Improved prediction of fish bioconcentration factor of Hydrophobic Chemicals
检测金属离子营养强化剂对磁场辅助冷冻鱼糜品质的影响
检测金属离子营养强化剂对磁场辅助冷冻鱼糜品质的影响孟 嫚1,陈新文1,吕泳棋1,孙宝林1,高 颖2,杨 哪3*(1.利诚检测认证集团股份有限公司,广东中山 528437;2.辽宁大学 轻型产业学院,辽宁沈阳 110036;3.江南大学 食品学院,江苏无锡 214122)摘 要:为探究金属离子营养强化剂对冷冻鱼糜品质的影响,以草鱼鱼糜为原料,在4 mT磁场环境下辅助冷冻,添加柠檬酸镁、柠檬酸锌和柠檬酸亚铁3种不同金属离子营养强化剂,分析鱼糜冷冻及冻融过程中相对磁导率、水分、质构等品质指标的变化。
结果表明,金属离子营养强化剂可改善冷冻鱼糜的品质,与对照组相比,柠檬酸亚铁组的相对磁导率提高13.59%,持水性提高7.08%,硬度提高26.60%。
本研究为添加金属离子营养强化剂改善鱼糜冷冻品质提供了理论指导。
关键词:营养强化剂;磁场辅助冷冻;鱼糜;品质改良Detection of the Effect of Metal Ion Nutrient Fortification on the Quality of Magnetic Field-Assisted Frozen Surimi MENG Man1, CHEN Xinwen1, LYU Yongqi1, SUN Baolin1, GAO Ying2, YANG Na3*(1.Licheng Detection & Certification Group Co., Ltd., Zhongshan 528437, China;2.College of Light Industry, Liaoning University, Shenyang 110036, China;3.School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)Abstract: In order to explore the effect of metal ion nutritional fortifiers on the quality of frozen surimi, we used grass carp surimi frozen in a 4 mT magnetic field assisting environment as raw material, added three different metal ion nutrient fortifiers, namely, magnesium citrate, zinc citrate, and ferrous citrate, and analyzed the changes in quality characteristics such as relative magnetic permeability, water holding ability and texture of surimi. The results showed that metal ion nutrient fortification could improve the quality of frozen surimi, and the relative magnetic permeability increased by 13.59%, water holding capacity by 7.08%, and hardness by 26.60% in the ferrous citrate group compared with the control group. This study provides theoretical guidance for the addition of metal ion nutritional enhancers to improve the frozen quality of surimi.Keywords: nutrient fortification; magnetic field assisted freezing; surimi; quality improvement鱼糜是一种烹饪简便、口感细腻美味的水产调理原料,常采用冷冻的方法保存[1]。
基于L(2+1)D的养殖鱼类摄食状态下活跃程度识别方法
现代电子技术Modern Electronics TechniqueApr. 2024Vol. 47 No. 82024年4月15日第47卷第8期0 引 言随着我国水产养殖产量稳步增长,实现水产养殖智能化、自动化、数字化是水产养殖可持续发展的必然趋势。
其中,鱼类活跃程度识别在实际场景中扮演着重要的角色,具有多方面的意义和应用[1]。
鱼类摄食状态下活跃程度的识别对于鱼类养殖和捕捞具有重要的意义。
在养殖过程中,了解鱼类的摄食状态和活跃程度可以帮助养殖者调整饲料的投放量和时间,以保证鱼类的健康和生长[2]。
在捕捞过程中,了解鱼类的活跃程度可以帮助渔民选择更有效的捕捞方法和工具,提高捕捞效率和收益。
此外,鱼类摄食状态下活跃程度的识别还可以帮助科学家研究鱼类的行为和生态习性,为保护和管理水生生物资源提供重要的参考依据[3]。
目前,鱼类在摄食状态下的活跃程度识别仍然主要依赖养殖者的经验。
使用人工直接观测鱼类行为来辨DOI :10.16652/j.issn.1004⁃373x.2024.08.025引用格式:唐晓萌,缪新颖.基于L(2+1)D 的养殖鱼类摄食状态下活跃程度识别方法[J].现代电子技术,2024,47(8):155⁃159.基于L(2+1)D 的养殖鱼类摄食状态下活跃程度识别方法唐晓萌1, 缪新颖1,2(1.大连海洋大学 信息工程学院, 辽宁 大连 116023; 2.设施渔业教育部重点实验室, 辽宁 大连 116023)摘 要: 鱼类行为的活跃程度是鱼类行为研究中的关键指标,可为水产养殖过程提供有用的基础数据。
然而现有的计算机视觉方法在活跃程度识别的应用中依赖于大量存储和计算资源,在实际场景中实用性较差。
为了解决这些问题,提出一种鱼类摄食活动识别模型——L(2+1)D ,将3D 卷积分解为2D 大空间卷积和1D 时间卷积,使用少量的大型卷积核来增加感受野,实现更强大的特征提取效果。
将空间卷积和时间卷积串联成用于时空特征学习的时空模块,并减少时空模块数量,达到减少参数数量的同时提高准确性的效果。
水产饲料的蛋白源问题——提高饲料蛋白质利用率新思路
水产饲料的蛋白源问题——提高饲料蛋白质利用率新思路■麦康森吕美东何艮(中国海洋大学,山东青岛266100)摘要:提高饲料蛋白质利用率对促进水产养殖业可持续发展具有重要意义。
鉴于鱼粉是水产饲料最好的蛋白源,所以文章分析比较鱼粉和其他饲料蛋白源组成的主要差异,发现牛磺酸、羟脯氨酸和维生素D 3等对提高非鱼粉蛋白源饲料的蛋白质利用率作用显著,而一些植物蛋白源的抗营养因子降低饲料蛋白质利用率;同时,深入探讨了影响鱼体蛋白质沉积潜力的内在因素,提出了激活水产动物mTOR 信号通路和/或消除其抑制因素,提高饲料蛋白质利用率的新思路,开发新技术,并进行实践应用。
关键词:水产饲料;蛋白质;利用率;水产养殖;沉积潜力doi:10.13302/ki.fi.2021.01.001中图分类号:S816.4文献标识码:A文章编号:1001-991X (2021)01-0002-05The Issue of Protein Sources of Aquafeed -A New Approach to Improve Utilization Efficiency ofFeed ProteinMAI Kangsen LÜMeidong HE Gen(Ocean University of China ,Shandong Qingdao 266100,China )Abstract :Improving the utilization efficiency of feed protein such as fish meal is of great signifi⁃cance to the sustainable development of aquaculture.In view of the fact that fish meal is the best protein source for aquafeed,the main differences between fishmeal and other feed protein sources were compared and analyzed.It was found that taurine,hydroxyproline and vitamin D 3played a sig⁃nificant role in improving the protein utilization efficiency of non-fishmeal protein source feed,while antinutritional factors in plant protein sources reduced the protein utilization of feed.At the same time,the internal factors that affect the protein deposition potential of fish were discussed,so as to put forward new ideas to activate mTOR signaling pathway and /or eliminate its inhibitory factors toimprove the utilization rate of feed protein.Newtechnologies have been developed and appliedin practice.Key words :aquafeed;protein;utilization efficien⁃cy;aquaculture;deposition potential作者简介:麦康森,中国工程院院士,研究方向为水产动物营养与饲料。
患上皮瘤病异育银鲫几种免疫相关酶活性的变化
2 0 10年 8月
大
连
海
洋
大
学学Βιβλιοθήκη 报 V0 . 5 No 4 12 .
Au .2 0 10 g
J URNAL OF D I E I RS T O AL AN OC AN UN VE I Y
文 章 编 号 :00—95 2 1 )4— 3 3—0 10 9 7(0 0 0 0 4 5
收 稿 日期 : 0 9—1 20 0—1 3
每尾 鱼 分别 进行 免疫 相关 酶测 定分 析 。各 组异 育银 鲫 大小相 近 ,体 长为 (8 1± . )c 1. 08 m。
12 方 法 .
12 1 样 品 制备 ..
