酯化常数研究的英文文献
化学论文英文版
化学论文英文版Jun-Ke Wang, Ying-Xiao Zong, Xi-Cun Wang, Yu-Lai Hu, Guo-Ren Yue.Synthesisof N-benzothiazol-2-yl-amides by Pd-catalyzed C(sp2)-H functionalization[J]. CCL, 2015,26(11): 1376-1380Synthesis of N-benzothiazol-2-yl-amides byPd-catalyzed C(sp2)-H functionalizationJun-Ke Wang a,b,c, Ying-Xiao Zong a,b, Xi-Cun Wang a,b, Yu-Lai Hu a,b,Guo-Ren Yue aa Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China;b Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;c Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye 734000, ChinaReceived 11 May 2015, Received in revised form 29 June 2015, Accepted 1 July 2015,Available online 10 August 2015.E-mail addresses: wangxicun@;huyulai@Abstract: A catalytic synthesis of N-benzothiazol-2-yl-amides from1-acyl-3-(phenyl)thioureas was achieved in the presence of a palladium catalyst through the C(sp2)-H functionalization/C-S bond formation. This synthetic methodology can produce various N-benzothiazol-2-yl-amides in high yields with good functional group tolerance.Key words: Benzothiazole Pd-catalyzed1-Acyl-3-phenylthiourea C-H functionalization L-Proline1. IntroductionThe benzothiazole moiety is an important scaffold due to its widespread occurrence in bioactive natural products,pharmaceuticals, organic optoelectronic materials,and ligands for phosphorescent complexes [1-4]. In particular,substituted Nbenzothiazol- 2-yl-amides are an important class of heterocyclic compounds that exhibit a wide range of biological properties [5-9] such as ubiquitin ligaseinhibition [5],antitumor [6],antirotavirus infections [7],modulating the adenosine receptor [8, 9],and the nuclear hormone receptor [9]. For example,the N-benzothiazol-2- yl-cyclohexanecarboxamide,as a new anticancer drug,was selected as one of the most promising screening hit compounds (Fig. 1) [6]. The acylation reaction from2-aminobenzothiazole,one of the classical methods for the preparation of these molecules [5, 6],is known for the limited diversity of the commercially available starting materials. Furthermore,the preparation of 2-aminobenzothiazole also required the use of the toxic bromine.The past several years have witnessed the great progress in the development of the C-S bond formation promoted by transition metals,which can provide moreefficient,practical,and straightforward approaches to valuable sulfur-containing compounds [10, 11]. However,these methods have been mainly focused on the‘‘traditional’’ cross-coupling reactions of ArX (X = Cl,Br,I,OTf,and B(OH)2) and sulfides [12-39]. To achieve greener and more atomeconomic C-S bond formations,transition metal-catalyzed direct oxidative cross-coupling of C-H bonds and sulfides would be ideal [40-47].In our previous work,we have shown that N-benzothiazol-2-ylamides can be synthesized smoothly by Cu-catalyzed intramolecular cyclization of various substituted 1-acyl-3-(2-bromophenyl) thioureas [48]. This method can provide more diversiform Nbenzothiazol- 2-yl-amides through the carbon-heteroatom formation under relatively mild conditions and avoid the use of the toxic bromine. However,the drawback of this procedure is the limited diversity of the commercially available starting materials due to the use of substituted ortho-haloarylamines. In order to further extend the diversity of N-benzothiazol-2-yl-amides,we have recently demonstrated an efficient intramolecular cyclization of substituted 1-acetyl-3-(2-phenyl)thiourea catalyzed by iron through C-H functionalization [49]. This method can provide more diversiformN-benzothiazol-2-yl-amides under relatively mild conditions. However,the purification of the target compounds is challenging using the column chromatography or recrystallization,since it is inescapable to obtain 1-acetyl-3-phenylurea whose polarity is similar to that of 1-acetyl-3-(2-phenyl)thiourea. Recently,Doi’s