteins into12sub-groups.Six NAC genes from tomato,which were designated SNAC4–SNAC9,were studied instensively.The expression anal-ysis indicated that each SNAC gene exhibited a specific expres-sion pattern in the tissues examined.SNAC4and SNAC6were most highly expressed in the stems and leaves,whereas the expression levels of SNAC5,SNAC8and SNAC9were higher in young leaves and old leaves,respectively.In addition,the expression patterns of SNAC genes were characterized during the development of tomato fruits.All of the genes were further investigated to determine their responsiveness to hormones,and a coordinated expression was observed.The expression of the SNAC gene transcripts was induced by ABA,SA and short-time ethylene treatment,whereas their transcription was inhibited by GA,6-BA and IAA.Our present study provides a useful refer-ence for future investigations of NAC genes in tomato and other fleshy fruits.Keywords NAC.Transcription factor.Tomato. Development.HormonesIntroductionTranscription factors(TFs)are proteins that interact with DNA promoters and are involved in gene expression and regulation.Various plant TFs,which contain various function-al domains,such as MYB,DREB and NAC,have been well studied.The NAC gene family name is an acronym derived from the first three identified genes containing this domain: NAM from Petunia and,ATAF1/2and CUC2from Arabidopsis(Souer et al.1996;Aida et al.1997).The NAC family members are characterized with a highly conserved NAC domain region at the N-terminal as a functional domain, which can be further divided into five subdomains(A-E).The C-terminal region is highly variable in sequence composition and length and,plays a vital role as a transcriptional activator or repressor(Xie et al.2000;Ooka et al.2003;Tran et al. 2004;Kim et al.2007a).The plant-specific NAC family refers to proteins contain-ing the NAC domain,and is one of the largest transcription factor families in plants.A continuously increasing number of NAC genes have been identified and studied in different plants.There are105and140NAC or NAC-like genes in Arabidopsis and rice,respectively,and these can be further classified into18subfamilies(Ooka et al.2003;Fang et al. 2008).The specific subfamilies are composed of multi-functional proteins involved in various plant biological pro-cesses related to growth and development,including cell division(Kim et al.2006),seed and embryo development (Duval et al.2002;Sperotto2009),the formation of lateral roots and cotyledons(Aida et al.1997;Weir et al.2004;He Xiaohong Kou and Shuang Wang made equal contributions to this work.Electronic supplementary material The online version of this article(doi:10.1007/s11105-013-0655-3)contains supplementary material,which is available to authorized users.X.Kou:S.Wang(*):M.Wu:R.Guo:Z.Xue(*):N.Meng:X.Tao:M.Chen:Y.ZhangSchool of Chemical Engineering and Technology,Tianjin University,Tianjin300072,People’s Republic of Chinae-mail:wangshuang19890720@e-mail:zhhxue@Plant Mol Biol RepDOI10.1007/s11105-013-0655-3et al.2005),the maintenance of shoot apical meristems(Souer et al.1996;Aida et al.1997;Kim et al.2007b;Mao et al. 2007),organ growth and senescence(Sablowski and Meyerowitz1998;Guo and Gan2006;Liu et al.2009;Kou et al.2012a,b),the synthesis of secondary walls(Zhong et al. 2007b;Ko et al.2007)and plant nutrition regulation(Uauy et al.2006;Ogo et al.2008).Transcriptome studies have shown that many NAC tran-scription factors are involved in the response to abiotic stress and hormonal treatments.Furthermore,some of the NAC transcription factors have been reported to be potential genes for the engineering of stress resistance during the plant life-cycle.Interestingly,phylogenetic analysis shows that most of the stress-responsive NACs belong to the ATAF and AtNAC3 subfamilies.The SNAC1and SNAC2genes in rice are in-duced by cold,salinity,drought,and ABA(abscisic acid) treatment,and the transgenic plants that overexpress these genes demonstrate increased tolerance against cold,salt,and drought(Hu et al.2006;Hu et al.2008).SNAC2and OsNAC10can improve the expression of some related genes under stress conditions(Jeong et al.2010).The ANAC19,55 and72genes