分别 从异 育银 鲫 尾静 脉处 取血 ,
基 金项 目:上海市农委重点攻关项 目 [ 沪农科攻字 (0 6 20 )第 6—6号 ] ;上海市重点学科建设项 目 ( 10 ) Y 1 1 作 者 简 介 :陆 宏 达 ( 9 0一) 16 ,男 ,教 授 。 E—m i:h l@ so. d. l al du hu e u C l f
A l y oe ei cuincr ( aas sa rts i l l gn gn t rc a C rsi uau b i o c a p u g eo
1 材 料 与 方 法
1 1 材 料 .
健康 异 育银鲫 购 自上海 市 图 门路 市 场 ,运 回后 充气 暂养 一 周 。无其 他继 发性 感染 的患 上 皮瘤病 异
患 上 皮 瘤 病 异 育 银 鲫 几 种 免 疫 相 关 酶 活 性 的 变 化
陆宏达 ,张连义 ,王建 国 ,竹攸 汀
( 上海海洋大学 水 产与生命 学院 ,上 海 2 10 ) 0 36
海洋生物技术
⑷其他用途
海洋生物技术除在海洋动物、海藻和微生物方 面取得成绩外,还有更为广阔的用途。例如,纯种 保存技术,实现了能对部分海洋生物成功地进行冷 冻保存。将海产显花植物大叶藻的种子进行冷冻, 对鲑科鱼类、贝类、甲壳类的生殖细胞进行收集和 保存。再如,成功地进行了生物反应器和传感器的 研究。人们成功地制成了氨生物传感器,其基本工 作原理是用双层醋酸纤维膜将硝化细菌固定化,以 溶解氧探针作为换能器。制成的恒温水浴控感器, 其工作原理是以磷酸缓冲液,控制溶液的pH值,用 于废水或河水品质监测。
4.美国在1992财政年度用于海洋生物技术研 究与开发的投入约4400万美元,民间估计投入 2500万美元,以后逐年增加政府的投入 5. 1996年,我国将海洋生物技术纳入国家高技 术研究发展计划(863计划), ; 6.美国、日本、挪威、澳大利亚等发达国家 先后制定了国家发展计划,把海洋生物技术 研究确定为21世纪优先发展领域 ;
Ohira等(2003) 克隆了日本对虾的蜕皮抑制 激素(MIH)基因,并研究了重组MIH的生物 活性;
Adachi(2003)发现雄激素Ⅱ一睾酮在雌
鱼卵母细胞生长中起着调节作用;
Wong等(2003)研究了金鲷芳香化酶在性逆 转中的分子调控机理;
Thompson等(2003)介绍了海洋脊索动物 异体住囊虫细胞周期调节的模式构成;
二 定义 :
运用海洋生物学与工程学的原 理和方法,利用海洋生物或生物代 谢过程生产有用物质或定向改良海 洋生物遗传特性所形成的高技术。
三海洋生物技术的研究:
<一>兴起和发展: 1.海洋生物技术起始于20世纪80年代,是传 统海洋生物学发展的一门新兴研究领域 ; 2.日本1988年举办第一次国际海洋技术会议 (IMBC)并定为海洋生物技术元年; 3.日本政府每年在海洋生物技术研究与开发 上投入7000万到1亿美元,企业投资达2.8亿~ 4亿美元。
鱼对身体好处英语作文
鱼对身体好处英语作文Fish is a nutritious food that is rich in a variety of health benefits. Here is an essay on the benefits of fish for the bodyTitle The Health Benefits of Eating FishFish is a popular and healthy food choice that offers numerous health benefits. It is a great source of highquality protein omega3 fatty acids vitamins and minerals that contribute to overall wellbeing. In this essay we will explore the various ways in which fish can benefit our bodies.1. Omega3 Fatty Acids One of the most significant benefits of fish is its high content of omega3 fatty acids particularly EPA and DHA. These essential fatty acids play a crucial role in maintaining heart health by reducing inflammation lowering blood pressure and improving blood vessel function.2. Brain Health The omega3s in fish are also known to support brain health. They contribute to the development and maintenance of brain cells and are linked to improved cognitive function memory and mood regulation.3. AntiInflammatory Properties Fish especially fatty fish like salmon and mackerel have antiinflammatory properties. This can help reduce the risk of chronic diseases such as arthritis asthma and even certain types of cancer.4. Protein Source Fish is an excellent source of lean protein which is essential for muscle growth and repair. It is particularly beneficial for those looking to build muscle or maintain a healthy weight.5. Vitamins and Minerals Fish is rich in various vitamins and minerals including vitaminD calcium and potassium. These nutrients are vital for bone health immune function and maintaining a healthy metabolism.6. Improved Cardiovascular Health Regular consumption of fish has been linked to a reduced risk of heart disease. The omega3s in fish can help lower triglycerides reduce plaque buildup in arteries and decrease the risk of heart attacks and strokes.7. Eye Health Certain types of fish particularly those rich in omega3s can help maintaingood eye health and may reduce the risk of agerelated macular degeneration.8. Pregnancy Benefits Pregnant women are often advised to include fish in their diet due to its role in fetal development particularly in brain and eye development.9. Weight Management Fish is low in calories and high in protein making it an ideal food for those trying to manage their weight. It can help you feel fuller for longer periods reducing the likelihood of overeating.10. Longevity and Lifespan Studies have shown that people who consume fish regularly tend to have a longer lifespan. The nutrients in fish may contribute to a healthier heart and a reduced risk of various chronic diseases.In conclusion incorporating fish into your diet can provide a wide range of health benefits from improving heart and brain health to supporting weight management and longevity. It is recommended to consume a variety of fish to ensure you get a broad spectrum of nutrients. However its also important to be mindful of the potential presence of contaminants like mercury in some fish and to choose fish wisely to maximize the health benefits while minimizing potential risks.。
《藻蓝蛋白改善半乳糖致衰小鼠卵巢功能的转录组分析》范文
《藻蓝蛋白改善半乳糖致衰小鼠卵巢功能的转录组分析》篇一一、引言近年来,卵巢功能衰退问题在女性健康领域备受关注。
其中,半乳糖是引起卵巢功能减退的重要原因之一。
而藻蓝蛋白作为一种天然的生物活性成分,被广泛研究并认为具有多种生物活性。
本篇论文旨在通过转录组分析,探讨藻蓝蛋白在改善半乳糖致衰小鼠卵巢功能中的作用机制。
二、材料与方法1. 实验动物及分组本实验采用昆明小鼠,按照半乳糖含量将其分为四组:正常对照组、半乳糖处理组(即衰老组)、半乳糖+藻蓝蛋白低剂量处理组以及半乳糖+藻蓝蛋白高剂量处理组。
2. 实验材料与藻蓝蛋白干预将不同浓度的藻蓝蛋白进行干预,通过连续喂养一定周期后,进行后续实验操作。
3. 卵巢组织取材与转录组测序对各组小鼠的卵巢组织进行取材,提取总RNA,并使用转录组测序技术对RNA样本进行深度测序和分析。
三、结果1. 转录组数据概况经过对各组小鼠卵巢组织的转录组数据进行分析,发现半乳糖处理组中存在大量的基因表达异常。
而加入藻蓝蛋白干预后,基因表达情况得到明显改善。
2. 差异表达基因分析对转录组数据中的差异表达基因进行分析,发现在半乳糖致衰模型中,有数百个基因的表达出现异常。
而在藻蓝蛋白干预后,部分基因表达情况得以恢复。
其中,涉及卵巢功能相关的重要基因如FOXL2、BMP15等表达水平明显上升。
3. 信号通路分析通过分析差异表达基因涉及的信号通路,发现藻蓝蛋白主要通过调控与卵巢功能相关的信号通路如MAPK、PI3K-Akt等途径,发挥其改善卵巢功能的作用。
4. 基因功能注释与富集分析对差异表达基因进行功能注释和富集分析,发现藻蓝蛋白主要在细胞增殖、凋亡、免疫反应等方面发挥重要作用。
同时,还涉及了与卵巢功能相关的激素调节、能量代谢等过程。
四、讨论通过对转录组数据的分析,我们发现藻蓝蛋白在改善半乳糖致衰小鼠卵巢功能方面具有显著作用。
通过调控与卵巢功能相关的信号通路及基因表达,改善了半乳糖导致的卵巢功能减退。
翡翠贻贝多糖对衰老模型小鼠的抗氧化和免疫功能调节作用
[ src] 0be tv To e po e t eefc fPen iii p ls c h r e ( Ab ta t jcie x lr h fe to r avrds oy a c ai s PVPS o h n ixd to n d ) n t ea t ia in a d o
血 清 l一 、F 和 及 脾 淋 巴 细 胞 增 殖 反 应 率 均 显 著性 降低 , 时血 清 MD 水 平 显 著 性 升 高差 异 有 统 计 学 意 义 ( I 2 IN 同 A P
d 0 0 ) VP . 1 。P S各 剂 量 组 均 可 不 同程 度 地 升 高 S OD、 S P I 2 I N - 和 脾 淋 巴 细 胞 增 殖 反 应 率 , 时 降 低 G H— x、 I 、F 一 , / 同
H0UGa 。 1 I siueo 』a)r tr d cn 2 1 siu f Bic e sr n lc l r Bilg 3 I siu f n . . n ttt J t a o y Me iie; . ntt to oh mity a d Moe ua o o y; . n tt t o o
