《勾股定理》典型例题
勾股定理的典型例题
勾股定理是初中数学中的基本定理,常用于解决与直角三角形相关的问题。
以下是一些典型的勾股定理例题:
例题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。
即斜边的长度x²= 3² + 4² = 9 + 16 = 25,所以斜边的长度x = √25 = 5cm。
例题二:已知一边长为5cm的直角三角形的斜边长度为13cm,求另一条直角边的长度。
解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。
即5² + x² = 13²,即x² = 169 - 25 = 144,所以直角边的长度x = √144 = 12cm。
例题三:已知一条直角边长为8cm,另一条直角边长x cm,且斜边的长度为10cm,求直角边的长度x。
解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。
即x² + 8² = 10²,即x² + 64 = 100,即x² = 100 - 64 = 36,所以直角边的长度x = √36 = 6cm。
这些例题都是基于勾股定理的基本原理进行求解的。
通过掌握勾股定理的应用,可以帮助我们解决一些与直角三角形相关的数学问题。
其中√指代根号。
勾股定理典型例题详解及练习(附答案)
典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()丄)題宜分斬’本题考查勾股定理及勾股定理的逆定理.心2)解題思路:可利用勾股定理直接求出各边快,再进行判斷."在段AEAF 中,AF=1, AE-2,根据勾股走理,得』EF = J 血 + 血==75P同理AR 二2晶GH 二届CD = 24计算发现(昉尸+(戈旋尸=(晅-即卫新+超戸=G0 ,根据 勾股定理的逆定理得到以AB 、EF. GH 为边的三角形是直角三角形.故选解题后的慝考’心1.勾股定理只适用于直甫三角形,而不适用于锐角三角形和純角三珀形.因此,解题时一定裝认真分析题目所给条件*看是否可用勾股定理来解-■2在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认海 化”就是斜边而“固执般地运用公式X 二’ +* 其实,同样是△朋0\ 三。
不一定就等于9叭亡不一定就是斜边,A ABC 不一定就是直角三甫 形.aA.CD C.AB CD EF 、GHGH B.AB 、EF 、GHD.AB CD EF3.直第三角形的判定条件2勾般定理是互逆的,区别在于勾股定理的运用是一个从水形"(一个三甫形是直甫三甫形)至I)噱(川=/ +护)的过程,而直第三角形的判定是一个从“数(一个三角形的三边満足八二卅+酹的条件)到“形”(这个三角形是直角三角形)的过程.松4.在应用勾股定理解题时,裝全面地若虑间题,注意问题中存在的多种可能性,瞳免漏解.初+>例2:如图,有一块直角三角形纸板肋C,两直角辺AC-6cm t BC=8cm, 现将直角边AC沿直竝AD折養,使它落在斜边虫迟上,且点<7落到点遐处, 则仞等于()祕A. 2cmB. 3cmC. 4cmD. Scm+J1)題意分析:本题肴查勾股走理的应用叙2)解題思路’本题若直接在△力仞中运用勾股定理是无法求得CD的长的,因为只知道一条边,卫<7册扶,由题意可知,△上仞和心劝关于直线对称,因而AACD^^AED.进一歩则W AE=AC=6cm> CD=ED, ED 丄AB.设dgg 则在Rt A-4BC中.由勾股定理可得J4^=40^8(^=^8^100,得AB=10cm,在取△乃DE 中,有应+ (1Q-6)》=(8—x)%解得—3.心解答逸BP解题諭朋= _____________________________________________________勾股定理说到底是一个等式,而含有未知数的等式就是方程。
勾股定理三种典型例题
题型一:勾股定理的综合应用
例1、 如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?
(面积法应用)
例2、 有一块土地形状如图3所示,
︒=
∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。
(添加辅助线构造直角三角形)
题型二:折叠问题(图形与方程的综合)
例1、 如图4,矩形纸片
ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩
形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
例2、 有一个直角三角形纸片,两直角边的长AC=6cm,BC=8cm,现将直角边AC
沿AD 对折,使它落在斜边AB 上,且与AE 重合,求CD 的长?
