2017_2018学年七年级数学上册实数的化简与计算习题(pdf)(新版)鲁教版

合集下载

七年级数学上册化简求值(最新整理)

七年级数学上册化简求值(最新整理)
23 10.求代数式的值: 2(3xy 4x2 ) 3(xy 4x2 ),其中x 3, y 1 .
3
11.先化简,再求值:2(3a﹣1)﹣3(2﹣5a),其中 a=﹣2.
12.先化简,再求值: 2(xy 1 x2 ) [x2 3(xy y2 ) 2xy] ,其中 x=2, 2
y=﹣1.
35.先化简再求值: 3(x y) 2(x y) 2 ,其中 x 1, y 3 . 4
36.先化简再求值:
1 2
x
2
x
1 3
y2
3 2
x
1 3
y
2
,其中
x=-2,y=
2 3
37.先化简再求值: 2 x2 +(- x2 +3xy+2 y2 )-( x2 -xy+2 y2 ),其中 x= 1 ,y=3. 2
2
3
7. 一个多项式 A 加上 3x 2 5x 2 得 2x 2 4x 3 ,求这个多项式 A? 8.化简求代数式: (2a2 5a) 2(3a 5 a2 ) 的值,其中 a=﹣1. 9.先化简,再求值: 5(a2b ab2 ) (ab2 3a2b),其中a 1 ,b 1
32.先化简再求值:
a3 2b3
2
ab2
1 2
a2b
2
ab2 b3
。已知 a
=
1,
b = —1 3
33.先化简再求值: 2x2 2(x2 y) 3( y 2x),其中,x 3,y 2
34.先化简再求值: 3(x2 2xy) [3x2 2 y 2(xy y)] ,其中 x 1 , y 3 2
13.先化简,再求值: 2x(3x2 4x 1) 3x2 (2x 3) 1 ,其中 x=﹣5. 14.先化简,再求值:3 x2 ﹣[7x﹣(4x﹣3)﹣2 x2 ];其中 x=2. 15.先化简,再求值:(﹣ x2 +5x+4)+(5x﹣4+2 x2 ),其中 x=﹣2. 16.先化简,再求值:3(x﹣1)﹣(x﹣5),其中 x=2. 17.先化简,再求值:3(2x+1)+2(3﹣x),其中 x=﹣1. 18.先化简,再求值:(3 a2 ﹣ab+7)﹣(5ab﹣4 a2 +7),其中 a=2,b= 1 .

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

七年级数学上册第三章3.4实数的运算练习题(含答案)

七年级数学上册第三章3.4实数的运算练习题(含答案)