g l c o e, e nwhie. h e i a i d i s r to o a ve hehi aa ts m a l t e m d c ton a m nita in gr up w sgi n t gh, e um d l m di an ow os d eofPV PS.Afe tr6 we ks,he i ex s o ntox d to n m m un unci n i l i g S D , DA , SH — e t nd e fa i i a i n a d i ef to ncud n O M G PX , L一 I 一 a d s i ulto I 2, FN n tm a i n i de SI ofs e n l p n x( ) ple ym hpr ie a i e p s r t r i d. s ls Ih o e D , SH — olf r ton r s on e we ede e m ne Re u t ' e c nt ntofSO G PX , I一 I I 2, FN一 an p e n l p d s l e ym hpr ie a i r s ns we e e c d obvou l n a ng m o l ie,bu t on e M D A i olf r ton e po e r r du e i s y i gi de m c t he c t nt of n—
一种基于图像处理的鱼类自动分类方法——以四种淡水鱼为例
基金项目:三峡库区生态环境教育部工程研究中心开放课题(KF2015-11).文章编号:2096-1472(2018)-12-07-04DOI:10.19644/ki.issn2096-1472.2018.12.003软件工程 SOFTWARE ENGINEERING 第21卷第12期2018年12月V ol.21 No.12Dec. 2018一种基于图像处理的鱼类自动分类方法——以四种淡水鱼为例陈从平1,2,吴 杞1,吴 喆1,吕 添1(1.三峡大学机械与动力学院,湖北 宜昌 443002;2.常州大学机械工程学院,江苏 常州 213164)摘 要:为了准确地对鱼类的品种进行自动识别,本次研究以鳊鱼、鲫鱼、鳙鱼、草鱼四种淡水鱼为实验对象,提出一种基于图像处理的鱼类自动识别方法。
首先对鱼的外轮廓进行鱼体长度统一化处理,再提取并计算鱼体头部轮廓夹角、鱼体尾柄宽度与尾柄中点到鱼头夹角顶点的长度之比(宽长比)等特征值,最后运用鱼头部轮廓夹角与宽长比这两个特征对四种淡水鱼进行分类识别。
研究结果表明,本文所提供的分类方法能准确地对鳊鱼、鲫鱼、鳙鱼、草鱼四种淡水鱼的品种进行识别,且识别精度达到94.97%以上。
可为鱼类品种的自动识别提供指导,具有较好的实际应用价值。
关键词:图像处理;鱼类品种识别;鱼头夹角;宽长比中图分类号:TP391.4 文献标识码:AAn Automatic Identification Method for Freshwater Fishes Based on Image Processing—A Case Study of Four Species of Freshwater FishesCHEN Congping 1,2,WU Qi 1,WU Zhe 1,LV Tian 1(1.Department of Mechanical and Power ,China Three Gorges University ,Yichang 443002,China ;2.Department of Mechanical Engineering ,Changzhou University ,Changzhou 213164,China )Abstract:In order to accurately identify fish species,this study takes four species freshwater fishes,including bream,crucian,bighead,grass carp,as the experimental subjects,and proposes an automatic identification method for fish species based on image processing.The first step is to unify the outer contour's length of the fish body,then to calculate the angle of fish's head and the ratio of the width of the fishtail to the length between the middle point of the fishtail and the vertex of head's angle (ratio of width to length).Finally,the angle of fish's head and the ratio of width to length are used to classify the four freshwater fishes.The results show that the method presented in this paper can accurately identify the four freshwater species,and the accuracy is over 94.97%.It can be used as a guide for the automatic identification of fish species with good practical value.Keywords:image processing;fish species identification;head angle;ratio of width to length1 引言(Introduction)中国是一个拥有丰富淡水鱼资源的渔业大国,但我国的水产养殖自动化水平与发达国家相比还存在较大差距,水产加工业自动化水平也相对滞后。
水产促进有益菌繁殖的方法
水产促进有益菌繁殖的方法英文回答:Promoting the growth of beneficial bacteria in aquaculture is crucial for maintaining a healthy andthriving aquatic environment. There are several methodsthat can be employed to achieve this goal.1. Proper water quality management: Maintaining optimal water quality is essential for the growth of beneficial bacteria. This includes monitoring and controlling parameters such as pH, temperature, dissolved oxygen levels, and ammonia and nitrate concentrations. Regular watertesting and adjustments should be carried out to create a favorable environment for the growth of beneficial bacteria.2. Biofiltration systems: Biofiltration is a commonly used method in aquaculture to promote the growth of beneficial bacteria. This involves the use of biological filters, such as trickling filters, fluidized bed filters,or submerged filters, which provide a large surface areafor the attachment of bacteria. These filters remove harmful substances, such as ammonia and nitrite, from the water by converting them into less toxic forms through the activity of beneficial bacteria.3. Addition of probiotics: Probiotics are live microorganisms that can confer health benefits when consumed in adequate amounts. In aquaculture, probiotics can be added to the water or incorporated into the feed to promote the growth of beneficial bacteria. These probiotics can compete with harmful bacteria for resources and space, thereby reducing the risk of disease outbreaks. Examples of commonly used probiotics in aquaculture include Bacillus spp. and Lactobacillus spp.4. Organic matter management: Organic matter, such as uneaten feed, feces, and dead organisms, can accumulate in aquaculture systems and provide a substrate for the growth of harmful bacteria. Proper organic matter management, such as regular removal and proper disposal, can help prevent the proliferation of harmful bacteria and create a morefavorable environment for beneficial bacteria to thrive.5. Stocking density management: Overcrowding in aquaculture systems can lead to poor water quality and increased competition for resources among the aquatic organisms. This can create stressful conditions that favor the growth of harmful bacteria. By maintaining appropriate stocking densities, the risk of water quality degradation can be minimized, allowing beneficial bacteria to flourish.中文回答:水产促进有益菌繁殖的方法。
鲑精蛋白基因工程菌高效表达条件的优化
鲑精蛋白基因工程菌高效表达条件的优化鲁健章;王春晓;刘承初;邓强【期刊名称】《中国食物与营养》【年(卷),期】2007(000)012【摘要】为了提高鲑精蛋白基因工程菌融合蛋白的表达量,本文对工程菌的发酵培养基组分、培养基初始pH值、发酵种子接种量、诱导剂浓度、诱导温度、诱导时机、诱导时间等因子进行了筛选.试验结果表明,培养基组分、诱导温度、诱导时机和诱导时间是影响融合蛋白表达量的主要因素.经筛选,最佳发酵条件是以PYJ-2为发酵培养基,57℃下培养5~5h后,以 5mmol/L的乳糖诱导工程菌6~8h表达融合蛋白,融合蛋白表达量从18.90%提高到40.10%.【总页数】4页(P28-31)【作者】鲁健章;王春晓;刘承初;邓强【作者单位】浙江省医学科学院保健食品研究所,杭州,310013;上海水产大学食品学院,上海,200090;上海水产大学食品学院,上海,200090;上海水产大学食品学院,上海,200090;上海水产大学食品学院,上海,200090【正文语种】中文【中图分类】TS2【相关文献】1.乳铁蛋白肽基因工程菌(E. coli-pED-LfcinB BL21)的发酵与诱导表达条件优化[J], 巴特;刘承初;杨旦;谢晶;李应森;李家乐2.可溶型非融合血管生长抑制因子Kringle 5基因工程菌发酵培养和诱导表达条件的优化 [J], 马晓娟;蔚萍;妙亮;边六交3.青霉α-半乳糖苷酶基因工程菌表达条件优化 [J], 张波;萧培珍;张宝彤4.抗氯霉素单链抗体基因工程菌表达条件优化 [J], 边名鸿;左勇;陈欲云5.碱性果胶酯裂解酶基因工程菌Pichia pastoris诱导表达条件初步优化 [J], 诸葛斌;堵国成;诸葛健;陈坚因版权原因,仅展示原文概要,查看原文内容请购买。
灵芝菌丝体对提高河鲀免疫力的影响
灵芝菌丝体对提高河鲀免疫力的影响试验通过在基础饲料中分别添加不同含量(0.5%1%2%)药性菌质(药用真菌和中草药双向目体发酵的产物)的饲料组作为实验组,以基础饲料为对照组,饲养河鲀60天,并在第15,30,45,60天取样测定其脾脏溶茵酶和超氧化物歧化酶活性。
