Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces

合集下载

麻省理工学院数学系课表及教材

麻省理工学院数学系课表及教材

E17-122
Mathematics
Ankur 9:30-11
18.S997 Special Subject in Schlank, W 3-5 66-154
Mathematics
Tomer
Book
Author
* Calculus with Analytic Geometry, George
2nd ed.
E17-139 18.396
Advanced Analytic Cheng, MWF 11 E17-128 18.396 Methods in Science Hung and Engineering
Principles of Discrete Applied Mathematics
Goeman MWF 12 4-163 s, Michel
Topics in Lie Theory Introduction to Arithmetric Geometry Number Theory I
Topics in Number Theory
Charles, MW
E17-122 18.782
François 2:30-4
Bezrukav TR 1- 4-146 18.785
in Mathematics Larry
Introduction to Topology
Munkres, TR 11- 4-159 18.787 James 12:30
Algebraic Topology Tabuada TR 9:30- E17-122 18.787 , Gonç 11
alo
Graduate Topology Behrens, TR 2:30- E17-128 18.787

基于两维图论聚类的中原城市群“三生”功能评估

基于两维图论聚类的中原城市群“三生”功能评估

基于两维图论聚类的中原城市群“三生”功能评估贾琦1,刘毅洁1,尹泽凯2*,张超玉1,燕宏宇1(1.郑州轻工业大学艺术设计学院,河南郑州450002;2.山东建筑大学艺术学院,山东济南250101)摘要:基于“三生”功能的现状并对其多功能性合理分区,对于促进城市群国土空间高质量发展具有重要意义。

以中原城市群为例,通过建立“三生”功能评价体系,探讨“三生”功能演化过程,运用两维图论聚类对国土空间进行分区优化。

结果表明:生产、生活功能高值位于郑州-洛阳和郑州-许昌等城市连片区并不断持续扩张,生态功能高值多集中在豫西山区;“三生”功能具有明显集聚特征,1980—2020年,中东部生产功能持续降低且呈破碎化趋势,生活功能不断聚集在各地市建成区周边并持续胁迫生态功能区域;根据两维图论聚类方法划分为5个功能区,并针对不同分区特征提出相应管控策略。

关键词:“三生”功能;分区优化;两维图论;中原城市群中图分类号:P208文献标志码:B文章编号:1672-4623(2024)04-0001-04Production-living-ecological Functional Evaluation of Central Henan UrbanAgglomeration Based on Two-dimensional Graph Theory ClusteringJIA Qi 1,LIU Yijie 1,YIN Zekai 2,ZHANG Chaoyu 1,YAN Hongyu 1(1.School of Art and Design,Zhengzhou University of Light Industry,Zhengzhou 450002,China;2.School of Art,Shandong Jianzhu University,Jinan 250101,China)Abstract:Based on the present situation of production-living-ecological function and rationally dividing it,its versatility is of great significance for promoting the high-quality development of urban agglomeration land space.Taking the Central Henan urban agglomeration for example,we discussed the evolution process of urban agglomeration production-living-ecological function by establishing the production-living-ecological function evaluation system and optimizing the territorial space based on two-dimensional graph theory clustering.The results show that ①the high value of production and living functions is located in the contiguous areas of Zhengzhou-Luoyang,Zhengzhou-Xuchang and other cities and continues to expand,while the high value of ecological function is mainly concentrated in the mountains of western Henan.②The production-liv-ing-ecological function has obvious gathering characteristics.From 1980to 2020,the production function in the mid-east area continued to de-cline and showed a trend of fragmentation,and the living function continued to gather around the urban built-up areas and continued to stress the ecological function areas.③According to the two-dimensional graph theory clustering method,it is divided into five functional zones.According to the characteristics of different zones,Corresponding management and control strategies are proposed.Key words:production-living-ecological function,zoning optimization,two-dimensional graph theory,Central Henan urban agglomeration土地功能分区是依据地域差异特征,根据多种客观实体要素及其利用方式,将特定地区的土地划分成不同区域的过程。

Lie algebras, in Infinite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7,

Lie algebras, in Infinite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7,
L1;k (1)
C1;1;k g ' L0;k (0)
L1;k (1)
M1;k (1): Combining Theorem 4.6 and the statement (ii), we obtain the statement (i). Q.E.D.
References
H0 (g(0; 1; 1); L0 ;k (0)
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan. Department of Mathematics, Faculty of Science, Osaka University,
[KK] Kac V.G. and Kazhdan D.A., Structure of representations with highest weight of in nite dimensional Lie algebras, Adv. in Math. 34, (1979), 97{108. [KnPZ] Knizhnik V. G., Polyakov A. M. and Zamolodchikov A.B., Fractal structure in 2D quantum gravity, Mod. Phys. Lett. A 3, (1988), 819{826. [KW1] Kac V.G. and Wakimoto M., Modular invariant representations of in nite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Soc., 35, (1988), 4956{4960. [KW2] Kac V.G. and Wakimoto M., Classi cation of modular invariant representations of ane Lie algebras, in In nite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7, (1989), 138{177. [KWn] Kac V. G. and Wang W., Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological eld theories and quantum groups, 161{191, Contemp. Math. 175, Amer. Math. Soc. Providence, RI, (1994). [Mal] Malikov F.G., Verma modules over Kac-Moody algebras of rank 2, Leningrad Math. J., 2, No. 2, (1991), 269{286. [MFF] Malikov F.G., Feigin B.L. and Fuks D.B., Singular vectors in Verma modules over KacMoody algebras, Funkts. Anal. Prilozhen., 20, No. 2, (1988), 25{37. [MW] Mathieu P. and Walton M.A., Fractional-level Kac-Moody Algebras and Nonunitary Coset Conformal Theories, Prog. Theor. Phys. 102, (1990), 229-254. [MP] Moody R.V. and Pianzola A., Lie algebras with triangular decompositions, Wiley-Interscience Publ., New York, 1995. [P] Polyakov A. M., Quantum Gravity in two dimensions, Mod. Phys. Lett. A 2, (1987), 893-898. [Ray] Ray U., A Characterization of Lie superalgebras for a certain class of graded Lie superalgebras, preprint,to appear in Jour. Alg. [RW] Rocha-Caridi A. and Wallach N.R., Highest weight modules over graded Lie algebras: resolutions, ltrations and character formulas, Trans. Amer. Math. Soc. 20, (1983), 133{162. [TUY] Tsuchiya A., Ueno K. and Yamada Y., Conformal eld theory on moduli family of stable curves with gauge symmetry, in Integrable systems in quantum eld theory and statistical mechanics, Adv. Stud. Pure Math. 19, (1989), 459-566. [V] Verlinde E., Fusion rules and modular transformations in 2D conformal eld theory, Nucl. Phys. B 300, (1998), 360-376. (K. Iohara) (Y. Koga)

机器学习经典书目汇总

机器学习经典书目汇总

机器学习经典书目汇总本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍。

入门书单《数学之美》作者吴军大家都很熟悉。

以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。

《Programming Collective Intelligence》(《集体智慧编程》)作者Toby Segaran也是《BeautifulData : The Stories Behind Elegant Data Solutions》(《数据之美:解密优雅数据解决方案背后的故事》)的作者。

这本书最大的优势就是里面没有理论推导和复杂的数学公式,是很不错的入门书。

目前中文版已经脱销,对于有志于这个领域的人来说,英文的pdf是个不错的选择,因为后面有很多经典书的翻译都较差,只能看英文版,不如从这个入手。

还有,这本书适合于快速看完,因为据评论,看完一些经典的带有数学推导的书后会发现这本书什么都没讲,只是举了很多例子而已。

《Algorithms of the Intelligent Web》(《智能web算法》)作者Haralambos Marmanis、Dmitry Babenko。

这本书中的公式比《集体智慧编程》要略多一点,里面的例子多是互联网上的应用,看名字就知道。

不足的地方在于里面的配套代码是BeanShell而不是python或其他。

总起来说,这本书还是适合初学者,与上一本一样需要快速读完,如果读完上一本的话,这一本可以不必细看代码,了解算法主要思想就行了。

《统计学习方法》作者李航,是国内机器学习领域的几个大家之一,曾在MSRA 任高级研究员,现在华为诺亚方舟实验室。

书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。

每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。

《Machine Learning》(《机器学习》)作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。

克隆巴赫系数的英文

克隆巴赫系数的英文

克隆巴赫系数的英文English:The Bernstein–Sato polynomial of a germ of a complex analytic function at a point is an object of central importance in singularity theory and complex analysis. It encodes crucial information about the singular behavior of the function near the given point. The Bernstein–Sato polynomial is intimately related to the Bernstein–Sato ideal, which is a fundamental concept in the study of D-modules and p-adic differential equations. The study of Bernstein–Sato polynomials and ideals has deep connections to various areas of mathematics, including algebraic geometry, representation theory, and harmonic analysis. These polynomials have been extensively studied in the context of local zeta functions, where they play a crucial role in understanding the structure of singularities and in the computation of zeta functions associated with singularities. In recent years, there has been significant progress in understanding the properties and applications of Bernstein–Sato polynomials, leading to new insights into the nature of singularities and their interactions with other mathematical objects.中文翻译:克隆巴赫多项式是复解析函数在某一点处的一个基本概念,它在奇点理论和复分析中具有重要的地位。

丘成桐大学生数学竞赛数学专业大纲(英汉对照版)

丘成桐大学生数学竞赛数学专业大纲(英汉对照版)
Nakayama's lemma, chain conditions and Noetherian rings, Hilbert basis theorem, Artin rings, integral ring extensions, Nullstellensatz, Dedekind domains,algebraic sets, Spec(A). 环 环的基 本性质 ,单 位元, 理想, 同态 ,商环 ,素 理想和 最大 理想, 分式域 ,欧 几里 得整环 ,主理 想整 环和唯 一因子 分解 整环( 高斯 整环) ,多 项式环 和幂级 数环 ,中 国剩余 定理, 局部 环和局 部化, 中山 正引理 ,链 式条件 和诺 特环, 希尔伯 特基 本定 理,阿延环,整环扩张,零点定理( 德文) ,戴德 金整 环,代 数集, Spec(A ) Module Modules and algebra Free and projective; tensor products; irreducible modules and Schur’s lemma; semisimple, simple and primitive rings; density and Wederburn theorems; the structure of finitely generated modules over principal ideal domains, with application to abelian groups and canonical forms; categories and functors; complexes, injective modues, cohomology; Tor and Ext. 模 模和代数,自由和射影;张量积;不 可约模 和舒尔 引理 ;半单 环、单 环和本 原环; 稠密性和韦德伯恩定理;主理想整环上有限生成模的结构及其在阿贝尔群和典范形 式上的应用;范畴和函子;复内射模,上同调;挠积和Ext. Field Field extensions, algebraic extensions, transcendence bases; cyclic and cyclotomic extensions; solvability of polynomial equations; finite fields; separable and inseparable extensions; Galois theory, norms and traces,Galois theory of number fields, transcendence degree, function fields. 域 域扩张 ,代数 扩张 ,超越 基;循环扩 张和分 圆扩张 ;多 项式方 程和可 解性 ;有限 域; 可分扩 张和不 可分 扩张; 伽罗华 理论 ,范数 和迹 ,数域 上的 伽罗华 理论超 越次 数, 函数域. Group representation Irreducible representations, Schur's lemma, characters, Schur orthogonality, character tables, semisimple group rings, induced representations, Frobenius reciprocity, tensor products, symmetric and exterior powers, complex, real, and rational representations. 群表示 不可约 表示, 舒尔 引理, 舒尔规 范正 交性, 特征 标表, 半单 群环, 诱导表 示, 弗罗 贝尼乌斯互反,张量积,对称幂和外幂,复表示、实表示和有理表示. Lie Algebra Basic concepts, semisimple Lie algebras, root systems, isomorphism and conjugacy theorems, representation theory. 李代数 基本概念,半单李代数,根系,同构定理和共轭定理,表示论. Combinatorics (TBA) 组合学(TBA) References: Strang, Linear algebra, Academic Press.

