向量共线定理的一个推论及其应用

合集下载

共线向量定理及其应用

共线向量定理及其应用

共线向量定理及其应用知识点:一、共线向量基本定理a (a ≠0 )与b 共线⇔存在唯一一个实数λ,使b a λ= 。

推论:a 与b共线⇔存在不全为零的实数12,λλ,使120a b λλ+=成立。

二.三点共线1.点A,B,P 共线⇔存在非零实数λ,使AP AB λ=成立。

(1)若点P 在线段AB 上(与A.B 不重合)时,则0<λ<1; (2)若点P 与A 重合时,则λ=0; (3)若点P 与B 重合时,则λ=1;(4)若点P 在线段AB 的延长线上时,则λ>1; (5)若点P 为线段AB 的中点时,则λ=12; (6)点P 在线段BA 的延长线上时,λ<0. 2.对于平面上的任意一点O,点P.A.B 三点共线⇔x (1)()OP OA x OB x R =+-∈3.对于平面上的任意一点O,点P.A.B 三点共线⇔(,)OP xOA yOB x y R =+∈且x+y=1.三.重要结论1.若向量a,b不共线,则12120==0a b λλλλ+= 当且仅当时成立,反之亦然。

2.若向量a,b不共线,则1212a ==0b λλλλ= 当且仅当时成立,反之亦然。

3.若向量a,b不共线,则11221212a ==b a b λμλμλλμμ+=+ 当且仅当且时成立,反之亦然练习部分:1.在△ABC中,点D在线段BC的延长线上,且,点O在线段CD上(与点C、D不重合),若的取值范围是()A.B.C.D.2.如图所示,A,B,C是圆O上的三点,CO的延长线与线段BA 的延长线交于圆O 外的点D,若,则m+n的取值范围是A.(0,1)B(1,+∞)C(-∞,-1)D(-1,0).3.如图,经过∆OAB的重心G的直线与OA.OB分别交于P.Q,设,,,,OP mOA OQ nOB m n R==∈,则11n m+的值为----------- 。

4.如图,一条直线EF 与平行四边形ABCD 的两边AB,AD 分别交于E,F 两点,且交其对角线AC于K ,其中,则λ的值是()A.15B.14C.13D.125.在△ABO中,11,,42OC OA OD OB == AD与BC相交于点M,设,OA a OB b ==,试用a 和b 表示向量OM6.设两个非零向量a 与b 不共线,试确定实数k,使得ka b + 和a kb +共线答案:1.设(01)CO CD λλ=<< ,x (1)AO AB X AC xAB AC xAC =+-=+- , ()AO AC x AB AC ∴-=- ,x ()3CO CB x BC xCD ⇒==-=-,3,x λ∴=-所以,0<-3x<1,103x ∴-<<.2.解::由C,O.D 三点共线知,(0),1OCOC kOD k k OD=<=<又,所以-1<k<0. 又B.A.D三点共线,(1)OD OA OBλλ∴=+- .(1)OC kOD k OA k OB λλ∴==+- .所以m+n=k λ+(1)k λ-=k (1,0)∈-3.解221111()()3323OG OD OA OB OP OQ m n ==⨯+=+ =1133OP OQ m n+.,,P G Q 三点共线,11111,333m n m n∴+=∴+= 4.解()AK AC AB AD λλ==+=32AE AF λλ+ ,因为K,E,F 三点共线,所以3λ+2λ=1.∴λ=15. 5.解∵D ,M ,A三点共线,∴存在实数m使得m (1)(1);2m O M O D m O A m a b =+-=-+ 又B ,M ,C 三点共线,同理可得,1(1)4n OM nOB n OC a nb -=+-=+62{,1714mn m n m =∴=--=得,1377OM a b ∴=+6.k=1。

向量共线定理的证明

向量共线定理的证明

向量共线定理的证明
向量共线定理向量a⃗与非零向量b⃗共线当且仅当有唯一一个实数λ,使得b⃗=λa⃗。

证明:
(1)首先需要证明如果b⃗=λa⃗,那么,向量a⃗与b⃗共线。

由数乘向量的定义知:一般地,实数λ与向量a⃗的积是一个向量,记作λa⃗,它的长度和方向规定如下:○1│λa⃗│=│λ││a⃗│;○2当λ>0时,λa⃗与a⃗的方向相同;当λ<0时,λa⃗与a⃗的方向相反;当λ=0时,λa⃗=0. 由此可知λa⃗与a⃗平行(共线)。