初中数学浙教版七年级上册第三章3.4实数的运算练习题一、选择题1. 下列说法正确的是( )A. 平方根和立方根都等于本身的数是0和1B. 无理数与数轴上的点一一对应C. −2是4的平方根D. 两个无理数的和一定是无理数2. 下列说法:①√(−10)2=−10;②数轴上的点与实数成一一对应关系;③−3是√81的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有( )A. 2个B. 3个C. 4个D. 5个3. 实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简√a 2−|a +b|+√(−b)33的结果是( )A. 2aB. 2bC. 2a +2bD. 04. 下列计算正确的是( )A. √9=±3B. √−83=2C. (√5)2=√5D. √22=25. 对实数a 、b ,定义运算a ∗b ={a 2b(a ≥b)ab 2(a <b),已知3∗m =36,则m 的值为( ) A. 4 B. ±√12 C. √12 D. 4或±√126. 在实数范围内定义运算“★”,其规则为a ★b =2a −b 2,则方程(2★1)★x =−10的解为( )A. ±4B. ±3C. ±2D. ±17.−27的立方根与√81的平方根之和为()A. 0B. 6C. 0或−6D. −12或68.有理数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A. |m|<1B. 1−m>1C. m×n>0D. m+1>09.数轴上A,B两点表示的数分别为−1和√5,点B关于点A的对称点为C,则点C所表示的数为()A. −2+√5B. −1−√5C. −2−√5D. 1+√510.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入√7,则输出的结果为()A. 5B. 6C. 7D. 8二、填空题3−√(−3)2=______.11.计算:√4−√−112.对于实数x,y,定义一种运算“×”如下,x×y=ax−by2,已知2×3=10,3)2=______.4×(−3)=6,那么(−2)×(√2713.如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为__________.14.−27的立方根与√81的算术平方根的和______.三、计算题15. 计算下列各式的值:(1)|−3|−(√7)2 (2)√3(√3√3)−√8316. 计算:(1)√0.36. (2)−√449.(3)−√10003. (4)√52+122. (5)√1−19273.(6)√0.25−√0.0643.四、解答题17. 已知实数a 、b 、c 、d 、m ,若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2√cd 的平方根.18.定义新运算:a★b=a(1−b),a,b是实数,如−2★3=−2×(1−3)=4(1)求(−2)★(−1)的值;(2)已知a≠b,试说明:a★b≠b★a.19.规定一种新运算:a△b=a⋅b−a+1,如3△4=3×4−3+1,请比较−3△√2与√2△(−3)的大小.答案和解析1.【答案】C【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.利用有理数、无理数的性质,以及平方根定义判断即可.【解答】解:A、平方根和立方根都等于本身的数是0,不符合题意;B、实数与数轴上的点一一对应,不符合题意;C、−2是4的一个平方根,符合题意;D、两个无理数的和不一定是无理数,不符合题意.故选C.2.【答案】C【解析】解:①√(−10)2=10,故此选项错误;②数轴上的点与实数成一一对应关系,正确;③−3是√81=9的平方根,正确;④任何实数不是有理数就是无理数,正确;⑤两个无理数的和不一定还是无理数,故此选项错误;⑥无理数都是无限小数,正确,故选:C.直接利用实数的相关性质结合无理数的定义分别分析得出答案.此题主要考查了实数与数轴以及无理数的定义,正确掌握相关性质是解题关键.3.【答案】D【解析】解:由数轴可得:a<0,a+b<0,−b>0,故原式=−a+a+b−b=0.故选:D.直接利用数轴结合绝对值以及立方根的性质分别化简得出答案.此题主要考查了实数与数轴,正确化简各式是解题关键.4.【答案】D【解析】解:∵√9=3,∴选项A不符合题意;3=−2,∵√−8∴选项B不符合题意;∵(√5)2=5∴选项C不符合题意;∵√22=2,∴选项D符合题意.故选:D.根据算术平方根、立方根以及实数的平方的计算方法,逐项判断即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.5.【答案】C【解析】【分析】本题考查了平方根和新定义的应用,关键是能求出符合条件的所有情况.根据题意得出两个情况,求出后看看是否符合条件即可.【解答】解:∵3∗m=36,∴①若m≤3,则9m=36,解得m=4,不满足m≤3,∴此种情况不符合题意;②若m>3,则3m2=36,解得m=√12,或m=−√12<3(舍去),综上可得m=√12,故选C.6.【答案】A【解析】解:根据题中的新定义得:2★1=4−1=3,∴(2★1)★x=3★x=6−x2,方程变形得:6−x2=−10,即x2=16,开方得:x=±4.故选:A.已知方程利用题中的新定义化简,计算即可求出解.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.【答案】C【解析】解:∵−27的立方根为−3,√81的平方根±3,∴−27的立方根与√81的平方根之和为0或−6.故选:C.求出−27的立方根与√81的平方根,相加即可得到结果.此题考查了实数的运算,涉及的知识有:平方根、立方根的定义,熟练掌握定义是解本题的关键.8.【答案】B【解析】【分析】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.利用数轴表示数的方法得到m<0<1<n,|m|>1,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,|m|>1,所以−m>0,1−m>1,mn<0,m+1<0.故选B.9.【答案】C【解析】【分析】本题主要考查了实数与数轴,数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.由于A,B两点表示的数分别为−1和√5,先根据对称点可以求出OC的长度,根据C 在原点的左侧,进而可求出C的坐标.【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB=|√5−(−1)|=√5+1,∴OC=OA+AC=1+√5+1=2+√5,∵C点在原点左侧,∴C表示的数为:−2−√5.故选C.10.【答案】B【解析】【分析】本题考查了实数的运算.根据运算程序得出输出数的式子,再根据实数的运算法则计算出此数即可.【解答】解:∵输入一个数后,输出的数比输入的数平方小1,∴输入√7,则输出的结果为(√7)2−1=7−1=6.故选B.11.【答案】0【解析】解:原式=2−(−1)−|−3|=2+1−3=0.故答案为:0.原式利用平方根、立方根性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【解析】解:根据题意,可得:{2a−9b=10①4a−9b=6②,②−①,可得:2a=−4,解得a=−2,把a=−2代入①,解得b=−149,∴(−2)×(√273)2=(−2)×9=−2×(−2)+149×92=−4+149×81=−4+126 =122.故答案为:122.首先根据题意,可得:{2a−9b=10①4a−9b=6②,据此求出a、b的值各是多少;然后根据x×y=ax−by2,求出(−2)×(√273)2的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.【答案】16√6cm2【解析】【分析】本题主要考查的是实数的运算,算术平方根的有关知识,先求出大正方形的边长,然后利用大正方形的面积−两个小正方形的面积即可求解.【解答】解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是(√16+√24)cm,∴留下部分(即阴影部分)的面积是(√16+√24)2−16−24=16√6(cm2).故答案为16√6cm2.【解析】【分析】利用立方根及算术平方根的定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【解答】解:−27的立方根为−3,√81=9,9的算术平方根为3,则−27的立方根与√81的算术平方根的和为0,故答案为0.15.【答案】解:(1)原式=3−7=−4;(2)原式=3+1−2=2.【解析】(1)先算乘方和化简绝对值,再算减法,求值即可;(2)先开方,再利用乘法的分配绿计算乘法,最后加减求值.本题考查了实数的混合运算,掌握实数的混合运算顺序和实数的运算法则是解决本题的关键.16.【答案】解:(1)原式=0.6;(2)原式=−27;(3)原式=−10;(4)原式=√169=13;(5)原式=√8273=23; (6)原式=0.5−0.4=0.1.【解析】本题主要考查算术平方根,立方根以及实数的运算,熟练掌握算术平方根,立方根以及实数的运算是解题的关键.(1)直接利用算术平方根解答即可;(2)直接利用算术平方根解答即可;(3)直接利用立方根解答即可;(4)直接利用算术平方根解答即可;(5)直接利用立方根解答即可;(6)先利用算术平方根和立方根计算,再利用减法法则解答即可.17.【答案】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2∴2√cd =0+4+11=5,则5的平方根为:±√5.【解析】直接利用互为相反数以及倒数和绝对值的性质得出代数式的值,进而得出答案.此题主要考查了实数运算,正确得出已知代数式的值是解题关键.18.【答案】解:(1)(−2)★(−1)=(−2)×[1−(−1)]=(−2)×2=−4(2)a★b=a(1−b)=a−ab,b★a=b(1−a)=b−ab,∵a≠b,∴a−ab≠b−ab∴a★b≠b★a.【解析】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(1)根据★的含义,以及实数的运算方法,求出(−2)★(−1)的值是多少即可.(2)首先分别求出a★b、b★a的值各是多少;然后根据a≠b,说明a★b≠b★a即可.19.【答案】解:∵a△b=a×b−a+1,∴(−3)△√2=(−3)×√2−(−3)+1=4−3√2,√2△(−3)=√2×(−3)−√2+1=1−4√2,而4−3√2−(1−4√2)=3+√2>0,故−3△√2大于√2△(−3).【解析】由于规定一种新的运算:a △b =a ×b −a +1,那么根据法则首先分别求出:−3△√2和√2△(−3),然后比较大小即可求解.此题主要考查了有理数的混合运算,解题的关键是首先正确理解定义的运算法则,然后根据法则计算即可加减问题.1、最困难的事就是认识自己。