数学分析、高等代数中数学家的翻译名

数学分析、高等代数中数学家的翻译名

著名数学家的翻译名
数学是我们学好其他自然学科(如物理、化学、生物、天文学等)的基础,更是在日常生活中起着不可替代的作用。

在数学的学习教材中,经常会见到一些英文字母的外国数学家名字。

偶在闲暇时,为数学爱好着,整理了一下他们的翻译名字,以便大家更好地学习。

Weierstrass 魏尔斯特拉斯
Cantor 康托尔
Bernoulli 伯努力
Fatou 法都
Green 格林
S.Lie 李
Euler 欧拉
Gauss 高斯
Riemann 黎曼
Caratheodory 卡拉西奥多礼
Newton 牛顿
Jordan 约当
Laplace 拉普拉斯
Riesz 黎茨
Fourier 傅立叶
Borel 波莱尔
Dirchlet 狄利克雷
Lebesgue 勒贝格
Leibniz 莱不尼兹
Abel 阿贝尔
Lagrange 拉格朗日
Ljapunov 李雅普诺夫
Holder 赫尔得
Poisson 泊松
H.Hopf 霍普夫
Baire 贝尔
Fermat 费马
Taylor 泰勒
Schauder 肖德尔
Lipschiz 李普西茨
Liouville 刘维尔
Lindelof 林德洛夫
de Moivre 棣莫佛
Klein 克莱因
Bessel 贝塞尔
Euclid 欧几里德
Chebyschev 切比雪夫Banach 巴拿赫Hilbert 希尔伯特Minkowski 闵可夫斯基Hamilton 哈密尔顿Poincare 彭加莱。

代数英语

代数英语

(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。

0+||zero-dagger; 读作零正。

1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。

AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。

BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。

B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。

C0 类函数||function of class C0; 又称“连续函数类”。

CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。

Cp统计量||Cp-statisticC。

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书

《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。

顶点算子代数模范畴的grothendick群(英文)

顶点算子代数模范畴的grothendick群(英文)

顶点算子代数模范畴的grothendick群(英文)In mathematics, the Grothendieck group of a vertex operator algebra is a group whose elements are formal linear combinations of irreducible modules of the algebra, modulo a suitable notion of equivalence. It is named in honour of Alexander Grothendieck, the famous mathematician whopioneered algebraic geometry and founded the Grothendieck school.The Grothendieck group of a vertex operator algebra is related to the representation theory of the algebra; in particular, it captures the structure of its irreducible modules, as well as their tensor product decompositions. Itis also closely related to the K-theory of vector bundles, which is one of Grothendieck's most important contributionsto mathematics.The Grothendieck group of a vertex operator algebra can be defined in several ways. One definition is based on the notion of a vertex operator algebra as a special kind of commutative algebra, and on the notion of a generic module as a module which is both projective and injective. Thisdefinition is then used to define isomorphism classes of irreducible vertex operator algebra modules, and to definethe Grothendieck group of the algebra.Another definition of the Grothendieck group uses the notion of a vertex operator algebra as a module over itself. This approach defines isomorphism classes of irreducible modules of the algebra, and then uses those classes toconstruct the Grothendieck group of the algebra.Finally, the Grothendieck group of a vertex operator algebra can be defined using the representation theory of the algebra. In this approach, the Grothendieck group is constructed from the structure constants of the irreducible modules of the algebra.The Grothendieck group of a vertex operator algebra has several properties which make it a useful tool in algebraic geometry and representation theory. For example, it is a finitely generated abelian group, which means that it is amenable to computation. It also provides a useful way to classify and study the irreducible modules of the algebra. Finally, it is related to several other groups, such as theK-theory of vector bundles and the Burnside ring of a group.Overall, the Grothendieck group of a vertex operator algebra provides a fundamental tool in the representation theory and algebraic geometry of such algebras. It is an important concept which continues to be studied, and which has many applications in mathematics.。

algebra and representation theory

algebra and representation theory

algebra and representation theoryAlgebra and representation theory are two important areas of mathematics that are closely related to each other. Algebra is the branch of mathematics that deals with the study of mathematical structures, while representation theory is the study of how abstract mathematical objects are represented in more concrete forms.In algebra, the basic operations of addition, subtraction, multiplication, and division are studied, along with their properties and rules. Algebraic structures such as groups, rings, and fields are also studied, along with their properties and applications.Representation theory, on the other hand, focuses on the representation of mathematical objects such as groups and rings in more concrete forms. This involves studying how these abstract mathematical structures can be represented by matrices, linear operators, and other mathematical objects.Representation theory has many applications in physics, engineering, and computer science. For example, in quantum mechanics, the theory of representations is used to study the symmetries of particles and their interactions, whilein computer science, it is used to study the representation of data in computer algorithms.Overall, algebra and representation theory are two interconnected fields of mathematics that have many important applications in various fields of science and engineering.。

华年圣徒——乔·乔·怀特,JO JO WHITE

华年圣徒——乔·乔·怀特,JO JO WHITE

华年圣徒——乔乔怀特,JO JO WHITE
郭忻杪;韩璐璐
【期刊名称】《当代体育:扣篮》
【年(卷),期】2015(0)18
【摘要】怀特1981年离开NBA赛场,从1987年起便有资格提名进入名人堂,但他始终未得到这份荣誉。

直到2015年,将近三十年之后,在前队友哈夫利切克和考恩斯介绍下,才终于站上了这个舞台。

尽管脚步有些蹒跚,但他绝不是个容易被打倒的人,就算你不认识他,可只要看到他脸上严肃如石像般的表情就会知道,那时经历过无数考验所留下来的痕迹。

【总页数】1页(P24-24)
【作者】郭忻杪;韩璐璐
【作者单位】
【正文语种】中文
【中图分类】G841
【相关文献】
1.建筑与人——法兰克福Jo Jo幼儿园设计实践与思考 [J], 陈峥
2.铁汉柔情r乔·乔·怀特 [J], 凉雨
3.铁汉柔情乔·乔·怀特 [J], 凉雨;王松涛;
4.艺术家:乔·贝尔(Jo Baer) [J],
5.Crossed Products over Weak Hopf Algebras Related to Cleft Extensions
and Cohomology Jos Nicanor Alonso ALVAREZ Jos Manuel Fernandez VILABOA Ram6n Gonzgdez RODRIGUEZ [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

保积3-Hom-李超代数的积结构

保积3-Hom-李超代数的积结构

第39卷第5期 齐 齐 哈 尔 大 学 学 报(自然科学版) Vol.39,No.5 2023年9月Journal of Qiqihar University(Natural Science Edition)Sep.,2023保积3-Hom-李超代数的积结构关宝玲1,田馨心2,田丽军3,闫煦1,王春艳1,李艳君1,董红月1,汪禹淼1,蒋加欣1,赵芬芬1(1.齐齐哈尔大学 理学院,黑龙江 齐齐哈尔 161006;2.中山大学 数学学院,广州 510275;3.齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006)摘要:把3-李代数的积结构推广到3-Hom-李超代数。

引入了保积3-Hom-李超代数上的积结构定义,给出了积结构存在的充分必要条件,得到一种特殊的积结构,严格积结构。

关键词:保积3-Hom-李超代数;积结构;严格积结构中图分类号:O152.5 文献标志码:A 文章编号:1007-984X(2023)05-0091-04Hom-李代数的概念是由HARTWIG 等[1]介绍的。

Hom-代数的结构最早出现在向量域上的李代数的拟形变和离散化领域,这些拟形变产生Hom-李代数,它是一个广义的李代数,它包含斜对称性和扭的Jacobi 等式。

Witt 代数和Virasoro 代数的一些q -形变中也有一个Hom-李代数的结构,它与离散的、形变的向量域和微积分学有着紧密联系[1-3]。

Hom-结构被引入到许多代数中,例如,Hom-李代数、Hom-结合代数、Hom-余代数、Hom-双代数、n -元Hom-Nambu-李代数、Hom-莱布尼兹代数和Hom-n -李超代数等等[4-11]。

三李代数最早哈密顿力学的NAMBU 推广[12],三李超代数最早是由CANTARINI 介绍的[13],3-Hom-李超代数是三李超代数的Hom-型推广。

GUAN 等[14]研究了3-Hom-李超代数的构造和诱导表示。

博士生《凸优化》课程 参考书

博士生《凸优化》课程 参考书

博士生《凸优化》课程参考书
《凸优化》是数学、工程和计算机科学领域中的重要课程,因此有很多优秀的参考书可供选择。

以下是一些常用的参考书:
1.《凸优化》(Convex Optimization)作者,Stephen Boyd
和Lieven Vandenberghe.
这本书是凸优化领域的经典教材,涵盖了凸集、凸函数、凸优化问题的基本理论,以及凸优化在工程和机器学习中的应用。

书中内容通俗易懂,适合初学者阅读。

2.《凸优化导论》(Introduction to Convex Optimization)作者,Yuriy Nesterov和Arkadii Nemirovskii.
这本书介绍了凸优化的基本概念、算法和应用,对于想深入了解凸优化的同学来说是一本很好的参考书。

3.《凸优化理论与算法》(Convex Optimization: Theory and Algorithms)作者,Dimitri P. Bertsekas.
这本书介绍了凸优化的理论和算法,内容涵盖了凸优化的基本
理论、算法和应用。

适合希望深入学习凸优化的同学阅读。

4.《最优化理论与方法》(Optimization Theory and Methods)作者,Wenyu Sun和Ya-xiang Yuan.
这本书介绍了最优化理论和方法,内容包括了凸优化、非凸优化、约束优化等内容,适合想系统了解优化理论和方法的同学阅读。

以上是一些常用的参考书,希望能够帮助你更好地学习和理解《凸优化》课程的内容。

如果你需要更多的参考书或者其他相关信息,请随时告诉我。

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书

《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。

泊松过程的外文书籍

泊松过程的外文书籍

泊松过程的外文书籍引言概述:泊松过程是概率论中的重要概念,广泛应用于各个领域。

为了深入了解泊松过程的理论和应用,阅读外文书籍是一个不错的选择。

本文将介绍几本关于泊松过程的外文书籍,分析其内容和特点,帮助读者选择适合自己的参考书籍。

正文内容:1. "Poisson Processes" by Daley, D.J. and Vere-Jones, D.1.1 介绍泊松过程的基本概念和性质1.2 探讨泊松过程的随机强度和非齐次泊松过程1.3 分析泊松过程的计数过程和间隔时间分布1.4 研究泊松过程的分岔和超过程1.5 讨论泊松过程在信号处理、金融和网络等领域的应用2. "Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations" by Gardiner, C.W.2.1 介绍扩散过程和布朗运动的基本概念2.2 推导福克-普朗克方程和朗之万方程2.3 研究扩散过程的稳定分布和吸引子2.4 讨论扩散过程在物理学、化学和生物学等领域的应用2.5 探讨扩散过程的数值模拟和实际应用案例3. "Point Processes and Queues: Martingale Dynamics" by Brémaud, P.3.1 分析点过程和排队论的基本概念和性质3.2 探讨点过程的鞅动力学和随机强度3.3 研究排队论中的排队模型和性能分析3.4 讨论排队论在通信网络、交通流和生产系统等领域的应用3.5 探索点过程和排队论的数值方法和实际案例4. "Renewal Theory and Its Applications" by Feller, W.4.1 介绍更新过程的基本概念和性质4.2 推导更新过程的分布函数和密度函数4.3 分析更新过程的极限定理和稳定分布4.4 研究更新过程在可靠性理论和保险数学中的应用4.5 讨论更新过程的数值方法和实际案例5. "Random Measures, Theory and Applications" by Kallenberg, O.5.1 介绍随机测度的基本概念和性质5.2 推导随机测度的积分和测度变换5.3 研究随机测度的强大数定律和中心极限定理5.4 讨论随机测度在统计学、金融和风险管理等领域的应用5.5 探索随机测度的数值方法和实际案例总结:综上所述,以上这些外文书籍涵盖了泊松过程及其相关的扩散过程、点过程、更新过程和随机测度等方面的理论和应用。