对于向量a⃗(a⃗≠0⃗)、b⃗,如果有一个实数λ,使得b⃗=λa⃗,那么,b⃗与λa⃗的模
一样大且b⃗与λa⃗的方向同。

所以,b⃗与a⃗共线。

(2)第二需要证明如果向量a⃗与b⃗共线,那么,b⃗=μa⃗。

如果向量a⃗与b⃗共线,则向量a⃗与b⃗方向相同或相反。

若b⃗的长度是向量a⃗的长度的μ倍,则有│μa⃗│=│μ││a⃗│;
当a⃗与b⃗方向相同时,有μ>0,使得b⃗=μa⃗;当a⃗与b⃗方向相反时,有μ<0,使得b⃗=μa⃗.所以始终有一个μ,使得b⃗=μa⃗。

(3)第三需要证明λ存在的唯一性。

用反证法证明:
假设μ≠λ
∵ b⃗=μa⃗((2)的结论)
b⃗=λa⃗((1)的证明假设前提条件“对于向量a⃗(a⃗≠0⃗)、b⃗,如果有一个实
数λ,使得b⃗=λa⃗,那么,b⃗与λa⃗的模一样大且b⃗与λa⃗的方向同。

”)
∴ b⃗= b⃗
∴μa⃗=λa⃗
∵a⃗是非零向量
∴μ=λ,而这与μ≠λ的假设矛盾,由此证明λ存在是唯一的。

把向量共线定理再表述一遍:。

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其延伸应用汇总1.如何判断三点共线?根据向量三点共线定理,只需判断向量AB和向量AC是否共线即可。

如果它们共线,即存在实数k,使得向量AB=k向量AC,则三点A、B、C 共线。

2.判断四点共面问题将四点依次相连,可以形成三个向量:向量AB,向量AC和向量AD。

如果这三个向量共面,则四点A、B、C、D共面。

这可以通过判断向量AB 和向量AC是否共线,以及向量AB和向量AD是否共线来进行。

3.判断平行四边形平行四边形是指具有两对平行的对边的四边形。

如果一个四边形ABCD是平行四边形,那么向量AB和向量CD是共线的,向量AD和向量BC 也是共线的。

因此,可以通过判断向量AB和向量CD是否共线,以及向量AD和向量BC是否共线来判断一个四边形是否为平行四边形。

4.求解向量坐标问题假设已知三个点A(x1,y1)、B(x2,y2)和C(x3,y3)在坐标平面上,现要求证这三个点共线。

可以将它们看作向量,向量AB=(x2-x1,y2-y1)和向量AC=(x3-x1,y3-y1)。

如果这两个向量共线,即存在实数k,使得向量AB=k向量AC,则三个点共线。

5.解决线段相交问题如果已知线段AB和线段CD,在平面上是否相交?可以将线段AB表示为向量AB,线段CD表示为向量CD。

如果向量AB和向量CD共线,那么线段AB和线段CD必定相交;反之,如果不共线,则线段AB和线段CD不相交。

6.判断三角形共线问题已知三角形ABC,如果顶点A、B和C共线,即向量AB和向量AC共线,则三角形ABC退化为一条线段。

7.探索顺、逆时针旋转问题已知三点A、B和C按照顺时针旋转形成的向量AB和向量AC是否共线?如果向量AB和向量AC共线,则这三点按顺时针方向排列;反之,如果不共线,则这三点按逆时针方向排列。

8.求解线段长度问题定理:若O为向量OA与向量OB的中点,则向量OA和向量OB共线且长度相等。

利用这个定理,可以求解线段长度。

O0010,向量共线定理的几个推论及其应用

O0010,向量共线定理的几个推论及其应用
l1 O A + l2 O B + l3 O C = O 且 l1 + l2 + l3 =0
证:① 当 O 点与 A、B、C 三点中任一点重合,则推论(四)即为推论(二);
② 当 O 点与 A、B、C 三点均不重合,则三点 A、B、C 共线 Û 存在 s,t∈R,且 s·t≠0,使得
s A B + t A C = O ,此时,s≠-t,否则 A B = A C ,从而 B 点与 C 点重合,这与已知条件矛盾,故有:
一、定理的推论
推论一:向量b 与向量 a 共线 Û 存在不全为 0 的实数 l1 , l2 ,使 l1 a + l2 b = 0 ,这实质是定理的另
外一种表述形式。
推论二:三个不同点 A、B、C 共线 Û 存在一组全不为 0 的实数l1, l2 ,使 l1 A B + l2 A C = 0 。
注意推论(二)与推论(一)的区别:推论(二)中 A B , A C 均不为零向量,而推论(一)中,向量

CM = CN + CB Þ CM =
CN +
C B ;∵B、M、N 三点共线.由推论(三)知,
1- l
2l
2
2l
2
1 - l + 3(1 - l ) = 1 Þ l =
3 即为所求
2l
2
3
3
例 3 (06 年江西高考题)已知等差数列{an}的前 n 项和为 Sn,若O B = a1 O A + a200 O C ,且 A、B、C
0<x+y<1,且 x<0,y>0。从而应选 C。
M P
Q B
O

