2018届高考数学第八章立体几何课时规范练38直线、平面平行的判定与性质文新人教A版

合集下载

高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质真题演练集训 理 新人教A版(

高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质真题演练集训 理 新人教A版(

质真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何8.4 直线、平面平行的判定与性质真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何8.4 直线、平面平行的判定与性质真题演练集训理新人教A版的全部内容。

与性质真题演练集训理新人教A版1.[2016·山东卷节选]在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.已知G,H分别为EC,FB的中点,求证:GH∥平面ABC.证明:设FC的中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC。

又HI∩GI=I,OB∩BC=B,所以平面GHI∥平面ABC。

因为GH⊂平面GHI,所以GH∥平面ABC。

2.[2016·新课标全国卷Ⅲ节选]如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB =AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.证明:MN∥平面PAB。

证明:由已知得AM=错误!AD=2。

取BP的中点T,连接AT,TN。

由N为PC的中点知,TN∥BC,TN=错误!BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB。

3.[2015·江苏卷节选]如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:DE∥平面AA1C1C。

2018版高考数学一轮复习第八章立体几何第4讲直线平面平行的判定及其性质理

2018版高考数学一轮复习第八章立体几何第4讲直线平面平行的判定及其性质理

第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的情况不能遗漏,所以正确选项为D.答案D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是( ).A.l∥αB.l⊥αC.l与α相交但不垂直 D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ).A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是d2”的( ).“dA.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再根据平行线截线段成比例易知选C.答案 C6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).A.①③B.②③C.①④D.②④解析对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.答案C 二、填空题7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 68.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案①③9.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.。

2018版高考数学复习第八章立体几何8.4直线平面平行的判定与性质教师用书文新人教版

2018版高考数学复习第八章立体几何8.4直线平面平行的判定与性质教师用书文新人教版

2018版高考数学大一轮复习第八章立体几何 8.4 直线、平面平行的判定与性质教师用书文新人教版1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)1.(教材改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一直线与平面平行的判定与性质命题点1 直线与平面平行的判定例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面PAD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面PAD . 又FH ∩OH =H , ∴平面OHF ∥平面PAD . 又∵GH ⊂平面OHF , ∴GH ∥平面PAD .命题点2 直线与平面平行的性质例2 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. (1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH , 而平面EFGH ∩平面BCD =EF , ∴CD ∥EF .同理HG ∥CD ,∴EF ∥HG . 同理HE ∥GF ,∴四边形EFGH 为平行四边形. ∴CD ∥EF ,HE ∥AB ,∴∠HEF 为异面直线CD 和AB 所成的角(或补角). 又∵CD ⊥AB ,∴HE ⊥EF . ∴平行四边形EFGH 为矩形.题型二 平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又S △ABD =12×2×2=1,∴111ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由. 解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1.下面给出证明:如图,取BB 1的中点F ,连接DF , 则DF ∥B 1C 1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.∴AB∥FG,AB∥EH,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC, y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2017·保定月考)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 命题①:l 可以在平面α内,不正确;命题②:直线a 与平面α可以是相交关系,不正确;命题③:a 可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2 D .m ∥l 1且n ∥l 2答案 D解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.故选D.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β 答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则PA PC =PB PD, ∴PB =165,∴BD =245;若点P 在α,β之间,则PA PC =PBPD,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥EG , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以EG ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE=2×13×a +2a 2×a ×32a =32a 3.*13.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1. ∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD,又∵A 1O OB =1,∴DC AD =1,即ADDC=1.。

2018高考数学复习:第8章立体几何第4节直线、平面平行的判定与性质(含解析)

2018高考数学复习:第8章立体几何第4节直线、平面平行的判定与性质(含解析)