in Arabidopsis are inducible by drought,salt and ABA,and have been confirmed to be positive regulators in the ABA signaling pathway and stress tolerance(Tran et al. 2004;Fujita et al.2004).NAC genes are also involved in the defense against biotic stress and are up-regulated under con-ditions of pathogen infection and attack.It has been shown that OsNAC19in rice is elevated by Magnaporthe grisea infection(Lin et al.2007).Tomato is one of the most popular fleshy fruits in the world and exhibits a wealth of nutrition.The abundant genetic re-sources available make tomato an essential model system for the study of the development,ripening and senescence of fleshy fruits(Alexander and Grierson2002;Giovannoni2004;Klee and Giovannoni2011).Most available research focuses mainly on model species,such as Arabidopsis and rice,and the char-acterization of NAC genes in tomato is still rudimentary.An NAC gene,SlNAC3,isolated from a tomato flower cDNA library was recently reported(Han et al.2012).A digital anal-ysis revealed that SlNAC3demonstrates a tissue-specific ex-pression pattern and is inhibited by drought,salt stress and ABA treatment.The completion of the high-quality sequencing of the tomato genome has provided an excellent opportunity for the genome-wide analysis of NAC family genes(International Tomato Genome Sequencing Project2012).In the present study,74SlNAC genes were identified and classified according to their phylogeny.The molecular fea-tures of the genes and their encoded proteins were also ana-lyzed.We also studied the developmental expression patterns of six genes,namely SNAC4-9,which belong to the NAP and AtNAC3subgroups in tomato.Through molecular cloning and sequence characterization,we found that all six genes share a similar genomic organization and high sequence similarities,especially within the NAC domains.A tissue-specific expression analysis showed that these genes exhibit different expression patterns,particularly during fruit devel-opment.We further investigated the responses of the genes to hormone treatments.The present study constitutes the first systematic study of NAC genes in tomato,and the information generated suggests that the NAC genes may regulate tomato growth and fruit development.Materials and MethodsPlant Growth and TreatmentsPlants of tomato cultivar AC were used throughout the exper-iments described in this manuscript.The plants were field-grown under normal conditions at Tianjin University.The vegetable tissues,such as leaves,stems and roots,were collected from seedlings starting30days after flowering (DAF),and the open flowers were sampled and prepared for tissue-specific expression assays.The developing fruits from 35to55DAF,at the green mature,breaker,pink,and red ripe stages,were collected,divided into the pericarp,radial peri-carp,and columella,frozen immediately in liquid nitrogen and stored at−80°C until further use.For exogenou hormones treatments,10g tomato fruit tissue discs(diameter of10mm)at the green mature stage were immersed in50ml vials containing0.1mM ABA (abscisic Acid),0.1mM IAA(indole Acetic Acid),0.1mM GA(gibberellic Acid),0.1mM6-BA(6-benzylaminopurine) and1mM SA(salicylic Acid),respectively.The control group discs were treated with the buffer solution(50mmol/L citric acid,100mmol/L sorbitol and0.33mmol/L chlorampheni-col).To evaluate the effects of ethylene treatment,tomato fruits were placed in vials,which were injected with50μL of2%(v/v)ethylene(air as a control)to obtain a final concentration of100μL/L.The hormone treatments lasted 0,2,4,6,8,10,12,24,or48h at23°C.All of the samples were rinsed,frozen in liquid nitrogen and stored at−80°C for further use.Three biological replications were performed for each treatment of sampling time point.Collection of SlNAC Gene Family MembersWe selected10reported NAC protein sequences from five subgroups of the NAC family as queries for a BLASTP search in the tomato SOL database(/),using an e-value of1e-10.The GenBank accession numbers of the repre-sentative genes are the followings:A TAF1/2(X74755/X74766), AtNAM/NAP/AtNAC2(AF123311/AJ222713/AB049071), CUC1/2/3(AB049069/AB002560/AF543194),TIP (AF281062),and AtNAC072(At4g27410).Conserved