例3、 如图6,在矩形纸片ABCD 中,AB=33,BC=6,沿EF 折叠后,点C 落
在AB 边上的点P 处,点D 落在Q 点处,AD 与PQ 相交于点H ,∠BPE=︒30 (1) 求BE 、QF 的长
(2) 求四边形QEFH 的面积。
题型三:勾股定理的应用
例1、 如图7,铁路上A 、B 两站相距25千米,C 、D 为两村庄,DA ⊥AB 于
A 点,C
B ⊥AB 于点B ,DA=15千米,CB=10千米,现在要在铁路上建设一个土特产收购站E ,使得
C 、
D 两村庄到收购站的距离相等,则收购站
E 应建在距离A 站多远的距离?
例2、 一架长为5米的梯子,斜立在一竖直的墙上,这时梯子的底端B 距离
底C 为3米,如果梯子的顶端A 沿墙下滑1米到D 处,梯子的底端在水平方向沿一条直线也将下滑动1米到E
处吗?请给出证明。
勾股定理题型(很全面)
1FE DAB CA B C D EG F F 典型例题:一、利用勾股定理解决实际问题 例题:水中芦苇 梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?二、关于翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长.4、如图,一张矩形纸片ABCD的长AD=9㎝,宽AB=3㎝。
现将其折叠,使点D 与点B 重合。
求折叠后BE 的长和折痕EF 的长。
勾股定理典型例题
1. 如图,一架云梯AC 长为25m ,斜靠在一竖直的墙CO 上,这时梯子底端A 离墙的距离AO 是7m ,如果梯子的顶端C 沿墙下滑了4m ,那么梯子的底部在水平方向滑动了多少米?AC AO OC OD OC CD BOD BOD OB BD OD OB AB OB OA ︒=-=-==∴=-=-=∠==-=-==∴=-=-=22222222222575762424420902520225151578由勾股定理得:OC 正数在中,由勾股定理得:正数2.如图,受台风麦莎影响,一棵高18米的大树断裂,树的顶部落在离树根底部6 m 处,这棵树折断后有多高? ()(),,,-A C B D C D A O C A O C A B A C B C A B C A B x A C x A B B C A C x x x ====∠=︒+==∠︒+=+=-=∴222222254901861861888 由题意知:在中,由题意知:在中,A B C =90设为则为由勾股定理得:解得这棵树折断后米()(),,,-A C B D C D A O C A O C A B A C B C A B C A B x A C x A B B C A C x x x ====∠=︒+==∠︒+=+=-=∴222222254901861861888 由题意知:在中,由题意知:在中,A B C =90设为则为由勾股定理得:解得这棵树折断后米3.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? 由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图所示,点D 在离厂门中线0.8米处,且CD ⊥AB, 与地面交于H . 解:OC =1米 (大门宽度一半), OD =0.8米 (卡车宽度一半) 在Rt △ OCD 中,由勾股定理得: CD ===0.6米,C H=0.6+2.3=2.9(米)>2.5(米).4.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?解:∵△ADC 是直角三角形∴AC ²=AD ²+DC ²=4²+3²=5²(注:这是在用勾股定理) ∵AC ²+BC ²=5²+12²=169 AB ²=13²=169 ∴AC ²+BC ²=AB ²∴△ABC 是直角三角形(注:这是在用勾股定理的逆定理) ∴S 地=S △ABC -S △ADC =24243251222=⨯-⨯=⋅-⋅AD CD BC AC (米2) 5.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,先将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD解:在Rt △ABC中,AB ²=AC ²+BC ²=6²+8²=100=10² ∴AB=10(cm ) ∵AE=AC=6cm , ∴EB=4cm ∵∠AED=∠C=90° ∴∠DEB=90°∴△DEB 是直角三角形 ∴DE ²+EB ²=DB ² 设CD=xcm ,则DE=CD=xcm ,DB=(8-x )cm ∴x ²+4²=(8-x)² 解得x=3,所以,CD=3cmA B C(),,,C M B C A B A MA C x AB A M x AC M A C M A C C MA Mx x x =⨯=====+∠=︒+=+=+=+=∴2222221105121905112121131213 如图,由题意知设为则在中,由勾股定理得:解得:水深尺,芦苇长尺6.如图所示,将长方形纸片ABCD 的一边AD 向下折叠,点D 落在BC 边的F 处。
勾股定理经典例题(含答案)