空间向量与立体几何

空间向量与立体几何
a,-a),P→M=b2,0,-a, P→D=(0,a,-a). 设平面 PMC 的一个法向量为 n1=(x1,y1,z1),
n1·P→C=0⇒bx1+ay1-az1=0, 则n1·P→M=0⇒b2x1-az1=0, 所以x1=2baz1,令 z1=b,
y1=-z1,
3.弄清立体几何中的“空间角”与“向量夹角”的联系与区 别 (1)利用直线的方向向量求异面直线所成的角,若方向向量的 夹角是锐角或直角,则可直接将该结果作为所求角,若方向 向量的夹角是钝角,则应将钝角的补角作为所求的角.
(2)利用直线的方向向量和平面的法向量求线面角,若两个向 量的夹角是锐角,则该锐角的余角为所求的线面角,若两个 向量夹角是钝角,则该钝角减去 90°为所求的线面角. (3)利用平面的法向量求二面角时,若法向量的夹角与二面角 的平面角同为锐角或钝角,则法向量的夹角就是所求的二面 角,否则法向量的夹角的补角才是所求的二面角.
【解析】 (1)由题意知A→E=A→A1+A→1E=A→A1+14A→1C1=A→A1+
14(A→B+A→D),从而有 x=1,y=14.
(2)容易推出:S→A-S→B+S→C-S→D=B→A+D→C=0,所以③正确;
又因为底面 ABCD 是边长为 1 的正方形,SA=SB=SC=SD

2



→ SA
则 n1=(2a,-b,b). 设平面 PDC 的一个法向量为 n2=(x2,y2,z2), 则nn22··PP→→CD==00⇒⇒baxy22+ -aayz22=-0a,z2=0, 所以xy22==z02,,
令 z2=1,则 n2=(0,1,1). 因为 n1·n2=0-b+b=0, 所以 n1⊥n2. 所以平面 PMC⊥平面 PDC.

空间向量基本定理

空间向量基本定理
2
O
(3)是线段AB的中点公式
二、共面向量
(1).已知平面α与向量 a,如果 向量a 所在的直线OA平行于
a
O
A
平面α或向量 a在平面α内,那 么我们就说向量 平a 行于平面
a
α,记作 //aα.
α
(2)共面向量:平行于同一平面的向量 思考: 空间任意两个向量是否一定共面? B 空间任意三个向量哪?
A D
C
(3) 共面向量定理:
如果两个向量 a 、b不共线, 则向量 与向p 量 a 、共b
B b
p
P
面的充要条件是存在实数 对x、y,使
M a A A'
p xa yb
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有 序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
MG
1 OA 2
2 3
MN
M
1 OA 2 (ON OM )
A
GC N
2
3
1 OA 1 OB 1 OC
6
3
3
B
练习
1.已知空间四边形OABC,点M、N分别是
边OA、BC的中点,且OA a,OB b ,
OC c,用 a , b , c 表示向量 MN
O M
MN 1 OB 1 OC 1 OA 222
C
OG
1
a b
1
c
2
2
A
B
3 如图,在平行六面体 ABCD ABCD中,E, F,G 分 新疆 王新敞 奎屯
别是 AD, DD, DC 的中点,请选择恰当的基底向量 证明:
(1) EG // AC

3.1.2空间向量的共线与共面

3.1.2空间向量的共线与共面

例. 如图,已知平行四边形ABCD,过平面AC外
一点O作射线OA,OB,OC,OD,在四条射线上
分别取点E,F,G,H,并且使
OE OF OG OH k, OA OB OC OD
O
求证: E,F,G,H四点共面.
DC
A
ห้องสมุดไป่ตู้
B
H
G
E
F
C
p
P
b
A aB
对空间任一点O,有OP OA xAB y AC ③
C
p
P
b
A aB
O 填空:OP (1__-_x_-_y)OA (_x___)OB (__y__)OC
③式称为空间平面ABC的向量表示式,空间中任意 平面由空 间一点及两个不共线的向量唯一确定.
由此可判断空间任意四点共面
P与A,B,C共面
AP xAB yAC
OP OA xAB y AC
OP xOA yOB zOC 0(x y z 1)
练习2.若对任一点O和不共线的三点A、B、C,
且有 OP xOA yOB zOC(x, y, z R), 则x+y+z=1 是四点P、A、B、C共面的( C )
A.必要不充分条件 C.充要条件
B
b
O
a 结论:空间任意两个向量都可平移到同 一个平面内,成为同一平面内的向量. 因此凡是涉及空间任意两个向量的问题, 平面向量中有关结论仍适用于它们.
1、共线向量:如果表示空间向量的有向
线段所在直线互相平行或重合,则这些向量
叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
思考:空间向量的平行满足传递性吗?
2.共线向量定理:对空间任意两个向量 a,b(b 0), a // b的充要条件是存在实数 使