Chiral Equivariant Cohomology I

Chiral Equivariant Cohomology I

a r X i v :m a t h /0501084v 7 [m a t h .D G ] 10 J u l 2006Chiral Equivariant Cohomology IBong H.Lian and Andrew R.LinshawABSTRACT.We construct a new equivariant cohomology theory for a certain class ofdifferential vertex algebras,which we call the chiral equivariant cohomology.A principal example of a differential vertex algebra in this class is the chiral de Rham complex of Malikov-Schechtman-Vaintrob of a manifold with a group action.The main idea in this paper is to synthesize the algebraic approach to classical equivariant cohomology due to H.Cartan 1,with the theory of differential vertex algebras,by using an appropriate notion of invariant theory.We also construct the vertex algebra analogues of the Mathai-Quillen isomorphism,the Weil and the Cartan models for equivariant cohomology,and the Chern-Weil map.We give interesting cohomology classes in the new theory that have no classical analogues.Keywords:differential vertex algebras,equivariant de Rham theory,invariant theory,semi-infinite Weil algebra,Virasoro algebra.2Bong H.Lian&Andrew R.LinshawContents1.Introduction (2)1.1.Equivariant de Rham theory (2)1.2.A vertex algebra analogue of G∗-algebras (3)1.3.Vertex algebra invariant theory (4)1.4.Chiral equivariant cohomology of an O(sg)-algebra (4)2.Background (5)2.1.An interlude on vertex algebras (5)2.2.Examples (15)2.3.Differential and graded structures (21)2.4.The commutant construction (22)2.5.A vertex algebra for each open set (23)2.6.MSV chiral de Rham complex of a smooth manifold (29)3.From Vector Fields on M to Global Sections of Q M (35)3.1.From vectorfields to O(sX)-algebras (36)3.2.From group actions to global sections (38)4.Classical Equivariant Cohomology Theory (39)4.1.Weil model for H∗G(A) (41)4.2.Cartan model for H∗G(A) (44)5.Chiral Equivariant Cohomology Theory (45)5.1.Semi-infinite Weil algebra (46)5.2.Weil model for H∗G(A) (50)5.3.Cartan model for H∗G(A) (52)6.Abelian Case (55)6.1.The case A=C (55)6.2.A spectral sequence for H∗T(A) (56)7.Non-Abelian Case (59)7.1.Weight one classes (60)7.2.Weight two classes (62)7.3.A general spectral sequence in the Cartan model (67)7.4.A general spectral sequence in the Weil model (69)7.5.Abelianization? (71)8.Concluding Remarks (72)1.Introduction1.1.Equivariant de Rham theoryFor a topological space M equipped with an action of a compact Lie group G,the G-equivariant cohomology of M,denoted by H∗G(M),is defined to be H∗((M×E)/G)), where E is any contractible topological space on which G acts freely.When M is aChiral Equivariant Cohomology I3smooth manifold on which G acts by diffeomorphisms,there is a de Rham model of H∗G(M)due to H.Cartan[5][6],and developed further by Duflo-Kumar-Vergne[8]and Guillemin-Sternberg[18].The treatment in[18]is simplified considerably by the use of supersymmetry[2][24][31][35][23],and will be the approach adopted in the present paper. Guillemin-Sternberg define the equivariant cohomology H∗G(A)of any G∗-algebra A,of which the algebraΩ(M)of smooth differential forms on M is an example.A G∗-algebra is a commutative superalgebra A equipped with an action of G,together with a compatible action of a certain differential Lie superalgebra(sg,d)associated to the Lie algebra g of G. Taking A=Ω(M)gives us the de Rham model of H∗G(M),and H∗G(Ω(M))=H∗G(M)by an equivariant version of the de Rham theorem.A G∗-algebra(A,d)is a cochain complex, and the subalgebra of A which is both G-invariant and killed by sg forms a subcomplex known as the basic subcomplex.H∗G(A)may be defined to be H∗bas(A⊗W(g)),where W(g)=Λ(g∗)⊗S(g∗)is the Koszul complex of g.A change of variables[18]shows that W(g)is isomorphic to the subcomplex ofΩ(EG)which is freely generated by the con-nection one-forms and curvature two-forms.Here EG is the total space of the classifying bundle of G andΩ(EG)is the de Rham complex of EG.This subcomplex is known as the Weil complex,and H∗bas(A⊗W(g))is known as the Weil model for H∗G(A).Using an automorphism of the space A⊗W(g)called the Mathai-Quillen isomorphism,one can construct the Cartan model which is often more convenient for computational purposes.1.2.A vertex algebra analogue of G∗-algebrasAssociated to G is a certain universal differential vertex algebra we call O(sg),which is analogous to(sg,d).An O(sg)-algebra is then a differential vertex algebra A equipped with an action of G together with a compatible action of O(sg).When G is connected, the G-action can be absorbed into the O(sg)-action.Associated to any Lie algebra g is a Z≥0-graded vertex algebra W(g)known as the semi-infinite Weil complex of g(a.k.a.the bcβγ-system in physics[15]).When g isfinite dimensional,W(g)is a vertex algebra which contains the classical Weil complex W(g)as the subspace of conformal weight zero,and is an example of an O(sg)-algebra.It was studied in[10][1]in the context of semi-infinite cohomology of the loop algebra of g,which is a vertex algebra analogue of Lie algebra cohomology and an example of the general theory of semi-infinite cohomology developed in[9][11].In[29],Malikov-Schechtman-Vaintrob constructed a sheaf Q M of vertex algebras on any nonsingular algebraic scheme M,which they call the chiral de Rham sheaf.They also4Bong H.Lian&Andrew R.Linshawpointed out that the same construction can be done in the analytic and smooth categories (see remark3.9[29].)In this paper,we will carry out a construction that is equivalent in the smooth category.The space Q(M)of global sections of the MSV sheaf Q M is a Z≥0-graded vertex algebra,graded by conformal weight,which contains the ordinary de Rham algebraΩ(M)as the subspace of conformal weight zero.There is a square-zero derivation d Q on Q(M)whose restriction toΩ(M)is the ordinary de Rham differential d,and the inclusion of complexes(Ω(M),d)֒→(Q(M),d Q)induces an isomorphism in cohomology. When M is a G-manifold,the algebra Q(M)is another example of an O(sg)-algebra.1.3.Vertex algebra invariant theoryFor any vertex algebra V and any subalgebra B⊂V,there is a new subalgebra Com(B,V)⊂V known as the commutant of B in V.This construction was introduced in [14]as a vertex algebra abstraction of a construction in representation theory[21]and in conformalfield theory[17],known as the coset construction.It may be interpreted either as the vertex algebra analogue of the ordinary commutant construction in the the-ory of associative algebras,or as a vertex algebra notion of invariant theory.The latter interpretation was developed in[28],and is the point of view we adopt in this paper.1.4.Chiral equivariant cohomology of an O(sg)-algebraOur construction of chiral equivariant cohomology synthesizes the three theories out-lined above.We define the chiral equivariant cohomology H∗G(A)of any O(sg)-algebra A by replacing the main ingredients in the classical Weil model for equivariant cohomology with their vertex algebra counterparts.The commutant construction plays the same role that ordinary invariant theory plays in classical equivariant cohomology.We also construct the chiral analogues of the Mathai-Quillen isomorphism,the Cartan model for H∗G(A),and a vertex algebra homomorphismκG:H∗G(C)→H∗G(A)which is the chiral version of the Chern-Weil map.Here C is the one-dimensional trivial O(sg)-algebra.Specializing to A=Q(M),for a G-manifold M,gives us a chiral equivariant coho-mology theory of M which contains the classical equivariant cohomology.It turns out that there are other interesting differential vertex algebras A,some of which are subalgebras of Q(M),for which H∗G(A)can be defined and also contains the classical equivariant co-homology M.This will be the focus of a separate paper;see further remarks in the last section.Chiral Equivariant Cohomology I5In the case where G is an n-dimensional torus T,we give a complete description of H∗T(C).Working in the Cartan model,we show that for any O(st)-algebra A,H∗T(A)is actually the cohomology of a much smaller subcomplex of the chiral Cartan complex,which we call the small chiral Cartan complex.Like the classical Cartan complex,the small chiral Cartan complex has the structure of a double complex,and there is an associatedfiltration and spectral sequence that computes H∗T(A).For non-abelian G,we also construct a double complex structure in the Weil and Cartan models,and derive two corresponding spectral sequences.When G is a simple,connected Lie group,we show that H∗G(C)contains a vertex operator L(z)which has no classical analogue,and satisfies the Virasoro OPE relation. In particular,H∗G(C)is an interesting non-abelian vertex algebra.This algebra plays the role of H∗G(C)=S(g∗)G,the equivariant cohomology of a point,in the classical theory.Acknowledgement.We thank J.Levine for discussions and for his interest in this work, and G.Schwarz for helpful discussions on invariant theory.We thank E.Paksoy and B. Song for helping to correct a number of mistakes in an earlier draft of this paper.B.H.L.’s research is