Domain Database(CDD)search in NCBI(http://www.ncbi.Plant Mol Biol Rep/Structure/cdd/wrpsb.cgi)was performed to confirm the NAC domain of each sequence.Phylogenetic Analysis and Sequence AlignmentPreviously published NAC sequences from Arabidopsis and other species,including Oryza sativa,Brassica napus,Triticum sativa,Antirrhinum majus,were retrieved from the GenBank database.For the phylogenetic analysis,an unrooted tree was constructed with the MEGA5software(Tamura et al.2007) using the Neighbor-Joining method with1000bootstrap replicates.A multiple sequence alignment of the representative pro-tein sequences of SNAC4-9was performed using the ClustalX1.83program(Thompson et al.1997).The GenBank accession numbers of the reported proteins were the following:CitNAC(EF185419)/AtNAM(AF123311)/ NAP(AJ222713)/AtNAC2(AB049071)/GmNAC1 (AY974349)for NAP and,AtNAC3(AB049070)/ AtNAC019(At1g52890)/AtNAC072(At4g27410)/ GmNAC3(AY974351)/GmNAC4(AY974352)for AtNAC3.Sequence AnalysisInformation regarding the SlNAC gene structures,chromosomal localizations,and transcripts was procured from the SOL data-base.The positions of the SlNAC genes on the tomato chromo-some maps were drawn and modified manually,with annotation. The protein-encoding characteristics were procured from ExPASy ProtParam(/protparam/),and the hydrophobic maps were further verified by ProtScale(http://web. /protscale).A protein motif analysis was accomplished using the SMART database(http://smart.embl-heidelberg.de/),and the transmembrane proteins were further confirmed by TMHMM(http://www.cbs.dtu.dk/services/ TMHMM-2.0/).The subcellular localizations were predicted by WoLF PSORT(/).A transcriptome analysis of various tissues in the tomato cultivar Heinz and the wild relative Solanum pimpinellifolium was used to predict the SlNAC gene expression patterns.The data corresponding to the SlNAC genes were downloaded from the Tomato Expression database(/).Based on the data,the heat map was generated using the MeV4.8software(http://www.tm4. org/mev.html)following the instruction of the software.By expressing the signal strength and expression directly reflects the gap,screening candidate genes.The digital expression analysis of tomato SlNAC genes was performed by the visual reflection of signal strength and expression disparity.RNA Extraction and RT-qPCR AnalysisIsolating RNA from samples ready for the reverse transcriptase quantitative PCR(RT-qPCR)applications was performed using the Column Plant RNAOUT kit(Tiandz#71203,China).The concentration and quality of the RNA samples were examined using spectrophotometer(Nanodrop ND-1000).Samples cDNA was synthesized using the Transcript One-Step gDNA removal and cDNA synthesis supermix(TransGen#AH11-03,China). qPCR analyses of individual genes were designed using Primer5.Briefly,for each qPCR reaction,1μL each diluted sample was used as a template in a25μL reaction containing 12.5μL2×SYBR green supermix(TransGen#AQ101),8.5μL ddH2O and0.5μL of each primer.All qPCR reactions were performed on Light Cycler480thermocycler with45cycles. Cycle threshold(C t)values were determined by the Light Cycler software assuming100%primer efficiency.Theβ-tublin gene was used as an internal control.The Primer pairs used in this research are shown in Table1.For the development analyses,the expression levels of individual genes in the root(R)or pericarp at green stage(G1)were set to1.For the hormone treatment analyses,the expression levels of individual genes under0h treatment were set to1.Statistical MethodsThe RT-qPCR gene expression was quantified using the2-△△Ct comparative methods.Results are presented as the means±standard deviation from three biological replicates of each experiment.The significant differences(p=0.05)between mean values were determined by analysis of variance (ANOV A)using IBM SPSS Statistics20(SPSS commercial software,SPSS Inc.,Chicago,IL,USA)software.ResultsIdentification of SlNAC GenesAfter the sequencing of the tomato genome was completed, we used10reported NACs as sequence entries for an exhaus-tive search.By removing any redundant sequences and dif-ferent transcripts of the same gene,we identified74putative SlNAC genes