第四节 直线、平面平行的判定与性质题型95 证明空间中直线、平面的平行关系2013年1.(2013广东文8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 2. (2013浙江文4)设,m n 是两条不同的直线,,αβ是两个不同的平面, A.若m α∥,n α∥,则m n ∥ B.若m α∥,m β∥,则αβ∥ C.若m n ∥,m α⊥,则n α⊥ D.若m α∥,αβ⊥,则m β⊥3. (2013山东文19) 如图,四棱锥P -ABCD 中,AB AC ⊥,AB PA ⊥,AB CD ∥,AB CD =2,E F G M N ,,,,分别为PB AB BC PD PC ,,,,的中点.(1)求证:CE ∥平面PAD ;(2)求证:平面EFG ⊥平面EMN .4. (2013江苏16)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.PMD CGEFBANABSGFE1A5.(2013辽宁文18)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为AOC△的重心,求证:QG∥平面PBC.QACB6. (2013陕西文18)如图,四棱柱1111-ABCD A BC D的底面ABCD是正方形,O为底面中心,1AO⊥平面ABCD,1AB AA==(1)证明:平面1A BD∥平面11CD B;(2)求三棱柱111-ABD A B D的体积.2014年1.(2014山东文18)如图所示,四棱锥P ABCD-中1,//,,,2AP PCD AD BC AB BC AD E F⊥==平面分别为线段,AD PC的中点.(1)求证://AP BEF平面;PFEDCBA(2)求证:BE PAC ⊥平面.2.(2014安徽文19) 如图所示,四棱锥ABCD P -的底面是边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,BC ∥平面GEFH . (1)求证:;//EF GH(2)若2=EB ,求四边形GEFH 的面积.2015年1.(2015广东文18)如图所示, PDC △所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.(1)求证://BC 平面PDA ; (2)求证:BC PD ⊥;(3)求点C 到平面PDA 的距离.1. 解析 (1)因为四边形ABCD 是长方形,所以//BC AD . 因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以//BC 平面PDA .PD CBAAEBPDCF H G(2)因为四边形ABCD 是长方形,所以BC CD ⊥.因为平面PDC ⊥平面ABCD ,平面PDC I 平面ABCD CD =,BC ⊂平面ABCD , 所以BC ⊥平面PDC .因为PD ⊂平面PDC ,所以BC PD ⊥. (3)解法一:取CD 的中点E ,连接AC 和PE ,如图所示. 因为4PD PC ==,所以PE CD⊥.在Rt PDE△中,PE ===.因为平面PDC ⊥平面ABCD ,平面PDC I 平面ABCD CD =,PE ⊂平面PDC ,所以PE ⊥平面ABCD .由(2)知BC ⊥平面PDC ,由(1)知//BC AD ,所以AD ⊥平面PDC .因为PD ⊂平面PDC ,所以AD PD ⊥.设点C 到平面PDA 的距离为h ,因为C PDA P ACD V V --=三棱锥三棱锥,所以1133PDA ACD S h S PE ⋅=⋅△△,即13621342ACD PDA S PE h S ⨯⨯⋅===⨯⨯△△, 所以点C 到平面PDA的距离是2.解法二:过点C 作CH DP ⊥交DP 的延长线于点H ,取CD 的中点E ,连接PE ,如图所示.由(2)知BC ⊥平面PDC ,由(1)知//BC AD ,所以AD ⊥平面PDC .EABC D PEHBCDP又HC ⊂平面PDC ,所以AD HC ⊥. 因为PD AD D =I ,所以HC ⊥平面PAD . 则CH 的长度即为点C 到平面PDA 的距离. 因为4PD PC ==,所以PE CD ⊥.在PDE △与CDH △中,PDE CDH PED CHD ∠=∠⎧⎨∠=∠⎩,所以PDE CDH △∽△,所以PD PEDC CH =. 在Rt PDE △中,PE ==.则46CH=,得2CH =.故点C 到平面PDA的距离为2.2.(2015江苏16)如图所示,在直三棱柱111ABC A B C -中,已知AC BC ⊥,1BC CC =. 设1AB 的中点为D ,11B C BC E =I .求证:(1)DE ∥平面11AAC C ;(2)11BC AB ⊥.2.解析 (1)因为四边形11BCC B 是矩形,所以E 是1B C 的中点. 又D 是1AB 的中点, 因此DE 是1B CA △的中位线,故DE AC ∥.又DE ⊄平面11AAC C ,AC ⊂平面11AAC C ,所以DE ∥平面11AAC C .(2)因为1CC ⊥平面ABC ,AC ⊂平面ABC ,所以1AC CC ⊥,又AC BC ⊥,1BC CC C =I ,从而AC ⊥平面11BCC B .因为1BC ⊂平面11BCC B ,所以1BC AC ⊥. 因为1BC CC =,E 为1BC 的中点,所以11BC CB ⊥.ED A 1B 1C 1CBA因为1AC CB C =I ,所以1BC ⊥平面1AB C . 又因为1AB ⊂平面1AB C ,所以11BC AB ⊥.2016年1.(2016浙江文2)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( ).A. //m l B . //m nC. n l ⊥D. m n ⊥1.C 解析 对于选项A ,因为l αβ=I ,所以l α⊂.又因为//m α,所以m 与l 平行或异面.故选项A 不正确;对于选项B 和D ,因为αβ⊥,n β⊥,所以n α⊂或//n α.又因为//m α,所以m 与n 的关系平行、相交或异面都有可能.故选项B 和D 不正确;对于选项C ,因为,l αβ=I 所以,l β⊂因为,n β⊥所以n l ⊥,故选项C 正确,故选C.2.(2016上海文16)如图所示,在正方体1111ABCD A B C D -中,,E F 分别为1BC BB ,的中点,则下列直线中与直线EF 相交的是( ). A.直线1AAB.直线11A BC.直线11A DD.直线11B C2.D 解析 易知EF 与1AA 在两个平行平面内,故不可能相交;EF ∥平面11A B C ,11A B ⊂平面11A B C ,故不可能相交;同理与11A D 也不可能相交;EF 与11B C 均在平面11BCC B 内,且EF 与11B C 不平行,故相交,其交点G 如图所示.故选D.1A BBA 13.(2016江苏16)如图所示,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:(1)直线//DE 平面11AC F ; (2)平面1B DE ⊥平面11AC F .3.解析 (1)因为,D E 分别为,AB BC 的中点,所以DE 为ABC △的中位线,所以//DE AC ,又因为三棱柱111ABC A B C -为直棱柱,故11//AC AC ,所以11//DE AC ,又因为11A C ⊂平面11AC F ,且11DE AC F ⊄,故//DE 平面11AC F .(2)三棱柱111ABC A B C -为直棱柱,所以1AA ⊥平面111A B C .又11A C ⊂平面111A B C , 故111AA AC ⊥.又1111AC A B ⊥,且1111AA A B A =I ,111,AA A B ⊂平面11AA B B , 所以11A C ⊥平面11AA B B .又因为1B D ⊂平面11AA B B ,所以111AC B D ⊥. 又因为11A F B D ⊥,1111AC A F A =I ,且111,AC A F ⊂平面11AC F ,所以1B D ⊥平面11AC F .又因为1B D ⊂平面1B DE ,所以平面1B DE ⊥平面11AC F .4.(2016天津文17)如图所示,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,AB EF ∥,2AB =,1BC EF ==,AE =3DE =,60BAD ∠=o ,G 为BC 的中点.(1)求证:FG ∥平面BED ; (2)求证:平面BED ⊥平面AED ; (3)求直线EF 与平面BED 所成角的正弦值.4.解析 (1)如图所示,取BD 的中点为O ,联结OE ,OG . 在BCD △中,因为G 是BC 的中点,所以DC OG ∥且112OG DC ==. 又因为AB EF ∥,DC AB ∥,所以OG EF ∥且EF OG =,即四边形OGFE 是平行四边形,所以OE FG ∥.又FG ⊄平面BED ,OE ⊂平面BED ,所以FG ∥平面.BEDABC DEFA 1B 1C 1GFEDCBAOABCDEF G(2)在ABD △中,1AD =,2AB =,60BAD ∠=o .由余弦定理可得3=BD ,进而可得90ADB ∠=o ,即AD BD ⊥.又因为平面⊥AED 平面ABCD ,BD ⊂平面ABCD ,平面I AED 平面AD ABCD =,所以⊥BD 平面AED .又因为⊂BD 平面BED ,所以平面⊥BED 平面AED .(3)因为AB EF //,所以直线EF 与平面BED 所成角即为直线AB 与平面BED 所成角. 过点A 作DE AH ⊥于点H ,连接BH ,如图所示.H ABCDEFG又因为平面I BED 平面ED AED =,由(2)知⊥AH 平面BED ,所以直线AB 与平面BED 所成角即为ABH ∠. 在ADE △中,6,3,1===AE DE AD.由余弦定理可得32cos =∠ADE ,所以35sin =∠ADE ,因此35sin =∠⋅=ADE AD AH . 在Rt AHB △中,65sin ==∠AB AH ABH , 所以直线AB 与平面BED 所成角的正弦值为65.5(2016山东文18)在如图所示的几何体中,D 是AC 的中点,EF DB P . (1)已知AB BC =,AE EC =. 求证:AC FB ⊥;(2)已知,G H 分别是EC 和FB 的中点.求证:GH P 平面ABC .5. 解析 (1)因为EF BD P ,所以EF 与BD 确定一个平面BDEF ,连接DE ,如图(1)所示. 因为,AE EC D =为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥. 又因为D DE BD =I ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,所以FB AC ⊥.