partially supported by a J.S.Guggenheim Fellowship and an NUS grant.A.R.L. would like to thank the Department of Mathematics,The National University of Singapore, for its hospitality andfinancial support during his visit there,where this paper was written.2.BackgroundIn this section we discuss the necessary background material in preparation for the main results to be developed in sections2-7.Vertex algebras and modules have been discussed from various different points of view in[15][32][3][13][12][26][22][20].We will follow the formalism developed in[26]and partly in[22].We also carry out the construction of the chiral de Rham sheaf in the smooth category.2.1.An interlude on vertex algebrasLet V be a vector space(always assumed defined over the complex numbers).Let z,w be formal variables.By QO(V),we mean the space of all linear maps V→V((z)):= { n∈Z v(n)z−n−1|v(n)∈V,v(n)=0for n>>0}.Each element a∈QO(V)can be uniquely represented as a power series a=a(z):= n∈Z a(n)z−n−1∈(End V)[[z,z−1]], though the latter space is clearly much larger than QO(V).We refer to a(n)as the n-th Fourier mode of a(z).If one regards V((z))as a kind of“z-adic”completion of V[z,z−1],6Bong H.Lian&Andrew R.Linshawthen a∈QO(V)can be thought of as a map on V((z))which is only defined on the dense subset V[z,z−1].When V is equipped with a super vector space structure V=V0⊕V1then an element a∈QO(V)is assumed to be of the shape a=a0+a1where a i:V j→V i+j((z)) for i,j∈Z/2.On QO(V)there is a set of non-associative bilinear operations,◦n,indexed by n∈Z, which we call the n-th circle products.They are defined bya(w)◦n b(w)=Res z a(z)b(w)i|z|>|w|(z−w)n−Res z b(w)a(z)i|w|>|z|(z−w)n∈QO(V).Here i|z|>|w|f(z,w)∈C[[z,z−1,w,w−1]]denotes the power series expansion of a rational function f in the region|z|>|w|.Be warned that i|z|>|w|(z−w)−1=i|w|>|z|(z−w)−1. As it is customary,we shall drop the symbol i|z|>|w|and just write(z−w)−1to mean the expansion in the region|z|>|w|,and write−(w−z)−1to mean the expansion in |w|>|z|.Res z(···)here means taking the coefficient of z−1of(···).It is easy to check that a(w)◦n b(w)above is a well-defined element of QO(V).When V is equipped with a super vector space structure then the definition of a◦n b above is replaced by one with the extra sign(−1)|a||b|in the second term.Here|a|is the Z/2grading of a homogeneous element a∈QO(V).The circle products are connected through the operator product expansion(OPE) formula([26],Prop.2.3):for a,b∈QO(V),we havea(z)b(w)= n≥0a(w)◦n b(w)(z−w)−n−1+:a(z)b(w):(2.1) where:a(z)b(w):=a(z)−b(w)+(−1)|a||b|b(w)a(z)+a(z)−= n<0a(n)z−n−1,a(z)+= n≥0a(n)z−n−1.Note that:a(w)b(w):is a well-defined element of QO(V).It is called the Wick product of a and b,and it coincides with a◦−1b.The other negative circle products are related to this byd nn!a(w)◦−n−1b(w)=:(Chiral Equivariant Cohomology I7 where b(z)=:a2(z)···a k(z):.It is customary to rewrite(2.1)asa(z)b(w)∼ n≥0a(w)◦n b(w)(z−w)−n−1.Thus∼means equal modulo the term:a(z)b(w):.Note that when a◦n b=0for n>>0 (which will be the case throughout this paper later),then formally a(z)b(w)can be thought of as a kind of meromorphic function with poles along z=w.The product a◦n b is formally C a(z)b(w)(z−w)n dz where C is a small circle around w(hence the name circle product).From the definition,we see thata(w)◦0b(w)=[a(0),b(w)].From this,it follows easily that a◦0is a(graded)derivation of every circle product[25]. This property of the zeroth circle product will be used often later.The set QO(V)is a nonassociative algebra with the operations◦n and a unit1.We have1◦n a=δn,−1a for all n,and a◦n1=δn,−1a for n≥−1.We are interested in subalgebras A⊂QO(V),i.e.linear subspaces of QO(V)containing1,which are closed under the circle products.In particular A is closed under formal differentiationd∂a(w)=8Bong H.Lian&Andrew R.LinshawDefinition2.2.We say that a,b∈QO(V)circle commute if(z−w)N[a(z),b(w)]=0 for some N≥0.If N can be chosen to be0,then we say that a,b commute.We say that a∈QO(V)is a vertex operator if it circle commutes with itself.Definition2.3.A circle algebra is said to be commutative if its elements pairwise circle commute.Again when there is a Z/2graded structure,the bracket in the definition above means the super commutator.We will see shortly that the notion of a commutative circle algebra is essentially equivalent to the notion of a vertex algebra(see for e.g.[13]).An easy calculation gives the following very useful characterization of circle commutativity.Lemma2.4.Given N≥0and a,b∈QO(V),we have(z−w)N[a(z),b(w)]=0⇐⇒[a(z)+,b(w)]=N−1p=0(a◦p b)(w)(z−w)−p−1&[a(z)−,b(w)]=N−1p=0(−1)p(a◦p b)(w)(w−z)−p−1⇐⇒[a(m),b(n)]=N−1p=0 m p (a◦p b)(m+n−p)∀m,n∈Z.Using this lemma,it is not difficult to show that for any circle commuting a(z),b(z)∈QO(V)and n∈Z,we havea(z)◦n b(z)= p∈Z(−1)p+1(b(z)◦p a(z))◦n−p−11.(2.4) Note that this is afinite sum by circle commutativity and the fact that c(z)◦k1=0for all c(z)∈QO(V)and k≥0.Many known commutative circle algebras can be constructed as follows.Start with a set S⊂QO(V)and use this lemma to verify circle commutativity of the set.Then S generates a commutative circle algebra A by the next lemma[26][22].Chiral Equivariant Cohomology I9Lemma2.5.Let a,b,c∈QO(V)be such that any two of them circle commute.Then a circle commutes with all b◦p c.Proof:We have[a(z1),[b(z2),c(z3)]]=[[a(z1),b(z2)],c(z3)]]±[b(z2),[a(z1),c(z3)]].(2.5)For M,N≥0,write(z1−z3)M+N=((z1−z2)+(z2−z3))N(z1−z3)M and expand thefirst factor binomially.For M,N>>0,each term(z1−z2)i(z2−z3)N−i(z1−z3)M annihilates ei-ther the left side of(2.5)or the right side.Thus(z1−z3)M+N annihilates(2.5).Multiplying,we see that(z1−z3)M+N[a(z1),(b◦p c)(z3)]=0.(2.5)by(z2−z3)p,p≥0,and taking Res z2From this,we can also conclude that c circle commutes with all b◦p a,p≥0.Now consider the case p<0.For simplicity,we write a=a(z),b=b(w),c=c(w). Suppose(z−w)N[a,b]=0.Differentiating(z−w)N+1[a,b]=0with respect to w shows that a circle commutes with∂b.By(2.2),it remains to show that a circle commutes with the Wick product:bc:.We have[a,:bc:]=[a,b−]c±b−[a,c]+[a,c]b+±c[a,b+].For M>>0,(w−z)M annihilates[a,b],[a,c].In particular,(w−z)M[a,b−]=(w−z)M[b+,a].It follows that(w−z)M[a,:bc:]=(w−z)M[b+,a]c∓c(w−z)M[b+,a].For M>>0,the right side is zero by Lemma2.4because c circle commutes with all b◦p a, p≥0,and that b◦p a=0for p>>0.In the formulation Definition2.3,many formal algebraic notions become immediately clear:a homomorphism is just a linear map that preserves all circle products and1;a module over a circle algebra A is a vector space M equipped with a circle algebra homomorphism A→QO(M),etc.For example,every commutative circle algebra A is itself a faithful A-module,called the left regular module,as we now show.Defineρ:A→QO(A),a→ˆa,ˆa(ζ)b= (a◦n b)ζ−n−1.Lemma2.6.For a,b∈A,m,n∈Z,we have[ˆa(m),ˆb(n)]= p≥0 m p a◦p b(m+n−p).10Bong H.Lian&Andrew R.LinshawProof:Applying the left side to a test vector u∈A,and using Lemma2.4,we have ˆa(m)·ˆb(n)·u(z)−ˆb(n)·ˆa(m)·u(z)=Res z1Res z2[a(z2),b(z1)]u(z)(z2−z)m(z1−z)n−Res z2Res z1u(z)[a(z2),b(z1)](−z+z2)m(−z+z1)n=Res z1Res z2 p≥0(a◦p b)(z1)u(z)(−1)pp! ∂p z2δ(z2,z1) (−z+z2)m(−z+z1)nwhereδ(z1,z2)=(z1−z2)−1+(z2−z1)−1.By doing formal integration by parts and using the fact that Res z2z n2δ(z2,z1)=z n1,the last expression becomesp Res z1 m p (a◦p b)(z1)u(z)(z1−z)m−p+n− p Res z1 m p u(z)(a◦p b)(z1)(−z+z1)m−p+n. This is equal to the right side of our assertion applied on u.Theorem2.7.ρis an injective circle algebra homomorphism.Proof:We will consider the case without the Z/2grading.The argument carries overto superalgebra case with some sign changes,as usual.The mapρis injective becauseˆa(−1)1=a◦−11=a.Multiplying the formula in the preceding lemma byζ−n−1and summing over n,wefind[ˆa(m),ˆb(ζ)]= p≥0 m p a◦p b(ζ)ζm−p.(2.6) On the other hand,it follows from the OPE formula that for m≥0,[ˆa(m),ˆb(ζ)]= p≥0 m p (ˆa◦pˆb)(ζ)ζm−p.Specializing the two preceding formulas to m=0,1,2,...,wefind thata◦p b=ˆa◦pˆbfor p≥0.This shows thatρpreserves the circle products◦p,p≥0.In particular (2.6)becomes[ˆa(m),ˆb(ζ)]= p≥0 m p (ˆa◦pˆb)(ζ)ζm−pfor all m∈Z.This implies thatˆa,ˆb,circle commute,by Lemma2.4.Let A′be the(commutative)circle algebra generated byρ(A)in QO(A).Sinceˆa(n)1= a◦n1=0for a∈A,n≥0,i.e.ˆa+1=0,it follows that every elementα∈A′hasα+1=0 by Remark2.1.Consider the creation mapχ:A′→A,α→α(−1)1,which is clearlyb(z). surjective becauseχ◦ρ=id.We also have[∂,ˆa(ζ)]b=∂dz Applying the next lemma to the algebra A′⊂QO(A),the vector1∈A,and the linear map∂:A→A,wefind thatχis an isomorphism with inverseρ.