经典例题透析类型一:勾股定理的直接用法 1.在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求 a. 思绪点拨:写解的进程中,必定要先写上在哪个直角三角形中,留意勾股定理的变形运用. 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=触类旁通【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是若干?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是 4. 类型二:勾股定理的结构运用 2.如图,已知:在中,,,. 求:BC的长.思绪点拨:由前提,想到结构含角的直角三角形,为此作于D,则有,,再由勾股定理盘算出AD.DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余)∴(在中,假如一个锐角等于, 那么它所对的直角边等于斜边的一半).依据勾股定理,在中,. 依据勾股定理,在中,. ∴.触类旁通【变式1】如图,已知:,,于P. 求证:.解析:贯穿连接BM,依据勾股定理,在中,. 而在中,则依据勾股定理有. ∴又∵(已知), ∴. 在中,依据勾股定理有, ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.剖析:若何结构直角三角形是解本题的症结,可以贯穿连接AC,或延伸AB.DC交于F,或延伸AD.BC交于点E,依据本题给定的角应选后两种,进一步依据本题给定的边选第三种较为简略. 解析:延伸AD.BC交于 E.∵∠A=∠60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==.∵DE2= CE2-CD2=42-22=12,∴DE==. ∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的现实运用(一)用勾股定理求两点之间的距离问题 3.如图所示,在一次夏令营运动中,小明从营地A点动身,沿北偏东60°偏向走了到达B点,然后再沿北偏西30°偏向走了500m到达目标地C点. (1)求A.C两点之间的距离.(2)肯定目标地C在营地A的什么偏向.解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中, ∵BC=500m,AC=1000m ∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的偏向触类旁通【变式】一辆装满货色的卡车,其外形高2.5米,宽1.6米,要开进厂门外形如图的某工场,问这辆卡车可否经由过程该工场的厂门?【答案】因为厂门宽度是否足够卡车经由过程,只要看当卡车位于厂门正中央时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H.解:OC=1米(大门宽度一半), OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米, CH=0.6+2.3=2.9(米)>2.5(米).是以高度上有0.4米的余量,所以卡车能经由过程厂门.(二)用勾股定理求最短问题4.国度电力总公司为了改良农村用电电费过高的近况,今朝正在全国各地农村进行电网改革,某地有四个村庄A.B.C.D,且正好位于一个正方形的四个极点,现筹划在四个村庄结合架设一条线路,他们设计了四种架设筹划,如图实线部分.请你关心盘算一下,哪种架设筹划最省电线.思绪点拨:解答本题的思绪是:最省电线就是线路长最短,经由过程运用勾股定理盘算线路长,然落后行比较,得出结论.解析:设正方形的边长为1,则图(1).图(2)中的总线路长分离为AB+BC+CD=3,AB+BC+CD= 3 图(3)中,在Rt△ABC中同理∴图(3)中的路线长为图(4)中,延伸EF交BC于H,则FH ⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3> 2.828>2.732 ∴图(4)的衔接线路最短,即图(4)的架设筹划最省电线.触类旁通【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A动身,沿着圆柱的侧面爬行到点C,试求出爬行的最短旅程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,依据勾股定理得(提问:勾股定理)∴ AC===≈10.77(cm)(勾股定理).答:最短旅程约为10.77cm.类型四:运用勾股定理作长为的线段5.作长为..的线段.思绪点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,相似地可作.作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一向角边为1的直角.斜边为;(3)按序如许做下去,最后做到直角三角形,如许斜边...的长度就是....触类旁通【变式】在数轴上表示的点.解析:可以把看作是直角三角形的斜边,,为了有利于绘图让其他双方的长为整数,而10又是9和1这两个完整平方数的和,得别的双方分离是3和1.作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为.类型五:逆命题与勾股定理逆定理6.写出下列原命题的逆命题并断定是否准确1.原命题:猫有四只脚.(准确)2.原命题:对顶角相等(准确)3.原命题:线段垂直等分线上的点,到这条线段两头距离相等.(准确)4.原命题:角等分线上的点,到这个角的双方距离相等.(准确)思绪点拨:控制原命题与逆命题的关系.解析:1. 逆命题:有四只脚的是猫(不准确)2. 逆命题:相等的角是对顶角(不准确)3. 逆命题:到线段两头距离相等的点,在这条线段的垂直等分线上.•(准确)4. 逆命题:到角双方距离相等的点,在这个角的等分线上.(准确)总结升华:本题是为了进修勾股定理的逆命题做预备.7.假如ΔABC的三边分离为a.b.c,且知足a2+b2+c2+50=6a+8b+10c,断定ΔABC的外形.思绪点拨:要断定ΔABC的外形,须要找到a.b.c的关系,而标题中只有前提a2+b2+c2+50=6a+8b+10c,故只有从该前提入手,解决问题.解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,∴ (a-3)2+(b-4)2+(c-5)2=0.∵ (a-3)2≥0, (b-4)2≥0, (c-5)2≥0.∴ a=3,b=4,c=5.∵ 32+42=52,∴ a2+b2=c2.由勾股定理的逆定理,得ΔABC是直角三角形.总结升华:勾股定理的逆定理是经由过程数目关系来研讨图形的地位关系的,在证实中也常要用到.