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。

3B。

-3C。

0D.无法确定2.下列各组数中,相等的是()A。

(-3)与-3B。

|-3|与-3C。

(-3)与-3D。

|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。

A。

0个B。

1个C。

2个D。

3个4.下列图形不是正方体的展开图的是()A。

B。

C。

D。

5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。

据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。

5×1010千克B。

50×109千克C。

5×109千克D。

0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。

B。

C。

D。

9.下列结论正确的是()A。

直线比射线长B。

一条直线就是一个平角C。

过三点中的任两点一定能作三条直线D。

经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。

不赚不赔B。

亏12元C。

盈利8元D。

亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。

人教版数学七年级上册+第四章 小专题5 整式的化简与求值

人教版数学七年级上册+第四章 小专题5 整式的化简与求值
( + − ) + ( − ��) − 的值.
解:原式= + − + − −
= − − .
当 − = −时,
原式= ( − ) − = − − = −.
1
2
3
4
5
6
7
8
9
10
19
20
11
12
( + ) + ( + ),其中 = −, = .
解:原式= + + +
= + + .
当 = −, = 时,
原式= × (−) × + (−) × +
= × × + (−) × +
20
11
12
13
14
15
16
17
18
5.化简:( − ) − ( − ) + ( − ).
解:原式= ( − ) = − .
1
2
3
4
5
6
7
8
9
10
19
20
11
12
13
14
15
16
17
18
6.化简:( − − ) − ( − )
解:原式= − − − + = − + − .
5
6
7
8
9
10
19
20
11
12
13
14
15
16
17
18
12.【运算能力】已知两个多项式,, = + + ,