(2)设FC 的中点为I ,连接HI GI ,,如图(2)所示.在CEF △中,G 是CE 的中点,所以GI EF P .又EF DB P ,所以GI DB P ;在CFB △中,H 是FB 的中点,所以HI BC P .又I HI GI =I ,DB BC B =I ,所以平面GHI P 平面ABC .因为⊂GH 平面GHI ,所以GH P 平面ABC .(1) (2)HFEG DCAIACDG EFHAC DGEFH6.(2016全国丙文19)如图所示,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD上一点,2AM MD =,N 为PC 的中点. (1)证明//MN 平面PAB ; (2)求四面体N BCM -的体积.6.解析(1)取PB 中点Q ,连接AQ 、NQ ,因为N 是PC 中点,//NQ BC ,且12NQ BC =,又22313342AM AD BC BC ==⨯=,且//AM BC ,所以//QN AM ,且QN AM =,所以四边形AQNM 是平行四边形.所以//MN AQ . //MN 平又MN ⊄平面PAB ,AQ ⊂平面PAB ,所以面PAB .(2)由(1) //QN 平面ABCD .所以1122N BCM Q BCM P BCM P BCA V V V V ----===.所以11142363N BCMABC V PA S -=⨯⋅=⨯⨯=△. PN MDCBAPQNMDCBA2017年1.(2017全国1文6)如图所示,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( ).1.解析 由选项B ,//AB MQ ,则直线//AB 平面MNQ ;由选项C ,//AB MQ ,则直线//AB 平面MNQ ;由选项D ,//AB NQ ,则直线//AB 平面MNQ .故选项A 不满足.故选A.2.(2017全国2文18)如图所示,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=. (1)证明:直线//BC 平面PAD ;(2)若PCD △面积为,求四棱锥P ABCD -的体积.PABCD解析 (1)在平面ABCD 内,因为90BAD ABC ∠=∠=o ,所以//BC AD . 又BC ⊄平面PAD ,AD ⊂平面PAD ,故//BC 平面PAD .B.AM NQBA.M NQ BA C.AM QNBD.BANQM(2)取AD 的中点M ,联结PM ,CM . 由12AB BC AD ==,及//BC AD ,90ABC ∠=o ,得四边形ABCM 为正方形,则CM AD ⊥. 因为侧面PAD 是等边三角形且垂直于底面ABCD ,平面PAD I 平面ABCD AD =,所以PM AD ⊥,因为PM ⊂平面PAD ,所以PM ⊥平面ABCD .因为CM ⊂平面ABCD ,所以PM CM ⊥.设BC x =,则CM x =,2CD x =,3PM x =,2PC PD x ==. 取CD 的中点N ,联结PN ,则PN CD ⊥,所以14PN x =. 因为PCD △的面积为27,所以1142272x x ⨯⨯=,解得2x =-(舍去),2x =,于是2AB BC ==,4AD =,23PM =.所以四棱锥P ABCD -的体积()2241234332V ⨯+=⨯⨯=.3.(2017山东文18)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD .(1)证明:1//A O 平面11B CD ;(2)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .解析(1)如图所示,取11B D 中点F ,联结1,CF A F ,由于1111ABCD A B C D -为四棱柱, 所以1//A F CO ,1=A F CO ,因此四边形1A OCF 为平行四边形,所以1//A O FC .又FC ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1//A O 平面11B CD . (2)因为四边形ABCD 是正方形,所以AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EM BD ⊥.又 1A E ⊥面ABCD ,BD ⊂平面ABCD ,所以1A E BD ⊥. 因为 11//B D BD ,所以11111EM B D A E B D ⊥⊥,.又1,A E EM ⊂平面1A EM ,1A E EM E =I ,所以11B D ⊥平面1A EM ,又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .解析(1)如图所示,取11B D 中点F ,联结1,CF A F ,由于1111ABCD A B C D -为四棱柱, 所以1//A F CO ,1=A F CO ,因此四边形1A OCF 为平行四边形,所以1//A O FC .又FC ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1//A O 平面11B CD . (2)因为四边形ABCD 是正方形,所以AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EMBD ⊥.又 1A E ⊥面ABCD ,BD ⊂平面ABCD ,所以1A E BD ⊥. 因为 11//B D BD ,所以11111EM B D A E B D ⊥⊥,.又1,A E EM ⊂平面1A EM ,1A E EM E =I ,所以11B D ⊥平面1A EM ,又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .4.(2017江苏15)如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥,平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥.求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.ABDCEF解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD I 平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥.又AB AD ⊥,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.题型96 与平行有关的开放性、探究性问题2014年27.(2014四川文18)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形.(1)若AC BC ⊥,求证:直线BC ⊥平面11ACC A ; (2)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论.2015年1.(2015陕西文18)如图1所示,在直角梯形ABCD 中,//AD BC ,π2BAD ∠=, 12AB BC AD a ===,E 是AD 的中点,O 是AC 与BE 的交点,将ABE △沿BE 折起 到图2中1A BE △的位置,得到四棱锥1A BCDE ﹣时,四棱锥1A BCDE ﹣的体积为,求a 的值.1.解析 (1)在图1中,因为12AB BC AD a ===,E 是AD 的中点,π2BAD ∠=,且//AD BC 所以四边形ABCE 是正方形,故BE AC ⊥.又在图2中,1BE A O ⊥,BE OC ⊥,从而BE ⊥平面1A OC .O EDCBA A 1A ()BCDEO1A又 //DE BC 且DE BC =,所以//CD BE ,即可证得CD ⊥平面1A OC ; (2)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE I 平面BCDE BE =.又由(1)知,1A O BE ⊥,所以1AO ⊥平面BCDE ,即1A O 是四棱锥1A BCDE ﹣的高,且122AO AO AB a ===.平行四边形BCDE 面积2S BC AB a =⋅=, 从而四棱锥1A BCDE ﹣的体积31136V S A O a =⨯⨯=,3=6a =. 2016年1.(2016四川文17)如图所示,在四棱锥P ABCD -中,PA CD ⊥,BC AD ∥,90ADC PAB ∠=∠=o ,12BC CD AD ==. (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面.PBD1.解析(1)取棱AD 的中点M (M ∈平面)PAD ,点M 即为所求的一个点. 证明如下:因为12AD BC BC AD =∥,,所以BC AM ∥,且.BC AM = 所以四边形AMCB 是平行四边形,从而.CM AB ∥ 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面.PAB以是直线(说明:取棱PD 的中点N ,则所找的点可MN 上任意一点).PABCD MDC BAPMDC BAP(2)由已知, PA AB PA CD ⊥⊥,,因为12BC BC AD AD =∥,,所以直线AB 与CD 相交,所以PA ⊥平面.ABCD 从而.PA BD ⊥因为12BC BC AD AD =∥,,所以MD BC ∥,且.BC MD = 所以四边形BCDM 是平行四边形.所以12BM CD AD ==,所以.BD AB ⊥又AB AP A =I ,所以BD ⊥平面.PAB 又BD ⊂平面PBD ,所以平面PAB ⊥平面.PBD2.(2016北京文18)如图所示,在四棱锥P ABCD -中,PC ⊥平面ABCD ,,AB DC DC AC ⊥P .(1)求证:DC ⊥平面PAC ; (2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA P 平面CEF ?说明理由. 2.解析 (1)因为PC ⊥平面ABCD ,所以PC DC ⊥. 又因为DC AC ⊥,AC PC C =I .所以DC ⊥平面PAC .(2)由(1)知,DC ⊥平面PAC ,又//AB DC ,所以AB ⊥平面PAC . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAC(3)棱PB 上存在点F ,使得PA P 平面CEF .证明如下.取PB 中点F ,联结,,EF CE CF .又因为E 为AB 的中点,所以EF PA P . 又因为PA ⊄平面CEF ,所以PA P 平面CEF .FBC DPE。