触类旁通【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【答案】:贯穿连接AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)【变式2】已知:△ABC的三边分离为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),断定△ABC是否为直角三角形.剖析:本题是运用勾股定理的的逆定理, 只要证实:a2+b2=c2即可证实:所以△ABC是直角三角形.【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB.请问FE与DE是否垂直?请解释.【答案】答:DE⊥EF.证实:设BF=a,则BE=EC=2a, AF=3a,AB=4a,∴ EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2.衔接DF(如图)DF2=AF2+AD2=9a2+16a2=25a2.∴ DF2=EF2+DE2,∴ FE⊥DE.经典例题精析类型一:勾股定理及其逆定理的根本用法 1.若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积.思绪点拨:在直角三角形中知道双方的比值和第三边的长度,求面积,可以先经由过程比值设未知数,再依据勾股定理列出方程,求出未知数的值进而求面积.解析:设此直角三角形两直角边分离是3x,4x,依据题意得:(3x)2+(4x)2=202化简得x2=16; ∴直角三角形的面积=×3x×4x=6x2=96 总结升华:直角三角形边的有关盘算中,常常要设未知数,然后用勾股定理列方程(组)求解. 触类旁通【变式1】等边三角形的边长为2,求它的面积.【答案】如图,等边△ABC,作AD⊥BC于 D 则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD= 1 在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1= 3 ∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为 a.【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积. 【答案】设此直角三角形两直角边长分离是x,y,依据题意得:由(1)得:x+y=7, (x+y)2=49,x2+2xy+y2=49 (3) (3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)【变式3】若直角三角形的三边长分离是n+1,n+2,n+3,求n. 思绪点拨:起首要肯定斜边(最长的边)长n+3,然后运用勾股定理列方程求解. 解:此直角三角形的斜边长为n+3,由勾股定理可得:(n+1)2+(n+2)2=(n+3)2化简得:n2= 4 ∴n=±2,但当n=-2时,n+1=-1<0,∴n= 2 总结升华:留意直角三角形中两“直角边”的平方和等于“斜边”的平方,在标题没有给出哪条是直角边哪条是斜边的情形下,起首要先肯定斜边,直角边. 【变式4】以下列各组数为边长,能构成直角三角形的是()A.8,15,17 B.4,5,6 C.5,8,10 D.8,39,40 解析:此题可直接用勾股定理的逆定理来进行断定, 对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来断定. 例如:对于选择D, ∵82≠(40+39)×(40-39), ∴以8,39,40为边长不能构成直角三角形. 同理可以断定其它选项.【答案】:A【变式5】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.解:贯穿连接AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169 ∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=36类型二:勾股定理的运用2.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖沓机行驶时,四周100m以内会受到噪音的影响,那么拖沓机在公路MN上沿PN偏向行驶时,黉舍是否会受到噪声影响?请解释来由,假如受影响,已知拖沓机的速度为18km/h,那么黉舍受影响的时光为若干秒?思绪点拨:(1)要断定拖沓机的噪音是否影响黉舍A,本质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并盘算其长度.(2)请求出黉舍受影响的时光,本质是请求拖沓机对黉舍A的影响所行驶的旅程.是以必须找到拖沓机行至哪一点开端影响黉舍,行至哪一点后停止影响黉舍. 解析:作AB⊥MN,垂足为 B. 在RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160,∴AB=AP=80. (在直角三角形中,30°所对的直角边等于斜边的一半)∵点A到直线MN的距离小于100m, ∴这所中学会受到噪声的影响. 如图,假设拖沓机在公路MN上沿PN偏向行驶到点C处黉舍开端受到影响,那么AC=100(m), 由勾股定理得:BC2=1002-802=3600,∴BC=60.同理,拖沓机行驶到点D处黉舍开端离开影响,那么,AD=100(m),BD=60(m), ∴CD=120(m). 拖沓机行驶的速度为: 18km/h=5m/s t=120m÷5m/s=24s.答:拖沓机在公路MN上沿PN偏向行驶时,黉舍会受到噪声影响,黉舍受影响的时光为24秒. 总结升华:勾股定理是求线段的长度的很主要的办法,若图形缺乏直角前提,则可以经由过程作关心垂线的办法,结构直角三角形以便运用勾股定理.触类旁通【变式1】如图黉舍有一块长方形花圃,有少少数工资了避开拐角而走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1m),却踩伤了花卉.