共线向量定理推论及证明

共线向量定理推论及证明

共线向量定理推论及证明共线向量定理是数学中的一个重要定理,它给出了判断向量是否共线的方法。

在本文中,我们将介绍共线向量定理的推论及其证明。

我们回顾一下共线向量定理的表述:如果两个向量的长度相等或者它们的长度为0,则这两个向量共线;如果两个向量的长度不相等且它们的长度不为0,则这两个向量不共线。

基于共线向量定理,我们可以得出以下推论:推论一:如果向量A与向量B共线,向量B与向量C共线,则向量A与向量C共线。

推论一的证明如下:根据共线向量定理,我们知道向量A与向量B 共线,那么它们的长度相等或者为0;向量B与向量C共线,那么它们的长度相等或者为0。

根据等式的传递性质,我们可以得出结论:如果向量A与向量B长度相等或者为0,并且向量B与向量C 长度相等或者为0,则向量A与向量C长度相等或者为0。

因此,向量A与向量C共线。

推论二:如果向量A与向量B共线,且向量A与向量C不共线,则向量B与向量C不共线。

推论二的证明如下:根据共线向量定理,我们知道向量A与向量B 共线,那么它们的长度相等或者为0;向量A与向量C不共线,那么它们的长度不相等且不为0。

根据等式的传递性质,我们可以得出结论:如果向量A与向量B长度相等或者为0,并且向量A与向量C长度不相等且不为0,则向量B与向量C长度不相等且不为0。

因此,向量B与向量C不共线。

通过以上推论的证明,我们可以看出共线向量定理的重要性。

它不仅可以帮助我们判断向量是否共线,还可以推导出一些与共线性相关的结论。

在解决几何问题和向量运算中,共线向量定理是一个非常有用的工具。

总结起来,共线向量定理的推论可以帮助我们更好地理解向量的共线性质。

通过这些推论,我们可以更加灵活地应用共线向量定理,解决各种与共线性相关的问题。

希望本文对读者有所帮助。

O0010,向量共线定理的几个推论及其应用

O0010,向量共线定理的几个推论及其应用

向量共线定理的几个推论及其应用人教版《数学》(必修)第一册(下)P115面介绍了一个定理:向量b 与非零向量a 共线⇔有且仅有一个实数λ,使b =λa 。

谓之“向量共线定理”。

以它为基础,可以衍生出一系列的推论,而这些推论在解决一些几何问题(诸如“三点共线”“三线共点”等)时有着广泛的应用。

以下通过例题来加以说明。

一、定理的推论推论一:向量b 与向量a 共线⇔存在不全为0的实数12,λλ,使120a b λλ+=,这实质是定理的另外一种表述形式。

推论二:三个不同点A 、B 、C 共线⇔存在一组全不为0的实数12,λλ,使120AB AC λλ+=。

注意推论(二)与推论(一)的区别:推论(二)中,AB AC 均不为零向量,而推论(一)中,向量,a b 可能含O 。

推论三: 设O 、A 、B 三点不共线,且OP xOA yOB =+,(x ,y∈R),则P 、A 、B 三点共线⇔x+y=1。

这实质是直线方程的向量形式。

推论四: 设O 为平面内任意一点,则三个不同点A 、B 、C 共线⇔存在一组全不为0的实数123,,λλλ使123OA OB OC O λλλ++=且123λλλ++=0证:① 当O 点与A 、B 、C 三点中任一点重合,则推论(四)即为推论(二);② 当O 点与A 、B 、C 三点均不重合,则三点A 、B 、C 共线⇔存在s ,t∈R,且s·t≠0,使得sAB t AC O +=,此时,s≠-t ,否则AB AC =,从而B 点与C 点重合,这与已知条件矛盾,故有:()()s OB OA t OC OA O -+-=,即:()s OB tOC s t OA O ⋅+-+=。

显然s+t+[-(s+t)]=0令123()0,0,0s t s t λλλ-+=≠=≠=≠,故1230λλλ++=得证。

推论五: 设O 为平面内任意一点,则三个不同点A 、B 、C 不共线⇔若存在实数123,,λλλ,使123OA OB OC O λλλ++=且1230λλλ++=则123λλλ===0。

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及应用贵州织金一中 龙瑞华最近几年的高考试题中,很多题目都是以向量知识为背景,向量知识成高考的热点。

在高二下册B 版本的课本第九章第五节中讲到共线向量定理的推论。

下面就该推论的推广在解题中的应用加以探究。

一、推论的叙述及变式。

如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式:(1)OP OA ta=+在l 上取AB a =,则(1)式可化为OP OA t AB =+因为AB OB OA =- ∴(1)(2)OP t OA tOB=-+由(2)式可看出等号的左边向量OP 的系数1刚好等于右边的向量OA 与OB 的系数之和1-t +t ,由推论易知此时A 、B 、P 三点同在一条直线上。

