一次函数
一次函数
y=2x过点A,当2x<kx+b<0时,x的取值范围是( )
A. B. C. D.
第4题图
第5题图
第6题图
7. 如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,5)两点,当-
3<x<0时,y的取值 范围是
.
8. 如图,已知函数和的图象交点为,则不等式的解集为
.
9. 如图,已知函数和的图像交于点,则根据图像可得不等式的解集是
C.(1,-1)
D.(1,1)
5. 如图,已知直线y=kx+b经过第一、二、四象限,则直线y=bx-k过(
)
A.第一、二、四象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、三象限 6. 在同一平面直角坐标系中,一次函数与正比例函数
(是常数,
且)
的图象只可能是( )
D 0 x
0 A y x 0 C x 0 B x y y y
是x的正比例函数.所以,正比例函数是一次函数的特例.
3、会画一次函数的图像,掌握当k和b取不同的值时一次函数图像所
经过的象限。 4、掌握一次函数的性质以及其在实际问题中的应用。 5、会解决一次函数与几何问题的综合问题。 【知识结构】 1、一次函数的概念与一般形式:y=kx+b(k、b为常数,k ≠ 0)。 2、一次函数的图像。 3、一次函数的性质。 4、一次函数与实际 问题的结合。 【重点知识解析】
到达点B,最后走下坡路到达工作单位,所用的时间与路程的关
系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、
下坡路的速度分别保持和去上班时一致,那么他从单位到家门口
需要的时间是( )
A.12分钟 B.15分钟 C.25分钟
一次函数的定义和性质
一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。
它也被称为线性函数,因为它的图像是一条直线。
一次函数是数学中的基础概念之一,具有一些重要的性质和应用。
一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。
其中,a称为一次项的系数,b称为常数项。
当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。
二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。
斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。
截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。
三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。
当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。
对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。
平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。
四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。
一次函数
一次函数知识点聚焦一、函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 二、一次函数概念:1.一次函数的概念:一般地,如果y =kx +b(k 、b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数.由定义知:y 是x 的一次函数⇔它的解析式是y =kx +b ,其中k 、b 是常数,且k ≠0.2.一次函数解析式y =kx +b(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)常数项b 可为任意实数.3.正比例函数解析式y =kx(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)没有常数项或者说常数项为0.4. 正比例函数是一次函数,但一次函数y =kx +b(k ≠0)不一定是正比例函数,只有当b=0时才是正比例函数。
三、一次函数的图像1.一次函数y =kx +b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线.2.正比例函数y =kx(k ≠0)的图象是经过点(0,0)和(1,k)的一条直线.注意:画一次函数的图像,只需要过图像上两点作直线即可,一般取(0,b )、(-b k,0)两点。
四、一次函数图像的性质1. 一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.b>0时,直线交y 轴正半轴,b<0时,直线交y 轴负半轴。
2.一次函数y=kx+b(k ≠0)的图象是经过点(0,b)且平行于直线y=kx (k ≠0)的一条直线3. 平移规律在原有函数的基础上“k 值正右移,负左移;b 值正上移,负下移”。
一次函数及其应用
一次函数及其应用一次函数是数学中的一种基本函数形式,也称为线性函数。