(In particular this shows that A′=ρ(A),henceρ(A)is closed under the circle products.)By Remark2.1,we haveχ(ˆa◦nˆb)=a◦n ba◦n b for all n.This shows thatρfor all n.Applyingρto both sides yields thatˆa◦nˆb=preserves all circle products.Lemma2.8.Let A⊂QO(V)be a commutative circle algebra,1l∈V a nonzero vector, and D:V→V a linear map such that D1l=0=a+1l and[D,a(z)]=∂a(z)for a∈A.If the creation mapχ:A→V,a→a(−1)1l,is surjective then it is injective.Proof:By assumption,for a∈A,we have Da(n)1l=−na(n−1)1l.Thus if a(−1)1l=0, then a(−2)1l=0.Likewise a(n)1l=0for all n<0.Since a+1l=0,it follows that a1l=0. Sinceχis surjective it suffices to show that a(z)b(−1)1l=0for arbitrary b∈A.Fix N≥0 with(z−w)N[a(z),b(w)]=0.Then(z−w)N a(z)b(w)1l=(z−w)N b(w)a(z)1l=0.Since b+1l=0,we have b(w)1l→b(−1)1l as w→0.This shows that z N a(z)b(−1)1l=0, implying that a(z)b(−1)1l=0.The following are useful identities for circle commuting operators which measure the non-associativity and non-commutativity of the Wick product,and the failure of the pos-itive circle products to be left and right derivations of the Wick product.Lemma2.9.Let a,b,c be pairwise circle commuting,and n≥0.Then we have the identities:(:ab:)c:−:abc:= k≥01:(∂k a)(b◦n+k c):+(−1)|a||b| k≥0b◦n−k−1(a◦k c)k!:ab:−(−1)|a||b|:ba:= k≥0(−1)kˆa(ζ)b.Moreover∂1=0and thatχ:ρ(A)→A,ˆa→ˆa(−1)1=a,is the inverse ofρ.So ∂ζit remains to verify the vertex algebra Jacobi identity:ˆa(ζ)b)(w)ζn(w+ζ)q=Res zˆa(z)ˆb(w)(z−w)n z q−Res zˆb(w)ˆa(z)(−w+z)n z q(2.7) Resζ(for n,q∈Z,a,b∈A.We will do this in several steps.Case1.n∈Z,q=0.The identitya◦n b=ˆa◦nˆbis nothing but(2.7)in this case.For convenience,we will drop theˆfrom the notations temporarily.Case2.n=0,q=−1.The right side of(2.7)becomes,using Lemma2.4,[a(−1),b]= p≥0(−1)p(a◦p b)(w)w−p−1,which agrees with the left side of(2.7).Case3.n=−1,q=−1.By direct computation,the right side of(2.7)isp≥0a(−p−2)b(w)w p− p≥0b(w)a(p−1)w−p−1=(a−b−a(−1)b)w−1+(ba++ba(−1))w−1=:ab:w−1−[a(−1),b]w−1.This agrees with the left side of(2.7).Case4.n=0,q<ing integration by parts,thefirst term of the right side of (2.7)becomes−1Res z a(z)b(w)z q=Using this identities,we reduce this case to Case4.Case7.n<0,q=−1.Take(2.7)in Case3,and operate on both sides by dq+1Res z∂a(z)b(w)(z−w)n z q+1+−nFourier mode a(n)of a vertex operator a(z),we mean that a◦n b=0.Here we regard b as being an element in the state space A,while a operates on the state space,and the map a→ˆa is the state-operator correspondence.Note that every commutative(super)algebra is canonically a vertex algebra where any two elements strictly(graded)commute.More generally we shall say that a vertex algebra is abelian if any two elements pairwise commute.Otherwise we say that the vertex algebra is non-abelian.If a,b are two vertex operators which commute,then their Wick product is the ordinary product and we write ab or a(z)b(z).2.2.ExamplesWe now give several constructions of known examples of vertex(super)algebras,all of which will be used extensively later.Example2.13.Current algebras.Let g be a Lie algebra equipped with a symmetric g-invariant bilinear form B,possibly degenerate.The loop algebra of g is defined to beg[t,t−1]=g⊗C[t,t−1],with bracket given by[ut n,vt m]=[u,v]t n+m.The form B determines a1-dimensional central extensionˆg of g[t,t−1]as follows:ˆg=g[t,t−1]⊕Cτ,with bracket[ut n,vt m]=[u,v]t n+m+nB(u,v)δn+m,0τ.ˆg is equipped with the Z-grading deg(ut n)=n,and deg(τ)=0.Let g≥be the subalgebra of elements of non-negative degree,and letN(g,B)=Uˆg⊗gC≥where C is the g≥-module in which g[t]acts by zero andτby1.Clearly N(g,B)is graded by the non-positive integers.For u∈g,denote by u(n)the linear operator on N(g,B) representing ut n,and putu(z)= n u(n)z−n−1.Then for u,v∈g,we get[u(z)+,v(w)]=B(u,v)(z−w)−2+[u,v](w)(z−w)−1[u(z)−,v(w)]=−B(u,v)(w−z)−2+[u,v](w)(w−z)−1.It follows immediately that(z−w)2[u(z),v(w)]=0.Thus the operators u(z)∈QO(N(g,B))generate a vertex algebra[14][27][26],which we denote by O(g,B).Con-sider the vector1l=1⊗1∈N(g,B),called the vacuum vector.Lemma2.14.[27]The creation mapχ:O(g,B)→N(g,B),a(z)→a(−1)1l,is an O(g,B)-module isomorphism.Proof:We sketch a proof.By Remark2.1,we haveχ(a◦n b)=a(n)χ(b),hence O(g,B) is an O(g,B)-module homomorphism.Next,Uˆg has a derivation defined by Dτ=0, D(ut n)=−nut n−1,and it descends to a linear map on N(g,B)such that[D,u(z)]=∂u(z). This implies that[D,a]=∂a for all a∈O(g,B).Thus to show thatχis a linear isomorphism,it suffices to show that it is surjective,by Lemma2.8.But this follows from PBW(see below).It is convenient to identify the spaces N(g,B)and O(g,B)under this isomorphism. Obviously O(g,B)contains the iterated Wick products:u I0∂u I1···∂p u I p:where u I means the symbol u1(z)i1···u d(z)i d,∂u I means the symbol∂u1(z)i1···∂u d(z)i d, for a given multi-index I=(i1,..,i d),and likewise for other multi-index monomials.Here the u1,..,u d form a basis of g.Under the creation map the image of the iterated Wick products above are the vectors,up to nonzero scalars,u(−1)I0u(−2)I1···u(−p−1)I p1lwhich form a PBW basis,indexed by(I0,I1,I2,...),of the induced module N(g,B).Note also that there is a canonical inclusion of linear spaces g֒→O(g,B),u→u(z).An even vertex operator J is called a current if J(z)J(w)∼α(z−w)−2for some scalarα.The formula for[u(z)+,v(w)]above implies the more familiar OPE relationu(z)v(w)∼B(u,v)(z−w)−2+[u,v](w)(z−w)−1.In particular each u(z)is a current(hence the name current algebra).The vertex al-gebra O(g,B)has the following universal property[27].Suppose that A is any vertex algebra andφ:g→A is a linear map such thatφ(u)(z)φ(v)(w)∼B(u,v)(z−w)−2+φ([u,v])(w)(z−w)−1for u,v∈g.Then there exists a unique vertex algebra homomor-phism O(g,B)→A sending u(z)toφ(u)(z)for u∈g.In particular,any Lie algebra homomorphism(g,B)→(g′,B′)preserving the bilinear forms induces a unique vertex algebra homomorphism O(g,B)→O(g′,B′)extending g→g′.It is also known[27]that any Lie algebra derivation d:(g,B)→(g,B)induces a unique vertex algebra derivation (i.e.a graded derivation of all circle products)d:O(g,B)→O(g,B)with u(z)→(du)(z).When g is afinite-dimensional Lie algebra,g possesses a canonical invariant,symmet-ric bilinear form,namely,the Killing formκ(u,v)=T r ad(u)·ad(v) .In this case,the current algebra O(g,λκ)is said to have a Schwinger chargeλ[33].It is easy to see that if B1,B2are bilinear forms on g,and M1,M2are O(g,B1)-, O(g,B2)-modules respectively,then M1⊗M2is canonically an O(g,B1+B2)-module.In particular,tensor products of O(g,0)-modules are again O(g,0)-modules.There is a verbatim construction for any Lie super algebra equipped with an invariant form.Example2.15.Semi-infinite symmetric and exterior algebras.Let V be afinite dimensional vector space.Regard V⊕V∗as an abelian Lie algebra. Then its loop algebra has a one-dimensional central extension by Cτwith bracket[(x,x′)t n,(y,y′)t m]=( y′,x − x′,y )δn+m,0τ,which is a Heisenberg algebra,which we denote by h=h(V).Let b⊂h be the subalgebra generated byτ,(x,0)t n,(0,x′)t n+1,for n≥0,and let C be the one-dimensional b-module on which each(x,0)t n,(0,x′)t n+1act trivially and the central elementτacts by the identity.Consider the Uh-module Uh⊗b C.The operators representing(x,0)t n,(0,x′)t n+1 on this module are denoted byβx(n),γx′(n),and the Fourier seriesβx(z)= βx(n)z−n−1,γx′(z)= γx′(n)z−n−1∈QO(Uh⊗b C)have the properties[βx+(z),γx′(w)]= x′,x (z−w)−1,[βx−(z),γx′(w)]= x′,x (w−z)−1.It follows that(z−w)[βx(z),γx′(w)]=0.Moreover theβx(z)commute;likewise for theγx′(z).Thus theβx(z),γx′(z)generate a vertex algebra S(V).This algebra was introduced in[FMS],and is known as a fermionic ghost system,or aβγ-system,or a semi-infinite symmetric algebra.By using the Lie algebra derivation D:h→h defined by (x,0)t n→−n(x,0)t n−1,(0,x′)t n+1→−n(0,x′)t n,τ→0,one can easily show,as in the case of O(g,B),that the creation map S(V)→Uh⊗b C,a(z)→a(−1)1⊗1,is a linear isomorphism,and that theβx,γx′have the OPE relationβx(z)γx′(w)∼ x′,x (z−w)−1.By the PBW theorem,it is easy to see that the vector space Uh⊗b C has the structure of a polynomial algebra with generators given by the negative Fourier modesβx(n),γx′(n), n<0,which are linear in x∈V and x′∈V∗.We can also regard V⊕V∗as an odd abelian Lie(super)algebra,and consider its loop algebra and a one-dimensional central extension by Cτwith bracket[(x,x′)t n,(y,y′)t m]=( y′,x + x′,y )δn+m,0τ.Call this Z-graded algebra j=j(V),and form the induced module Uj⊗a C.Here a is the subalgebra of j generated byτ,(x,0)t n,(0,x′)t n+1,for n≥0,and C is the one-dimensional a-module on which(x,0)t n,(0,x′)t n+1act trivially andτacts by1.Then there is clearly a vertex algebra E(V),analogous to S(V),and generated by odd vertex operators b x(z),c x′(z)∈QO(Uj⊗a C)with OPEb x(z)c x′(w)∼ x′,x (z−w)−1.This vertex algebra is known as a bosonic ghost system,or bc-system,or a semi-infinite exterior algebra.Again the creation map E(V)→Uj⊗a C,a(z)→a(−1)1⊗1,is a linear isomorphism.As in the symmetric case,the vector space Uj⊗a C has the structure of an odd polynomial algebra with generators given by the negative Fourier modes b x(n),c x′(n), n<0,which are linear in x∈V and x′∈V∗.A lot of subsequent computations involve taking OPE of iterated Wick products of vertex operators inW(V):=E(V)⊗S(V).There is a simple tool from physics,known as Wick’s theorem,that allows us to compute A(z)B(w)easily where each of A,B has the shape:a1···a p:where a i is one of the。