并在饲养60后进行攻毒试验。
结果表明,药性菌质能够提高河鲀免疫力。
1%添加量的药性茵质效果最佳。
原因是药性菌质在一定时间内能显著提高河脾脏溶菌活性。
标签:灵芝菌丝体;河鲀;溶菌酶;免疫力0前言河鲀又称河鲀(Takifugu obseurus)属鲀形目,纯科,东方纯属,暖水性底栖鱼类,俗称河豚,又名气泡鱼,是一种营养价值较高的水产品,其蛋白质含量远高于一般鱼类,而脂肪含量是鱼类中最低的一种,其不仅具有养血补气功效,鱼皮还有健胃的特效,而且其体内有毒的部位还可提取名贵的河豚毒素,有较高的经济价值,名列长江“四大名鱼”之首,为传统美食中的典范,肉质鲜嫩,味美绝伦。
近年来随着野生河鲀资源的严重衰退,人工饲养的河鲀成为供应市场以满足食用的主要生产产品。
通过人工养殖来缓解市场供需之间的矛盾是一条切实可行又势在必行的途径,并有利于保护天然环境中日益减少的河豚资源,经济效益和生态效益显著,人工养殖河豚又成了新的特种养殖经济增长点;近年来河豚养殖业逐步规模化和集约化,但也存在着不少日益突出、制约河豚养殖业发展的问题。
药用真菌新型(双向性)固体发酵工程(简称双向发酵)是将发酵菌种和发酵基质所构成发酵组合内的基质部分,由以往仅用富含碳、氮等营养的农副产品(甘蔗渣、麦麸等)作为营养基质(其产品称为药用菌质),改变为采用具有一定活性成分的中药材作为药性基质,它既能提供真菌生长所需营养又因真菌的酶而被改变组织、成分,从而产生新的性味功能,故具有双向性,其产品称为药性菌质,如兼用营养、药性两种基质则称为全性基质,产品也称为药性菌质。
药性菌质,常可比该真菌或药性基质本身或两者简单相加有更良好的药效,主要表现在增效、扩用、排毒等方面。
花鲈半乳糖凝集素基因家族的鉴定及在不同环境因子胁迫下表达响应
花鲈半乳糖凝集素基因家族的鉴定及在不同环境因子胁迫下表达响应郑圆;温海深;李吉方;方秀;王灵钰;张冲;陶泽鑫;张永航;李昀【期刊名称】《中国海洋大学学报(自然科学版)》【年(卷),期】2024(54)1【摘要】为探究在花鲈(Lateolabrax maculatus)响应环境因子胁迫中半乳糖凝集素(Galectins)发挥的作用,本研究通过全基因组水平鉴定获得了花鲈的14个Galectin基因(LGALS1、LGALS2a、LGALS2b、LGALS3a、LGALS3ba、LGALS3bb、LGALS4、LGALS8a、LGALS8b、LGALS9、LGALS17、GRPa、GRPb和GRPc)。
通过系统发育、拷贝数、共线性和基因结构分析证实了基因注释的准确性和结构上的保守性。
利用转录组测序数据进行Galectin基因的组织表达及在多种环境因子胁迫下的表达模式分析。
研究表明,Galectin家族各基因在花鲈的7个组织(肝、鳃、脾、胃、脑、精巢和卵巢)中广泛表达,且有6个基因(LGALS3ba、LGALS4、LGALS8a、LGALS9、LGALS17和GRPa)表现出明显的组织特异性。
Galectin家族的不同成员在4种环境因子胁迫下(低氧、碱度、高温及盐度适应)表现不同程度的表达响应,其中LGALS3a、LGALS3ba、LGALS4、LGALS17和GRPb在4种环境胁迫中表现出显著的差异表达,表明其广泛参与了对环境胁迫的响应与调控。
【总页数】13页(P35-47)【作者】郑圆;温海深;李吉方;方秀;王灵钰;张冲;陶泽鑫;张永航;李昀【作者单位】海水养殖教育部重点实验室(中国海洋大学);福建省花鲈育种重点实验室【正文语种】中文【中图分类】S917.4【相关文献】1.缢蛏HAT基因家族的全基因组鉴定及在环境因子、细菌胁迫下的表达分析2.花鲈Claudins基因家族的鉴定、进化分析及对环境盐度的表达响应3.条斑紫菜DnaJ基因家族鉴定及其在环境胁迫下的表达分析4.枳漆酶基因家族鉴定及其响应盐胁迫的表达分析5.小麦超氧化物歧化酶基因家族鉴定及盐胁迫下响应锌钾的表达分析因版权原因,仅展示原文概要,查看原文内容请购买。
鱼类白介素及其受体的研究
鱼类白介素及其受体的研究高珊;余涛;周景祥;王好【期刊名称】《水产学杂志》【年(卷),期】2014(000)003【摘要】In the past years, interleukin as an important class of immune cytokines in fish has already been studied extensively and many important progresses of the interleukin have been made including the cloning of common carp(Cyprinus carpio )and small spot-ted cat shark (Scyliorhinus canicula) IL-1βfull-length gene, rainbow trout (Oncorhynchus mykiss) IL-1β. The cloning of IL-1β, IL-4, IL-10 genes and expression are summarized.%近年来,白介素作为鱼类重要的免疫细胞因子,已进行了广泛研究,相继获得鲤(Cyprinus carpio)和小斑点猫鲨(Scyliorhinus canicula)的IL-1β全长基因及虹鳟(Oncorhynchus mykiss)的IL-1β受体基因、河鲀(Tak-ifugu rubripes)IL-4和斑马鱼(Danio rerio)IL-4基因及其受体、鲤IL-10基因。
本文综述了IL-1β、IL-4、IL-10基因的克隆与表达等最新资料。
【总页数】3页(P62-64)【作者】高珊;余涛;周景祥;王好【作者单位】吉林农业大学生命科学学院,吉林长春 130118;吉林农业大学生命科学学院,吉林长春 130118;吉林农业大学生命科学学院,吉林长春 130118;吉林农业大学生命科学学院,吉林长春 130118【正文语种】中文【中图分类】S917;S942.1【相关文献】1.免疫抑制剂对原发性肾病综合征患儿白介素2、血清可溶性白介素2受体的作用研究 [J], 陈绍志;万美蓉;王洪青;张振坤2.狼疮性肾炎患者血清中白介素2及可溶性白介素2受体水平的研究 [J], 肖汉龙;王军;李英3.尖锐湿疣患者的白介素2、可溶性白介素2受体、γ干扰素、白介素4和白介素10的研究 [J], 应作霖;吴瑞勤;李晓杰;徐晓寅;沈慧珍;王丰;朱光斗4.白介素1β及白介素1受体拮抗剂基因多态性与哮喘的相关性研究 [J], 吴照芳;杨慧;刘玉琳;陈小文;崔晓民;梁肇海5.干燥综合征患者的泪腺及血浆中的白介素2、白介素6及其受体的研究 [J], 吴晓梅;黄雨梅;王兰兰;刘瑾因版权原因,仅展示原文概要,查看原文内容请购买。
鱼肌肉蛋白质组学分级过程的重现性研究
鱼肌肉蛋白质组学分级过程的重现性研究Tom é S. SILVA;Odete CORDEIRO;Flemming JESSEN;Jorge DIAS;Pedro M. RODRIGUES 【期刊名称】《生命科学仪器》【年(卷),期】2010(008)004【摘要】在比较蛋白质组学中,分级过程经常被用于去除高丰度蛋白质,从而提高低丰度蛋白质的浓度至检出限以上.作者为了证实在二维凝胶电泳分离流程中增加额外的分级过程将会减小对金头鲷宰前应激响应时间依赖检测中所引入的噪声和批次间的偏差,采用多维标度对结果数据进行了多参数分析.结果表明生物响应比分级引入的误差高出几个数量级,而批次间误差不小于不同IEF/SDS-PAGE运行所引入的偏差.【总页数】4页(P24-27)【作者】Tom é S. SILVA;Odete CORDEIRO;Flemming JESSEN;Jo rge DIAS;Pedro M. RODRIGUES【作者单位】CCMAR-Centro de Ci(e) ncias do Mar do Algarve, Universidade do Algarve,Campus de Gambelas, 8005-139, Faro, Portugal;DTU Aqua-Institut for Akvatiske Ressourcer, Danmark Tekniske Universitet, Copenhagen,Denmark;CCMAR-Centro de Ci(e) ncias do Mardo Algarve, Universidade do Algarve,Campus de Gambelas, 8005-139, Faro, Portugal;DTU Aqua-Institut for Akvatiske Ressourcer, Danmark Tekniske Universitet, Copenhagen,Denmark;CCMAR-Centro de Ci(e) ncias do Mardo Algarve, Universidade do Algarve,Campus de Gambelas, 8005-139, Faro,Portugal;CCMAR-Centro de Ci(e) ncias do Mar do Algarve, Universidade do Algarve,Campus de Gambelas, 8005-139, Faro, Portugal【正文语种】中文【相关文献】1.肝再生过程中肝窦内皮细胞膜蛋白质组学研究的可行性探讨 [J], 熊力;李选文;叶启发;梁宋平2.元模型误差导致的仿真过程不可重现性研究 [J], 王广彦;胡起伟3.关于鱼糜在冷藏过程中蛋白质变性的研究——冷藏过程中Ca++-ATPase活性变化的探讨 [J], 陈焕铨;韩名竹;陶江萍;金中林4.百子莲胚性愈伤组织在超低温过程中的蛋白质组学研究 [J], 吕珊; 张荻5.百子莲胚性愈伤组织在超低温过程中的蛋白质组学研究 [J], 吕珊; 张荻因版权原因,仅展示原文概要,查看原文内容请购买。
不同来源和剂量维生素C对建鲤生长性能和消化功能影响的比较研究
不同来源和剂量维生素C对建鲤生长性能和消化功能影响的比较研究刘扬;池磊;冯琳;周小秋【摘要】The experiment was conducted to study the effects of different sources and levels of vitamin C on growth performance and digestive function of Jian carp ( Cyprinus carpio var. Jian). Six hundred Jian carp with initial average body weight of (12.63 ±0.04) g were randomly allocated to 4 groups (with 3 replicates per group and 50 fish per replicate). The Jian carp were fed with practice diets supplemented with different levels (75 or 150 mg/kg diet) of ethylcellulose-coated ascorbic acid (EC-AA) or L-ascorbyl polyphosphate (LAPP) for 8 weeks. When supplemented with 75 mg/kg vitamin C in diets, specific growth rate (SGR) , feed intake (FI) , protein production value ( PPV) and lipid production value (LPV) of carp in LAPP group were all significantly higher than those in EC-AA group(P<0.05). Meanwhile, compared with the EC-AA diet, the LAPP diet could significantly improve the growth and development of hepatopancreas and intestine, and enhance the activities of tryspin, chymotrypsin and lipase in intestine, folds height in different intestine segments, activities of alkaline phosphatase (AKP) and glutamyl transpeptidase (r-GT) in different intestine segments, and activities of Na+ , K+ -ATPase in proximal and distal intestine segments and creatine kinase (CK) in whole intestine(P<0.05). Whereas, when supplemented with 150 mg/kg vitamin C in diets, the SGR, FI, PPV and LPV were not significantly different between LAPPgroup and EC-AA group (P >0. 