解析:他们本来走的路为3+4=7(m) 设走“捷径”的路长为xm,则故少走的路长为7-5=2(m) 又因为2步为1m,所以他们仅仅少走了4步路.【答案】4【变式2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1的正三角形,如许的三角形称为单位正三角形. (1)直接写出单位正三角形的高与面积. (2)图中的平行四边形ABCD含有若干个单位正三角形?平行四边形ABCD的面积是若干?(3)求出图中线段AC的长(可作关心线).【答案】(1)单位正三角形的高为,面积是. (2)如图可直接得出平行四边形ABCD含有24个单位正三角形,是以其面积. (3)过A作AK⊥BC于点K(如图所示),则在Rt△ACK中,,,故类型三:数学思惟办法(一)转化的思惟办法我们在求三角形的边或角,或进行推理论证时,常常作垂线,结构直角三角形,将问题转化为直角三角形问题来解决.3.如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E.F分离是AB.AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.思绪点拨:现已知BE.CF,请求EF,但这三条线段不在统一三角形中,所以症结是线段的转化,依据直角三角形的特点,三角形的中线有特别的性质,不妨先衔接AD.解:衔接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线, 所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以AE=FC=5.同理:AF=BE=12.在Rt△AEF中,依据勾股定理得:,所以EF=13.总结升华:此题考核了等腰直角三角形的性质及勾股定理等常识.经由过程此题,我们可以懂得:当已知的线段和所求的线段不在统一三角形中时,应经由过程恰当的转化把它们放在统一向角三角形中求解.(二)方程的思惟办法4.如图所示,已知△ABC中,∠C=90°,∠A=60°,,求..的值.思绪点拨:由,再找出.的关系即可求出和的值. 解:在Rt△ABC中,∠A=60°,∠B=90°-∠A=30°, 则,由勾股定理,得. 因为,所以,,,. 总结升华:在直角三角形中,30°的锐角的所对的直角边是斜边的一半. 触类旁通:【变式】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长. 解:因为△ADE与△AFE关于AE对称,所以AD=AF,DE=EF. 因为四边形ABCD是矩形,所以∠B=∠C=90°, 在Rt△ABF中,AF=AD=BC=10cm,AB=8cm,所以.所以. 设,则. 在Rt△ECF中,,即,解得.即EF的长为5cm.。
勾股定理常见习题
勾股定理常见习题考点一:勾股定理1) 对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
题型一:直接考查勾股定理 例1. 在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.题型三:利用勾股定理求线段长度——例题:如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型四:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m考点二:勾股定理的逆定理 题型一:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17(2)若线段a ,b ,c 组成直角三角形,则它们的比为( )A 、2∶3∶4B 、3∶4∶6C 、5∶12∶13D 、4∶6∶7 题型二:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).A .1个B .2个C .3个D .4个(2)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形 考点三:勾股定理的应用 题型一:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A. 13B. 26C. 47D. 94 题型二:求长度问题在一棵树10m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;•另外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?CBABCDE题型三:最短路程问题(1)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A 要爬到顶点B ,那么这只昆虫爬行的最短距离为 。
勾股定理典型例题【含答案】免费
勾股定理复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。
它是直角三角形的一条重要性质,揭示的是三边之间的数量关系。
它的主要作用是已知直角三角形的两边求第三边。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
4、最短距离问题:主要运用的依据是两点之间线段最短。
二、知识结构:三、考点剖析考点一:利用勾股定理求面积求:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:应用勾股定理解决楼梯上铺地毯问题例、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。
勾股定理应用题型大汇总(经典)
勾股定理题型汇总一、用勾股定理解决实际问题 【经典例题】 1.水中芦苇问题在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