preliminarily.The protein-encoding sequences were confirmed by CDD for the presence of the NAM do-main.For convenience,we designated the genes SlNAC1to SlNAC74according to the chromosome distribution.Phylogenetic Analysis and Sequence AlignmentThe clarification of the phylogenetic relationships and classi-fications is important for the functional prediction of this gene family.A combined phylogenetic tree was constructed with the aligned SlNAC and published NAC sequences using the MEGA5software(Fig.1).Of the74total SlNACs,54SlNACs were divided into12 subgroups with high bootstrap support.The subgroups werePlant Mol Biol Repnamed by the homologous NACs,according to Ooka’s classifi-cation(Ooka et al.2003).Eleven,nine,seven,and five SlNACs belonged to the NAM,VND,TERN,and ANAC063subgroups, respectively,whereas the NAC2and TIP subgroups contained four SlNACs each,the NAP,A TAF and ANAC011subgroups contained three SlNACs each,the AtNAC3and SENU5sub-groups contained two SlNACs each,and the NAC1subgroup contained one SlNAC.The remaining20sequences had less homology with the known NACs and were clustered into differ-ent unknown subgroups.SlNAC20was clustered as a member of the A TAF subgroup and was most closely related to StNAC. SlNAC46belonged to the NAM subgroup,and SlNAC49was clustered into the NAC1subgroup.SlNAC69was a member of the TERN subgroup.The identities of SlNAC70and NTL,were high,i.e.,approximately99%.Our data showed that SlNAC1 was homologous to SENU5with high bootstraps support. SlNAC48and SlNAC59were highly related,shared99%se-quence similarity and were classified as members of the NAP subgroup.The deduced proteins SlNAC47and SlNAC71were classified as members of the AtNAC3subgroup.For further research,we selected six genes belonged to the NAP and AtNAC3subgroups,and conveniently renamed SlNAC48,71, 59,24,47and19as SNAC4,5,6,7,8and9,respectively,based on a previous report regarding SlNAC3(Han et al.2012).The amino acid alignments of SNAC4,5,6,7,8and9and other members of the NAP and AtNAC3subgroups are shown in Fig.2.Higher sequence similarities were found in the N-terminus regions.The N-terminnus was composed of approxi-mately150amino acids and contained a conserved NAM do-main,which had five distinguishable subdomains(A–E).The C-terminal regions were divergent in amino acid composition,and contained a number of simple amino acids,such as Ser,Thr,Pro and Glu.Features of SlNAC GenesTo examine the specific properties of SlNAC genes,we identified their genomic distributions and the structural features of each gene using the SOL database(Supplementary Table1).In total, 74genes were localized on12chromosomes with an uneven distribution(Fig.3).The genes were present in different regions of the chromosomes,including at the telomeric ends,around the centromere,and in between the telomere and the centromere. Chromosome6had the largest number(13)of SlNAC genes, followed by eight genes on chromosomes7and11.In contrast, only two genes were found on chromosome9.Most of the SlNAC genes on chromosomes2,3,6and7were found on the long arms of the chromosomes,whereas the SlNAC genes on chromosomes4,5,8and7were located at both ends.The SlNAC genes could be classified into three types according to their number indexes of exons/introns.The first type contained48genes with the number index3/2.The second type had six genes that had one or no intron,such as SlNAC12,33and45in the AtNAC063subgroup.The third type could be further divided into smaller subtypes with the number indexes4/3,5/4and6/5.The highest numbers of the exons and introns were found in SlNAC8,which contained17 exons and16introns.Features of SlNAC ProteinsTo analyze the subcellular localizations,conserved domains and motifs of SlNAC proteins,we used website-accessible software as described in materials and methods.As shown in Supplementary Table1,most of the proteins were acidic,with PI values ranging from4.58to7.0,and the highest observed PI value was9.47.The instability indexes ranged from24.28 to61.3,and most SlNAC proteins had an index higher than 40.According to the amino acid indexes,the proteins were rich in Ser,Lys,and Asn.The subcellular localization predictions suggested that