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

专题06 整式的化简与求值 专项训练40题1.(2022·山东青岛·七年级阶段练习)先化简,再求值:()3222231322362b a a ab a b æö---+-ç÷èø,其中2a =,1b =-.2.(2022·内蒙古赤峰·七年级期末)先化简,再求值:()()22222322x y xy x y x xy y +----,其中x ,y 的值满足()2220x y ++-=3.(2022·山东威海·期末)计算:(1)()()222433224ab b ab b +--+-; (2)()2323132424424433xy x xy x æö-+---+ç÷èø.(3)先化简,再求值:13(2)3(2)2a ab a b --+-+,其中4a =-,12b =.4.(2022·湖南常德·七年级期中)先化简,再求值:221123(4)22ab ab a b a ---êúêú,其中122a b =-=,5.(2021·黑龙江哈尔滨·七年级期末)先化简,再求值:()224222éù---+ëûx y xy xy x y xy ,其中x 与y 互为倒数.【答案】4xy -;4-【分析】根据x 与y 互为倒数,可得1xy =,原式去括号合并同类项后得到最简结果,再把1xy =代入计算即可求出值.【详解】解:原式()224222=--++x y xy xy x y xy 2244242=-+--x y xy xy x y xy 4xy=-∵x 与y 互为倒数,∴1xy =,∴原式4414=-=-´=-xy .【点睛】本题考查整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.6.(2021·湖北咸宁·七年级期中)先化简后求值:2223322()2x y xy yx x y éù---êú,其中15,5x y ==-.7.(2022·贵州铜仁·七年级期末)先化简,再求值:()222242x xy y x xy y -+--+,其中11,2x y =-=-.8.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.9.(2022·黑龙江大庆·期中)先化简再求值:22113122223a a b a b æöæö-----ç÷ç÷,其中2a =-,32b =.10.(2022·内蒙古鄂尔多斯·七年级期末)先化简,再求值:(1)3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2),其中a =2,b =1;(2)若a 2+2b 2=5,求多项式(3a 2﹣2ab +b 2)﹣(a 2﹣2ab ﹣3b 2)的值.【答案】(1)a 2b +ab 2,-2 (2)10【分析】(1)先合并同类项,再代入计算即可;(2)原式去括号合并整理后,把已知等式代入计算即可求出值.(1)解:3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2)=6a 2b ﹣3ab 2﹣5a 2b +4ab 2=a 2b +ab 2,当a =2,b =﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2;(2)解:当a 2+2b 2=5时,原式=3a 2﹣2ab +b 2﹣a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2),=2×5=10.【点睛】本题考查了整式加减的化简求值,正确的化简代数式是解题的关键.11.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.12.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)先化简,再求值:()()2254452x x x x -++---,其中2x =-.【答案】291,13x x ++-【分析】原式先去括号,再合并得到最简结果,最后把2x =-代入求值即可.【详解】解:()()2254452x x x x-++---=2254452x x x x -++-++291x x =++当2x =-时,原式=2(2)9(2)1-+´-+13=-【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.13.(2022·江苏南京·七年级期中)已知2(1)|2|0x y +++=,求代数式322332311543222xy x y xy y x xy x y --+--的值.14.(2022·陕西咸阳·七年级开学考试)化简:()()22222332133a b ab a b ab --+-+,若12b =-,请给a 取一个非零有理数代入化简后的式子中求值.15.(2022·浙江绍兴·七年级期中)先化简,再求值:2(2)()a a b a b -++,其中3a =-,5b =【答案】222a b +,43【分析】由单项式乘以多项式法则,结合完全平方公式进行化简,再代入数值计算即可.【详解】解:原式=22222a ab a ab b -+++= 222a b +当3a =-,5b =时,原式=()2223543´-+=.【点睛】本题考查整式加减的化简求值,涉及完全平方公式,掌握相关知识是解题关键.16.(2021·河南洛阳·七年级期中)化简求值:22225[(52)2(3)]a a a a a a -+---,其中12a =.17.(2021·四川广元·七年级期末)先化简,再求值:已知|a +1|+(b ﹣2)2=0,求代数式3a 2b ﹣[2ab 2﹣2(a 2b +3ab 2)]﹣4ab 2的值.【答案】25a b ;10【分析】根据整式的加减化简代数式,然后根据非负数的性质求得,a b 的值,代入化简后的代数式进行计算即可求解.【详解】解:原式()2222232264a b ab a b ab ab=----=2222232264a b ab a b ab ab -+-+25a b =;∵|a +1|+(b ﹣2)2=0,∴1,2a b =-=,∴原式=()251210´-´=.【点睛】本题考查了整式加减化简求值,非负数的性质,正确的去括号是解题的关键.18.(2021·河南周口·七年级期中)先化简,再求值:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2),其中x ,y 满足(x +1)2+|y ﹣2|=0.【答案】x 2﹣3y 2,-11【分析】先根据整式的加减混合运算法则化简原式,再根据平方式和绝对值的非负性求出x 、y ,代入化简式子中求解即可.【详解】解:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2)=﹣xy +3x 2﹣2xy +x 2﹣3x 2+3xy -3y 2=x 2﹣3y 2,∵x ,y 满足(x +1)2+|y ﹣2|=0,且(x +1)2≥0,|y ﹣2|≥0,∴x +1=0,y -2=0,解得:x =-1,y =2,∴原式=(-1)2-3×22=1-12=-11.【点睛】本题考查整式加减中的化简求值、平方式和绝对值的非负性,熟记整式加减混合运算法则是解答的关键.19.(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)先化简,求值2222223723323535x x xy y x xy y æöæö-+-+++ç÷ç÷,其中12x =-,2y =-.【点睛】本题主要考查了整式的化简求值,掌握整式加减运算法则是解题的关键.20.(2022·黑龙江·哈尔滨市第十七中学校期中)先化简再求值:()()3322x xyz x xyz xyz --++,其中1x =,2y =,3z =-.【答案】2xyz -,12【分析】先去括号,再合并同类项,然后把x 、y 的值代入计算即可.【详解】(2x ³-xyz )-2(x ³+xyz )+xyz =2x ³-xyz -2x ³-2xyz +xyz =-2xyz当x =1,y =2,z =-3时,原式=-2×1×2×(-3)=12.【点睛】本题主要考查了整式的化简求值,熟练掌握去括号法则是解题的关键.21.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.22.(2022·黑龙江·哈尔滨工业大学附属中学校期中)先化简,再求值:22137(43)2x x x x éù----êú,其中1x =-.23.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()222222122+----a b ab a b ab ab ,其中2a =-,12b =.24.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.25.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.整式的加减运算.26.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(2022·全国·七年级课时练习)(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-;(2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.28.(2022·新疆昌吉·七年级期末)先化简下式,再求值:222345256x x x x x +----+,其中2x =-.【答案】1x -,-3【分析】先合并同类项化简,再把2x =-代入,即可求解.【详解】解∶ 222345256x x x x x+----+()()()222325645x x x x x --+-++-=1x =-当2x =-时,原式213=--=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.29.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.30.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.31.(2022·山东滨州·七年级期末)(1)计算:23100422(1)593æö-¸´-+-´ç÷èø;(2)先化简再求值:22113122323a a b a b æöæö--+-+ç÷ç÷,其中22,3a b =-=.32.(2022·安徽滁州·七年级期末)已知4x =-,2y =,求代数式()()2222332x y xy x y xy ---的值.【答案】25xy ;-80【分析】先化简整式,再代入求值即可.【详解】原式2222336x y xy x y xy =--+25xy =,当4x =-,2y =时,原式()254280=´-´=-.【点睛】本题考查整式化简求值,熟练掌握整加减运算法则是解题的关键.33.(2022·河南南阳·七年级期末)先化简,再求值:()22463421x y xy xy x y éù----+ëû.其中,2x =-,12y =.【答案】2565+-x y xy ,-1【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求值。