O 为直线外一点,即P 为△OAB 边AB 上的点,线段OB 、OP 、OA 是有共同端点的三条线段,另外的三个端点都在同一条线上。

线段OP 刚好是三条线段中的中间一条,它所表示的向量(1)OP t OA tOB =-+,在等式中,左边系数之和=右边系数之和。

图(一)a二、推论的推广由共线向量定理的推论,我们可以得到如下结论: 结论一:在△ABC 中,D 为BC 边上的点,如果BD x =DCy,则以A 点为起点的三个向量的中间一个向量AD =AC AB x y x y x y+++。

证明:BD BC,BD=AD AB,BC=AC-AB xx y=-+即可证明。

结论二:共起点的三个向量如果它们的终点在同一条直线上,那么用其中二个向量表示另一个向量时,左边系数之和等于右边系数之和。

结论三:在结论一中如果点D 不在边BC ,是在三角形ABC 的内部或外部,在图(三)中,AD=xAC+yAB ,则 1x y +<,在图(四)中AD AC AB x y =+,则 1x y +>,证明先找到AD 与BC 的交点,转化为第一种情形,即三点在同一条直线上,再应用向量共线定理a b λ=进行转化。

根据向量共线定理的几个推论及其应用,给出10个例子。

根据向量共线定理的几个推论及其应用,给出10个例子。

根据向量共线定理的几个推论及其应用,给出10个例子。

根据向量共线定理的几个推论及其应用本文将讨论根据向量共线定理得出的几个推论,并给出10个例子进行应用。

推论1:向量共线的充要条件向量共线的充要条件是它们可以表示为等比例的关系。

即,两个向量v和w是共线的,当且仅当存在一个非零常数k,使得v = kw。

实例1:设向量v = ⟨2, 4⟩,向量w = ⟨6, 12⟩,则v和w共线,因为可以表示为v = 3w。

推论2:向量共线的性质向量共线具有以下性质:1. 共线向量的数量不唯一。

对于任意一个向量v,与之共线的向量有无穷多个。

2. 共线向量的方向相同或相反。

共线向量的方向可以是相同的,也可以是相反的。

3. 共线向量的模长比例相同。

共线向量的模长之间存在一个恒定的比例关系。

实例2:考虑两个共线向量v = ⟨1, 2⟩和w = ⟨-2, -4⟩,它们的方向相反,模长的比例为2。

推论3:向量共线与线性相关两个向量共线等价于它们线性相关。

即,向量v和w共线,当且仅当它们的行列式为0。

实例3:设向量v = ⟨3, 6⟩,向量w = ⟨-2, -4⟩,则v和w共线,因为它们的行列式为0。

推论4:向量共线的应用向量共线的理论在实际中有很多应用,其中包括但不限于以下几个方面:1. 几何学:根据向量共线定理,可以判断线段是否共线,计算线段的长度比例等。