ap-proximately half of the SlNACs were localized in the nucleus, whereas five,four,and three were localized in the peroxisome, cytosol,and chloroplast,respectively.In addition,subcellular localization predictions suggested the cytoskeletal localization of SlNAC5,the mitochondrial localization of SlNAC29,and that SlNAC11and37could be located in either the nucleus or the cytosol.SlNAC proteins were divergent in their motif compositions. The SlNAC members all had one NAM domain as the charac-teristic conserved domain.Forty-four SlNAC proteins contained one or more low complexity region in the downstream region ofTable1Primer pairs used in thisresearch Gene Forward-Primer(5′-3′)Reverse-Primer(5′-3′)Tm(°C)SNAC4TGCCTCTGTTCCTCTTCCTG TCTTGTTCTCCAAATGTCGC53SNAC5ATTCTCGCTGGGCTCAAAC GGAGGATGGGCGTAAACAT53SNAC6TGTTGAGAACAACGAGGACG AGGAAATTGGCAA TGGAGC53SNAC7CTCTGATCTTCCTCCTGGATTT CAGGGATCGAACTTGTAGACAT53SNAC8CTGGGAACTTCGA TTGGGCT GTTTGA TTTCCCGGCGTTGG53SNAC9CCCTCCTGGATTTAGGTTTC CCAGGGATCGAACTTATAGACA53β-tublin CACGTGGGTCCAGCAATAC GGTCAGCAGCACACA TCA TGT60Plant Mol Biol Repthe sequence.Some proteins in the TIP and NAC2subgroups had coiled coil regions.SlNAC21,27,64and 65in the A TAF and NAC2subgroups included a transmembrane region.In addition,SlNAC68had two internal repeat regions in sequence,and SlNAC37had a VQ conserved domain.Digital Expression Patterns of SlNAC GenesTo forecast the expression profiles of the SlNAC genes during the tomato development process,we acquired the digital ex-pression normalized (RPKM)data from a transcriptome anal-ysis of various tissues in the tomato cultivar Heinz and the wild relative Solanum pimpinellifolium from the TED data-base.As shown in Fig.4,some members of the NAP,ATAF,AtNAC3,NAC2,TIP and TERN families,such as SlNAC14,20,24,28and 61were constitutively expressed in all of the tested organs.However,members of the VND,NAM and TERN subgroups were weakly expressed.SlNAC9,30,34,35,52and 72,which belong to subgroup VND,were strongly expressed in the roots,and SlNAC18and 41were strongly expressed in the flower buds and petals.Notably,there were two opposite expression patterns observed during fruit devel-opment.The first,which was observed for SlNAC3,exhibited an increase in expression during maturation.And the second,which was found for SlNAC20,exhibited a decrease in ex-pression in the transition from the immature to mature stages.Tissue-Specific Expression of SNAC GenesAlthough the phylogenetic analysis provided important bio-informatics support for candidate genes selection,expression analysis is better for the further investigation of SNAC tran-scription factors.To elucidate the expression patterns of SNAC genes,RT-qPCR analysis was performed (Fig.5).The β-tubulin gene,which was used as an internal control for constitutive expression,was uniformly expressed in allofFig.1Evolutionary relationship of SlNAC and some homologous pro-teins in other plants.The multiple alignment was made using ClustalX and N-J tree was constructed with a 1000-bootstrap replication support.The subfamilies within the NAC family were grouped as indicated.Accession numbers of the reported NACs are as follows:ATAF1(X74755);ATAF2(X74755);AtNAM (AF123311);NAP (AJ222713);AtNAC2(AB049071);TIP (AF281062);CUC1(AB049069);CUC2(AB002560);CUC3(AF543194);AtNAC072(At4g27410);AtNAC3(AB049070);NAC2(AF201456);ANAC055(At3g15500);ANAC019(At1g52890);ANAC011(EFH67253);BnNAC1-1(AY245879);BnNAC3(AY245880);OsNAC1(AB028180);OsNAC2(AB028181);OsNAC3(AB028182);OsNAC4(AB028183);OsNAC5(AB028184);OsNAC6(AB028185);OsNAC7(AB028186);OsNAC8(AB028187);GRAB1(AB028187);GRAB2(AJ010830);NAM (X92205);ZmNAC1(ABY67929);SENU5(Z75524);StNAC (AJ401151);GmNAC1(AY974349);GmNAC2(AY974350);GmNAC3(AY974351);GmNAC4(AY974352);GmNAC5(AY974353);GmNAC6(AY974354);CitNAC (EF185419);TERN (AB021178);CarNAC5(ACS94038);ANAC063(AEE79353);VND1(AEC06722);SND1(ABL67723);NTL8(EFH57163)Plant Mol Biol RepEDC BAFig.2Amino acid sequences comparisons between SNAC4-9and members of NAP and AtNAC3subgroup.Identical amino acids are shaded in the same colour.Subdomains in the N-terminal regions were indicated by A-EPlant Mol Biol Repthe tissues examined.Each SNAC gene showed a unique expression