2018版高考数学大一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A版

2018版高考数学大一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A版

-29-
审题答题指导——如何作答平行关系证明题
典例(12分)
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE; (2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
1 中,AD=DC= AB=1, 2
∴AC=√2,BC=√2,AB=2,∴BC⊥AC.
又 PA⊥平面 ABCD,BC⊂平面 ABCD, ∴BC⊥PA. 又 PA∩AC=A, ∴BC⊥平面 PAC,∴BC⊥PC. 在 Rt△PAB 中,M 为 PB 的中点, 则 AM= PB. 在 Rt△PBC 中,M 为 PB 的中点, 则 CM=2PB,∴AM=CM.
-18考点1 考点2 考点3
对点训练2如图,已知四棱锥P-ABCD的底面为直角梯 形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1, M是PB的中点.
1 2
(1)求证:AM=CM; (2)若N是PC的中点,求证:DN∥平面AMC.
-19考点1 考点2 考点3
证明 (1)∵在直角梯形 ABCD
-21考点1 考点2 考点3
考点 3
平面与平面平行的判定与性质
例3一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG与平面ACH的位置关系,并证明你的结论. 思考证明面面平行的常用方法有哪些?
-22考点1 考点2 考点3
(1)求证:VB∥平面MOC; (2)求证:平面MOC⊥平面VAB; (3)求三棱锥V-ABC的体积.
-25考点1 考点2 考点3
(1)证明 因为O,M分别为AB,VA的中点,所以OM∥VB. 又因为VB⊄平面MOC,所以VB∥平面MOC. (2)证明 因为AC=BC,O为AB的中点, 所以OC⊥AB. 又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC, 所以OC⊥平面VAB, 所以平面MOC⊥平面VAB.