它的形式可以表示为 y = ax + b,其中 a 和 b 为常数,x 和 y 分别表示自变量和因变量。
一次函数在数学和实际生活中都有广泛的应用,本文将探讨一次函数的定义、性质以及它在经济学和物理学中的应用。
一、一次函数的定义和性质一次函数是一种简单的函数形式,它的图像是一条直线。
在一次函数中,自变量 x 的一次幂为 1,因此它的图像是一条斜率为常数的直线。
一次函数的定义域和值域都是实数集。
一次函数的性质主要包括斜率和截距。
斜率表示了直线的倾斜程度,它等于函数的系数 a。
当 a 大于 0 时,函数图像从左下方向右上方倾斜;当 a 小于 0 时,函数图像从左上方向右下方倾斜;当 a 等于 0 时,函数图像为水平直线。
截距表示了直线与 y 轴的交点位置,它等于函数的常数项 b。
当 b 大于 0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b 小于 0 时,函数图像与 y 轴的交点在 y 轴的负半轴上;当 b 等于 0 时,函数图像与 y 轴相交于原点。
二、一次函数在经济学中的应用一次函数在经济学中有着广泛的应用,特别是在供求关系和成本收益分析中。
以下将以供求关系为例,介绍一次函数在经济学中的应用。
供求关系是经济学中的重要概念,它描述了商品市场上供给量和需求量之间的关系。
一次函数可以很好地描述供求关系。
假设某种商品的供给量和价格之间存在线性关系,可以表示为 S = aP + b,其中 S 表示供给量,P 表示价格,a 和 b 表示常数。
同样,需求量和价格之间的关系也可以用一次函数来表示,表示为 D = cP + d,其中 D 表示需求量,c 和 d 表示常数。
通过求解供给函数和需求函数的交点,可以得到市场均衡的价格和数量。
假设市场均衡的价格为 P*,数量为 Q*,则有 S = D,即 aP* + b = cP* + d。
通过解这个方程可以求得 P* 的值,进而可以计算出 Q* 的值。
一次函数(1)
一次函数(1)介绍一次函数又被称为线性函数,是数学中最简单的一种函数类型。
它的一般形式可以表示为y = kx + b,其中k和b为常数。
在一次函数中,x和y之间存在线性关系,可以用直线表示。
一次函数的图像特点一次函数的图像通常是一条斜率为k的直线,b表示y轴的截距,也就是与y轴的交点。
以下是一次函数图像的特点:1. 斜率一次函数的斜率k表示直线的倾斜程度。
斜率为正数时,直线向右上方倾斜;斜率为负数时,直线向左上方倾斜;斜率为零时,直线水平。
斜率的绝对值越大,直线越陡峭。
2. 截距一次函数的截距b表示直线与y轴的交点,即x=0时的y轴坐标值。
截距可以是正数、负数或零。
当截距为正数时,直线在y轴上方与y轴相交;当截距为负数时,直线在y轴下方与y轴相交;当截距为零时,直线通过原点。
如何绘制一次函数图像绘制一次函数的图像通常需要知道斜率k和截距b。
根据斜率和截距的值,可以采用以下方法绘制一次函数图像:1.确定两个坐标点。
根据斜率和截距,随意选择两个点的坐标。
可以选择两个整数,以方便计算。
2.连接两个坐标点。
使用直线连接两个坐标点,即可得到一次函数的图像。
3.检查图像是否符合预期。
检查图像是否符合一次函数的特点,如斜率、截距等。
一次函数的应用一次函数在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 经济学一次函数常常用于经济学中的供求曲线、成本曲线等的建模。
它可以帮助经济学家分析市场行为、预测价格变化等。
2. 物理学在物理学中,一次函数可以用于描述某些物理量之间的线性关系,如速度和时间、力和位移等。
3. 工程学工程学中的很多问题都可以使用一次函数进行建模,如电路中的电流与电压之间的关系、线性弹性力学中的受力与位移之间的关系等。
4. 统计学一次函数可以用于统计学中的回归分析,帮助研究人员找到变量之间的关系。
回归分析广泛应用于市场调研、社会科学、生物医学等领域。
总结一次函数是数学中最简单的函数类型,可以用直线表示。
一次函数课件ppt
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。
一次函数课件ppt
奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算
。
分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
一次函数详解
一次函数
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)
的函数,叫做一次函数,其中x是自变量。当b=0 时,一次函数y=kx(k≠0),又叫做正比例函数 (正比例函数是一次函数的特例,一次函数包括 正比例函数)。
析式
形式是y=kx+b,判断一个函数是否是一次函数, 就是判断是否能化成这种形式。 注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
图像
一次函数y=kx+b在直角坐标系中 的图像是一条直线。k是斜率(反 映直线对x轴的倾斜度)。
k>0时,图像从左到右上升,y随x 的增大而增大,经过的象限如图:
k<0时,图像从左到右下降,y 随x的增大而减小,经过的象限 如图:
性质
在一次函数上的任意一点P(x,y),都满足 等式:y=kx+b(k≠0)。
一次函数与y轴交点的坐标总是(0,b),与x轴 总是交于(-b/k,0),正比例函数的图像都是过 原点的。
最值
一般情况,一次函数没有最大值或最小值,但 是当自变量的取值范围有限制时,在端点可以 取到最大值或最小值。在应用题中要特别注意 自变量的取值范围。
过定点
正比例函数y=kx,过(0,0),(1,k) 一次函数y=kx+b,过(0,b),(-b/k,0) 例如直线y=kx-k,此时b=-k,套用(-b/k,0),可知y=kx-k 过定点(1,0)。 这种题也可以这样理解,对于y=kx-k,当x确定时y与k值有 关,所以y不确定,想过定点(x1,y1),需要使y与k无关。 由于参数k是字母,可以把它当作关于k的方程,即y=(x-1)k。 该方程有无数个解(无论k取何值,(x1,y1)都满足这个方程)
一次函数知识点总结
一次函数知识点总结一次函数(也称线性函数)在数学中是一种基本的函数类型,具有简单直观的图像和重要的应用。
下面将对一次函数的相关知识点进行总结。
1. 定义和表达式一次函数是指具有形如 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
其中 k 表示斜率,b 表示截距。
一次函数的图像是一条直线。
2. 斜率的意义斜率是一次函数最重要的特征之一,它表示了函数图像在平面上的倾斜程度。
具体而言,斜率 k 表示单位自变量变化时,因变量相应的变化量。
斜率可以正负,正斜率表示函数图像从左下到右上逐渐升高,负斜率表示函数图像从左上到右下逐渐降低。
3. 截距的意义截距是一次函数图像与 y 轴交点的纵坐标,也就是当 x = 0 时,对应的 y 值。
截距 b 表示了函数图像与 y 轴的相对位置关系,它是一次函数图像上的常数项。
4. 图像特征和性质一次函数的图像是一条直线,根据斜率和截距的不同取值,可以分为四种情况:正斜率正截距、正斜率负截距、负斜率正截距和负斜率负截距。
根据斜率的大小可以判断函数图像的陡峭程度,斜率越大,函数图像越陡峭。
5. 函数的性质一次函数的性质非常重要,有助于解决实际问题和理解其他函数类型。
一次函数是一个线性函数,它的图像是直线,因此具有以下性质:- 一次函数上的任意两个点可以唯一确定一条直线。
- 一次函数的函数值随自变量的变化是线性变化的。
- 一次函数图像关于 y 轴对称。
- 一次函数图像不存在极值和拐点。
6. 直线方程与一次函数的关系一次函数可以通过直线方程 y = ax + b 来表示,其中 a 是斜率,b 是截距。
直线方程是一种常见的形式,可以更直观地表示函数图像的性质和特点。
7. 一次函数的应用举例一次函数在实际问题中有广泛的应用。
例如,在经济学中,一次函数可以用来描述成本和收入的关系;在物理学中,一次函数可以用来表示速度和位移的关系;在统计学中,一次函数可以用来进行线性回归等。
一次函数所有知识点讲解
一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。
在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。
一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。
当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。
四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。
当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。
2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。
因此,截距b可以用来确定函数的位置。
3. 一次函数的定义域为全体实数,值域为全体实数。
五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。
例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。
2. 一次函数可以用来描述经济问题中的成本和收益关系。
例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。
3. 一次函数可以用来描述物理问题中的速度和加速度关系。
例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。
一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。
一次函数的概念说
斜率的概念与计算方法
斜率是一次函数的重要特征之一,它表示函数图像的斜率或倾斜程度。 斜率的计算方法包括利用直线上的两个点的坐标、借助方程的系数以及使用图像上的特征点等。 斜率在数学和物理等学科中广泛应用,帮助我们理解和解决各种实际问题。
截距的概念与计算方法
截距是一次函数图像与坐标轴的交点位置,它在函数的定义中起到重要的作用。 截距的计算方法包括利用函数的定义和图像上的特征点等。 截距的概念和计算方法对于理解和应用一次函数都具有重要意义。
一次函数的概念说