2.梯子滑动问题一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?【练一练】1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?AA ′BA ′ O二、最短路径问题1、如图1,长方体的长为12cm ,宽为6cm ,高为5cm ,一只蚂蚁沿侧面从A 点向B 点爬行,问:爬到B 点时,蚂蚁爬过的最短路程是多少?2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫?3:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?5、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)A B 5 316、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)7、如图,圆锥的侧面展开图是半径为22cm 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:(1)爬到B 点时,蚂蚁爬过的最短路程;(2)当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.8、如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为三、面积问题1. 已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .AB CD E FGA ·B · A· B ·FE DABC2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______ ___. 4.如图,△ABC 中,∠C =90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系; (3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.图① 图② 图③5.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an ,根据上述规律,则第n 个正方形的边长an =___ _____记正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么S n =____ ____.6.如图,Rt △ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 .四、翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=求BF 的长.G AD A B C DAA B C D EG FF 4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。
勾股定理经典例题(含答案)
类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90°(1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a.思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
举一反三【变式】:如图∠B=∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少?类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC 的长.1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元C 、150a 元D 、300a 元举一反三【变式1】如图,已知:,,于P . 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
150°20m30m类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(二)用勾股定理求最短问题4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.类型四:利用勾股定理作长为的线段5、作长为、、的线段。
作法:如图所示举一反三【变式】在数轴上表示的点。
解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
勾股定理经典例题(含答案)
经典例题透析(一)类型一:勾股定理的直接用法1:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.3如图,已知:,,于P. 求证:.4已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
(二)用勾股定理求最短问题如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.利用勾股定理作长为的线段5、作长为、、的线段。
举一反三【变式】在数轴上表示的点。
经典例题透析(二)类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。
【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。
【变式4】以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。
勾股定理典型例题