【K12教育学习资料】2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质教师用

【K12教育学习资料】2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质教师用

2018版高考数学大一轮复习第八章立体几何 8.4 直线、平面平行的判定与性质教师用书文新人教版1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)1.(教材改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一直线与平面平行的判定与性质命题点1 直线与平面平行的判定例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面PAD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面PAD . 又FH ∩OH =H , ∴平面OHF ∥平面PAD . 又∵GH ⊂平面OHF , ∴GH ∥平面PAD .命题点2 直线与平面平行的性质例2 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. (1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH , 而平面EFGH ∩平面BCD =EF , ∴CD ∥EF .同理HG ∥CD ,∴EF ∥HG . 同理HE ∥GF ,∴四边形EFGH 为平行四边形. ∴CD ∥EF ,HE ∥AB ,∴∠HEF 为异面直线CD 和AB 所成的角(或补角). 又∵CD ⊥AB ,∴HE ⊥EF . ∴平行四边形EFGH 为矩形.题型二 平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又S △ABD =12×2×2=1,∴111ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由. 解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1.下面给出证明:如图,取BB 1的中点F ,连接DF , 则DF ∥B 1C 1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.∴AB∥FG,AB∥EH,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC, y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2017·保定月考)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 命题①:l 可以在平面α内,不正确;命题②:直线a 与平面α可以是相交关系,不正确;命题③:a 可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2 D .m ∥l 1且n ∥l 2答案 D解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.故选D.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β 答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则PA PC =PB PD, ∴PB =165,∴BD =245;若点P 在α,β之间,则PA PC =PBPD,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥EG , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以EG ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE=2×13×a +2a 2×a ×32a =32a 3.*13.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1. ∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD,又∵A 1O OB =1,∴DC AD =1,即ADDC=1.。

2018课标版理数一轮(8)第八章-立体几何(含答案)3 第三节 直线、平面平行的判定与性质

2018课标版理数一轮(8)第八章-立体几何(含答案)3 第三节 直线、平面平行的判定与性质

要而不充分条件.故选B.
栏目索引
4.已知平面α∥β,直线a⊂α,有下列命题: ①a与β内的所有直线平行; ②a与β内无数条直线平行; ③a与β内的任意一条直线都不垂直. 其中真命题的序号是 答案 解析 ② 设过a且与β相交的平面与β的交线为b,由面面平行的性质定理 .
知,b∥a,故β内的直线b及与b平行的直线才与a平行,故①错误,②正确.平
同理可证AC1⊥平面PMN,
∴平面PMN∥平面A1BD.
栏目索引
考点三
平行关系的综合问题
典例3 (2015四川,18改编)一个正方体的平面展开图及该正方体的直 观图的示意图如图所示. (1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG与平面ACH的位置关系,并证明你的结论.
栏目索引
理数
课标版
第三节 直线、平面平行的判定与性质
栏目索引
教材研读
1.直线与平面平行的判定定理和性质定理
类别 文字语言 判定 平面外一条直线与① 此平面内 的一条 定理 直线平行,则该直线与此平面平行(简记为“ 图形语言 符号语言 ∵② l∥a ,③ a⊂α , ④ l⊄α ,∴l∥α
线线平行⇒线面平行”)
1 1 此时 =1,
AD D1C1
连接A1B交AB1于点O,连接OD1,
由棱柱的性质知四边形A1ABB1为平行四边形,
∴O为A1B的中点, 在△A1BC1中,点O,D1分别为A1B,A1C1的中点, ∴OD1∥BC1,又OD1⊂平面AB1D1,BC1⊄平面AB1D1,
1 1 ∴BC1∥平面AB1D1,∴当 =1时,BC1∥平面AB1D1.
AD D1C1
栏目索引
考点二
平面与平面平行的判定与性质

2018课标版理数一轮(8)第八章-立体几何(含答案)4 第四节 直线、平面垂直的判定与性质

2018课标版理数一轮(8)第八章-立体几何(含答案)4 第四节 直线、平面垂直的判定与性质

栏目索引
方法技巧 面面垂直的证明方法 (1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面 角,将证明面面垂直问题转化为证明二面角的平面角为直角的问题. (2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个 平面的一条垂线,进而把问题转化成证明线线垂直加以解决.
栏目索引
栏目索引
理数
课标版
第四节 直线、平面垂直的判定与性质
栏目索引
教材研读
1.直线与平面垂直 (1)直线和平面垂直的定义
直线l与平面α内的① 任意一条 直线都垂直,就说直线l与平面α互相
垂直. (2)直线与平面垂直的判定定理及性质定理
文字语言 判定 定理 一条直线与一个平面内的② 两条相交直线 都垂直 ,则该直线与此平面垂直 图形语言 符号语言
∵PA⊥底面ABCD,∴PD在底面ABCD内的射影是AD,
又∵AB⊥AD,∴AB⊥PD. 又AB∩AE=A,∴PD⊥平面ABE.
栏目索引
方法技巧 证明直线与平面垂直的常用方法 (1)利用线面垂直的判定定理. (2)利用“两平行线中的一条与一平面垂直,则另一条也与这个平面垂 直”. (3)利用“一条直线垂直于两个平行平面中的一个,则该直线与另一个 平面也垂直”. (4)利用面面垂直的性质定理.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE.
栏目索引
证明
(1)在四棱锥P-ABCD中,
∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC. 而AE⊂平面PAC,∴CD⊥AE. (2)由PA=AB=BC,∠ABC=60°,可得AC=PA. ∵E是PC的中点,∴AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD. 而PD⊂平面PCD,∴AE⊥PD.

2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的情况不能遗漏,所以正确选项为D.答案 D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ).A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( ).A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是d2”的( ).“dA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再根据平行线截线段成比例易知选C.答案 C6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).A.①③B.②③C.①④D.②④解析对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.答案 C二、填空题7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 68.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案①③9.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.①若m 、n 都平行于平面α,则m 、n 一定不是相交直线;②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相平行,m 、n 互相平行,若m ∥α,则n ∥β;④若m 、n 在平面α内的射影互相平行,则m 、n 互相平行.解析 ①为假命题,②为真命题,在③中,n 可以平行于β,也可以在β内,故是假命题,在④中,m 、n 也可能异面,故为假命题.答案 ②10.对于平面α与平面β,有下列条件:①α、β都垂直于平面γ;②α、β都平行于平面γ;③α内不共线的三点到β的距离相等;④l ,m 为两条平行直线,且l ∥α,m ∥β;⑤l ,m 是异面直线,且l ∥α,m ∥α;l ∥β,m ∥β,则可判定平面α与平面β平行的条件是________(填正确结论的序号).解析 由面面平行的判定定理及性质定理知,只有②⑤能判定α∥β.答案 ②⑤三、解答题11. 如图,在四面体A -BCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23. 又据题设条件知,BE BG =23, ∴BK BH =BE BG,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二 如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点,∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF .∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .12. 如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綉A 1E ,∴A 1G 綉BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形,∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形.∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .13.一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.解 由三视图可知:AB =BC =BF =2,DE =CF =22,∠CBF =π2.(1)证明:取BF 的中点G ,连接MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE ,在直三棱柱ADE -BCF 中,平面ADE ⊥平面CDEF ,平面ADE ∩平面CDEF =DE .∴AH ⊥平面CDEF .∴多面体A -CDEF 是以AH 为高,以矩形CDEF 为底面的棱锥,在△ADE 中,AH = 2.S 矩形CDEF =DE ·EF =42,∴棱锥A -CDEF 的体积为V =13·S 矩形CDEF ·AH =13×42×2=83. 14.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB=BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,又AE ⊂平面ABE ,则AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ABE ,∴AE ⊥BF ,又BC ∩BF =B ,∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,∴平面MGN ∥平面ADE .又MN ⊂平面MGN ,∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.。