2. 物理学:在力学、电磁学等物理学领域中,向量共线定理被广泛应用于描述物体的运动、力的合成等问题。

3. 工程学:在建筑、航空、航天等领域中,向量共线定理可以用于分析和计算结构的稳定性和强度等。

实例4-10:1. 在平面上,三个点A(2, 4)、B(-1, -2)、C(3, 6)共线。

2. 直线L:x/3 = y/2 = z/4,过点P(3, 6, 12)。

3. 三维空间中,平面P1:2x + 4y + 6z = 0 和平面P2:4x + 8y + 12z = 0 共线。

平面向量共线定理推论

平面向量共线定理推论

平面向量共线定理推论平面向量共线定理是数学中的一个重要定理,它可以帮助我们判断两个向量是否共线。

在这个定理中,我们可以得出一些有趣的推论。

下面我将以人类的视角来描述这些推论,希望能够让读者感受到其中的情感。

我们来看一个简单的推论。

如果两个向量相等,那么它们一定是共线的。

这是因为如果两个向量的大小和方向都相同,那么它们肯定是在同一条直线上的。

这个推论很容易理解,也很有实用价值。

比如,当我们需要判断两条线段是否平行时,可以先求出它们的向量表示,然后比较向量是否相等,如果相等,那么这两条线段就是平行的。

接下来,我们来看一个稍微复杂一些的推论。

如果两个向量的数量积为零,那么它们一定是垂直的。

这是因为当两个向量的数量积为零时,意味着它们的夹角为90度。

而在平面几何中,两条直线垂直的定义就是夹角为90度。

所以,如果两个向量的数量积为零,那么它们一定是垂直的。

除了以上两个推论外,还有一个更加有趣的推论。

如果三个向量两两共线,那么它们一定共线。

这个推论可以通过反证法来证明。

假设这三个向量不共线,那么它们可以构成一个平面。

而在这个平面中,我们可以找到两个不共线的向量,使它们与第三个向量构成的平面相交于一条直线。

这与假设矛盾,所以三个向量一定共线。

在实际应用中,平面向量共线定理的推论可以帮助我们解决一些几何问题。

比如,在建筑设计中,我们需要判断某些线段是否共线,以确定建筑物的结构是否牢固。

而平面向量共线定理的推论可以帮助我们快速判断线段的共线性,提高设计效率。

平面向量共线定理的推论在数学中扮演着重要的角色。

它们不仅帮助我们理解向量的共线性,还可以应用到实际问题中。

通过这些推论,我们可以更好地理解和应用平面向量共线定理,提高数学解题的能力。

希望通过本文的叙述,读者能够对平面向量共线定理的推论有更深入的理解,并能够灵活运用到实际问题中。

平面向量三点共线定理的推论及空间推广

平面向量三点共线定理的推论及空间推广

平面向量三点共线定理的推论及空间推广三点共线定理,又称三点确定一直线,它是平面几何学中一个基本定理。

它宣称,假设有三个不同的点,它们一定能构成一条直线。

本文主要介绍三点共线定理的推论及平面的推广,并且进一步评论该定理在空间几何中的推广。

一、三点共线定理:1. 定义:三点共线定理,又称三点确定一直线,是指,任意三个不同点,它们一定能构成一条直线。

2. 推论:(1)若由不同的三点确定的直线上含有两点,那么其余一点必然也在这条直线上。

(2)如果有一条直线上含有两点,则另一点也必然在这条直线上。

3. 例子:我们从A、B、C三点可以确定一条直线,若在这条直线上发现了B1点,B1点必然和A、C也在这条直线上。

二、平面推广:1.定理:三点共线定理也同样拓展到了平面中,即:任意三个不同点,必定能构成一个平面或一个平行于某平面的直线。

2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。

(2)如果一个平面上含有两点,则另一点也必定在这个平面上。

3.例子:三个点A、B、C在一个平面上,若在这个平面上发现了B1点,那么A、C也必定在这个平面上,这样就可以确定这个平面。

三、空间推广:1.定理:三点共线定理可以拓展到空间几何中,即:任意三个不同点,必定能构成一个平面或一个空间中的直线。

2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。

(2)如果一个平面上含有两点,则另一点也必定在这个平面上。

3.例子:如果三个点A、B、C全都在空间中,若空间中发现了B1点,那么A、C也必定在平面上,这样就可以确定这个平面。

总结:三点共线定理是一个基本定理,指任意三个不同点,一定能构成一条直线,并且这个定理在平面和空间几何中都能成立,一个平面或一个空中的直线,它的推论雷同,即:若有两点,另一点也在这个平面或这条直线上。

向量的三点共线定理

向量的三点共线定理

向量的三点共线定理一、概念向量的三点共线定理,又称之为向量的共线定理,是向量理论中的一个基本定理。

它描述了在三维空间中,如果三个点A、B、C由向量OA、OB、OC表示,并且存在实数λ和μ,使得OC = λOA + μOB,且λ+ μ= 1,则这三个点A、B、C是共线的。