05). However, compared with the EC-AA diet, the LAPP diet could significantly enhance the activities of tryspin and chymotrypsin in intestine, folds height in mid and distal intestine segments, activities of AKP in distal intestine, Na+ ,K +-ATPase in proximal intestine and y-GT in different intestine segments (P <0.05). In conclusion, the effect of LAPP is better than EC-AA for Jian carp, and the LAPP supplementation of 75 mg/kg vitamin C can more significantly improve the growth performance and digestion function of Jian carp. [ Chinese Journal of Animal Nutrition, 2011, 23 (8):1332-1341 ]%本试验旨在研究不同来源和水平维生素C对建鲤生长性能和消化功能的影响.选用平均体重为( 12.63±0.04)g的健康建鲤600尾,随机分为4组(每组设3个重复,每个重复50尾),分别饲喂添加不同来源[乙基纤维素包被维生素C( EC-AA)和维生素C磷酸酯钙盐(LAPP)]和剂量(75和150 mg/kg)的维生素C的实用饲料,试验期为8周.结果表明,饲料维生素C水平为75 mg/kg时,LAPP组建鲤在特定生长率(SGR)、摄食量(FI)、蛋白质沉积率(PPV)和脂肪沉积率(LPV)上均显著高于EC -AA组(P<0.05).同时,LAPP饲料较EC-AA饲料显著促进建鲤肝胰脏和肠道生长发育,并显著提高肠道胰蛋白酶、糜蛋白酶和脂肪酶活性,各肠段皱襞高度,各肠段碱性磷酸酶(AKP)和γ-谷氨酰转肽酶(γ-GT)活性,前、后肠Na+,K+ -ATP酶以及全肠肌酸激酶(CK)活性(P<0.05).饲料维生素C水平为150 mg/kg时,LAPP组和ECAA组建鲤在SGR、FI、PPV和LPV 上差异不显著(P>0.05),但LAPP饲料较EC-AA饲料能显著提高建鲤肠道胰蛋白酶和糜蛋白酶活性,中、后肠皱襞高度,后肠AKP、前肠Na+,K+-ATP酶和各肠段γ-GT活性(P<0.05).由此得出,在本试验条件下,LAPP的使用效果优于EC-AA,75 mg/kg剂量下能更显著地提高建鲤生长性能和消化功能.【期刊名称】《动物营养学报》【年(卷),期】2011(023)008【总页数】10页(P1332-1341)【关键词】建鲤;乙基纤维素包被维生素C;维生素C磷酸酯钙盐;生长性能;消化功能【作者】刘扬;池磊;冯琳;周小秋【作者单位】四川农业大学动物营养研究所,雅安625014;四川省开放重点实验室,雅安625014;成都三旺农牧股份有限公司,成都621430;四川农业大学动物营养研究所,雅安625014;四川省开放重点实验室,雅安625014;四川农业大学动物营养研究所,雅安625014;四川省开放重点实验室,雅安625014【正文语种】中文【中图分类】S963研究表明,除少数具有原始特征的鱼类(如鲨鱼、肺鱼、鲟鱼等)肾脏内能合成少量维生素C外,大多数鱼类因缺乏L-古洛糖内酯氧化酶(L-gulonolactone oxidase,GLO),而不具备合成能力,必需从食物中获取足够的维生素C来维持其正常的生理功能[1-2]。
新食品原料对乳腺癌和肺癌的辅助康复作用及其临床应用研究进展
2022年1月第1期综述及个案报道极干预作用,例如人参皂甙通过诱导细胞凋亡、自噬等机制对乳腺癌具有积极干预效果[8]。
朴丽花等人研究表明人参皂甙Rg3能通过抑制P13 k/AKT的活性诱导体人MCF7/Adr乳腺细胞凋亡[9]。
有临床实验研究结果显示化疗乳腺癌患者摄入β-葡聚糖后机体白细胞水平下降,表明β-葡聚糖在联合癌症治疗中可以作为一种营养辅助治疗[10]。
朱娅敏等人的动物研究表明酵母β-葡聚糖不仅能够激活免疫细胞,并能增强小鼠的体液免疫和细胞免疫功能[11]。
研究表明癌症患者术后卡培他滨化疗辅助联合茶氨酸治疗能够降低腹泻或手足综合症发生率的趋势[12]。
细胞研究也表明茶氨酸具有显著抑制乳腺癌细胞增殖的功能性作用[13]。
竹叶黄酮又名竹叶抗氧化剂,其可显著降低DMBA诱导的大鼠乳腺肿瘤的发病 率[14]。
同时竹叶黄酮对人乳腺癌细胞MDA-MB-231细胞也有明显的增殖抑制作用[15]。
总之,新食品原料无论在细胞、动物和临床研究中均显示出对乳腺癌具有良好的辅助康复作用,因此新食品原料作为在乳腺癌临床治疗中的辅助康复补充剂具有进一步研究和开发的价值。
2 新食品原料对肺癌的辅助康复作用研究进展肺癌已是导致癌症死亡的首要原因,全球肺癌死亡率最高,约占死亡人数的18%。
2020年全球癌症死亡病例996万例,其中肺癌死亡180万例,远超其他癌症类型,位居癌症死亡人数第一。
临床研究表明补充鱼油粉可提高化疗疗效并有助于提高肺癌患者的生存率,鱼油粉中含有的多种n-3脂肪酸对晚期肺癌患者全身综合征具有抑制作用[16]。
在Lewis肺癌小鼠模型中多种n-3脂肪酸通过可以抑制NF-κB通路诱导肺癌细胞凋亡及抑制肿瘤转移[17]。
宝乐果粉是一种营养价值丰富的新食品原料,研究表明宝乐果粉对肺癌细胞Vγ9Vδ2-T细胞均具有抑制增殖的作用[18]。
也有实验表明口服蛹虫草可抑制非小细胞型肺癌细胞肿瘤生长和肝转移[19]。
体外实验也表明虫草素能够有效诱导H358细胞凋亡并抑制细胞增殖[20]。
鲫鱼尾部神经分泌系统Dahlgren细胞季节性变化的细胞计量学研究
鲫鱼尾部神经分泌系统Dahlgren细胞季节性变化的细胞计
量学研究
佚名
【期刊名称】《上海大学学报(自然科学版)》
【年(卷),期】1998(000)004
【摘要】无
【总页数】1页(P398)
【正文语种】中文
【相关文献】
1.HRP技术对鲫鱼尾部神经分泌系统的研究 [J], 王晓安
2.鲫鱼尾部神经分泌系统Dahlgren细胞的糖类、脂类及蛋白质计量的季节性变化研究 [J], 陈恒;姜建明;从默
3.鲫鱼(Carassius auratus)尾部神经分泌系统形态计量学的季节性变化’ [J], 傅更锋;姜建民;徐根兴;从默
4.鲫鱼尾部神经分泌系统Dahlgren细胞酶计量的季节性变化研究 [J], 陈恒;姜建明;秦国强;从默
5.鲫鱼(Carassius auratus)尾部脊髓不同节段Dahlgren细胞的形态计量学分析[J], 姜建明;傅更锋;从默;徐根兴
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Full Terms & Conditions of access and use can be found at /action/journalInformation?journalCode=gsar20Download by: [South China University of Technology]Date:15 June 2016, At: 07:01SAR and QSAR in Environmental ResearchISSN: 1062-936X (Print) 1029-046X (Online) Journal homepage: /loi/gsar20Improved prediction of fish bioconcentration factor of Hydrophobic ChemicalsJ.C. Dearden & N.M. ShinnaweiTo cite this article: J.C. Dearden & N.M. Shinnawei (2004) Improved prediction of fish bioconcentration factor of Hydrophobic Chemicals, SAR and QSAR in Environmental Research,15:5-6, 449-455, DOI: 10.1080/10629360412331297489To link to this article:/10.1080/10629360412331297489Published online: 29 Oct 2010.Submit your article to this journalArticle views: 49View related articles Citing articles: 22 View citing articlesIMPROVED PREDICTION OF FISH BIOCONCENTRATION FACTOR OF HYDROPHOBIC CHEMICALS*J.C.DEARDEN †and N.M.SHINNAWEI School of Pharmacy and Chemistry,Liverpool John Moores University,Byrom Street,Liverpool L33AF ,England,UK (Received 13May 2004;In final form 9July 2004)Using a large heterogeneous data-set of 640organic chemicals,we have developed predictive Quantitative Structure–Activity Relationship models for fish bioconcentration factor (BCF).For 539chemicals with a log K ow (octanol–water partition coefficient)range of 22.3to 6.0,we developed a model with r 2¼0:664and a standard error of 0.661;the primary descriptor was log K ow ,and others were polarisability,number of amino groups,hydrogen bond acceptor ability and a molecular shape factor.For 101chemicals with a log K ow range of 6.0–12.7,we developed a model with r 2¼0:710and a standard error of 0.777;the descriptors were aqueous solubility (reflecting the importance of this property in governing uptake from aqueous solution),polarity,polarisability,hydrogen bond donor ability and molecular size.Bearing in mind the very great range of BCF values of highly hydrophobic chemicals,our model offers good predictivity of this important environmental property.Keywords :Bioconcentration factor;Prediction;Partition coefficient;Aqueous solubility;Hydrogen bonding;Molecular size INTRODUCTION The risk that environmental pollutants pose is a function of a number of factors,one of which is the ability of a chemical to be taken up by an organism from the surrounding milieu.Oneimportant uptake route is by fish and other aquatic species from aqueous solution;it is assumed that such uptake eventually reaches steady state,owing to metabolism and excretion of the chemical by the organism.The ratio of concentrations in the organism and in the aqueous phase at steady state is termed the bioconcentration factor (BCF),and has been measured for many hundreds of chemicals:BCF ¼Concentration of Chemical in Organism at Steady StateConcentration of Chemical in Water ð1ÞISSN 1062-936X print/ISSN 1029-046X online q 2004Taylor &Francis LtdDOI:10.1080/10629360412331297489*Presented at the 11th International Workshop on Quantitative Structure–Activity Relationships in the Human Health and Environmental Sciences (QSAR2004),9–13May 2004,Liverpool,England.