2018年高考总复习数学理科课时作业:第8章 第4讲 直线

2018年高考总复习数学理科课时作业:第8章 第4讲 直线

第4讲直线、平面平行的判定与性质1.(2014年辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是() A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α2.已知m,n是两条直线,α,β是两个平面,给出下列命题:①若n⊥α,n⊥β,则α∥β;②若平面α上有不共线的三点到平面β的距离相等,则α∥β;③若n,m为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是()A.3个B.2个C.1个D.0个3.如图X8-4-1,已知l是过正方体ABCD-A1B1C1D1的顶点的平面AB1D1与下底面ABCD 所在平面的交线,下列结论错误的是()图X8-4-1A.D1B1∥l B.BD∥平面AD1B1C.l∥平面A1D1B1D.l⊥B1C14.(2015年北京)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的()(导学号58940367)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设α,β,γ是三个不重合的平面,m,n是两条不重合的直线,则下列说法正确的是()A.若α⊥β,β⊥γ,则α∥γB.若α⊥β,m∥β,则m⊥αC.若m⊥α,n⊥α,则m∥n D.若m∥α,n∥α,则m∥n6.如图X8-4-2(1),在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜如图X8-4-2(2)时,BE·BF是定值.其中正确说法的序号是____________.图X8-4-27.如图X8-4-3,在长方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件____________时,有MN ∥平面B 1BDD 1.(导学号 58940368)图X8-4-38.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题.可以在横线处填入的条件是________(把所有正确的序号填上).9.(2016年新课标Ⅲ)如图X8-4-4,四棱锥P -ABC 中,P A ⊥平面ABCD ,AD ∥BC ,AB=AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(导学号 58940369)(1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.图X8-4-410.如图X8-4-5,四棱锥P -ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(1)求证:AC ⊥PD ;(2)在线段P A 上是否存在点E ,使BE ∥平面PCD ?若存在,求PE P A的值;若不存在,请说明理由.图X8-4-5第4讲 直线、平面平行的判定与性质1.B 解析:若m ∥α,n ∥α,则m ∥n 或m ,n 相交或m ,n 异面,故A 错;若m ⊥α,n ⊂α,由直线和平面垂直的定义知,m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;若m ∥α,m ⊥n ,则n ∥α或n ,α相交,故D 错.2.B 3.D4.B 解析:若m ∥β,则平面α,β可能相交也可能平行,不能推出α∥β;反过来,若α∥β,m ⊂α,则有m ∥β.故“m ∥β”是“α∥β”的必要而不充分条件.5.C 解析:A :α,γ可能的位置关系为相交,平行,故A 错误;B :m 可能在α上,可能与α斜交,故B 错误;C :根据线面垂直的性质,可知C 正确;D :m ,n 可能的位置关系为相交,平行,异面,故D 错误.故选C.6.①③④ 解析:对于①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱、三棱柱或五棱柱),且BC 为棱柱的一条侧棱,故①正确;对于②,当水的部分是四棱柱或五棱柱时,水面面积与上下底面面积不等;当水的部分是三棱柱时,水面面积可能变大,也可能变小,故②不正确;③是正确的;④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.7.M ∈线段HF 解析:如图D139,连接FH ,HN ,FN ,图D139 由题意知,HN ∥面B 1BDD 1,FH ∥面B 1BDD 1.且HN ∩FH =H .∴面NHF ∥面B 1BDD 1.∴当M 在线段HF 上运动时,有MN ∥面B 1BDD 1.8.①③ 解析:由线面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.9.(1)证明:由已知得AM =23AD =2,取BP 的中点T ,连接AT ,TN ,如图D140, 由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 平行且等于AM .所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN 平面P AB ,所以MN ∥平面P AB .(2)解:因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A . 取BC 的中点E ,连接AE ,如图D140.由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC ,得M 到BC 的距离为 5.故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=4 53.图D140 图D14110.(1)证明:∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊥CD ,AC ⊂平面ABCD ,∴AC ⊥平面PCD .∵PD ⊂平面PCD ,∴AC ⊥PD .(2)解:线段P A 上存在点E ,使BE ∥平面PCD .∵BC =1,AD =3.在△P AD 中,分别取P A ,PD 靠近点P 的三等分点E ,F ,连接EF (如图D141). ∵PE P A =PF PD =13, ∴EF ∥AD ,EF =13AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF .∴四边形BCFE 是平行四边形.∴BE ∥CF .又BE 平面PCD ,CF ⊂平面PCD .∴BE ∥平面PCD .。

2018高考数学真题 文科 8.4考点1 线、面平行的判定与性质

2018高考数学真题 文科 8.4考点1 线、面平行的判定与性质

第八章立体几何初步第四节直线、平面平行的判定与性质考点1 线、面平行的判定与性质(2018·全国卷Ⅲ(文))如图,矩形ABCD所在平面与半圆弧⌒CD所在平面垂直,M是⌒CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解析】(1)证明由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,又DM⊂平面CMD,故BC⊥DM.因为M为⌒CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,BC,CM⊂平面BMC,所以DM⊥平面BMC.又DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC,BD,交于点O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.【答案】见解析(2018·北京卷(文))如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.【解析】证明(1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面P AD,又PD⊂平面P AD,所以AB⊥PD.又因为P A⊥PD,P A∩AB=A,P A,AB⊂平面P AB,所以PD⊥平面P AB.又PD⊂平面PCD,所以平面P AB⊥平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,BC,所以FG∥BC,FG=12因为四边形ABCD为矩形,且E为AD的中点,BC.所以DE∥BC,DE=12所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.【答案】见解析。

【步步高】2018版高考数学(文)(人教)大一轮复习文档讲义:第八章8.4直线、平面平行的判定与性质

【步步高】2018版高考数学(文)(人教)大一轮复习文档讲义:第八章8.4直线、平面平行的判定与性质

1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】 重要结论:(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β; (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b ; (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ ) (5)若直线a 与平面α内无数条直线平行,则a ∥α.( × ) (6)若α∥β,直线a ∥α,则a ∥β.( × )1.(教材改编)下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO ⊂平面BEF ,AP ⊄平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD . 又FH ∩OH =H , ∴平面OHF ∥平面P AD .又∵GH⊂平面OHF,∴GH∥平面P AD.命题点2直线与平面平行的性质例2(2017·长沙调研)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.(1)证明因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)解如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.证明∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形.∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角(或补角).又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA. 证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明由题设知,BB1綊DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又S △ABD =12×2×2=1,∴111ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由. 解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF ⊂平面ABB 1,平面ABB 1∩平面AB 1C 1=AB 1, ∴EF ∥AB 1,∵点F 是BB 1的中点,∴点E 是AB 的中点. 即当点E 是AB 的中点时,DE ∥平面AB 1C 1.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大?解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG ,EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC ,y b =BG BC ,两式相加得x a +y b =1,即y =ba (a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值,∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2, V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2017·保定月考)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1 B.2 C.3 D.4答案 A解析命题①:l可以在平面α内,不正确;命题②:直线a与平面α可以是相交关系,不正确;命题③:a可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案 D解析由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β.故选D.3.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β答案 B解析l∥α,l∥β,则α与β可能平行,也可能相交,故A项错;由“同垂直于一条直线的两个平面平行”可知B项正确;由l⊥α,l∥β可知α⊥β,故C项错;由α⊥β,l∥α可知l 与β可能平行,也可能l⊂β,也可能相交,故D项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且P A =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则P A PC =PB PD ,∴PB =165,∴BD =245;若点P 在α,β之间,则P A PC =PBPD ,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ; ③如果α∥β,m ⊂α,那么m ∥β;④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号) 答案 ②③④解析 当m ⊥n ,m ⊥α,n ∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE , 所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452. 11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥EG ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF中,四边形ABCD是边长为a 的菱形,且∠DAB=60°,DF=2BE=2a,DF∥BE,DF⊥平面ABCD.(1)在AF上是否存在点G,使得EG∥平面ABCD,请证明你的结论;(2)求该多面体的体积.解(1)当点G位于AF中点时,有EG∥平面ABCD.证明如下:取AF的中点G,AD的中点H,连接GH,GE,BH.在△ADF 中,HG 为中位线,故HG ∥DF 且HG =12DF . 因为BE ∥DF 且BE =12DF , 所以BE 綊GH ,即四边形BEGH 为平行四边形,所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD ,所以EG ∥平面ABCD .(2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形,所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE=2×13×a +2a 2×a ×32a =32a 3. *13.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B ,交AB 1于点O ,连接OD 1. 由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1.∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD,又∵A 1O OB =1,∴DC AD =1,即AD DC =1.。