二、定义定义1:共线向量,也称为平行向量,是指方向相同或相反的非零向量。

在平面或空间中,如果两个向量有相同的方向或相反的方向,则这两个向量被称为共线向量。

定义2:如果三个点A、B、C满足OC = λOA + μOB,其中λ和μ是实数,并且λ+ μ= 1,则称这三个点A、B、C是共线的。

三、性质性质1:若三点A、B、C共线,则它们的位置向量之间存在线性关系,即OC = λOA + μOB,且λ+ μ= 1。

性质2:若向量a与向量b共线,则存在唯一实数k,使得a = kb。

特别地,当k = 1时,a与b方向相同;当k = -1时,a与b方向相反。

性质3:共线向量的模长之比等于它们对应分量之比,即若a = kb,则|a|/|b| = |k|。

四、特点特点1:向量的三点共线定理是向量线性组合的一个特殊情况,它揭示了向量之间的线性关系与点的几何位置之间的关系。

特点2:该定理提供了一种通过向量运算判断三点是否共线的方法,为向量在空间中的应用提供了便利。

特点3:向量的三点共线定理与平面几何中的三点共线定理具有类似的性质,但向量的表达方式更具一般性,可以推广到三维空间乃至更高维的向量空间。

五、规律规律1:如果三点A、B、C共线,那么它们的位置向量OA、OB、OC之间存在唯一的线性关系,使得OC = λOA + μOB,且λ+ μ= 1。

这个线性关系中的λ和μ是唯一的,除非A、B、C三点重合。

规律2:在三维空间中,如果三个向量a、b、c满足a = λb + μc,且λ+ μ= 1,则这三个向量是共面的。

特别地,当这三个向量是三个点的位置向量时,这三个点共线。

《两向量共线的充要条件及应用》平面向量及其应用

《两向量共线的充要条件及应用》平面向量及其应用

推论三:向量的三角形法则
总结词
三角形法则是指两个向量共线时,可以通过第三个向 量形成一个三角形。
详细描述
如果向量$overset{longrightarrow}{a}$、向量 $overset{longrightarrow}{b}$和向量 $overset{longrightarrow}{c}$共线,那么这三个向量 可以形成一个三角形。具体来说,从起点出发,沿着 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$和 $overset{longrightarrow}{c}$的方向分别作相同长度 的线段,连接三个终点,形成一个三角形。这个三角形 满足三角形的法则,即任意两边之和大于第三边,任意 两边之差小于第三边。
《两向量共线的充要条件及 应用》平面向量及其应用
汇报人: 2023-12-29
目录
• 平面向量的基本概念 • 两向量共线的充要条件 • 两向量共线的应用 • 两向量共线定理的证明 • 两向量共线定理的推论
01
平面向量的基本概念
向量的定义
总结词ห้องสมุดไป่ตู้
向量是一个既有大小又有方向的量, 通常用有向线段表示。
定理的证明方法三
总结词
利用向量的模的性质证明
详细描述
第三种证明两向量共线的方法是利用向量的 模的性质。如果两向量共线,则它们的模之 比是一个常数。通过比较两个向量的模,我 们可以找到这个常数。如果两个向量的模之 比等于这个常数,则它们共线。
05
两向量共线定理的推论
推论一:向量的倍数关系
总结词
向量的倍数关系是指两个向量共线时,一个 向量是另一个向量的倍数。
03

共面向量定理证明

共面向量定理证明

共面向量定理证明摘要:一、共面向量定理的概念及意义二、共面向量定理的证明方法1.向量共线定理的证明2.向量共面定理的证明3.存在的唯一性证明三、共面向量定理的应用案例四、总结与展望正文:一、共面向量定理的概念及意义共面向量定理是向量空间中的一个重要定理,它描述了向量共面的充要条件。

向量共面定理在数学、物理等学科中都有着广泛的应用,对于研究空间几何问题具有重要的意义。

二、共面向量定理的证明方法1.向量共线定理的证明向量共线定理是指:如果两个向量共线,那么它们之间的比值是唯一的。

证明过程主要通过向量的数乘运算来完成,根据向量共线定理,可以得到唯一一个实数k,使得两个向量a 和b 满足a=k*b。

2.向量共面定理的证明向量共面定理是指:如果三个向量共面,那么它们之间的线性组合是唯一的。

证明过程主要通过向量的线性组合来完成,根据向量共面定理,可以得到唯一一组实数a、b、c,使得三个向量a、b、c 满足a*x + b*y + c*z = 0。

3.存在的唯一性证明为了证明共面向量定理的唯一性,我们可以采用反证法进行证明。

假设存在两个不同的向量组,它们都满足向量共面定理。

那么,这两个向量组之间的线性组合也是唯一的。

然而,这与向量共面定理的唯一性相矛盾,因此假设不成立,证明了共面向量定理的唯一性。

三、共面向量定理的应用案例共面向量定理在实际应用中具有广泛的应用,例如在物理学中,它可以用来分析物体在空间中的运动状态;在计算机图形学中,它可以用来计算三维图形的坐标等。

四、总结与展望共面向量定理是向量空间中的一个基本定理,它对于研究空间几何问题具有重要的意义。

通过对共面向量定理的证明,我们可以更好地理解向量共面的概念,为解决实际问题提供理论支持。

共线向量的推论

共线向量的推论

向量共线定理的几个推论及其应用推论一:向量b 与向量a 共线⇔存在不全为0的实数12,λλ,使120a b λλ+=,这实质是定理的另外一种表述形式。

推论二:三个不同点A 、B 、C 共线⇔存在一组全不为0的实数12,λλ,使120AB AC λλ+=。

注意推论(二)与推论(一)的区别:推论(二)中,AB AC 均不为零向量,而推论(一)中,向量,a b可能含O 。

推论三: 设O 、A 、B 三点不共线,且OP xOA yOB =+,(x ,y∈R),则P 、A 、B 三点共线⇔x+y=1。

这实质是直线方程的向量形式。

推论四: 设O 为平面内任意一点,则三个不同点A 、B 、C 共线⇔存在一组全不为0的实数123,,λλλ使123OA OB OC O λλλ++=且123λλλ++=0证:① 当O 点与A 、B 、C 三点中任一点重合,则推论(四)即为推论(二);② 当O 点与A 、B 、C 三点均不重合,则三点A 、B 、C 共线⇔存在s ,t∈R,且s·t≠0,使得sAB t AC O +=,此时,s≠-t ,否则A B A C = ,从而B 点与C 点重合,这与已知条件矛盾,故有:()()s OB OA t OC OA O-+-= ,即:()s OB tOC s t OA O ⋅+-+=。