人教版七年级数学上册整式化简求值60题

人教版七年级数学上册整式化简求值60题

人教版七年级数学上册整式化简求值60题作业不是惩罚,而是为了让你们拥有更强大的能力,在研究的道路上飞得更远更高!化简后求值:(3a2-8a)+(2a3-13a2+2a)-2(a3-3),其中a=-4.化简后求值:(-x2+5-4x3)-2(-x3+5x-4),其中x=-2.求表达式1/2(x-2(x-1312/3y2)+(-2x+3y2))的值,其中x=-2,y=3/2.化简后求值:-a2b-31/2a2b-3(abc-3a2c)-4a2c+3abc,其中a=-1,b=-3,c=1.化简后求值:5(a2b-ab2)-(ab2+3a2b),其中a=11/2,b=3.求多项式A,使得A+3x-5x2+2=2x-4x2+3.求表达式7a2bc-[8a2cb-(bca2+(ab-2a2bc))]的值。

化简后求值:(2a2-5a)-2(3a-5+a2),其中a=-1.化简后求值:5(a2b-ab2)-(ab2+3a2b),其中a=11/2,b=3.求表达式2(3xy+4x2)-3(xy+4x2)的值,其中x=-3,y=1/3.化简后求值:2(3a-1)-3(2-5a),其中a=-2.化简后求值:-2(xy-1/2x2)-[x2-3(xy+y2)+2xy],其中x=2,y=-1/2.化简后求值:2x(3x2-4x+1)-3x2(2x-3)-1,其中x=-5.化简后求值:3x2-[7x-(4x-3)-2x2],其中x=2.化简后求值:(-x2+5x+4)+(5x-4+2x2),其中x=-2.化简后求值:3(x-1)-(x-5),其中x=2.3(2x+1)+2(3﹣x),其中x=﹣1.化简:3(2(-1)+1)+2(3-(-1))=3(-1)+2(4)=-1+8=7求值:73a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.化简:3a2-ab+7-5ab+4a2-7=7a2-6ab求值:7(2^2)-6( )=284x22x8)(x1),其中x化简:-4(-1)^2+2(-1)-8-(-1)+1=4-2-8+1=-5求值:-51)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中a化简:5a2+2a+1-12+32a-8a2+3a2-a=0求值:0作业对你们不是惩罚,只是为了你们在研究的天空里拥有一副更坚强的翅膀,飞翔更辽阔的远方!2x2(3x23)(5x23),其中x化简:2(-1)^2-(3(-1)^2+3)-(-5(-1)^2+3)=2-6+5+3=4求值:42(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.化简:2(-2^2*2+(-2)*2^2)-2(-2^2*2+(-2))+2*2^2-2*2=-16+8+8-4=-4求值:-44xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x,y化简:4(-1)y-[2((-1)^2+(-1)y-2y^2)-3((-1)^2-2(-1)y+y^2)]=-4y+[2(-1-y-2y^2)-3(1+2y-y^2)]=-4y+[-2-2y-4y^2-3+6y-3y^2]=-7y-7y^2-5求值:-7(-2)-7(-2)^2-5=92x2+(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),其中x=,y=3.化简:2x2-(-x^2+3xy+2y^2)-(x^2-xy+2y^2)=2x^2+x^2-3xy-2y^2-x^2+xy-2y^2=xy-2y^2求值:-152x22(x2y)3(y2x),其中,x3,y 2化简:2(3)^2-2(3^2-2)+3(2-2*3)=18-6-6=-6求值:-63(x22xy)[3x22y2(xy y)],其中x12y 3.化简:3((-1/2)^2-2(-1/2)(-3))-3(-1/2)^2+2(-3)+2((-1/2)*(-3)-3)=-9/4+3/4-4+9/2=-17/4求值:-17/4a32b32ab21a2b2ab22b3已知a = 1,—13b =化简:a^3-2b^3+2ab^2-1/a+b-2ab^2+2b^3=-1/a+b求值:-1/45(3x2y﹣xy2)﹣(xy2+3x2y),其中x=-1y=2.化简:5(3(-1)^2*2-(-1)*2^2)-(2(-1)*2^2+3(-1)^2*2)=30 求值:30x22x3(x223x),其中x=-1化简:(-1)^2+2(-1)+3((-1)^2-2(-1)/3)=1-2+5/3=1/3求值:1/35x2﹣3y2)﹣3(x2﹣y2)﹣(﹣y2),其中x=5,y=﹣3.化简:5(5)^2-3(-3)^2-3(5)^2+3(-3)^2-(-3)^2=25求值:25x2+5x)﹣(x﹣3)﹣4x,其中x=﹣1化简:(-1)^2+5(-1)-(-1+3)-4(-1)=1-5+4+4=4求值:4文章已经没有格式错误和明显有问题的段落了,以下是对每段话的小幅度改写:1.做作业并不是惩罚,而是为了让你们在研究的道路上变得更加坚强,拥有更广阔的视野和更强的能力。