勾股定理典型例题11.以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,40 2.下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B )2223,4,5 (C )1,2,3 (D )3,4,53.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( )(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形4.如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。
他们仅仅少走了__________步路(假设2步为1m ),却踩伤了花草。
5.已知直角三角形的两边长分别为3、4,则第三边长为 .6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( ) A .30厘米 B .40厘米 C .50厘米 D .以上都不对7.图中字母A 所在的正方形的面积是 .8.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A 、B 、C 、D 的面积的和是64cm 2,则最大的正方形的边长为 cm .9.如图,一棵大树在一次强台风中于离地面3m 处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 ( )m .第8题图第9题图10.如图,分别以直角三角形三边向外作三个半圆,若S1=30,S2=40,则S3=.11,如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm12.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.13.如图,已知:在中,,,. 求:BC的长.14.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
简单勾股定理的应用例题
简单勾股定理的应用例题简单勾股定理是数学中的一个基本定理,它描述了直角三角形中的边之间的关系。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
这个定理在实际生活中有很多应用。
下面我们来看几个常见的应用例题。
例题1:一块田地的形状是一个直角三角形,已知两条边的长度分别为3米和4米,求斜边的长度。
解法:根据勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 3 + 4 = 9 + 16 = 25。
因此,斜边的长度为√25 = 5米。
例题2:一根电线杆倾斜在地面上,形成一个直角三角形。
已知杆子与地面的夹角为30°,杆子的长度为10米,求电线的长度。
解法:我们可以将问题转化为一个直角三角形中已知一个直角边和斜边,求另一个直角边的问题。
根据勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 直角边的平方 + 另一个直角边的平方。
已知斜边为10米,夹角为30°,可知直角边 = 斜边 * sin(夹角) = 10 * sin(30°) ≈ 5米。
因此,电线的长度约为5米。
例题3:一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
解法:直接使用勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 6 + 8 = 36 + 64 = 100。
因此,斜边的长度为√100 = 10厘米。
通过这些例题,我们可以看到勾股定理在解决直角三角形的问题中起到了重要的作用。
它可以帮助我们求解未知边长、角度等相关问题。
在实际应用中,勾股定理也被广泛应用于建筑、测量、工程等领域。
勾股定理典型应用例题
1.基础应用题目:在一个直角三角形中,已知直角边a为3,直角边b为4,求斜边c的长度。
答案:根据勾股定理,c² = a² + b²,所以c² = 3² + 4² = 9 + 16 = 25,从而c = 5。
2.逆应用题目:已知直角三角形的斜边c为5,一条直角边a为3,求另一条直角边b的长度。
答案:根据勾股定理,b² = c² - a²,所以b² = 5² - 3² = 25 - 9 = 16,从而b = 4。
3.实际应用题目:一个直角三角形的两条直角边分别是6米和8米,一个正方形的一边与这个直角三角形的斜边重合,求这个正方形的面积。
答案:首先,根据勾股定理求出斜边长度c,c² = 6² + 8² = 36 + 64 = 100,所以c = 10。
正方形的面积为边长的平方,即10² = 100平方米。
4.比较大小题目:比较两个数的大小:√17和4。
答案:考虑直角边为1和4的直角三角形,斜边c满足c² = 1² + 4² = 17,所以c = √17。
显然,斜边c(即√17)大于直角边4。
5.多解问题题目:一个直角三角形的周长为12,其中一条直角边长为3,求另外两边的长。
答案:设另一条直角边为a,斜边为b。
根据勾股定理,a² + 3² = b²。
同时,根据周长信息,a + 3 + b = 12,即a + b = 9。
解这两个方程,得到两组解:a = 4, b = 5 和a = 5, b = 4。
6.非整数边长问题题目:在直角三角形中,已知直角边a为√3,直角边b为√4,求斜边c的长度。
答案:根据勾股定理,c² = a² + b²,所以c² = (√3)² + (√4)² = 3 + 4 = 7,从而c = √7。
初二勾股定理经典例题
初二勾股定理经典例题例题1:在直角三角形中,斜边长为10,一直角边长为6,则另一直角边的长为 _______.解释:根据勾股定理,直角三角形的斜边平方等于两直角边的平方和。
设另一直角边长为$x$,则有$10^2 = 6^2 + x^2$,解得$x = 8$。
例题2:在△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC旋转一周得到圆锥,则该圆锥的侧面积是 _______.解释:由于△ABC是直角三角形,且AC为直角边,BC为斜边。