一次函数是数学中的基本函数之一。它具有许多重要的定义、特征和性质, 是解决各种实际问题的有力工具。
一次函数的定义及特征
一次函数是指函数的最高次数为1的多项式函数。它的一般形式可以表示为y = kx + b,其中k表示斜率,b表示截距。 一次函数具有线性关系、单一的倾斜方向,以及与坐标系的关系等特征。 一次函数的定义和特征对于理解和应用其他类型的函数都至关重要。
一次函数的变形与操作规律
一次函数可以通过改变斜率和截距的值进行变形和操作。 常见的一次函数变形包括水平平移、垂直平移、水平伸缩和垂直伸缩等。 对一次函数进行变形和操作可以改变其图像和性质,从而更好地适应实际问 题的需求。
点斜式方程的推导与应用
点斜式方程是一种表示一次函数的方程形式。 通过已知一次函数上的一点和斜率,可以推导出该函数的点斜式方程。 点斜式方程在几何和物理等学科中有广泛的应用,帮助我们分析和解决各种 实际问题。
线性方程与一次函数的关系
线性方程是一次方程的一种特殊形式。一次函数可以通过线性方程来表示。
通过解线性方程,我们可以确定一次函数的斜率和截距,从而得到该函数的 图像和性质。
线性方程和一次函数之间的关系是数学中的基本概念之一,也被广泛应用于 科一条直线。它在坐标系中呈现出特定的形状和方向。 一次函数的图像具有直线的特点,如斜率、截距以及与坐标轴的交点。 通过分析一次函数的图像,我们可以了解其特点和行为,从而更好地理解和应用一次函数。
一次函数
知识要点一、一次函数的概念(一)一次函数概念1、一般地,解析式形如y kx b =+(其中k 、b 是常数,且k ≠0)的函数叫做一次函数 定义域是一切实数2、正比例函数是一次函数的特例3、常值函数:一般地,我们把函数y c =(c 为常数)叫做常值函数(二)待定系数法求一次函数1、待定系数法:先设出待求函数的关系式,再根据条件求出未知系数,从而得到所求结果的方法,叫做待定系数法2、用待定系数法确定一次函数关系式的一般步骤:① 设函数关系式为y kx b =+(其中k 、b 为待定系数);② 将已知点的坐标代入函数关系式,解方程(组)③ 求出k 与b 的值,得到函数关系式二、一次函数的图像1、一次函数y kx b =+(其中k 、b 是常数,且k ≠0)的图像是一条直线。
一次函数y kx b =+的图像也称为直线y kx b =+2、一次函数图像的画法画一次函数的图像可通过“列表、描点、连线”获得。
也可由“两点确定一条直线”的知识,只需描出两个点,然后过这两点作一条直线一次函数与x 轴、y 轴的交点分别为,0b k ⎛⎫- ⎪⎝⎭、()0,b ,在画一次函数时,只需取者两点就可以了3、直线的截距一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距 截距与距离是两个完全不一样的概念,截距可以是任意实数,而距离总是非负数4、一般地,一次函数y kx b =+(b ≠0)的图像可由正比例函数y kx =的图像平移得到。
当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位5、如果12b b ≠,那么直线1y kx b =+于直线2y kx b =+平行;反过来,如果直线12y k x b =+与直星之韵---睿思理科 2014 春季 一 次 函 数线22y k x b =+平行,那么12k k =,12b b ≠三、一次函数的性质0,0 0,0 0,0 0,0 k b y kx b k b y kx b k b y kx b k b y kx b >>=+⎧⎪><=+⎪⎨<>=+⎪⎪<<=+⎩直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限题型1:一次函数的概念☆☆(一)选择题1、下列函数中,是y 关于x 的一次函数的是 ( )A. 2125y x =+ B. 2y =- C. 2、下列函数解析式中,属于一次函数的是( )① ()()20y a x a =+≠ ② ()10y ax a a=-≠ ③()()11y a x a =-+≠- ④ ()0a y a x a x =+≠ A ① B ①②③ C ①③ D 全部都是3、已知函数32y x =+,当x a =时的函数值为1,则a 的值为( ) A. 13 B. -1 C. -13D. 1 4、下列四个命题中,错误的是( )A. 正比例函数一定是一次函数B. 反比例函数不是一次函数C. 若1y -和x 成正比例,则y 是x 的一次函数D. 若1y -和x 成反比例,则y 是x 的一次函数5、下列函数:①()()50y m x m =-≠; ②()10y ax a a=+≠ ③()()33y k x k =-+≠- ④k y kx x =+()0k ≠ 其中是一次函数的有( )A. ①②③④B. ①C. ①②③D. ①③(二)填空题1、 已知常值函数()3f x =-,则()1f =____________2、 已知函数()52y m x b =+-+,当___________时,此函数是一次函数;当____________时,此函数是正比例函数。
一次函数考点知识梳理
一次函数考点知识梳理1.一次函数定义:o一次函数的一般形式为y=kx+b(k≠0),其中k是斜率,b 是y轴截距。
o理解并掌握一次函数的图像特征:直线、方向(上升或下降)、位置(与坐标轴的交点)。