七年级上册化简求值计算题

七年级上册化简求值计算题

七年级上册化简求值计算题一、整式的化简求值。

1. 化简求值:(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2),其中x = -2,y = 1。

- 解析:- 先化简式子:- 原式=2x^2-3xy + 4y^2-3x^2+3xy - 5y^2- 合并同类项得:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2-y^2。

- 当x=-2,y = 1时,代入化简后的式子:- 把x=-2,y = 1代入-x^2-y^2得:-(-2)^2-1^2=-4 - 1=-5。

2. 化简求值:3a^2b - [2ab^2-2(ab-(3)/(2)a^2b)+ab]+3ab^2,其中a = 1,b=-2。

- 解析:- 化简式子:- 原式=3a^2b-(2ab^2-2ab + 3a^2b+ab)+3ab^2- 去括号得:3a^2b - 2ab^2+2ab-3a^2b - ab + 3ab^2- 合并同类项得:(3a^2b-3a^2b)+(-2ab^2+3ab^2)+(2ab - ab)=ab^2+ab。

- 当a = 1,b=-2时,代入化简后的式子:- 把a = 1,b=-2代入ab^2+ab得:1×(-2)^2+1×(-2)=4 - 2 = 2。

3. 化简求值:(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2),其中a=-1,b = 1。

- 解析:- 化简式子:- 原式=5a^2-3b^2+a^2+b^2-5a^2-3b^2- 合并同类项得:(5a^2+a^2-5a^2)+(-3b^2+b^2-3b^2)=a^2-5b^2。

- 当a=-1,b = 1时,代入化简后的式子:- 把a=-1,b = 1代入a^2-5b^2得:(-1)^2-5×1^2=1 - 5=-4。

4. 化简求值:2(x^2y+xy)-3(x^2y - xy)-4x^2y,其中x = 1,y=-1。

七年级上册整式化简题

七年级上册整式化简题

七年级上册整式化简题一、整式化简题。

1. 化简:3a + 2b - 5a - b- 解析:- 对含有相同字母的项进行合并。

- 对于a的项:3a-5a=(3 - 5)a=-2a。

- 对于b的项:2b - b=(2 - 1)b = b。

- 所以,化简结果为-2a + b。

2. 化简:2(x^2-3x + 1)-3(x^2-2x - 2)- 解析:- 先运用乘法分配律去括号。

- 2(x^2-3x + 1)=2x^2-6x+2。

- 3(x^2-2x - 2)=3x^2-6x - 6。

- 然后进行整式的加减:- (2x^2-6x + 2)-(3x^2-6x - 6)=2x^2-6x + 2 - 3x^2+6x + 6。

- 再合并同类项,对于x^2的项:2x^2-3x^2=(2 - 3)x^2=-x^2。

- 对于x的项:-6x+6x = 0。

- 常数项:2 + 6=8。

- 所以化简结果为-x^2+8。

3. 化简:(3a^2b - 2ab^2)-(ab^2-2a^2b)- 解析:- 去括号得:3a^2b-2ab^2-ab^2+2a^2b。

- 合并同类项,对于a^2b的项:3a^2b + 2a^2b=(3 + 2)a^2b = 5a^2b。

- 对于ab^2的项:-2ab^2-ab^2=(-2-1)ab^2=-3ab^2。

- 所以化简结果为5a^2b-3ab^2。

4. 化简:4x -[3x - 2x-(x - 3)]- 解析:- 先去小括号:4x-[3x - 2x - x+3]。

- 再去中括号:4x-3x + 2x+x - 3。

- 合并同类项,对于x的项:(4 - 3+2 + 1)x=4x。

- 所以化简结果为4x-3。

5. 化简:3x^2y-2xy^2+5x^2y - 3xy^2- 解析:- 合并同类项,对于x^2y的项:3x^2y+5x^2y=(3 + 5)x^2y = 8x^2y。

- 对于xy^2的项:-2xy^2-3xy^2=(-2-3)xy^2=-5xy^2。

人教版七年级上册数学实数以及运算练习基础篇

人教版七年级上册数学实数以及运算练习基础篇

实数姓名:一、选择题。

1.一个正方形的面积是15,估计它的边长大小在( )。

A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间2.已知m=(-33)×(-221),则有( )。

A 、5<m <6 B 、4<m <5 C 、-5<m <-4 D 、-6<m <-53.下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点一一对应。

正确的个数是( )A 、1B 、2C 、3D 、4二、填空题。

1.已知a 和b 都是无理数,且a ≠b ,下面提供的6个数:a +b ,a-b ,ab ,b a ,ab +a-b ,ab +a +b 可能成为有理数的个数有( )个。

2.规定用符合[m]表示一个实数m 的整数部分,例如[32]=0,[3.14]=3,按规定[110+]的值是( )。

3.若33a =4,则a= ;若(2b )=4,则b= 。

三、计算题。

四、解答题。

1.比较下列各组数的大小:(1)3121-与- (2)11253与2.把下列各数填入相应的集合内。

31-,14.3 2 0 9 163,π-,,,…(相邻两个8之间9的个数逐次加1) 有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 负实数集合:{ …}。

3.已知a 、b 互为相反数,c 、d 互为倒数,e 的绝对值等于1,那么e -e b a ecd )++(的值。

4.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,所得的差就是其小数部分2-1,根据以上的内容,解答下面的问题:(1)1+2的整数部分是 ;小数部分是 ;(2)若设2+3整数部分是x ,小数部分是y ,求x-y 3的值。