group[46] reported a Pd-catalyzed synthesis of 2-substituted benzothiazoles via a C-H Functionalization reaction. Therefore,we envisioned that Pd-catalyzed cyclization of 1-acyl-3-(2-phenyl)- thiourea 1would represent a viable method for the formation and purification of substituted N-benzothiazol-2-yl-amides 2(Scheme 1).2. ExperimentalAll reagents were commercially available and used as supplied. Dimethyl sulfoxide (DMSO) was dried and distilled from calcium hydride. N,N-Dimethylformamide (DMF),toluene,DME and CH3CN were dried prior to use using standard methods. Unless otherwise stated,analytical grade solvents and commercially available reagents were used as received. Thin layer chromatography (TLC) employed glass 0.20 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel.All new compounds were characterized by IR,1H NMR,13C NMR and HRMS. The known compounds were characterized by 1H NMR, 13C NMR and HRMS. The IR spectra were run on a Nicolete spectrometer (KBr). The 1H NMR and 13C NMR spectra were recorded on a BRUKER AVANCEIII 400 MHz spectrometer. The chemical shifts (d) were given in parts per million relative to an internal standard tetramethylsilane. High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument and accurate masses were reported for the molecular ion (M+). Melting points were determined on a Perkin-Elmer differential scanning calorimeter and the thermometer was uncorrected.2.1. General procedure for the synthesis of1-acyl-3-arylthioureas [49, 50]To a 25 mL round-bottom flask equipped with a magnetic stirring bar was added acyl chloride (10 mmol),NH4SCN (15 mmol) and CH2Cl2 (20 mL),followed by PEG-400 (0.1 mmol). The mixture was stirred for approximately 3 h at room temperature. Aromatic amine (10 mmol) was added to the mixture and stirred for another 2 h at room temperature. The solvent was removed under reduced pressure to give the resulting residue as a solid,which was washed with water three times,to give the crude product.The analytical samples were obtained by recrystallization from C2H5OH in good yields ([4TD$DIF]88%-98%).2.2. General procedure for the synthesis ofN-benzothiazol-2-ylamides by aPd-catalysed C(sp2)-H functionalization reactionA round-bottom flask equipped with a stirring bar was charged with1-acyl-3-arylthioureas (1 mmol),PdCl2 (10 mol%),CuI (20 mol%),Cs2CO3 (2 equiv.),and L-proline (20 mol%) in 5 mL of DMSO. The mixture was stirred at 100 ℃for the indicated time in Table 2. After cooling to room temperature,the reaction mixture was extracted with ethyl acetate (10 mL × 3). The organic layers were combined,dried over Na2SO4 and concentrated under reduced pressure,and then purified by silica gel chromatography (acetone/petroleum ether = 1:4) to yield the desired product2.N-(4-Ethylbenzo[d]thiazol-2-yl)acetamide (2f): A gray solid (80% yield); mp:264-268 ℃; IR (cm-1): 3169.9,2990.1,2359.9, 1661.1,1550.4; 1H NMR (400MHz,CDCl3): δ 9.42 (s,1H),7.67 (dd, 1H,J = 6.3,2.9 Hz),7.27 (dd,2H,J = 4.4,1.9 Hz),3.04 (q,2H, J = 7.6 Hz),2.28 (s,3H),1.34 (t,3H,J = 7.6 Hz); 13C NMR (100 MHz,CDCl3): δ171.64(s),156.91 (s),146.45 (s),136.81 (s),131.98 (s), 125.25 (s),124.22 (s),118.92 (s),25.36 (s),23.51 (s),14.79 (s); HRMS calcd. for C11H12N2OS [M]+:220.0670; found [5TD$DIF]200.0678.N-(6-Fluorobenzo[d]thiazol-2-yl)acetamide (2 g): A white solid (94% yield); mp:224-231 ℃; IR (cm-1): 3207.8,3071.0,2983.9, 2360.4,1689.2; 1H NMR (400MHz,CDCl3): δ 7.70 (dd,1H,J = 8.9, 4.6 Hz),7.53 (dd,1H,J = 8.0,2.5 Hz),7.19 (td,1H,J = 8.9,2.6 Hz), 2.31 (s,3H); 13C NMR (100 MHz,CDCl3): δ 168.33 (s),160.93 (s), 158.50 (s),121.30 (d,J = 9.1 Hz),114.75 (s),108.09 (s),107.82 (s), 23.46 (s); HRMS calcd. for C9H7FN2OS [M]+: 210.0263; found 210.0256.3. Results and discussionWhile not commercially available,benzothioureas are stable and easilysynthesized [50, 51] from inexpensive