pattern.SNAC4mRNA was accumulated in all of the tissues at a similar expression level.SNAC5was expressed strongly in the leaves but weakly expressed in the roots and flowers.Moreover,the expression level of SNAC5in young leaves was obviously higher than that obtained in old leaves.The analysis of SNAC6revealed a higher level of expression in the stems and leaves and,a relatively lower expression level in the roots.SNAC7was predominantly expressed in the stems.The expression of SNAC8was mostly observed in old leaves and flowers,but expression was also observed at very low levels in the roots and young leaves,which is different from the expression pattern of SNAC5,although the two genes had a high sequence similarity.The expression pattern was consistent with the development.SNAC9was constitutively expressed in all of the tissues,although a relatively higher level of expression was observed in old leaves.The expression patterns of SNAC genes during fruit devel-opment were also studied (Fig.6).For the expression analysis,the β-tubulin gene was used as an internal control.In tomato fruits,the expression level of SNAC4increased with the maturation process and reached its highest expression levels at the red ripe stage,which is consisten with the maturation process.The SNAC4expression level was high in the colu-mella at the green mature and breaker stages,but was signif-icantly higher in the pericarp compared with the columella and the radial pericarp late in the maturation process.The analysis of the expression of SNAC5revealed that it is the expressed at higher levels at the pink stage in different parts of the fruits,with no obvious difference.Throughout development,the expression of SNAC5first decreased in the pericarp and then increased,and the lowest level was observed at the breaker stage.The SNAC5expression in the columella presented a clear upward trend,and the highest levels were observed at thered ripe stage.However,the obvious expression differences between the columella and other regions during the same period still require further investigation.On the whole,the highest expression levels of SNAC6were observed during the pink period,followed by the breaker stage.At the red ripe stage,the tomato fruits progress from late-maturation to the senescence process,and the expression signals for SNAC6slowly weakened.SNAC6expression in the pericarp and radial pericarp was weak in the early stage and gradually increased with the development process.There was a promi-nent increase in the expression of SNAC7in different regions throughout the during the entire development process.The SNAC7expression in the pericarp reached a maximum level at the red ripe stage,whereas its expression in the radial pericarp and columella was low at the pink pared with the other genes,SNAC8was expressed in the earliest developmental stage.Fruits at the breaker stage and the red ripe stage exhibited a higher SNAC8expression level.The expression profile of SNAC9was similar to that of SNAC7,and the levels in the pericarp were higher than those obtained in other regions at similar stages.Expression Profiles with Hormone TreatmentsPlant hormones play an important role in the regulation of the development and maturation of fruits.To detect the impact of hormones on the expression of the target genes (SNAC4-9),green mature fruit discs were treated with ABA,IAA,GA,6-BA,SA,and ethylene.Compared with the control group,SNAC4was observed to be down-regulated following ABA treatment (Fig.7-a).SNAC5were up-regulation during short-term treatment with ABA for 2–6h.ABA treatment promoted SNAC6,SNAC7and SNAC9genes expression during the 6–8h,and the up-regulation of this gene increased with extendedtreatmentFig.3Distributions of SlNAC genes on the 12chromosomes in tomato.Chromosome numbers were indicated at the top of each bar.The scale on the left was in megabases (Mb)Plant Mol Biol RepFig.4Heat map representation of tissue-specific expression of74 SlNAC genes.Color bar at top shows level of expression.Red indicated expressed genes and green indicated unexpressed ones.R=root;L=leaf; FB,F=flower buds and opened flowers;Fr(1)/(2)/(3)=1/2/3cm fruit, respectively;MG=mature green