2.斜率的理解和应用:o斜率的意义:表示直线的倾斜程度,斜率为正时,直线从左向右上升;斜率为负时,直线从左向右下降。
o计算斜率的方法:两点式斜率公式k=(y2-y1)/(x2-x1)。
o判断两条直线平行或垂直的关系:若两直线斜率相等,则两线平行;若一直线斜率为另一直线斜率的相反数且绝对值相等,则两线垂直。
3.一次函数图像平移变换:o水平平移:原函数y=kx+b平移h个单位后变为y=k(x-h)+ b,其中h>0向右平移,h<0向左平移。
o垂直平移:原函数y=kx+b向上平移k个单位后变为y=kx+b +k,向下平移则减去相应的单位。
4.一次函数的实际应用问题:o表示实际生活中的增长、减少、路程与时间关系等问题,理解“速度”即斜率的概念。
o解决与一次函数相关的面积计算、行程问题、利润问题等。
5.一次函数与方程、不等式的联系:o一次函数解析式可以转化为一元一次方程和一元一次不等式,通过求解方程或不等式来确定图像上的点或区域。
6.一次函数与坐标轴的交点坐标:o求解一次函数与x轴和y轴的交点坐标,从而确定函数图形的具体位置。
7.线性关系与一次函数模型:o在实际问题中建立一次函数模型,通过观察数据、分析趋势确定变量之间的线性关系,并用一次函数的形式表示出来。
o学会从表格、图象或具体情境中提取信息,构建并验证一次函数模型。
8.一次函数图像特征与性质:o根据k和b的符号及绝对值大小,判断一次函数图像经过的象限(一、二、三、四象限)以及单调性(增函数还是减函数)。
o了解两点决定一条直线的原理,并能利用两个点坐标画出一次函数图像。
9.一次函数与反比例函数、二次函数的区别与联系:o明确一次函数是一次项系数不为零的多项式函数,而反比例函数是y=k/x形式,二次函数是y=ax²+bx+c形式,理解它们在图形、性质上的差异与共同点。
一次函数总结
主要结论➢一次函数四种表达方式:1)斜截式:y=kx+b(k≠0)2)点斜式:(y−y0)=k(x−x0)(k≠0)3)两点式:y−y1y2−y1=x−x1x2−x14)方程式表达:Ax+By+C=0 (A,B≠0)➢点与点距离(弦长公式):d=√(1+k2)×|x1−x2|=√(1+1k2)×|y1−y2|➢点到直线距离:00√A2+B200√k2+1➢直线到直线距离:d=12√(A2+B2)2一、一次函数形式:1、斜截式:y=kx+b(k≠0)备注:也是直线常规表达方式,y轴交点为(0,b),2、点斜式:需知道斜率k,已知点(x0,y0)(y−y0)=k(x−x0)(k≠0)3、两点式:需知道直线上任意两点(x1,y1),(x2,y2)y−y1 y2−y1=x−x1 x2−x14、方程式表达:Ax+By+C=0 (A,B≠0)二、点与点距离(弦长公式):已知直角坐标系两点E(x1,y1),F(x2,y2),求EF线段长度三、点与直线关系:1、点到直线距离:1)已知直线L为Ax+By+C=0,直线外点P(x0,y0),则点P到直线距离为:|Ax+By+C|√A2+B22)已知直接L为y=kx+b,直线外点P(x0,y0),则点P到直线距离为:|kx−y+b|√k2+12、点关于直线的对称点:1)特殊情况:点P(x1,y1)关于x轴,y轴平行线对称2)特殊情况:点P(x1,y1)关于直线y=±x+c对称以上图y=x+c为例,将P点y1带入直线y1=x+c,求得的x即为对称点的x2;对应x1带如求得y2。
3)一般情况:点P(x1,y1)关于直线Ax+By+C=0对称本例题因为选择题,不用求解对称点,可用y 2−y 1x 2−x 1=−1k=−12,选出垂线上的点,如果有多选,可以用(x 1+x 22,y 1+y 22)过直线L 来筛选。
四、直线与直线关系设两条直线方程为Ax+By+C1=0Ax+By+C2=0则其距离公式为d=12222。
一次函数的性质及应用
一次函数的性质及应用一次函数,又称为线性函数,是数学中常见且重要的函数类型。
它的一般形式可以表示为y = ax + b,其中a和b为常数,x为自变量,y 为因变量。
本文将探讨一次函数的性质以及其在实际问题中的应用。
一、一次函数的性质1. 斜率:一次函数的斜率可以通过系数a来确定,斜率的正负表示函数的上升或下降趋势,斜率越大越陡峭。
斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数为水平线。
2. 截距:一次函数的截距可以通过常数b来确定,截距表示函数与坐标轴的交点位置。
当x为零时,对应的y值即为函数的纵轴截距;当y为零时,对应的x值即为函数的横轴截距。
3. 函数图像:一次函数的图像为一条直线。
根据斜率和截距的不同取值,函数的图像可能是上升的直线、下降的直线或者水平线。
二、一次函数的应用1. 表示一种关系:一次函数常用于描述两个变量之间的线性关系。
例如,经济学中的供需关系、物理学中的速度与时间关系等都可以用一次函数来表示。
2. 预测与推理:通过确定一次函数的斜率和截距,可以进行数据的预测与推理。
例如,通过已知的数据点(x1,y1)、(x2,y2)可以利用一次函数来预测其他数据点的值。
3. 优化问题:一次函数在优化问题中也有广泛应用。
例如,生产成本与产量之间的关系、投资与回报之间的关系等,都可以用一次函数来描述,并通过计算斜率和截距来实现最优化。
三、实例分析为了更好地理解一次函数的性质及应用,我们来看一个实例分析。