†Corresponding author.E-mail:j.c.dearden@SAR and QSAR in Environmental Research ,V ol.15(5–6),October–December 2004,pp.449–455D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016Since over 100,000chemicals are released into the environment,it is clearly advantageous if BCF values can be predicted rather than measured,for reasons of cost,speed and animal use.There have in fact been numerous attempts to predict BCF values using quantitative structure–activity relationship (QSAR)approaches,and these have recently been reviewed by Dearden [1].In Eq.(1),BCF equates approximately to a distribution constant,and this suggests that BCF can be modelled by a partition coefficient such as the octanol–water partition coefficient K ow .Numerous studies have in fact shown that to a first approximation this is so.For example,Veith and Kosian [2]found,for a large set of diverse chemicals,the following QSAR:log BCF ¼0:79log K ow 20:40n ¼122r 2¼0:865s ¼not given ð2Þwhere n is the number of chemicals in training set,r is the correlation coefficient,and s is the standard error of the estimate.Devillers et al.[3]found that several QSAR models based on log K ow gave similar predictions,for chemicals with log K ow values ,6.However,it is important to note that for very hydrophobic chemicals ðlog K ow .6Þthe rectilinear correlation between log BCF and log K ow often fails,with many chemicals having measured log BCF values much lower than would be predicted by QSARs such as Eq.(2).Nendza [4]has given several reasons for these low BCF values:the test period may be too short for steady state to be achieved,metabolism and/or chemical degradation may occur,large molecules may not penetrate well through membranes into the organism,there may be considerable inaccuracy in the measurement of BCF and K ow values for very hydrophobic chemicals,the octanol–water solvent pair may not be a good surrogate for lipid–water for very hydrophobic chemicals,there may be specific sub-structural effects such as were reported for 2,4-dinitrophenols [5]and aqueous solubility may be too low to allow adequate uptake by the organism.Several workers have attempted to correct for these,for example by the use of correlations that are biphasic in log K ow [6,7]by the use of separate QSARs for different log K ow ranges,together with structural correction factors [8]and by the inclusion of a molecular diameter descriptor [9].Dearden [1]has suggested that hydrophobic chemicals capable of hydrogen bonding have lower BCF values than predicted by correlations such as Eq.(2).The BCFWIN software (freely available from /oppt/exposure/docs/episuitedl.htm)for theprediction of log BCF incorporates the approach of Meylan et al.[8].Other approaches have utilised molecular connectivities [10,11],linear solvation energy relationships [12,13],aqueous solubility [14,15],theoretical molecular descriptors [16]and fragment constants and structural correction factors [17].It thus appears that factors such as aqueous solubility,molecular size,hydrogen bonding ability (and,by extension,polarity and polarisability)and ability to metabolise may play a part in lowering BCF values of very hydrophobic chemicals.We have therefore examined whether or not we could improve the QSAR prediction of BCF values by incorporating descriptors accounting for the above factors.So far as we are aware,hydrogen bonding descriptors have not previously been used in the QSAR prediction of BCF values.METHODSA data-base containing almost 700organic chemicals with measured fish log BCF values and mostly measured log K ow values was very kindly supplied by Syracuse Research Corporation.J.C.DEARDEN AND N.M.SHINNAWEI450D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016A number of the chemicals were organometallics,and others were charged species.These were deleted,save for salts of simple acids and bases which were converted to their free acid or base forms,because some of the software that we used could not handle such structures.Our final data-base comprised 647chemicals.Descriptors were calculated using QsarIS ver.1.1(now MDL QSAR:),TSAR ver.3.3()and HYBOT (www.ibmh.msk.su/molpro.hybot.html);aqueous solubilities were calculated using WSKOWWIN (/oppt/exposure/docs/episuitedl.htm).A total of 203descriptors was calculated,including a number of molecular connectivities,since these are information-rich.The step-wise linear regression routine in MINITAB ver.13()was used to select the descriptors that best modelled log BCF.However,as noted above,deviations from the rectilinear log BCF–log K ow model become much more pronounced for chemicals with log K ow values .6(see Fig.1).We therefore treated chemicals with log K ow .6separately from those with log K ow ,6:RESULTS AND DISCUSSIONChemicals with log K ow >6The correlation of log BCF with log K ow is extremely poor for this group of chemicals,as has been noted by other workers [4]:log BCF ¼0:412log K ow þ5:74n ¼107r 2¼0:217Q 2¼0:195s ¼1:269F ¼29:4ð3Þwhere Q is the cross-validated correlation coefficient (leave-one-out procedure)and F is the Fisher statistic.Step-wise regression yielded a much-improved five-descriptor correlation with r 2¼0:598and s ¼0:930:There were,however,six outliers with predicted values more than two standard deviations from the measured values (acid red-114,a -chlordane,1,2-dibromodecane,2-fluorobutanamide-5-[2-(2,4-di-t -amylphenoxy)butanamide]phenol,2,20,4,40,5,50-hexa-chlorobiphenyl and p -terphenyl),and no consistent chemical explanations could befound FIGURE 1Correlation of log BCF with log K ow for 