5.一个圆与一个正方形的面积都是2πcm2,它们中哪一个的周长比较大?6.要生产一种容积为500升的球形容器,这种球形容器的半径是多少(结果保留π)?(球的体积公式是V=334R π,其中R 是球的半径。

2017-2018学年浙教版七年级上第3章《实数》检测题含答案.docx

2017-2018学年浙教版七年级上第3章《实数》检测题含答案.docx

2017-2018 学年浙教版七年级上册单元检测试题含答案第 3 章《数》: 120 分分: 120 分一、 (每小 3 分,共 30 分 )1.(2017泰·安)下列四个数:-3,-3,-π,- 1,其中最小的数是 ( A)A .-π B.- 3 C.- 1 D.- 32. (-9)2的算平方根是( C)A . 9 B.± 9 C. 3 D .± 33.下列各式算正确的是( D)A. 36 =±6B. (- 2)2=- 2C.-3- 27=- 3 D.(- 6)2+(- 8)2= 10π·31224.下列各数:2,0, 9, 0.23,8,7, 0.303 003⋯ (两个“3之” 依次多 1 个“0”),1- 2,其中,无理数的个数 ( B)A . 2 B. 3 C. 4 D. 55.在下列各数中,互相反数的是( C )A . 2 与-3- 8 B.- 2 与-12C.- 2与 2 D .2 与(- 2)26.(2017· 重)估13+ 1 的是在 ( C )A . 2 和 3 之 B. 3 和 4 之C.4 和 5 之 D. 5 和 6 之7.下列法:①数上的点的数,如果不是有理数,那么一定是无理数;②介于4 与 5 之的无理数有无数个;③数上的任意一点表示的数都是有理数;④任意一个有理数都可以用数上的点表示.其中正确的有( C)A . 1 个 B. 2 个 C.3 个 D. 4 个8.一个底面正方形的水池,池深 2 米,容是11.52 立方米,此水池的 ( C )A . 3.2 米B. 2.52 米C. 2.4 米D. 4.2 米9.算|3- 64|- |- 16|+(- 3)2的是 ( C )A . 11B .- 11C.3D.- 310.若a- 1与 |b+2|互相反数, a+ b 的 ( B )A . 1- 2 B. 2-1 C. 2+ 1 D.2二、填空 (每小 4 分,共 24 分 )11.(- 8)2的立方根是 __2__.12.64的立方根的算平方根是__2__.13.算:31-3-8+(-2)2=__5__.14.若a是(-4)2的平方根,b的立方根是2,式子 a+ b 的 __4或12__.15.11的整数部分a,小数部分b,a- b 的 __6-11__.2017-2018 学年浙教版七年级上册单元检测试题含答案16.如,将两个3的正方形沿角剪开,将所得的四个三角形拼成一个大正方形,个大正方形的是__ 6__.三、解答 (共 66 分)17.(8分)算:138(1) ± 124.(2) --125.7解:2解: (1)±(2)5.2.(3) 52- 32+(3)2+(4)2.(4)-(- 7)2+3- 216-3(- 3)3.55解: (3)5.解:(4)-10.18.(6分)求下列各式中x 的:(1)4x 2- 9= 0.(2)3(x - 2)3- 81=0.3解: (1)x=±.解:(2)x=5.219.(8分)把下列各数分填入到相的大括号中.2, 0.333 3⋯,3- 8,31,3.14,- 23,1.212 112 111 2⋯ (两2,-54, 36,-π,5个“2” 依次多一个之“1”).2017-2018 学年浙教版七年级上册单元检测试题含答案(1)整数 { 3- 8, 36, - 23⋯ }2(2)分数 { -5, 0.333 3⋯ , 3.14⋯ }233(3) 有理数 { - 5, 0.333 3⋯ ,- 8, 36, 3.14, - 2 ⋯ }(4) 无理数 , 3 4,- π , 1,1.212 112 111 2⋯ (两个 “2”之 依次多一个 “1”)⋯}{ 2520.(6 分 )若 3x +y - 1 的一个平方根 -4,3 是 5x - 1 的一个平方根 ,求 x + 2y + 3 的立方根.解;由 意 ,得 3x + y - 1= (- 4)2 ,32= 5x - 1,解得 x = 2, y = 11,所以 x + 2y + 3= 2+ 2×11+ 3=27,所以 x + 2y +3 的立方根 3.21.(8 分 )将一 、 、高分 是 30 cm ,20 cm ,15 cm 的 方体 造成一个球体,43造成的球体的半径是多少?(球体 公式V = 3π r , π 取 3.14,精确到 0.1)4 3 33×9 000 ,∴ r ≈ 12.9(cm ).解: 球体的半径 r , 30× 20×15=3π r, ∴ r = 4π22.(8 分 )已知一个正方体的体 是1 000 cm 3, 在要在它的8 个角上分 截去 1 个大 小相同的小正方体 ,截去后余下的体 是488 cm 3, 截去的每个小正方体的棱 是多少? 解: 截去的每个小正方体的棱 是x cm , 由 意 ,得 1000- 8x 3=488,解得 x =4.答:截去的每个小正方体的棱 是4 cm.2017-2018 学年浙教版七年级上册单元检测试题含答案23.(10分)(1)填表:a0.000 0010.0011 1 000 1 000 00030.010.1110100a(2)由上表你了什么律?用言叙述个律.(3)根据你的律填空:①已知33 =1.442,33 000= __14.42__,30.003= __0.144_2__;②已知30.000 456= 0.076 97,3456= __7.697__.解: (2)律:被开方数的小数点向左或向右移 3 位,立方根的小数点相向左或向右移 1 位.24.(12分)(1)借助算器算下列各并探究.①13= __12__, 13= __1__;②13+ 23= __32__, 13+ 23=__3__;③ 13+ 23+ 33= __62__,13+ 23+ 33= __6__;④13+ 23+ 33+ 43=__102__, 13+ 23+ 33+ 43= __10__.(2)从上面的算果,你了什么律?运用你的律直接写出:①13+ 23+ 33+ 43+⋯+ 1003= __5_0502__;②13+23+33+ 43+⋯+ 1003= __5_050__.解:律: 13+ 23+ 33+⋯+ n3=(1+ 2+3+⋯+ n)2.。