Enveloping actions and Takai duality for partial actions

Enveloping actions and Takai duality for partial actions

a rX iv:mat h /719v1[mat h.OA ]17J ul2ENVELOPING ACTIONS AND TAKAI DUALITY FOR PARTIAL ACTIONS FERNANDO ABADIE Abstract.We show that any continuous partial action αon a topological space X is the restriction of a suitable continuous global action αe ,that is essentially unique.We call this action αe the enveloping action of α,and the space X e where αe acts is called the enveloping space of X .X e is Hausdorffif and only if X is Hausdorffand the graph of αis closed.In the case of C ∗-algebras,we prove that any partial action has a unique enveloping action up to Morita equivalence,and that the corresponding reduced crossed products are Morita equivalent.The study of the enveloping action up to Morita equivalence reveals the form that Takai duality takes for partial actions.By applying our constructions,we prove that any partial action of a connected group on a unital C ∗-algebra must be a global action.We also prove that the reduced crossed product of the reduced cross sectional algebra of a Fell bundle by the dual coaction is liminal,postliminal,or nuclear,if and only if the unit fiber of the bundle is liminal,postliminal,or nuclear,respectively.Contents 1.Introduction 12.Enveloping actions:the topological case 33.Enveloping actions:the C ∗–case 64.Enveloping actions and crossed products 95.Morita equivalence of partial actions and Morita enveloping actions 156.C ∗-algebras of kernels associated with a Fell bundle 197.Existence and uniqueness of the Morita enveloping action 278.Partial actions induced on ˆA and Prim(A )329.Takai duality for partial actions 34References 381.IntroductionPartial actions on C ∗-algebras were gradually introduced in [5],[18]and [9].Since then,several classes of C ∗-algebras have been described as crossed products by partial actions.This is the case of approximately finite,Bunce–Deddens and Cuntz–Krieger algebras,among others.([7],[6],[11]and[12]).In addition,the description of a C ∗-algebra as a crossed product by a partial action has proved to be useful to describe its structure and sometimes to compute its K-theory.In the present paper we deal with enveloping actions of partial actions.That is,we discuss the problem of deciding whether or not a given partial action is the restriction of some global action,and the uniqueness of this global action.2FERNANDO ABADIEThe exact statement of the problem depends on the category under consideration,as much as thedefinition of a partial action does.For instance,in the category of topological spaces and continuousmaps,we say that an actionβ,acting on Y,is an enveloping action of the partial actionα,acting on X,if X is an open subset of Y,α=β X,and Y is theβ–orbit of X.In the category of C∗-algebras and their homomorphisms,we say that(β,B)is an enveloping action of the partial actionα,actingon the C∗-algebra A,if A⊳B,α=β A,and B is the closed linearβ–orbit of A.In this paper we discuss enveloping actions in both categories.In thefirst one,the enveloping action always exists and is unique.In the second one it is unique when it exists,but in general this is not the case.For this reason we consider a weaker notion of enveloping action in the context of C∗-algebras,called Morita enveloping action.We show that any partial action on a C∗-algebra has a Morita enveloping action, which is unique up to Morita equivalence.Moreover,the corresponding reduced crossed products are strongly Morita equivalent.It turns out that Morita enveloping actions of partial actions are intimately related to Takai duality:ifαis a partial action of the group G on a C∗-algebra A,δis the dual coaction of G on A⋊α,r G andˆδis the dual action of G on A⋊α,r G⋊δ,rˆG,thenˆδis the Morita enveloping action ofα.The structure of the paper is as follows.In Section2we study partial actions in a topological context.In this case we show that for everypartial action there exists a unique enveloping action,which is characterized by a universal property (2.5).We exhibit an example where the partial action acts on a Hausdorffspace while its enveloping action acts on a non–Hausdorffspace(2.9).This implies that in the category of C∗-algebras,the problem of existence of enveloping actions does not have a solution in general.Those partial actions whose enveloping actions act on a Hausdorffspace are precisely those with closed graph(2.10).Section3is devoted to consider the problem of enveloping actions in the category of C∗-algebras.In view of the results of Section2,there is in general no enveloping action for a given partial action on a C∗-algebra.So the main matter of this section is the uniqueness of the enveloping action.It is shown in Theorem3.8that the enveloping action is unique when it exists.In the remainder of the section we study some relations between the C∗-algebras where a partial action and its enveloping action,respectively, act.In Section4we discuss the relation between the reduced crossed products A⋊α,r G and B⋊β,r G,where(β,B)is the enveloping action of(α,A).In Theorem4.18we prove that they are Morita equivalent(In this paper Morita equivalence means strong Morita equivalence).As an application of this result,we show in4.20that any partial representation of a discrete amenable group may be dilated to a unitary representation of G,so in particular it is a positive definite map.In order to overcome the negative result obtained in Section4about the existence of enveloping actions,we introduce in Section5the weaker notion of Morita enveloping action.This concept involves Morita equivalence of partial actions,which is defined and studied in this section.In particular,we show that the reduced crossed products of Morita equivalent partial actions are Morita equivalent(5.15).This allows us to deduce that the reduced crossed product by a partial action and the reduced crossed product by a corresponding Morita enveloping action are Morita equivalent(5.17).In the sixth section we pave the way for proving the main result of the paper,namely the existenceand uniqueness of the Morita enveloping action,which is achieved in Section7(7.3,7.6).With thisgoal in mind,we consider two C∗-algebras,k(B)and k r(B),that are completions of certain*-algebra of integral operators naturally associated to a Fell bundle.By using the uniqueness of the enveloping action,we prove that in fact these C∗-algebras are equal(6.16).In the last section we will see that,if the Fell bundle is associated to a partial actionαon a C∗-algebra A,then the algebra k(B)also agrees with the double crossed product A⋊α,r G⋊δ,rˆG,whereδis the dual coaction on A⋊α,r G(9.1).This paper corresponds to the second part of my doctoral thesis([1]).It is a pleasure to express my gratitude to my advisor Ruy Exel for his guidance and several conversations about enveloping actions, which greatly enriched this work.ENVELOPING ACTIONS AND TAKAI DUALITY32.Enveloping actions:the topological caseIn this section we consider the problem of enveloping actions in the category of topological spaces and continuous maps.In thefirst part we give the necessary definitions and some examples.In the second one we show that any partial action has a unique enveloping action,which is characterized by a universal property.This result implies,in particular,that if v is a vectorfield on a smooth manifold X,then there exist a smooth manifold Y,a vectorfield w on Y,and an inclusionι:X→Y,such that ι(X)is open in Y and v=wι.We show that if(α,X)is a partial action,where X is a Hausdorffspace, and if(β,Y)is its enveloping action,then Y is a Hausdorffspace if and only if the graph ofαis closed.2.1.Partial actions:basic facts and examples.Definition2.1.A partial action of a topological group G on a topological space X is a pairα= {X s}s∈G,{αs}s∈G such that:1.X t is open in X,andαt:X t−1→X t is a homeomorphism,∀t∈G.2.The setΓα= (t,x)∈G×X:t∈G,x∈X t−1 is open in G×X,and the function(also calledα)α:Γα→X given by(t,x)−→αt(x)is continuous.3.αis a partial action,that is,X e=X,andαst is an extension ofαsαt,∀s,t∈G.Ifα= {X t}t∈G,{αt}t∈G andβ= {Y t}t∈G,{βt}t∈G are partial actions of G on X and Y,we say that a continuous functionφ:X→Y is a morphismφ:α→βifφ(X t)⊆Y t,and the following diagram commutes,∀t∈G:X t−1φY t−1βtY tIf we forget the topological structures of G and X,we say thatαis a set theoretic partial action;note that in this case condition2.is superfluous,and condition1.amounts to saying that eachαt is a bijection.Condition3.above is equivalent to the following set of conditions(see Lemma1.2of[24]):1.αe=id X andαt−1=α−1t,∀t∈G.2.αt(X t−1∩X s)=X t∩X ts,∀s,t∈G.3.αsαt:X t−1∩X t−1s−1→X s∩X st is a bijection,andαsαt(x)=αst(x),∀x∈X t−1∩X t−1s−1and∀s,t∈G.Example2.2.Letβ:G×Y→Y be a continuous global action and let X be an open subset of Y. Considerα=β X,the“restriction”ofβto X,that is:X t=X∩βt(X),andαt:X t−1→X t such that αt(x)=βt(x),∀t∈G,x∈X t−1.It is easy to verify thatαis a partial action on X.In fact,the main result of this section shows that any partial action arises in this way.Note that,in particular,βmay be identified with the partial actionβ Y.Example2.3.Theflow of a differentiable vectorfield is a partial action.More precisely,consider a smooth vectorfield v:X→T X on a manifold X,and for x∈X letγx be the corresponding integral curve through x(i.e.:γx(0)=x),defined on its maximal interval(a x,b x).Let us define,for t∈R: X−t= x∈X:t∈(a x,b x) ,αt:X−t→X t such thatαt(x)=γx(t),andα= {X t}t∈R,{αt}t∈R . Thenαis a partial action of R on X.It is well known that the integral curves of a vectorfield on a compact manifold X are defined on all of R.This is a particular case of the next result,which in turn may be generalized to a theorem about partial actions on C∗-algebras to be proved later in Section8(Corollary8.7)4FERNANDO ABADIEProposition2.4.Letαbe a partial action of G on a compact space X.Then there exists an open subgroup H of G such thatαrestricted to H is a global action.In particular,if G is connected,αis a global action.Proof.Let A x={t∈G:x∈X t−1},and A=∩x∈X A x.It is clear that e∈A and st∈A whenever s, t∈A;that is,A is a submonoid of G.For every x∈X there exist open neighborhoods U x⊆X of x andV x⊆G of e such that V x×U x⊆Γα,and V x=V−1x .Since X is compact,there exist x1,...,x n∈Xsuch that X=∪n j=1U xj .Consider now the neighborhood V=∩n j=1V xj.Since V is symmetric andV⊆A,we have that H=∪∞n=1V n is an open subgroup of G contained in A.As for the last assertion,just recall that the unique open subgroup of a connected group is the group itself.2.2.Existence and uniqueness of enveloping actions.Theorem2.5.Letαbe a partial action of G on X.Then there exists a pair(ι,αe)such thatαe is a continuous action of G on a topological space X e,andι:α→αe is a morphism,such that for any morphismψ:α→β,whereβis a continuous action of G,there exists a unique morphismψe:αe→βmaking the following diagram commutative:αιENVELOPING ACTIONS AND TAKAI DUALITY5 to show that it is an open map.Let U⊆X be an open subset.We have to show that q−1 ι(U) is open in G×X.But q−1 ι(U) ={(t,x):(t,x)∼(e,y)for some y∈U}={(t,x):αt(x)∈U}=α−1(U), which is open inΓαbecauseαis continuous,and hence open in G×X becauseΓαis open in G×X.Definition2.6.Letαbe a partial action