647organic chemicals.PREDICTION OF FISH BCF 451D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016to account for these.Nevertheless,because of the considerable error known [4]to be involved in the measurement of BCF,we felt justified in removing them on the basis of putative experimental error;we believe this to be acceptable for a small proportion of the data-set,especially when the data are taken from numerous sources.It may be noted that,for example,other chlorinated and brominated hydrocarbons (including polychlorinated biphenyls)and other polyaromatic hydrocarbons in the data-set did not appear as outliers.The same five descriptors were used,which yielded the following correlation:log BCF ¼0:245log S aq þ0:512HDC max 20:184DPM Y 20:0156Pol WMZZ 20:0380nAtoms þ7:23n ¼101r 2¼0:710Q 2¼0:675s ¼0:777F ¼46:5ð4Þwhere S aq ¼aqueous solubility (M),HDC max ¼maximum hydrogen bond donor free energy factor,DPM Y ¼dipole moment Y vector,Pol WMZZ ¼whole-molecule polarisability in ZZ plane,and nAtoms ¼number of atoms (including hydrogen).All terms were significant at better than the 0.01level.The log K ow range of the chemicals was 6.0–12.7.The correlation is shown graphically in Fig.2.It is interesting to note that aqueous solubility replaces partition coefficient in Eq.(4).This confirms that poor aqueous solubility of highly hydrophobic chemicals is a significant factor in the low BCF values frequently observed.Aqueous solubility is not simply acting as a surrogate for partition coefficient here;firstly,the two properties are inversely correlated [18],whereas in Eq.(4),log S aq has a positive coefficient,as does log K ow in many published QSARs for bioconcentration prediction [1]and secondly log S aq and log K ow are not a syzygy in our data-set,being only poorly correlated ðr 2¼0:661Þ:Factors that increase intermolecular interaction (hydrogen bonding and polarity)lower the bioconcentration factor (HDC max values are all negative);this suggests either that such factors encourage molecules to remain in the aqueous phase,or that these factors cause binding to membranes and thereby hinder penetration into the organism.It should be noted that polarity terms other than the Y-vector of dipole moment (including the whole-molecule dipole moment)also gave good correlations;we chose to use the Y-vector because it gave the best results,albeit by only a smallincrement.FIGURE 2Measured versus predicted log BCF values for 101chemicals in log K ow range 6.0–12.7.J.C.DEARDEN AND N.M.SHINNAWEI452D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016Polarisability,reflecting dispersive interactions,would be expected to increase uptake into the pinguid phase.Since polarisability is inversely related,albeit weakly,to aqueous solubility,the negative coefficient of Pol WMZZ may be a consequence of the importance of aqueous solubility in controlling BCF values of highly hydrophobic chemicals.As with the polarity term,polarisability descriptors other than Pol WMZZ (including whole-molecule polarisability)yielded correlations that were almost as good.Molecular size,represented by the total number of atoms in a molecule,lowers BCF,as was noted previously [9].The second-order valence molecular connectivity term used by Sabljic ´[10]to model BCF is also a size descriptor.We validated Eq.(4)by removing 25%of the chemicals from the training set,re-developing the QSAR and using it to predict the log BCF values of the 25chemicals removed;we found that observed and predicted values were well correlated ðn ¼25,r 2¼0:650;s ¼0:881Þ:We conclude that Eq.(4)is a mechanistically valid QSAR with good predictive ability for BCF values of highly hydrophobic chemicals in the log K ow range 6.0–12.7(bearing in mind the errors in their measurement).Chemicals with log K ow <6It is clear from Fig.1and Eq.(5)that even for chemicals with log K ow ,6;the correlation of log BCF with log K ow is far from perfect:log BCF ¼0:475log K ow þ0:237n ¼540r 2¼0:550Q 2¼0:546s ¼0:765F ¼658:7ð5ÞTo some extent this must be due to the fact that experimental error on measured BCF values can range over several orders of magnitude [4].However,some of the aforementioned factors that could affect BCF values of very hydrophobic chemicals could also affect chemicals with lower hydrophobicity,albeit probably to a lesser extent.That this is so seems to be borne out by the QSAR correlation that we have found,with the omission of one outlier (ethylenediamintetraacetic acid):log BCF ¼0:397log K ow þ0:00925Pol WM þ0:398nNH 220:435HAE maxþ0:147d 4x v p þ0:740n ¼539r 2¼0:664Q 2¼0:655s ¼0:661F ¼210:4ð6Þwhere Pol WM is mean whole-molecule polarisability,nNH 2is the number of amino groups,d 4x v p is the difference from 4th order valence path molecular connectivity of a chemical to that of a chemical with the same atoms in a straight chain,and HAE max is the maximum hydrogen bond acceptor enthalpy factor.All terms were significant at better than the 0.001level.The log K ow range of the chemicals was 22.3to 6.0.The correlation is shown graphically in Fig.3.From Eq.(6),polarisability increases BCF,as would be expected (vide supra ).The number of amino groups may reflect hydrogen bond donating ability,although it does not correlate with any of the other hydrogen bond donor descriptors that we used;we suggest that it may represent a specific amino group interaction which increases BCF.Amino groups are present in 68(12.6%)of the 539chemicals modelled by Eq.