高考数学第八章立体几何课时规范练38直线、平面平行的判定与性质文新人教A版(2021学年)

高考数学第八章立体几何课时规范练38直线、平面平行的判定与性质文新人教A版(2021学年)

2018届高考数学第八章立体几何课时规范练38 直线、平面平行的判定与性质文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高考数学第八章立体几何课时规范练38 直线、平面平行的判定与性质文新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高考数学第八章立体几何课时规范练38 直线、平面平行的判定与性质文新人教A版的全部内容。

课时规范练38 直线、平面平行的判定与性质基础巩固组1。

如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD∥平面FGH.2.如图,四棱锥P—ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.(1)求证:平面MNE∥平面ACP;(2)求四面体A—MBC的体积.3。

一个正方体的平面展开图及该正方体的直观图的示意图如图所示。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.4.(2017安徽淮南一模,文19)如图,直三棱柱ABC—A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点。

(1)若BE=3EC,求证:DE∥平面A1MC1;(2)若AA1=1,求三棱锥A—MA1C1的体积。

5.(2017福建南平一模,文19)如图,在多面体ABCDE中,平面ABE⊥平面ABCD,△ABE是等边三角形,四边形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=BC=2,M是EC的中点. (1)求证:DM∥平面ABE;(2)求三棱锥M—BDE的体积。

近年高考数学大复习 第八章 立体几何 课时达标检测(三十八)直线、平面平行的判定与性质 理(202

近年高考数学大复习 第八章 立体几何 课时达标检测(三十八)直线、平面平行的判定与性质 理(202

2018高考数学大一轮复习第八章立体几何课时达标检测(三十八)直线、平面平行的判定与性质理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学大一轮复习第八章立体几何课时达标检测(三十八)直线、平面平行的判定与性质理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学大一轮复习第八章立体几何课时达标检测(三十八)直线、平面平行的判定与性质理的全部内容。

课时达标检测(三十八)直线、平面平行的判定与性质[练基础小题-—强化运算能力]1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是( )A.m∥l1且n∥l2 B.m∥β且n∥l2C.m∥β且n∥β D.m∥β且l1∥α解析:选A 由m∥l1,m⊂α,l1⊂β,得l1∥α,同理l2∥α,又l1,l2相交,所以α∥β,反之不成立,所以m∥l且n∥l2是α∥β的一个充分不必要条件.12.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③ B.②③ C.①④ D.②④解析:选C 对于图形①,平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP;对于图形④,AB∥PN,即可得到AB∥平面MNP;图形②③无论用定义还是判定定理都无法证明线面平行.4.已知正方体ABCD­A1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面, 1故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④5。

2018年高考数学总复习教师用书:第8章第4讲直线、平面平行的判定及其性质

2018年高考数学总复习教师用书:第8章第4讲直线、平面平行的判定及其性质
考点一 线面、面面平行的相关命题的真假判断
【例 1】 (2015 ·安徽卷 )已知 m,n 是两条不同直线, α,β是两个不同平面,则 下列命题正确的是 ( ) A. 若 α,β 垂直于同一平面,则 α与 β平行 B.若 m,n 平行于同一平面,则 m 与 n 平行 C.若 α,β不平行,则在 α内不存在与 β平行的直线 D.若 m,n 不平行,则 m 与 n 不可能垂直于同一平面 解析 A 项, α, β可能相交,故错误; B 项,直线 m,n 的位置关系不确定, 可能相交、平行或异面,故错误; C 项,若 m? α,α ∩β= n,m∥ n,则 m∥β, 故错误; D 项,假设 m,n 垂直于同一平面,则必有 m∥n 与已知 m, n 不平行 矛盾,所以原命题正确,故 D 项正确 . 答案 D 规律方法 (1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各 个定义、 定理, 无论是单项选择还是含选择项的填空题, 都可以从中先选出最熟 悉最容易判断的选项先确定或排除,再逐步判断其余选项 . (2)①结合题意构造或绘制图形,结合图形作出判断 . ②特别注意定理所要求的条件是否完备, 图形是否有特殊情况, 通过举反例否定 结论或用反证法推断命题是否正确 . 【训练 1】 (2017 ·台州调研 )设 m,n 是两条不同的直线, α,β ,γ是三个不同 的平面,给出下列四个命题: ①若 m? α, n∥ α,则 m∥n; ②若 α∥β,β∥ γ,m⊥ α,则 m⊥γ; ③若 α∩β=n,m∥n, m∥ α,则 m∥β; ④若 m∥α,n∥β ,m∥n,则 α∥β. 其中是真命题的是 ________(填上正确命题的序号 ). 解析 ① m∥ n 或 m, n 异面,故 ①错误;易知 ②正确; ③ m∥ β或 m? β ,故 ③ 错误; ④ α∥ β或 α与 β相交,故 ④错误 . 答案 ② 考点二 直线与平面平行的判定与性质 (多维探究 ) 命题角度一 直线与平面平行的判定