of G on X.We say that the actionαe provided by Theorem 2.5is an enveloping action ofα.We will also say that X e is the enveloping space of X,ψe is the enveloping morphism ofψ,etc.Remark2.7.Assume that h:X→X is a homeomorphism,so we have an action of Z on X.We may think of this action as a partial action of R d on X,where R d denotes the real numbers with the discrete topology.Indeed,define X s=X if s∈Z,X s=∅if s/∈Z,andαs:X−s→X s asαs=h s if s∈Z,αs=∅otherwise.Note thatαis not a partial action of R on X,because Z×X is not open in R×X. However,we can imitate the construction of the enveloping action made in the proof of2.5above,using R instead of R d,to obtain a global continuous actionβ:R×(R×X)/∼→(R×X)/∼,such that βn(x)=αn(x),∀n∈Z,x∈X.This actionβis called the suspension of h,and its construction is well known in dynamical systems theory(see[29],page45).From now on we will suppose,as we can,that X⊆X e.Since X e is theαe–orbit of X,we see that X and X e share the same local properties.However,their global properties may be very different,as shown in the next two examples.Example2.8.Consider the actionβ:Z×S1→S1given by the rotation by an irrational angleθ:βk(z)=e2πikθz,∀k∈Z,z∈S1.Let U be a nonempty open arc of S1,U=S1,and consider the partial action given by the restrictionαofβto U(see Example2.2).Since the actionβis minimal,it follows thatβis the enveloping action ofα.This example shows that,even when X and X e are similar locally, their global properties may be deeply different.In this case,for instance,thefirst homotopy groups of U and S1are different.Example2.9.Consider the partial actionαof Z2on the unit interval X=[0,1],given byα1=id X,α−1=id V,where V=(a,1],a>0.Letαe:G×X e→X e be the enveloping action ofα.Consider J=J−∪J+⊆R2with the relative topology,where J±={±1}×[0,1].It is not difficult to see that X e is the topological quotient space obtained from J by identifying the points(1,t)and(−1,t),∀t∈(a,1]. Therefore,X e is not a Hausdorffspace:(1,a)and(−1,a)do not have disjoint neighborhoods.Note also thatαe−1permutes(1,t)and(−1,t)for t∈[0,a],and is the identity in the rest of X e.The obstruction for the enveloping space to be Hausdorffis made clear in the next proposition. Proposition2.10.Letαbe a partial action of G on the Hausdorffspace X.Let Gr(α)be the graph ofα,that is Gr(α)={(t,x,y)∈G×X×X:x∈X t−1,αt(x)=y}.Then X e is a Hausdorffspace if and only if Gr(α)is a closed subset of G×X×X.Proof.Let us suppose that X e is a Hausdorffspace,and let t i,x i,α(t i,x i) →(t,x,y)∈G×X×X. In particular,α(t i,x i)→y∈X.Sinceαe is continuous,αe(t i,x i)→αe(t,x),and it must be y=α(t,x) because of the uniqueness of limits in Hausdorffspaces.Conversely,assume that Gr(α)is closed in G×X×X,and let x e,y e∈X e.We want to show that if there does not exist disjoint open sets in X e,each of them containing x e or y e,then x e=y e.Sinceαe t is a homeomorphism of X e,by3.of2.5we may suppose that x e=x∈X.Let y∈X,t∈G be such that αe t(y)=y e.If every neighborhood of x intersects every neighborhood of y e,then for any pair(U,V)ofneighborhoods in X of x and y respectively,there exists xU,V ∈U∩αe t(V),say xU,V=αe t(yU,V),withy U,V ∈V.Consider the net{(t,yU,V,xU,V)}U,V⊆Gr(α):it converges to(t,y,x),soαt(y)=x,becauseGr(α)is closed.Hence x=y e,and X e is Hausdorff.6FERNANDO ABADIERemark2.11.if G is a discrete group,then Gr(α)is closed in G×X×X if and only if Gr(αt)is closed in X×X,∀t∈G.Remark2.12.As already seen in2.3,theflow of a smooth vectorfield on a manifold is a partial action, indeed a smooth partial action.The enveloping space inherits a natural manifold structure,although not always Hausdorff,by translating the structure of the original manifold through the enveloping action. It would be interesting to characterize those vectorfields whoseflows have closed graphs.For such a vectorfield,one obtains a Hausdorffmanifold that contains the original one as an open submanifold, and a vectorfield whose restriction to this submanifold is the original vectorfield.Note,however,that the inclusion of the original manifold in its enveloping one could be a bit complicated.It is possible to exhibit examples offlows with closed graphs andflows with non-closed graphs.2.3.On the dynamical properties of the enveloping action.Before closing this section we would like to make some brief comments about the dynamical behavior of the enveloping action.Many of the algebraic and even dynamical notions related to global actions may be easily extended to the context of partial actions.For instance,it is possible to make sense of expressions such as transitive partial actions or minimal partial actions.To give an example,we say that a partial actionαon a topological space X is minimal when eachα–orbit is dense in X,that is,when X=ENVELOPING ACTIONS AND TAKAI DUALITY7 product and involution given by(here x tδt:=(t,x t)∈Bα):(x tδt)∗(x sδs)=αt α−1t(x t)x s δts and (x tδt)∗=α−1t(x∗t)δt−1respectively.Bαis called the semidirect product of A and G.We will also say that Bαis the Fell bundle associated withα.The cross sectional C∗-algebra C∗(Bα)of Bαis called crossed product of A byα,and is denoted by A⋊αG.Example3.3.Ifβ:G×B→B is a continuous action and A⊳B,then the restrictionβ A ofβto A (see2.2)is a partial action of G on A.In particular,βmay be identified with the partial actionβ B.Let us concentrate for a moment on the case where A=C0(X),for some locally compact Hausdorffspace X.Suppose that{X t}t∈G is a family of open subsets of X,so{D t}t∈G is a family of ideals in A, where D t=C0(X t),∀t∈G.If G is a locally compact Hausdorffspace,one can show that{D t}t∈G is a continuous family if and only if the setΓ={(t,x):x∈X t}⊆G×X is open with the product topology. Suppose in addition that G is a group.To give an isomorphismαt:D t−1→D t is equivalent to give a homeomorphismˆαt:X t−1→X t.Now,it is possible to show that a given family of isomorphisms {αt:D t−1→D t}t∈G is a partial action on A if and only if the corresponding family of homeomorphisms {ˆαt:X t−1→X t}t∈G is a partial action on X([1],[3]).In the situation above,if the partial actionˆα=({X t}t∈G,{ˆαt}t∈G)has an enveloping actionˆβ=ˆαe acting on the enveloping space Y,then A is an ideal of B=C0(Y),and the actionβinduced byˆβon B satisfies:β A=α.Moreover,theβ–linear orbit[β(A)]:=span{βt(a):a∈A,t∈G}of A is dense in B,by the Stone–Weierstrass theorem.These facts justify the following definition.Definition3.4.Letα=({D t}t∈G,{αt}t∈G)be a partial action of G on the C∗-algebra A,and letβbe a continuous action of G on a C∗-algebra B that contains A.We say that(β,B)is an enveloping action of(α,A)(in the category of C∗-algebras),if the following three properties are fulfilled:1.A is an ideal of B(two–sided and closed,of course).2.α=β A,that is D t=A∩βt(A),andαt(x)=βt(x),∀t∈G and x∈D t−1.3.B=span{βt(a):t∈G,a∈A}⊆Z(B)⊆B,and therefore B=Z(B),so B is abelian.In[12]several algebras generated by isometries satisfying certain relations are studied,and they are shown to be crossed products by partial actions.At the topological level,all these partial actions have enveloping actions acting on Hausdorffspaces,and therefore they have also enveloping actions at the C∗-algebra level by3.5.8FERNANDO ABADIE3.1.On the uniqueness of enveloping actions.Proposition3.5and Example2.9show that not every partial action on a C∗-algebra has an enveloping action.We will prove that at least the enveloping action is unique when it does exist.Note that we already know this in the commutative case. Lemma3.6.Let{Jλ}λ∈Λbe a family of ideals of a C∗-algebra A,and consider · Λ:A→R such that a Λ=supλ∈Λ{ ax :x∈Jλ, x ≤1}.Then · Λis a C∗-seminorm on A,such that · Λ≤ · , and · Λis a norm iffspan{x∈Jλ:λ∈Λ}is an essential ideal of A.Lemma3.7.Letα=({D t}t∈G,{αt}t∈G)be a partial action of G,and assume that(β,B)and(γ,C) are enveloping actions ofα.Then,∀a,b∈A,t∈G,we have:βt(a)b=γt(a)b(note that both of these products belong to D t).Proof.Let(u i)be an approximate unit of D t−1.Then u i a∈D t−1,∀i,and sinceαis both the restriction ofβandγto A,we have:βt(a)b=limβt(u i a)b=limαt(u i a)b=limγt(u i a)b=γt(a)b.Theorem3.8.Let(α,A)be a partial action of G,and assume that(β,B)and(γ,C)are enveloping actions ofα.Then there exists a unique isomorphismφ:B→C such thatφβt=γtφ,∀t∈G,and φ A=id A.Proof.For s∈G,let · s:B→R and · s:C→R be given by b s:=sup{ bx :x∈βs(A), x ≤1} and c s:=sup{ cy :y∈γs(A), y ≤1}.By Lemma3.6, · s and · s are C∗-seminorms,and · B=sup s · s, · C=sup s · s.Let t1,...,t n∈G and a1,...,a n∈A.We want to show that iβt i(a i) B= iγt i(a i) C.For this,it is enough to prove that iβt i(a i) s= iγt i(a i) s,∀s∈G.Let s∈G and a∈A.By Lemma3.7we have:iβt i(a i)βs(a) = βs iβs−1t i(a i)a = γs iγs−1t i(a i)a = iγt i(a i)γs(a) .It follows that iβt i(a i) s= iγt i(a i) s,∀s∈G,and hence that iβt i(a i) B= iγt i(a i) C. Thus,φ:[β(A)]→[γ(A)]such thatφ iβt i(a i) = iγt i(a i)is an isometry of a*-dense ideal of B onto a*-dense ideal of C,and therefore it extends uniquely to an isomorphismφ:B→C,which clearly satisfiesγtφ=φβt,∀t∈G,andφ A=id A.Moreover,it is clear that these conditions determineφ.3.2.Some properties of the enveloping algebra.To close this section we study some properties that are shared by a C∗-algebra and its enveloping algebra.In what follows it will be assumed that (αe,A e)is an enveloping action of(α,A).Proposition3.9.Let C be a class of C∗-algebras that is closed by ideals,isomorphisms,and such that any C∗-algebra B has a largest ideal C(B)that belongs to C.Then A∈C⇐⇒A e∈C,and C(A)=0⇐⇒C(A e)=0.(C may be,for instance,one of the following classes of C∗-algebras:nuclear, type I0,liminal,postliminal,antiliminal).Then A∈C⇐⇒A e∈C.Proof.Note that C(A e)isαe–invariant,and since C(A e)∩A=C(A),we have that C(A e)=ENVELOPING ACTIONS AND TAKAI DUALITY9 Proposition3.10.Any separable C∗-algebra has a largest ideal that is approximatelyfinite.If G is a separable group,then A is approximatelyfinite iffA e is approximatelyfinite.Proof.Let AF(B)be the set of AF–ideals of a C∗-algebra B.Since0∈AF(B),we have that AF(B)=∅. Let I,J∈AF(B),and consider the following exact sequence of C∗-algebras:0I+Jπ0,whereιis the inclusion andπis the quotient map.Since the class of AF–C∗-algebras is closed by ideals, quotients and extensions,it follows that I+J∈AF(B).Suppose in addition that B is a separable C∗-algebra,and let D={d n}n≥1be a countable and dense subset of span{x∈J:J∈AF(B)}. Since J1+...+J k∈AF(B),whenever J1,...,J k∈AF(B),there exists an increasing sequence {J n}n≥1⊆AF(B)such that d n∈J n,∀n≥1.It follows that J=10FERNANDO ABADIEthat supp(Λb r U ξ)⊆r U supp(ξ),supp(Λb t ξ)⊆t supp(ξ).Since b r U →b t ,then r U →t .Thus there exist a compact set K ⊆G and a neighborhood U 0of b t such that supp(Λb r U ξ)⊆K ,∀U ⊆U 0.Then the net (s U )U ⊆U 0⊆K ,and hence it must have a subnet that is convergent to some s 0∈K .We may assume without loss of generality that the net itself converges to s 0.But this is a contradiction,because:0= b t ξ(t −1s 0)−b t ξ(t −1s 0) =lim Ub r U ξ(r −1U s U )−b t ξ(t −1s U ) ≥ǫ.The contradiction implies that the Lemma is true.Recall that L 2(B )is the completion of C c (B )with respect to the norm ξ 2= G ξ(s ) 2ds1/2.So if ξn →ξin L 2(B ),with ξn ,ξ∈C c (B ),we have that ξn →ξin L 2(B ),because ξ ≤ ξ 2.In fact, ξ = G ξ(s )∗ξ(s )ds 1/2,and since G ξ(s )∗ξ(s )ds is a positive element of B e ,there is a state ϕof B e such that G ξ(s )∗ξ(s )ds =ϕ( G ξ(s )∗ξ(s )ds ).Then: G ξ(s )∗ξ(s )ds =ϕ G ξ(s )∗ξ(s )ds = G ϕ(ξ(s )∗ξ(s ))ds ≤ G ξ(s )∗ξ(s ) ds = ξ 22On the other hand,it is clear that if b r →b t ,then Λb r ξ→Λb t ξin · ,because ξ 2≤m supp(ξ) ξ ∞(here m is the left Haar measure on G ),and hence,by Lemma 4.1,Λb r ξ→Λb t ξin · ∞,so Λb r ξ→Λb t ξin · 2and · .Proposition 4.2.Let ξ∈L 2(B ).Then the map B →L 2(B ),given by b −→Λb ξ,is continuous.Proof.Let us fix b ∈B ,and let b j →b in B .Given ǫ>0,let ξǫ∈C c (B )such that ξ−ξǫ <ǫ,and let j 0such that b j , b ≤c ,∀j ≥j 0and some constant c .Then,if j ≥j 0:Λb j ξ−Λb ξ ≤ b j ξ−ξǫ + Λb j ξǫ−Λb ξǫ + b ξǫ−ξ <2cε+ Λb j ξǫ−Λb ξǫ .It follows that lim sup i Λb j ξ−Λb ξ ≤2cǫ,∀ǫ>0,and therefore Λb j ξ→Λb ξin · .Definition 4.3.