假设小明每天步行去上学,他发现他步行的时间与距离之间存在一种线性关系。
他记录了以下数据:距离(公里)时间(分钟)1 102 203 30通过这些数据点,我们可以得到一次函数的图像并进一步分析其性质和应用。
首先,根据给定的数据点,我们可以利用最小二乘法确定一次函数的表达式为y = 10x。
其中斜率为10,表示小明步行速度为每分钟10米;截距为0,表示小明在出发时不需要额外的时间。
通过这个函数表达式,我们可以回答一些问题。
一次函数知识点
DOCS
DOCS SMART CREATE
一次函数知识点详解
01
一次函数的概念与形式
一次函数的定义与性质
一次函数的定义
• 形式:y = kx + b • 定义:函数中只含有一个未知数x,且x的指数为1
一次函数的性质
• 性质1:y的值随着x的值增大而增大 • 性质2:y的值随着x的值减小而减小 • 性质3:一次函数图像是一条直线
03
一次函数的方程与不等式
一次函数的方程表示与求解
一次函数的方程表示
• 形式:y = kx + b • 其中,k为斜率,b为截距
一次函数的方程求解
• 求解方法:将已知条件代入方程,解出x或y的值
一次函数的不等式表示与求解
一次函数的不等式表示
• 形式:kx + b < y 或 kx + b > y • 其中,k为斜率,b为截距
一次函数的截距
• 定义:直线与y轴的交点 • 计算:截距b = y - kx
一次函数的单调性与最值
一次函数的单调性
• 单调递增:当k > 0时,y随x的增大而增大 • 单调递减:当k < 0时,y随x的增大而减小
一次函数的最值
• 最小值:当x = -b / k时,y取得最小值 • 最大值:当x = -b / k时,y取得最大值
伸缩变换的应用
• 应用1:求解直线在x轴上的伸缩比例 • 应用2:求解直线与y轴的交点
05
一次函数的综合问题与解题技巧
一次函数的最大值与最小值问题
最大值问题
• 解题方法:利用一次函数的单调性,求出最大值点
最小值问题
一次函数解释
一次函数解释一次函数是函数中的一种,它反映了变量之间的一种线性关系。
本文将从定义域、函数表达式、图像特征、斜率、与坐标轴的交点、单调性以及函数性质等方面,对一次函数进行详细的解释。
1.定义域定义域是一次函数的基本属性,它表示自变量x的取值范围。
对于任何一个一次函数,定义域都是整个实数集R。
在函数表达式中,x表示自变量,而y是因变量,定义域就是x可以取到的所有值的集合。
2.函数表达式一次函数的函数表达式为y=kx+b,其中k和b是常数,k≠0。
k 称为斜率,b是y轴上的截距。
这个表达式表明,函数的图像是一条直线,直线的斜率是k,它在y轴上的截距是b。
3.图像特征一次函数的图像是一条直线,它的形状由斜率k确定。
当k>0时,直线从左下方向右上方倾斜;当k<0时,直线从左上方向右下方倾斜。
截距b决定了直线在y轴上的位置。
4.斜率斜率是一次函数的重要属性,它反映了函数图像的倾斜程度。
斜率的计算公式为k=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是函数图像上任意两点的坐标。
5.与坐标轴的交点一次函数与坐标轴的交点是函数图像与x轴或y轴的交点。
当y=0时,一次函数与x轴的交点为(b/k,0);当x=0时,一次函数与y 轴的交点为(0,b)。
这些交点对于理解函数的性质以及解决某些问题非常重要。
6.单调性一次函数在某个区间内的单调性与其斜率密切相关。
当k>0时,函数在(-∞,+∞)上单调递增;当k<0时,函数在(-∞,+∞)上单调递减。
单调性可以帮助我们了解函数值随自变量变化的趋势。
7.函数性质一次函数具有以下性质:(1)定义域为R;(2)值域为R;(3)图像是一条直线;(4)斜率是常数;(5)与坐标轴的交点是有限的;(6)在一定区间内具有单调性;(7)是连续的但不一定是有界的。
总之,一次函数作为一种基本的函数类型,具有丰富的定义域、表达式、图像、斜率、与坐标轴交点、单调性和函数性质。
一次函数的概念
3
工程学
一次函数可以用于建筑工程的斜坡设计和道路的倾斜度计算。
一次函数的例题和习题
例题
如果一次函数的斜率为2,截距为3,求其方程。
例题
已知一次函数过点(2, 5)和(3, 7),求其方程。
习题
问一次函数y = -3x + 4的斜率和截距分别是多少?
பைடு நூலகம்
一次函数的定义
1 线性关系
一次函数描述了两个变量之间的线性关系,其中自变量的每个单位的变化引起因变量的 相应变化。
2 单一斜率
一次函数的斜率是恒定的,表示直线的倾斜程度。
3 常数截距
一次函数的截距是直线与y轴的交点。
一次函数的图像
直线
一次函数的图像是一条直线,可 以通过两个点来确定。
正斜率
负斜率
一次函数的一般形式是y = kx + b,其中k是斜率,b是截距。
点斜式
可以通过已知直线上的一点和 斜率来写出一次函数的方程。
两点式
可以通过已知直线上的两个点 来写出一次函数的方程。
一次函数的应用
1
经济学
一次函数可用于描述供应和需求曲线,分析市场平衡和价格变动。
2
物理学
一次函数可以模拟直线运动和速度变化,如自由落体运动和直线加速度。
一次函数的概念
一次函数是一个定义在实数集上的函数,其定义域为整个实数集。它的表达 式可以写作y = kx + b,其中k和b为常数,而x是自变量,y是因变量。
什么是一次函数?