显然s+t+[-(s+t)]=0令123()0,0,0s t s t λλλ-+=≠=≠=≠,故1230λλλ++=得证。

推论五: 设O 为平面内任意一点,则三个不同点A 、B 、C 不共线⇔若存在实数123,,λλλ,使123OA OB OC Oλλλ++=且1230λλλ++=则123λλλ===0。

推论五实质是推论四的逆否命题。

推论六:点P 在ΔABO 的内部(不含边界)⇔存在正实数12,λλ,使得12OP OA OB λλ=+,且121λλ+<。

证::如图,必要性:若点P 在ΔABO 的内部(不含边界),则12OP OA OB λλ=+,延长OP 交AB 于P 1,过P 作OA 、OB 的平行线,分别交OA ,OB 于M ,N 点,过P 1作OA ,OB 的平行线,分别交OA ,OB 于M 1,N 1点,显然11||||PM PM <,11||||PN PN <,12OP OM ON OA OBλλ=+=+。

共线向量和共面向量

共线向量和共面向量
共线向量与共面向量
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个
向量 a,b(bo),a//b的充要条件是存在实
数使 ab
推论:如果 l为经过已知点A且平行已
rB br
M aA
ur p
P
A
O
推论:空间一点P位于平面MAB内的
充要条件是存在有序实数对x,y使
u u u u r u u u u r u u u u r M PxM A yM B
或对空间任一点O,有O u u P u r O u u M u u r x u M u u A u r y u M u u B u r
四点E、F、G、H共面;
D A
C B
D' A'
B'
1.下列命题中正确的有:
u r r ru rrr ( 1 )p x a y b p 与 a 、 b 共 面 ;
u rrr u r r r ( 2 )p 与 a 、 b 共 面 p x a y b ;
u u u u ru u u u ru u u u r ( 3 ) M P x M A y M B P 、 M 、 A 、 B 共 面 ;
,O为空间任意一点,求证:
O uuPur O uuAur O uuBur 1
二.共面向量:
1.共面向量:平行于同一平面的向量,叫
做共面向量.
a
O
A
a
注意:空间任意两个向量是共面的,但空间 任意三个向量就不一定共面的了。
rr 2.共面向量定ur 理:如果r 两r 个向量a , b 不共线,则向量 p与向量 a u共r, b面的充r要 r 条件是存在实数对x, y使 Pxayb

证明三点共线的向量定理

证明三点共线的向量定理

证明三点共线的向量定理证明三点共线的向量定理1. 引言在几何学中,共线是指多个点在同一条直线上。

证明三点共线的向量定理是一种常用的方法,它利用向量的性质来判断三个点是否在同一条直线上。

本文将深入探讨这个定理,通过提供详细的解释和举例,帮助您全面了解这一概念。

2. 向量的基本概念在开始证明之前,我们先了解一些基本的向量概念。

向量是有大小和方向的量,通常用箭头来表示。

向量可以表示为有序数对 (a, b),其中a 和 b 分别表示向量在水平和垂直方向上的分量。

在这里,我们使用巴斯克定理,这是一个三角学中的基本定理,通过它我们可以找到一个向量的模长和方向。

3. 证明三点共线的向量定理现在我们来证明三个点是否共线的向量定理。

假设有三个点A(x1, y1)、B(x2, y2) 和 C(x3, y3)。

根据向量的定义,我们可以将向量 AB 表示为向量 a = (x2 - x1, y2 - y1),向量 BC 表示为向量 b = (x3 - x2, y3 -y2)。

如果这两个向量是平行的,那么向量 a 和向量 b 的比例关系为 a= k * b,其中 k 是一个常数。

这意味着点 A、B 和 C 共线。

为了证明这一点,我们可以计算向量 a 和向量 b 的比值,如果比值等于常数 k,那么三个点就共线。

具体计算如下:a = (x2 - x1, y2 - y1)b = (x3 - x2, y3 - y2)k = a / b = (x2 - x1) / (x3 - x2) = (y2 - y1) / (y3 - y2)如果比值 k 等于常数,那么三个点 A、B 和 C 就共线。

4. 举例说明为了更好地理解上述证明过程,我们举个例子来计算三个点是否共线。

假设有三个点 A(1, 2)、B(3, 4) 和 C(5, 6)。

我们可以计算向量 a 和向量 b 的比值:a = (3 - 1, 4 - 2) = (2, 2)b = (5 - 3, 6 - 4) = (2, 2)k = a / b = (2 - 1) / (2 - 1) = 1由于比值 k 等于常数 1,所以点 A、B 和 C 是共线的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档