(6).Hydrogen bond acceptor ability lowers BCF.This is to be expected,since one would expect such interactions to encourage a molecule to remain in the aqueous phase.PREDICTION OF FISH BCF 453D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016The d 4x v p term is interesting.As stated earlier,it is the difference of 4th order valence path molecular connectivity of a chemical and that of its straight-chain (linear)equivalent containing identical atoms.It thus models molecular shape.The descriptor bears a positive coefficient,but since d 4x v p values are negative,deviations from molecular linearity give rise to lower BCF values.This suggests that straight-chain molecules are better able to penetrate membranes,which intuitively seems reasonable,although Dimitrov et al.[9]found that effective cross-sectional molecular diameter did not correlate so well with BCF values as did maximal cross-sectional molecular diameter.We validated Eq.(6)by removing 25%of the chemicals from the training set,re-developing the QSAR and using it to predict the log BCF values of the 135chemicals removed;we found that observed and predicted values were well correlated ðn ¼135,r 2¼0:637;s ¼0:617Þ:We conclude that Eq.(6)is a mechanistically valid QSAR with good predictive ability for BCF values of chemicals in the log K ow range 22.3to 6.0(bearing in mind the errors in their measurement and the extremely diverse nature of the 539chemicals used to derive Eq.(6)).CONCLUSIONSUsing a large data-base of 640organic chemicals,we have developed two mechanistically-based QSARs for the prediction of fish log BCF values,covering log K ow ranges 22.3to 6.0and 6.0–12.7,with standard errors of 0.661and 0.777,respectively.Bearing in mind the errors inherent in the measurement of BCF values,these correlations permit the reasonably accurate estimation of log BCF values even for highly hydrophobic chemicals,and throw light on the processes involved in bioconcentration.Only two previous studies of BCF prediction have utilized very large data-sets.The model of Meylan et al.[8]used 694chemicals and yielded r 2¼0:73and mean error ¼0.48,using log K ow and unspecified indicator variables.However,their data had to be divided into 12separate sub-sets in order for this level of prediction to be achieved,and their method offers no mechanistic insight.The model of Dimitrov et al.[7]utilized 443narcoticchemicalsFIGURE 3Measured versus predicted log BCF values for 539chemicals in log K ow range 22.3to 6.0.J.C.DEARDEN AND N.M.SHINNAWEI454D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016only,and yielded,from a Gaussian-type correlation with log K ow ,r 2¼0:73and s ¼0:65;which is comparable to our results.Again,this model offers no mechanistic insight.AcknowledgementsWe are grateful to Drs P.H.Howard and W.M.Meylan of Syracuse Research Corporation for supplying us with their fish BCF data-base.References [1]Dearden,J.C.(2004)“QSAR modeling of bioaccumulation”,In:Cronin,M.T.D.and Livingstone,D.J.,eds,Predicting Chemical Toxicity and Fate (CRC Press,Boca Raton,FL),pp 333–355.[2]Veith,G.D.and Kosian,P.(1983)“Estimating bioconcentration potential from octanol/water partition coefficients”,In:Mackay,D.,Paterson,S.,Eisenreich,S.J.and Simmons,M.S.,eds,Physical Behavior of PCBs in the Great Lakes (Ann Arbor Science,Ann Arbor,MI),pp 269–282.[3]Devillers,J.,Bintein,S.and Domine,D.(1996)“Comparison of BCF models based on log P”,Chemosphere 33,1047–1065.[4]Nendza,M.(1998)Structure-Activity Relationships in Environmental Sciences (Chapman &Hall,London,UK),p.135.[5]Deneer,J.W.,Sinnige,T.L.,Seinen,W.and Hermens,J.L.M.(1987)“Quantitative structure-activity relation-ships for the toxicity and bioconcentration factor of nitrobenzenes towards the guppy (Poecilia reticulata )”,Aquat.Toxicol.10,115–129.[6]Bintein,S.,Devillers,J.and Karcher,W.(1993)“Nonlinear dependence of fish bioconcentration on n -octanol/water partition coefficient”,SAR QSAR Environ.Res.1,29–39.[7]Dimitrov,S.D.,Mekenyan,O.G.and Walker,J.D.(2002)“Non-linear modelling of bioconcentration using partition coefficients for narcotic chemicals”,SAR QSAR Environ.Res.13,177–184.[8]Meylan,W.M.,Howard,P.H.,Boethling,R.S.,Aronson,D.,Printup,H.and Gouchie,S.(1999)“Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient”,Environ.Toxicol.Chem.18,664–672.[9]Dimitrov,S.D.,Dimitrova,N.C.,Walker,J.D.,Veith,G.D.and Mekenyan,O.G.(2002)“Predicting bioconcen-tration factors of highly hydrophobic chemicals.Effects of molecular size”,Pure Appl.Chem.74,1823–1830.[10]Sabljic ´,A.(2001)“QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk”,Chemosphere 43,363–375.[11]Lu,X.,Tao,S.,Hu,H.and Dawson,R.W.(2000)“Estimation of bioconcentration factors of non-ionic organic compounds in fish by molecular connectivity indices and polarity correction factors”,Chemosphere 41,1675–1688.[12]Park,J.H.and Lee,H.J.(1993)“Estimation of bioconcentration factor in fish,adsorption coefficient for soils and sediments and interfacial tension with water for organic nonelectrolytes based on the linear solvation energy relationships”,Chemosphere 26,1905–1916.[13]Ivanciuc,O.(1998)“Artificial neural networks applications.Part 7.Estimation of bioconcentration factors infish using solvatochromic parameters”,Rev.Roum.Chim.43,347–354.[14]Isnard,P.and Lambert,S.(1988)“Estimating bioconcentration factors from n -octanol/water partitioncoefficient and aqueous solubility”,Chemosphere 17,21–34.[15]Jørgensen,S.E.,Halling-Sørensen, B.and Mahler,H.(1998)Handbook of Estimation Methods inEcotoxicology and Environmental Chemistry (Lewis Publishers,Boca Raton,FL),p.65.[16]Gramatica,P.and Papa,E.(2003)“QSAR modelling of bioconcentration factor by theoretical moleculardescriptors”,QSAR Comb.Sci.22,374–385.[17]Tao,S.,Hu,H.,Xu,F.,Dawson,R.,Li,B.and Cao,J.(2001)“QSAR modeling of bioconcentration factors infish based on fragmental constants and structural correction factors”,J.Environ.Sci.Health B 36,631–649.[18]Yalkowsky,S.H.and Valvani,S.C.(1980)“Solubility and partitioning I:solubility of nonelectrolytes in water”,J.Pharm.Sci.69,912–922.PREDICTION OF FISH BCF 455D o w n l o a d e d b y [S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ] a t 07:01 15 J u n e 2016。