fruit;Br and Br+10=fruits at breaker and breaker+10days stage.The above were samples of tomato cultivar Heinz.l=leaf;img=immature green fruit;brand br+5=fruit at breaker and breaker+5days stage.The last four ones were samples of Solanum pimpinellifoliumPlant Mol Biol Reptimes.SNAC8displayed a significant induction within 2h,but the transcript accumulation declined to normal levels after 4h of ABA treatment.On the whole,SA treatment had a better effect on the upregulation of SNAC4-9than ABA treatment,and the influence of the treatment time was obvious for some genes (Fig.7-b).SA treatment efficiently induced SNAC5and SNAC6expression within 2h of treatment but did not induce expression after 2h.The expression levels of the genes SNAC7was downregulated,but expression of SNAC9was increased under SA treatment remarkably.All of the genes,except SNAC9,were down-regulated by GA treatment,and the inhibition of expression was obvious under short-term treatment (Fig.7-c).The expression level of SNAC8,at 4h was 1.5-fold higher than that at 2h.In contrast,an influence of the treatment time on the other genes was not observed.The upregulation of SNAC9by GA was detected,which indicates that this gene is likely to be involved in the GA response pathways.The expression signals were weak in the IAA treatment group and exhibited obvious differences,com-pared with the control group.These results suggest that IAA treatment can inhibit SNAC4-9gene expression (Fig.7-d).Longer treatment times slightly weakened the inhibition,ob-served with the GA treatment,but evident differences were observed between different IAA treatment times.The expression level of SNAC8after 8h of IAA treatment was nearly three-fold higher than that obtained after 2h of treatment,and the former showed little difference with the control group,which suggests that the inhibition was weaker after longer treatment times.The down-regulation of expression was detected after 6-BA treat-ment,which indicates that these genes are likely involved in the 6-BA response pathways (Fig.7-e).The transcript accumulation obtained in the 6-BA treatment groups was similar to that obtained in the control,with some obvious variations.Taken together,these results indicated that SNAC6-9genes were in-volved in the general response to plant hormones.ABA and SA treatment positively regulated SNAC genes expression,whereas GA,IAA and 6-BA down-regulated the accumulation of these transcripts.In addition,the treatment time appears to have an effect on the induction of the expression of these genes.Because the effects of gas treatment may not be obvious,RT-qPCR analysis was performed to examine the induction of SNAC genes in response to ethylene treatment (Fig.8).Ethylene treatment efficiently induced SNAC genes expression within one day,however,the transcript accumulation declined to normal levels or even lower levels than those obtained in the control group after 24h of treatment.Within 6h of ethylene treatment,SNAC4and SNAC6were down-regulated,but their expression levels exhibited no obvious differences compared with those obtained for the control after 6h of treatment.R e l a t i v e e x p r e s s i o nR e l a t i v e e x p r e s s i o nFig.5SNAC genes expression in different tissues.R:Root;S:Stem;YL:yong leaves;OL:old leaves;F:flowers.Relative expression levels were calculated and normalized with the respect to the expression of the targeted gene in roots.Significant (P =0.05)differences between means are indicated by different letters.The expression levels of individual genes in the root (R)were set to 1SNAC4SNAC5SNAC6R e l a t i v e e x p r e s s i o nSNAC7SNAC8SNAC9R e l a t i v e e x p r e s s i o nFig.6SNAC genes expression in tomato fruits during development and senescence.G:Green mature;B:breaker;P:Pink;R:Red ripe.1:pericarp;2:radial pericarp;3:columella.Relative expression levels were calculated and normalized with the respect to the expression of the targeted gene in green mature fruits pericarp.Significant (P =0.05)dif-ferences between means are indicated by different letters.The expression levels of individual genes in the pericarp at green stage (G1)were set to 1Plant Mol Biol Rep。

相关文档
最新文档