根据勾股定理,$AB^2 = AC^2 + BC^2$,解得斜边AB=5。
旋转后的圆锥侧面积是$π\times AB \times BC$,计算得$4\pi \times 5 = 20\pi$。
例题3:在△ABC中,∠C=90°,AC=6,BC=8,则AB边上的中线长为_______.解释:利用勾股定理在直角三角形中求斜边上的中线长度。
已知直角三角形的两直角边为AC和BC,斜边为AB。
根据勾股定理有$AB^2 = AC^2 +BC^2$,解得斜边AB的长度为10。
再根据直角三角形斜边上的中线等于斜边的一半,所以中线长度为$\frac{10}{2} = 5$。
例题4:在△ABC中,∠C=90°,AC=3,BC=4,则AB边上的高为 _______.解释:利用三角形的面积公式和勾股定理求解。
已知直角三角形的两直角边为AC和BC,斜边为AB。
根据勾股定理有$AB^2 = AC^2 + BC^2$,解得斜边AB的长度为5。
再根据三角形的面积公式有$\frac{1}{2} \times AC\times BC = \frac{1}{2} \times AB \times h$(h为高),解得高h为$\frac{12}{5}$。
例题5:在Rt△ABC中,∠C=90°,AB=5,BC=3,则AC的长为 _______.解释:已知直角三角形ABC的两直角边BC和斜边AB的长度。
初中勾股定理例题
初中勾股定理例题1.一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
2.已知直角三角形斜边为5cm,一条直角边为3cm,求另一条直角边的长度。
3.直角三角形的两条直角边分别为6cm和8cm,求斜边上的高。
4.有一个直角三角形,斜边是13cm,一条直角边为5cm,求此三角形的面积。
5.直角三角形的一条直角边为9cm,斜边为15cm,求另一条直角边的长度。
6.一个直角三角形的两条直角边之比为3:4,斜边为25cm,求两条直角边的长度。
7.已知直角三角形的面积为24cm²,一条直角边为6cm,求斜边的长度。
8.直角三角形的斜边为10cm,两条直角边的差为2cm,求两条直角边的长度。
9.一个直角三角形的两条直角边分别为5cm和12cm,求这个三角形的外接圆半径。
10.直角三角形的一条直角边为7cm,斜边为25cm,求斜边上的中线长度。
11.有一个直角三角形,两条直角边分别为8cm和15cm,求其内切圆半径。
12.已知直角三角形斜边为17cm,一条直角边为8cm,求这个三角形的周长。
13.直角三角形的两条直角边分别为9cm和12cm,求斜边上的三等分点到直角顶点的距离。
14.一个直角三角形的两条直角边分别为10cm和24cm,求这个三角形斜边上的高把斜边分成的两段的长度。
15.直角三角形的一条直角边为11cm,斜边为61cm,求另一条直角边的长度。
16.已知直角三角形的两条直角边分别为12cm和16cm,求这个三角形的重心到斜边中点的距离。
17.直角三角形的斜边为20cm,一条直角边为12cm,求这个三角形的面积与周长的比值。
18.一个直角三角形的两条直角边分别为13cm和14cm,求这个三角形的外接圆面积。
19.直角三角形的一条直角边为15cm,斜边为25cm,求斜边上的高与斜边的比值。
20.有一个直角三角形,两条直角边分别为16cm和12cm,求这个三角形斜边上的中线与斜边的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》典型例题
例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?
它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.
(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?
(2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72?
解:
(1)边长的平方即以此边长为边的正方
形的面积,故可通过面积验证.分别以这个直
角三角形的三边为边向外做正方形,如右
图:AC =4,BC =3,
S 正方形ABED =S 正方形FCGH -4S Rt △ABC
=(3+4)2-4×2
1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3,
AC 2+BC 2=42+32=25
∴AB 2=AC 2+BC 2
(2)如图(图见题干中图)
S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2
1×4×7=121-56=65=42+72
例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内.
①图乙和图丙中(1)(2)(3)是否为正方形?为什么?
②图中(1)(2)(3)的面积分别是多少?
③图中(1)(2)的面积之和是多少?
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗?
解:
①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形,
(2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形.
②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2.
③图中(1)(2)面积之和为a 2+b 2.
④图中(1)(2)面积之和等于(3)的面积.
因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面
积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.
由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.。