一次函数是一种简单而重要的数学函数。它表示了一条直线在坐标平面上的 形状和位置。一次函数的方程可以用来描述很多实际问题,如直线运动和经 济曲线。
如果斜率是正数,直线向上倾斜。 如果斜率是负数,直线向下倾斜。
一次函数知识点总结
一次函数知识点总结一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2、当b=0,k≠0时,y=kx仍就是一次函数。
3、当k=0,b≠0时,它不是一次函数。
4、正比例函数就是一次函数的特例,一次函数包含正比例函数。
一次函数的图像及性质1、在一次函数上的任一一点p(x,y),都满足用户等式:y=kx+b。
2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。
3、正比例函数的图像总是过原点。
4、k,b与函数图像所在象限的关系:当k>0时,y随x的减小而减小;当k<0时,y随x的减小而增大。
当k>0,b>0时,直线通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线通过一、二、四象限;当k<0,b<0时,直线通过二、三、四象限;当b=0时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数的图象与性质的口诀一次函数就是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,促进作用之小莫小瞧,k是斜率定夹角,b与y轴来相见,k为正来右上横,x多寡y多寡;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
拓展阅读:一次函数的解题方法一次函数和代数式以及方程有著密不可分的联系。
例如一次函数和正比例函数仍然就是函数,同时,等号的两边又都就是代数式。
须要特别注意的就是,与通常代数式存有非常大区别。
首先,一次函数和正比例函数都就可以存有两个变量,而代数式可以就是多个变量;其次,一次函数中的变量指数就可以就是1,而代数式中变量指数还可以就是1以外的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数、二次函数、幂函数一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是( )解析:当a>0时,一次函数单调递增,二次函数开口向上,又一次函数与二次函数都过点(0,c);当a<0时,一次函数递减,二次函数开口向下,又都过点(0,c).故排除A、B、C.答案:D2.若函数y=(x+1)(x-a)为偶函数,则a=( )A.-2B.-1C.1D.2解析:∵y=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴1-a=0,即a=1.答案:C3.若f(x)=x2+2mx+m2-2m在(-∞,3]上单调递减,则实数m的取值范围是( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)解析:因为f(x)开口向上,对称轴为x=-m,且在(-∞,3]上单调递减,结合图象得-m≥3,即m≤-3.答案:A4.设m∈R,f(x)=x2-x+a(a>0),且f(m)<0,则f(m+1)的值( )A.大于0B.小于0C.等于0D.不确定解析:函数f(x)=x2-x+a的对称轴为x= ,f(0)=a,∵a>0,∴f(0)>0,由二次函数的对称性可知f(1)=f(0)>0.∵抛物线的开口向上,∴由图象可知当x>1时,恒有f(x)>0.∵f(m)<0,∴0<m<1.∴m>0,∴m+1>1,∴f(m+1)>0.答案:A评析:数形结合思想的实质是通过对图象的观察分析,并进行简单的运算与推理,来寻找解题思路,并得出结论.5.已知幂函数y x p q(p,q∈N+且p与q互质)的图象如图所示,则( )A.p 、q 均为奇数且p q<0 B.p 为奇数,q 为偶数且p q <0 C.p 为奇数,q 为偶数且p q >0 D.p 为偶数,q 为奇数且p q<0解析:∵函数()p qf x x =的图象是双曲线型,∴p q<0. 又∵函数的图象关于y 轴对称,∴函数f(x)是偶函数, ∴q 为奇数,p 为偶数,故选D. 答案:D评析:由函数的图象去研究函数的性质,一定要抓住函数图象的特征,幂函数的图象特征与其幂指数的取值是密切相关的,根据它们之间的关系是解决本题的关键所在.6.给定一组函数解析式:22333334221133y x ;y x ;y x y x y x ;y x ;y x ;;,---=======①②③④⑤⑥⑦如图所示一组函数图象.图象对应的解析式号码顺序正确的是( )A.⑥③④②⑦①⑤B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤D.⑥④③②⑦⑤①解析:观察前三个图象,由于在第一象限内,函数值随x的增大而减小,知幂指数应小于零,其中第一个函数图象关于原点对称,第二个函数图象关于y轴对称,而第三个函数的定义域为x>0,因此,第一个图象应对应函数y=x- ,第三个图象对应y=x- ;后四个图象都通过(0,0)和(1,1)两点,故知幂指数应大于0,第四个图象关于y轴对称,第五个图象关于原点对称,定义域都是R,因此,第四个图象对应函数23y x =,第五个图象对应13y x=.由最后两个图象知函数定义域为x≥0,而第六个图象呈上凸状,幂指数应小于1,第七个图象呈下凹状,幂指数应大于1,故第六个图象对应34y x=,第七个图象对应32y x=.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.已知不等式(a2-1)x2+(a-1)x+21a+>0,对任意的x∈R恒成立,则实数a的取值范围是________.