江苏专用2018版高考数学大一轮复习第八章立体几何8.4直线平面垂直的判定与性质教师用书文

江苏专用2018版高考数学大一轮复习第八章立体几何8.4直线平面垂直的判定与性质教师用书文

8.4 直线、平面垂直的判定与性质(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b(1)平面和平面垂直的定义如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α【知识拓展】重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ×)(2)垂直于同一个平面的两平面平行.( ×)(3)直线a⊥α,b⊥α,则a∥b.( √)(4)若α⊥β,a⊥β⇒a∥α.( ×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √)1.(教材改编)下列命题中正确的是________.①如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β;②如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β;③如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;④如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ.答案②③④解析根据面面垂直的性质,知①不正确,直线l可能平行平面β,也可能在平面β内,②③④正确. α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的_________条件.答案充分不必要解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.(2016·连云港模拟)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是________.①若α⊥β,m⊂α,n⊂β,则m⊥n;②若α∥β,m⊂α,n⊂β,则m∥n;③若m⊥n,m⊂α,n⊂β,则α⊥β;④若m⊥α,m∥n,n∥β,则α⊥β.答案④解析①中,m与n可垂直、可异面、可平行;②中,m与n可平行、可异面;③中,若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故③错误;④中,m⊥α,m∥n,∴n⊥α,又∵n∥β,∴存在l⊂β,l∥n,∴l⊥α,∴α⊥β.4.(2016·徐州模拟)α、β是两个不同的平面,m、n是平面α及平面β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题:_________________________________________________________.答案可填①③④⇒②与②③④⇒①中的一个5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连结OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO,分别交BC,AC,AB于H,D,G.∵PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,∴PC ⊥平面PAB ,AB ⊂平面PAB ,∴PC ⊥AB , 又AB ⊥PO ,PO ∩PC =P , ∴AB ⊥平面PGC , 又CG ⊂平面PGC ,∴AB ⊥CG ,即CG 为△ABC 边AB 的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置. OD ′=10.证明:D ′H ⊥平面ABCD . 证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF ⊂平面ABCD , 所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2015·江苏)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.所以BC 1⊥AB 1.题型二 平面与平面垂直的判定与性质例2 如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面PAD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取PA 的中点H ,连结EH ,DH .又E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面PAD ,CE ⊄平面PAD . 所以CE ∥平面PAD . 方法二 连结CF .所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面PAD ,AD ⊂平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又EF ⊄平面PAD ,PA ⊂平面PAD , 所以EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)因为E 、F 分别为PB 、AB 的中点,所以EF ∥PA . 又因为AB ⊥PA ,所以EF ⊥AB ,同理可证AB ⊥FG .又因为EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . 所以AB ⊥平面EFG .又因为M ,N 分别为PD ,PC 的中点, 所以MN ∥CD ,又AB ∥CD ,所以MN ∥AB , 所以MN ⊥平面EFG . 又因为MN ⊂平面EMN , 所以平面EFG ⊥平面EMN . 引申探究1.在本例条件下,证明:平面EMN ⊥平面PAC . 证明 因为AB ⊥PA ,AB ⊥AC ,且PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以AB ⊥平面PAC .又MN ∥CD ,CD ∥AB ,所以MN ∥AB , 所以MN ⊥平面PAC .又MN⊂平面EMN,所以平面EMN⊥平面PAC.2.在本例条件下,证明:平面EFG∥平面PAC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊄平面PAC,PA⊂平面PAC,所以EF∥平面PAC.同理,FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B 上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,A1B1,AA1⊂平面ABB1A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,A1F,A1C1⊂平面A1C1F,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.题型三直线、平面垂直的综合应用例3 如图所示,在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD =2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2,∴AD⊥BD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD.又BD⊂平面MBD,∴平面MBD⊥平面PAD.(2)解过P作PO⊥AD,∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.又△PAD 是边长为4的等边三角形,∴PO =2 3. 在四边形ABCD 中,AB ∥DC ,AB =2DC , ∴四边形ABCD 为梯形.在Rt△ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高.∴S 四边形ABCD =25+452×855=24.∴V P —ABCD =13×24×23=16 3.思维升华 垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. (2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.如图,平面PAC ⊥平面ABC ,AC ⊥BC ,PE ∥CB ,M 是AE 的中点.(1)若N 是PA 的中点,求证:平面CMN ⊥平面PAC ; (2)若MN ∥平面ABC ,求证:N 是PA 的中点.证明 (1)因为平面PAC ⊥平面ABC ,且平面PAC ∩平面ABC =AC ,AC ⊥BC ,BC ⊂平面ABC , 所以BC ⊥平面PAC ,又M ,N 分别为AE ,AP 的中点,所以MN ∥PE ,又PE∥CB,所以MN∥BC,即MN⊥平面PAC,又MN⊂平面CMN,所以平面CMN⊥平面PAC.(2)因为PE∥CB,BC⊂平面ABC,PE⊄平面ABC,所以PE∥平面ABC,设平面PAE∩平面ABC=l,则PE∥l.又MN∥平面ABC,MN⊂平面PAE,所以MN∥l.所以MN∥PE,因为M是AE的中点,所以N是PA的中点.典例(14分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1)如图所示,连结NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD. [2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K. [4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK. [6分](2)如图所示,连结BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1. ∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1. [8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.∴MK⊥B1C. [12分]∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C. 又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK. [14分]1.(2016·扬州模拟)给出下列四个命题:①垂直于同一平面的两条直线相互平行;②垂直于同一平面的两个平面相互平行;③若一个平面内有无数条直线与另一个平面都平行,那么这两个平面相互平行;④若一条直线垂直于一个平面内的任一直线,那么这条直线垂直于这个平面.其中真命题的个数是________.答案 2解析由直线与平面垂直的性质,可知①正确;正方体的相邻的两个侧面都垂直于底面,而不平行,故②错;由直线与平面垂直的定义知④正确,而③错.2.(2016·常州模拟)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是________.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③解析①中,由m⊥n, n∥α,可得m⊂α或m∥α或m与α相交,错误;②中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;③中,由m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;④中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.3.(2016·无锡模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线________上.答案AB解析由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面交线AB上.4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是________.①CC1与B1E是异面直线;②AC⊥平面ABB1A1;③AE与B1C1是异面直线,且AE⊥B1C1;④A1C1∥平面AB1E.答案③解析①不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;②不正确,由题意知,上底面ABC 是一个正三角形,故不可能存在AC⊥平面ABB1A1;③正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;④不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确.ABCD-A′B′C′D′中,E为A′C′的中点,则与直线CE垂直的有______.①A′C′ ②BD③A′D′ ④AA′答案②解析连结B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.6.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是________.答案①②③解析对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.7.(2016·镇江模拟)已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,则l⊥α.其中正确命题的序号是________.答案②③解析在三棱柱中,三条侧棱互相平行,但三个侧面所在平面两两相交,故①错误;因为a、b相交,假设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α,同理可得γ∥β,因此α∥β,②正确;由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确;当且仅当a、b相交时结论正确,④错误.8.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.9.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个.答案 2解析若α,β换为直线a,b,则命题化为“a∥b,且a⊥γ⇒b⊥γ”,此命题为真命题;若α,γ换为直线a,b,则命题化为“a∥β,且a⊥b⇒b⊥β”,此命题为假命题;若β,γ换为直线a,b,则命题化为“a∥α,且b⊥α⇒a⊥b”,此命题为真命题.11.(2016·连云港模拟)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M 是线段EF的中点.(1)求证:AM∥平面BDE;(2)求证:DM⊥平面BEF.证明(1)连结BD,BD∩AC=O,连结EO.∵O,M分别为AC,EF的中点,且四边形ACEF为矩形,∴EM∥OA,EM=OA,∴四边形EOAM为平行四边形,∴AM∥EO,∵EO⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.(2)由AB=2,AF=1,得DF=DE= 3.∵M是线段EF的中点,∴DM⊥EF,连结BM,得BM=DM=2,又BD=2,∴DM⊥BM,又BM∩EF=M,∴DM⊥平面BEF.12.(2016·北京)如图,在四棱锥PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.(1)证明∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面PAC,AC⊂平面PAC,∴DC⊥平面PAC.(2)证明∵AB∥CD,CD⊥平面PAC,∴AB⊥平面PAC,又AB⊂平面PAB,∴平面PAB⊥平面PAC.(3)解棱PB上存在点F,使得PA∥平面CEF.证明如下:取PB的中点F,连结EF,CE,CF,又∵E为AB的中点,∴EF为△PAB的中位线,∴EF∥PA.又PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.13.(2016·山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,如图,连结DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连结GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC. 又HI∩GI=I,DB∩BC=B,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时规范练38 直线、平面平行的判定与性质基础巩固组1.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD∥平面FGH.2.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.(1)求证:平面MNE∥平面ACP;(2)求四面体A-MBC的体积.3.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.4.(2017安徽淮南一模,文19)如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE∥平面A1MC1;(2)若AA1=1,求三棱锥A-MA1C1的体积.5.(2017福建南平一模,文19)如图,在多面体ABCDE中,平面ABE⊥平面ABCD,△ABE是等边三角形,四边形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=BC=2,M是EC的中点.(1)求证:DM∥平面ABE;(2)求三棱锥M-BDE的体积.〚导学号24190931〛综合提升组6.如图,在三棱柱ABC-A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.7.(2017山西太原三模,文19)如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1,BC的中点.(1)证明:DE∥平面A1B1C;(2)若AB=2,∠BAC=60°,求三棱锥A1-BDE的体积.8.(2017江西宜春二模,文19)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=.(1)求证:MN∥平面PDC;(2)求点C到平面PBD的距离.〚导学号24190932〛创新应用组9.(2017吉林延边州模拟,文19)如图,三棱柱ABC-A1B1C1中,D是AA1的中点,E为BC的中点.(1)求证:直线AE∥平面BC1D;(2)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点E到平面BC1D的距离.〚导学号24190933〛10.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF 折起到△A'EF位置,使得A'C=2.(1)求五棱锥A'-BCDFE的体积;(2)在线段A'C上是否存在一点M,使得BM∥平面A'EF?若存在,求A'M;若不存在,请说明理由.〚导学号24190934〛课时规范练38直线、平面平行的判定与性质1.证法一连接DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF, 所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.2.(1)证明∵M,N, E分别是PD,AD,CD的中点,∴MN∥PA,又MN⊄平面ACP,∴MN∥平面ACP,同理ME∥平面ACP,又MN∩ME=M,∴平面MNE∥平面ACP.(2)解∵PA是四棱锥P-ABCD的高,由MN∥PA知MN是三棱锥M-ABC的高,且MN=PA=1,∴V A-MBC=V M-ABC=S△ABC·MN=×2×2×1=.3.解 (1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.4.(1)证明如图1,取BC中点N,连接MN,C1N,∵M是AB中点,∴MN∥AC∥A1C1,∴M,N,C1,A1共面.∵BE=3EC,∴E是NC的中点.又D是CC1的中点,∴DE∥NC1.∵DE⊄平面MNC1A1,NC1⊂平面MNC1A1,∴DE∥平面A1MC1.(2)解如图2,当AA1=1时,则AM=1,A1M=,A1C1=.∴三棱锥A-MA1C1的体积AM·AA1·A1C1=.图1图25.(1)证法一取BE的中点O,连接OA,OM,∵O,M分别为线段BE,CE的中点,∴OM=BC.又AD=BC,∴OM=AD,又AD∥CB,OM∥CB,∴OM∥AD.∴四边形OMDA为平行四边形,∴DM∥AO,又AO⊂平面ABE,MD⊄平面ABE,∴DM∥平面ABE.证法二取BC的中点N,连接DN,MN(图略),∵M,N分别为线段CE,BC的中点,∴MN∥BE,又BE⊂平面ABE,MN⊄平面ABE,∴MN∥平面ABE,同理可证DN∥平面ABE,MN∩DN=N,∴平面DMN∥平面ABE,又DM⊂平面DMN,∴DM∥平面ABE.(2)解法一∵平面ABE⊥平面ABCD,AB⊥BC,BC⊂平面ABCD,∴BC⊥平面ABE,∵OA⊂平面ABE,∴BC⊥AO,又BE⊥AO,BC∩BE=B,∴AO⊥平面BCE,由(1)知DM=AO=,DM∥AO,∴DM⊥平面BCE,∴V M-BDE=V D-MBE=×2×2×.解法二取AB的中点G,连接EG,∵△ABE是等边三角形,∴EG⊥AB,∵平面ABE∩平面ABCD=AB,平面ABE⊥平面ABCD,且EG⊂平面ABE,∴EG⊥平面ABCD,即EG为四棱锥E-ABCD的高,∵M是EC的中点,∴M-BCD的体积是E-BCD体积的一半,∴V M-BDE=V E-BDC-V M-BDC=V E-BDC,∴V M-BDE=×2×4×.即三棱锥M-BDE的体积为.6.解方法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.因为B1E=3EC1,所以EG=A1C1.又因为AF∥A1C1,且AF=A1C1,所以AF EG,所以四边形AFEG为平行四边形,所以EF∥AG.又因为EF⊄平面A1ABB1,AG⊂平面A1ABB1,所以EF∥平面A1ABB1.方法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:在平面BCC1B1内过点E作EG∥BB1交BC于点G,因为EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,所以EG∥平面A1ABB1.因为B1E=3EC1,所以BG=3GC,所以FG∥AB.又因为AB⊂平面A1ABB1,FG⊄平面A1ABB1,所以FG∥平面A1ABB1.又因为EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面A1ABB1.因为EF⊂平面EFG,所以EF∥平面A1ABB1.7.(1)证明如图,取AC的中点F,连接DF,EF,在△AA1C中,点D,F分别是AA1,AC的中点,∴DF∥A1C,同理,得EF∥AB∥A1B1,DF∩EF=F,A1C∩A1B1=A1,∴平面DEF∥平面A1B1C,又DE⊂平面DEF,∴DE∥平面A1B1C.(2)解过点A1作AC的垂线,垂足为H,由题知侧面ACC1A1⊥底面ABC,∴A1H⊥底面ABC,在△AA1C中,∵∠A1AC=60°,AC=2AA1=4,∴A1H=,∵AB=2,∠BAC=60°,∴BC=2,点E是BC的中点,∴BE=,S△ABE=AB·BE=×2×,∵D为AA1的中点,∴-V D-ABE=×A1H×S△ABE=.8.(1)证明在正三角形ABC中,BM=2.在△ACD中,∵M为AC中点,DM⊥AC,∴AD=CD.∵∠ADC=120°,∴DM=,∴=3.在等腰直角三角形PAB中,PA=AB=4,PB=4,∴=3,∴,∴MN∥PD.又MN⊄平面PDC,PD⊂平面PDC,∴MN∥平面PDC.(2)解设点C到平面PBD的距离为h.由(1)可知,BD=,PM==2,∴S△PBD=×2.∵S△BCD=×2=,∴由等体积可得×4=h,∴h=,∴点C到平面PBD的距离为.9.(1)证明设BC1的中点为F,连接EF,DF,则EF是△BCC1的中位线,根据已知得EF∥DA,且EF=DA,∴四边形ADFE是平行四边形,∴AE∥DF,∵DF⊂平面BDC1,AE⊄平面BDC1,∴直线AE∥平面BDC1.(2)解由(1)的结论可知直线AE∥平面BDC1,∴点E到平面BDC1的距离等于点A到平面BDC1的距离,设为h.∴,∴·h=,∴×2·h=×2×2×,解得h=.∴点E到平面BDC1的距离为.10.解 (1)连接AC,设AC∩EF=H,连接A'H.因为四边形ABCD是正方形,AE=AF=4,所以H是EF的中点,且EF⊥AH,EF⊥CH.从而有A'H⊥EF,CH⊥EF,又A'H∩CH=H,所以EF⊥平面A'HC,且EF⊂平面ABCD,从而平面A'HC⊥平面ABCD.过点A'作A'O垂直HC且与HC相交于点O,则A'O⊥平面ABCD.因为正方形ABCD的边长为6,AE=AF=4,故A'H=2,CH=4,所以cos ∠A'HC==.所以HO=A'H·cos ∠A'HC=,则A'O=.所以五棱锥A'-BCDFE的体积V=.(2)线段A'C上存在点M,使得BM∥平面A'EF,此时A'M=.证明如下:连接OM,BD,BM,DM,且易知BD过点O.A'M=A'C,HO=HC,所以OM∥A'H.又OM⊄平面A'EF,A'H⊂平面A'EF,所以OM∥平面A'EF.又BD∥EF,BD⊄平面A'EF,EF⊂平面A'EF,所以BD∥平面A'EF.又BD∩OM=O,所以平面MBD∥平面A'EF, 因为BM⊂平面MBD,所以BM∥平面A'EF.。

相关文档
最新文档