(cf.[13])The representation Λ:B →L L 2(B ) defined above is called the regularrepresentation of the Fell bundle B .That is,Λb s is the unique continuous extension to all of L 2(B )of the map C c (B )→C c (B )such that,if ξ∈C c (B ),t ∈G ,then Λb s (ξ) t =b s ξ(s −1t ).Theorem 4.4.(cf.[13])There exists a unique non–degenerate representation Λ:L 1(B )→L L 2(B ) ,given by f −→Λf ,where Λf (ξ)=f ∗ξ,∀f ∈C c (B )⊆L 1(B ),ξ∈C c (B )⊆L 2(B ).Proof.Proposition 4.2tells us that Λ:B →L L 2(B ) is a Fr´e chet representation,in the sense of VIII-8.2of [14].So we may apply VIII-11.3of [14],and conclude that Λis integrable.That is,there exists a representation Λ:C c (B )→B L 2(B ) such that ϕ(Λf )= G ϕ(Λf (s ))ds,∀f ∈C c (B ),ϕ∈B L 2(B ) ′.Moreover,Λis unique.We set Λf = G Λf (s )ds .We want to see that ∀f ∈C c (B ),it is Λf ∈L L 2(B ) .Now,for ξ,η∈L 2(B ),we have that ξ,Λf (η) = G ξ,Λf (s )(η) ds .In particular,since f ∗(s )=∆(s −1)f (s −1)∗, ξ,Λf ∗(η) = G ξ,Λ∆(s −1)f (s −1)∗(η) ds = G ∆(s −1) ∆(s ) Λf (s )(ξ),η ds = Λf (ξ),η .Thus Λ∗f =Λf ∗,and therefore Λf ∈L L 2(B ) .Moreover,the representation Λ:C c (B )→L L 2(B ) is continuous in the norm · 1: ξ,Λf (η) ≤ G ξ Λf (t )η dt ≤ G f (t ) ξ η dt = f 1 ξ η .It follows that Λf ≤ f 1,and hence we may extend Λby continuity to a representation of L 1(B ).This representation is non–degenerate,because C c (B )∗C c (B )is dense in C c (B )in the inductive limit topology,and therefore also in L 2(B ).ENVELOPING ACTIONS AND TAKAI DUALITY11 Definition4.5.(cf.[13])The representationΛ:L1(B)→L L2(B) defined in Theorem4.4is called the regular representation of L1(B),and C∗r(B):=πλ C∗(B) ,and ˜ρλ:C∗r(A)→C c(A)⊆C∗r(B)is an isomorphism. Thus,C∗r(A)is naturally identified with12FERNANDO ABADIE4.2.Morita equivalence between the reduced crossed products.Definition4.13.If B=(B t)t∈G is a Fell bundle,we say that a sub–Banach bundle A of B(4.8)is a right ideal of B if AB⊆A,and that it is a left ideal if BA⊆A;A is said to be an ideal of B if it is both a right and a left ideal of B.Consider a Fell bundle B=(B t)t∈G.If R is a right ideal of B e and we define R t:=span L1(E)∗∗L1(E)=L1(B).ENVELOPING ACTIONS AND TAKAI DUALITY 13Proof.It is straightforward to check that C c (A )∗C c (E )⊆C c (E )and C c (E )∗C c (B )⊆C c (E ),and from these facts the two first inclusions follow easily.Let us prove the third assertion.Since A ⊆E ⊆B ,we have isometric inclusions L 1(A )⊆L 1(E )⊆L 1(B ).L 1(A )is a sub-*-Banach algebra with approximate unit of L 1(B ),and it is contained in the right ideal L 1(E )of L 1(B ).Thus,by 1.and the Cohen-Hewitt theorem,L 1(A )=L 1(A )∗L 1(A )∗⊆L 1(E )∗L 1(E )∗.On the other hand,if ξ,η∈C c (E ),t ∈G :ξ∗η∗(t )=Gξ(s )η∗(s −1t )ds = G ξ(s )∆(t −1s )η(t −1s )∗ds = G∆(t −1s )ξ(s )η(t −1s )∗ds ∈A t ,because ξ(s )η(t −1s )∗∈E s E ∗t −1s ∈AB t =A t ,∀s,t ∈G .It follows that ξ∗η∗∈C c (A ),and hence that L 1(E )∗L 1(E )∗⊆L 1(A ).Consider now ξ,η∈C c (E ),t ∈G .We have:ξ∗∗η(t )=G ξ∗(s )η(s −1t )ds = G ∆(s −1)ξ(s −1)∗η(s −1t )ds = G ∆(s −1)ξ(s −1)∗η(s −1t )ds.Let {(f V ,V )}V ∈V be an approximate unit of L 1(G )as in Lemma 4.14.For ξ∈C c (E ),V ∈V ,r ∈G ,define ξV,r :G →B by ξV,r (s )=∆(s −1)f V (r −1s −1)ξ(s ).Then ξV,r ∈C c (E ),and we have:ξ∗V,r ∗η(t )= G ∆(s −1)∆(s )f V (r −1s )ξ(s −1)∗η(s −1t )ds = Gf V (r −1s )ζξ,η(s,t )ds,where ζξ,η:G ×G →B is such that ζξ,η(s,t )=ξ(s −1)∗η(s −1t ).Note that ζξ,ηis continuous of compact support:supp(ζξ,η)⊆(supp(ξ))−1×(supp(ξ))−1supp(η).By Lemma 4.14,we see that lim V ξ∗V,r ∗η=ζξ,η,r in the inductive limit topology C c (B ),and hence also in L 1(B ).So,we have that span L 1(E )∗L 1(E )=L 1(B ),it is sufficient to see that Z is dense in C c (B )in the inductivelimit topology.By II-14.6of [14],for this is enough to verify that:(a)Z (t )is dense in B t ,∀t ∈G ,where Z (t )={ζ(t ):ζ∈Z }and (b)if g :G →C is continuous,then gζ∈Z ,∀ζ∈Z .(a)We have:Z (t )⊇{ζξ,η,r :ξ,η∈C c (E ),r ∈G }={ξ(r −1)∗η(r −1t ):ξ,η∈C c (E ),r ∈G }.Therefore,span {E ∗r −1E r −1t :r ∈G }=C c (E )⊆C ∗r (B )of C ∗r (B ).Proof.By 4.9,C ∗r (A )is naturally isomorphic to the closure of C c (A )in C ∗r (B ).By 4.152.,L 1(E )is a right ideal of L 1(B ),and hence its closure C ∗r (E )in C ∗r (B )is a right ideal of C ∗r (B ).Now,it follows from 3.of 4.15that C ∗r (A )=C ∗r (E )C ∗r (E )∗,and therefore C ∗r (A )is a hereditary sub-C ∗-algebra of C ∗r (B ).Finally,the last assertion follows immediately from 4.of 4.15.Corollary 4.17.Let B =(B t )t ∈G be a Fell bundle,E =(E t )t ∈G a right ideal of B ,and A =(A t )t ∈G a sub–Fell bundle of B contained in E .If AE ⊆E and EE ∗⊆A ,and if span B t E ∗E is dense in B t ,for all t ∈G ,then B is amenable whenever A is amenable.Proof.Suppose that A is amenable,and let · m´a x be the norm on C ∗(B )and · r the norm on C ∗r (B ).The closure of C c (A )in C ∗r (B )is C ∗r (A ),by Proposition 4.9.We also have that the closure of C c (A )in C ∗(B )is C ∗(A )=C ∗r (A ),because any representation of L 1(B )induces a representation ofL 1(A )by restriction,and therefore the norm of C ∗(A )is greater or equal to · max .The amenability。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:math/0009132v3 [math.AG] 14 Mar 2002
VERTEX ALGEBRAS AND THE COHOMOLOGY RING STRUCTURE OF HILBERT SCHEMES OF POINTS ON henbo Qin2 and Weiqiang Wang3
∗ G(γ, n) = p1∗ (ch(OZn ) · p∗ 2 td(X ) · p2 γ ) ∈ Hn def
(1.1)
(we refer to the Conventions at the end of this section for the conventions used in the paper). For γ ∈ H ∗ (X ) and i ∈ Z, define an operator Gi (γ ) ∈ End(H) which acts on the component Hn = H ∗ (X [n] ) by the cup product by the class Gi (γ, n). Theorem 1.2. Let X be a smooth projective surface over the field of complex numbers. For n ≥ 1, the cohomology ring Hn = H ∗ (X [n] ) is generated by Gi (γ, n) = Gi (γ )(1X [n] ) where 0 ≤ i < n and γ runs over a linear basis of H ∗ (X ). Moreover, the relations among these generators are precisely the relations among the restrictions Gi (γ )|Hn of the corresponding operators Gi (γ ) to Hn . The above Theorem and its proof are inspired mainly by two sources. The first one is Lehn’s approach of determining the cohomology ring structure of (C2 )[n] by using vertex operator techniques (the cohomology ring structure of (C2 )[n] has been first obtained by Ellingsrud and Strømme [ES2]). Lehn’s approach is very instrumental and valuable to us. Our first result here is that although it is difficult to describe completely the operators Gi (γ ) as vertex operators or differential operators, we are able to determine the leading terms of the operators Gi (γ ) as the degree-0 components of some explicit vertex operators (see the paragraph preceding Theorem 4.12 for the definition of the leading term). These vertex operators are natural generalization of the Virasoro operators Ln (α) considered by Lehn [Leh]. Such descriptions of the leading terms allow us to use induction to derive our Theorem above. As a byproduct, we also show that the commutator between the operator Gi (γ ) and the Heisenberg generator qn (α) depends only on the cup product γα, which we refer to as the transfer property. We remark that such a transfer property seems to be a general phenomenon among this type of commutation relations. The second one is the work of Ellingsrud and Strømme [ES1, ES2] (see also the work of Beauville, Fantechi, G¨ ottsche, Yoshioka and Markman [Bea, F-G, Yos, Mar] on the cohomology ring structures of other moduli spaces of sheaves). In [ES2], Ellingsrud and Strømme proved that for X = P2 , the cohomology ring Hn = H ∗ (X [n] ) is generated by the Chern classes of the tautological rank-n bundles p1∗ (OZn ⊗ p∗ 2 OP2 (−j ))
2
WEI-PING LI, ZHENBO QIN AND WEIQIANG WANG
To state our result, we establish some notations and refer the details to Definition 5.1. Let Zn be the universal codimension-2 subscheme of X [n] × X , and p1 and p2 be the projections of X [n] × X to X [n] and X respectively. For γ ∈ H s (X ) and n ≥ 0, let Gi (γ, n) be the H s+2i (X [n] )-component of
Abstract. Using vertex algebra techniques, we determine a set of generators for the cohomology ring of the Hilbert schemes of points on an arbitrary smooth projective surface over the field of complex numbers.
1991 Mathematics Subject Classification. Primary 14C05; Secondary 17B69. Key words and phrases. Hilbert schemes, projective surfaces, and vertex algebras. 1 Partially supported by the grant HKUST6170/99P 2 Partially supported by an NSF grant and an Alfred P. Sloan Research Fellowship 3 Partially supported by an NSF grant and an FR&PD grant at NCSU Typeset by AMS-TEX 1
1. Introduction The Hilbert scheme X [n] of points on a smooth projective surface X is a desingularization of the n-th symmetric product of X (see [Fog]). An element ξ in X [n] is a length-n 0-dimensional closed subscheme of X . Recently, there are two surprising discoveries, mainly due to the work of G¨ ottsche [Go1], Nakajima [Na1, Na2] and Grojnowski [Gro], that the sum of the cohomology groups Hn = H ∗ (X [n] ) with Q-coefficients of the Hilbert schemes X [n] for n ≥ 0 have relationships with modular forms on the one hand and with representations of infinite dimensional Heisenberg algebras on the other hand (see aslo the work of Vafa and Witten [VW] for connections with string theory). These results have been used by Lehn [Leh] to investigate the relation between the Heisenberg algebra structure and the cup product structure of Hn . In particular, Lehn constructed the Virasoro algebra in a geometric fashion and studied certain tautological sheaves over X [n] . Some other recent work on Hilbert schemes includes [dCM, EGL, Go2, Hai, K-T, LQZ, Wan]. In this paper, by using vertex algebra techniques (see [Bor, FLM, Kac]) and generalizing the work of Nakajima, Grojnowski and Lehn [Na1, Gro, Na2, Leh], we study the cohomology ring structure of the Hilbert schemes X [n] . We determine the ring generators of H ∗ (X [n] ) for an arbitrary smooth projective surface X over the field of complex numbers. In particular, we recover the result of Ellingsrud and Strømme [ES2] for X = P2 . More precisely, we find a set of (n · dim H ∗ (X )) generators for the cohomology ring Hn , and interpret the relations among these generators in terms of certain operators in End(H) where H = n≥0 Hn . Our results also clearly indicate that there are deep interplays between the geometry of Hilbert schemes and vertex algebra structures which go beyond the Heisenberg and Virasoro algebras.
相关文档
最新文档