解析:设f(x)=(a2-1)x2+(a-1)x+2,1a+∵分母中有a+1,∴a≠-1.①当a=1时,f(x)=1,符合已知条件;②当a≠±1时,函数f(x)是二次函数,由题意可知,函数f(x)的图象开口向上,且与x轴没有交点.∴22210,2 (1)4(1)0,1aa aa⎧->⎪⎨---<⎪+⎩即2210,1090,aa a⎧->⎪⎨-+<⎪⎩∴1<a<9.综合①②可知所求a的取值范围是[1,9).答案:[1,9)8.已知函数f(x)=|x2-2ax+b|(x∈R).给了下列命题:①f(x)必是偶函数;②当f(0)=f(2)时f(x)的图象必关于直线x=1对称;③若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;④f(x)有最大值|a2-b|.其中正确命题的序号是________.解析:x2-2ax+b=(x-a)2+b-a2,若b-a2≥0,则|x2-2ax+b|=x2-2ax+b因此在[a,+∞)上为增函数,而①、②、④均不正确.答案:③9.若x>0,则131314242223234______.__ x x x⎛⎫⎛⎫+--=⎪⎪⎝⎭⎝⎭解析:1313111342422222323443427.x x x x x ⎛⎫⎛⎫+--=--=- ⎪⎪⎝⎭⎝⎭答案:-2710.(2010·广州月考)函数1()m m f x x += (m∈N *)的定义域是________,单调递增区间是________.解析:由于m 2+m=m(m+1),且m∈N *,所以m 2+m 一定是偶数,因此要使21()m m f x x +=有意义,必须满足x≥0,即函数的定义域为[0,+∞).又因为当21()m m f x x +=有意义时,必有21m m+>0,故函数的递增区间是[0,+∞).答案:[0,+∞)[0,+∞)三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.(2010·济宁育才中学月考)已知函数2()m f x x x =-且f(4)7.2= (1)求m 的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明. 解:(1)因为f(4)=72,所以4m -24=72,所以m=1. (2)因为f(x)的定义域为{x|x≠0},又22()f x x x f x x ⎛⎫-=--=--=- ⎪-⎝⎭ (x),所以f(x)是奇函数. (3)设x 1>x 2>0,则()()2121212211222()1,f x f x x x x x x x x x⎛⎫⎛⎫--=--=-+ ⎪ ⎪⎝⎭⎝⎭因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0,所以f(x 1)>f(x 2),所以f(x)在(0,+∞)上为单调递增函数.12.(2010·淄博统考)已知函数11113333(),().55x x x xf xg x ---+==(1)证明f(x)是奇函数,并求其单调区间;(2)分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,并由此概括一个涉及函数f(x),g(x)的对所有非零实数x 都成立的等式,并证明.解:(1)证明:因为f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称,对()()11113333()()5x 5f f x ,x x x x ------=--=-=()()()()11113333112211331211331211312121312113312255111,510,1f x ,x x ,x ,x 0,,f x f 0x ,x x x x x x x x x x x x-----⎛⎫⎛⎫< ⎪=-+ ⎪ ⎪⎝⎭⎪⎝⎭-∈+∞=<+>- 所以是奇函数设则因为所以f(x 1)-f(x 2)<0,故f(x)在(0,+∞)上是单调递增函数,又因为f(x)是奇函数,所以f(x)在(-∞,0)上也是单调递增函数,即f(x)的单调递增区间是(-∞,0)和(0,+∞).(2)经过计算可得f(4)-5f(2)g(2)=0,f(9)-5f(3)g(3)=0,由此可得对所有非零实数x 都成立的一个等式是f(x 2)-5f(x)g(x)=0.证明如下:因为()()()22113333112222333333255511()()0.55f x 5f x g x 5x x x x x x x x x x -------=-+=----=评析:本题既考查了幂函数的性质,又考查了归纳推理,函数是整个高中数学的一个核心和主线,它可以和许多问题联系在一起,幂函数作为一种常见的函数模型,往往也是许多知识的交汇点,所以应重视对幂函数的研究.13.已知集合A={(x,y)|y=x 2+mx+2},B={(x,y)|y=x+1,0≤x≤2},若A∩B≠∅,求实数m 的取值范围.分析:已知条件中A∩B≠∅的几何意义是抛物线y=x 2+mx+2与线段y=x+1(0≤x≤2)有交点,即转化为方程组22,1(02),y x mx y x x ⎧=++⎨=+⎩≤≤有解.解:解方程组22,1,y x mx y x ⎧=++⎨=+⎩①②①代入②并整理得x 2+(m-1)x+1=0,③ ∵A∩B≠∅,∴方程③在[0,2]上有实数根.设f(x)=x 2+(m-1)x+1,显然f(0)=1>0,则由函数f(x)的图象可得f(2)≤0或(1)240,102,2(2)0,m m f =--⎧⎪-⎪<<⎨>⎪∆-⎪⎩≥ 解得m≤- 或 - <m≤-1,即m≤-1.∴所求m的取值范围是(-∞,-1].评析:本题是数形结合思想、函数方程思想、化归思想等数学思想的综合运用.涉及到二次函数的问题,抓住函数的图象是关键.。