七年级数学(上册)化简求值

七年级数学(上册)化简求值

整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a2.)45(2)45(332-+---+-x x x x ,其中2-=x3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137. 一个多项式A 加上 2532+-x x 得 3422+-x x ,求这个多项式A ?8.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中10.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中.11.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.12.先化简,再求值:22212()[3()2]xy x x xy y xy ----++,其中x=2, y=﹣1.13.先化简,再求值:22x x x x x-+---,其中x=﹣5.2(341)3(23)114.先化简,再求值:32x﹣[7x﹣(4x﹣3)﹣22x];其中x=2.15.先化简,再求值:(﹣2x+5x+4)+(5x﹣4+22x),其中x=﹣2.16.先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.17.先化简,再求值:3(2x+1)+2(3﹣x),其中x=﹣1.18.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13.19.化简求值:2111(428)(1),422x x x x -+---=-其中20.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a =21.先化简再求值:222232(33)(53),35x x x x -+--+=-其中22.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.23.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=24.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.25.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.26.先化简,再求值:22223()3x x x x ++-,其中x=-1227.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.28.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y =29.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣130.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中,31.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴原式 = x + 1 − x + 1 = x + 1 − ( x + 1) = x +1− x −1 =0
巩固练习
y 1. 若 x,y 为实数,且 x + 1 + y − 2 = 0 ,则 的值为( x
A.2 2. 3. 4. A.4 B.-2 B. − 4 C.8 C. − 8 D.-8 ) D. −5 若 x + 3 与 (2 y − 4) 2 互为相反数,则 2 x − y 的值为(

5 a 10
A.a B.10 C.0 D.-10 9. 若实数 a,b,c 在数轴上的位置如图所示,
b a 0 c
0
化简: 3 (−c)3 − a + b + (a − c) 2 + (b − c) 2 .
10. 当 1<x<4 时,化简: ( x − 1) 2 + x − 4 + 3 (− x)3 .
1
6.Biblioteka 若y=x 2 − 16 + 16 − x 2 + 24 ,则 ( x ) y = ________. x+4
7. 8.
已知 3 2 x − y 与 3 2 y − x 互为相反数,则 x + y 的值为_____. 实数 a 在数轴上所对应的点的位置如图所示,则
(a − 3) 2 + (a − 13) 2 化简的结果是(
11. 化简: (1 − m) 2 − ( m − 2) 2 .
2
12. 计算: (1)
(−3) 2 3 − 3 − (− 3) 2 + ; 2 2
1 1 (2) ( 3 − 2) 2 − 3 (−2)3 × − + 3 ÷ . 3 2
2
13. 如图,数轴上 A,B 两点所对应的实数分别为1和 2 ,点 B 关于点 A 的对称点为 C ,设点 C 所对应的实数为 x ,则 _________. x − 2 + 2x =
实数的化简与计算(习题)
例题示范
例 1:若 2 x − 1 + y − 1 = 0 ,则 3 3 x3 + 2 y + 1 的值是________. 思路分析:因为 2 x − 1 ≥ 0 , y − 1 ≥ 0 ,而两者之和等于 0, 所以 2 x − 1 = 0 ,可得 x = 0 , y −1 =
3

如果实数 a, b 满足 2a − 3 + (2a − b − 1) 2 = 则 ab = ______. 0, 若 a,b 为实数,且满足 x − 2 − ( y + 2) − y − 2 = 0 ,则 ________. y−x=
5.
若n=
m − 64 + 64 − m + 3 ,则 n m 的值是________.
3
1 , y = 1 ,代入得 2
3x + 2 y + 1 =
3
3
1 3 × + 2 ×1 + 1 = 2
3
3
27 3 = . 8 2
例 2:化简 ( x ) 2 + 1 − ( x + 1) 2 . 思路分析:先挖掘题目隐含条件,被开方数非负,得 x ≥ 0 , 化简原式得 x + 1 − x + 1 ,下一步考虑 x + 1 > 0 ,去绝对值计 算即可. 解:由题意得, x ≥ 0 , ∴ x + 1≥ 1 ,
C 0 x A 1 B 2
3
【参考答案】
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. D C 3 -4 4 8 0 B c -x+3 1 (2)
11 − 3 2
12. (1) −3 + 3 13. 2
4
相关文档
最新文档