starting materials in high yields on a multigram scale. Following Scheme 2,the synthesis of benzothioureas can be achieved in a straightforward manner starting from inexpensive aryl acid chloride and arylamines. Aryl acid chloride was treated with ammonium sulfocyanide in the presence of PEG-400in CH2Cl2,followed by the addition of arylamines,to obtain 1-arylacyl-3-phenylthiourea in good to excellent yields. This intermediate can be used directly without further purifications.In a preliminary experiment,we investigated the intramolecular C-S bond formation of 1-acetyl-3-phenylthiourea utilizing PdCl2 (20%) and a mild base (K2CO3,2 equiv.) in DMSO for 20 h at 100 ℃(Table 1,entry 1). However,the reaction almost failed to take place. Subsequently,we screened several metal salts as cocatalysts, includingAlCl3,CuCl2,Cu(OAc)2,CoCl2,NiCl2,FeCl3,CuI, and CuCl,and found that the addition of CuI considerably enhanced this reaction (Table 1,entries 2-8). However,the desired yield was still not obtained. Surprisingly,when Doi’s condition was used,the yield was still very low (42%) (Table 1,entry 9). Generally,the choice of the ligands is important for the reaction catalyzed by the metal,which prompted us to explore the effect of several bidentate ligands. We carried out the reaction of 1-acetyl-3-phenylthiourea by screening these ligands,such as 1,10-phenanthroline,β-keto esters,β-diketones,andL-proline. (Table 1,entries 10-13),and we were pleased to find that the use of these ligands can notably improve the yield of the product under the same conditions,and that L-proline proved to be the best among an array of ligands tested (Table 1,entry 14). When the amount of CuI and PdCl2 was decreased to 20 mol% and 10mol%,respectively,the catalytic activity was maintained (Table 1,entry 14). Furthermore,we also investigated other bases (Cs2CO3 and K3PO4) (Table 1,entries 15- 16),solvents (DMF,DME,and toluene) (Table 1,entries 17-19) and reaction time (Table 1,entries 20-21). When only CuI was used in this cyclization,no reaction can take place (Table 1,entry 22). Thus, the optimized reaction conditions are as the follows: substrate (1 mmol),PdCl2 (10 mol%),CuI (20 mol%),Cs2CO3 (2 equiv.), L-proline (20 mol%) in DMSO (4 mL) within 8 h at 100 ℃.In response to this encouraging result,we used a range of substituted1-acetyl-3-(phenyl)thioureas to investigate the scope and limitation of this reaction. The corresponding products were obtained in excellent yields (88%-98%). The results obtained under the optimized conditions are listed in Table 2. Initially,the substituents of phenyl were screened. The results demonstrate that little effect of the substituted groups on the benzene ring was observed for this transformation.Furthermore,substituents at different positions of the phenyl ring do not significantly affect the efficiency (Table 2,entries 1-8). It is noteworthy that the halosubstituted benzenes survived leading to halo-substituted products,which can be used for further transformations (Table 2, entries 2,7,8 and 11). In order to make the new Sankyo investigational drugs,the R group was selected as a cyclohexyl to give the corresponding products (Table 2,entries 10-12).Although extensive studies on reaction mechanism have not yet been carried out,the proposed mechanism can be proposed according to the similar palladium-catalyzed processes [51] (Scheme 3). 1-Acetyl-3-(phenyl)thiourea was converted to the thioenolate in the presence of Cs2CO3. Pre-association of the sulphur atom in the thioenolate to Pd(OAc)2 facilitates the orthopalladation process with the concomitant release of chloride ion. The formation of the six-membered palladacycle and the subsequent reductive elimination leads to N-benzothiazol-2-yl-amide and Pd(0). The Pd(0) species are reoxidized to Pd(II) by CuI,thus completing the catalytic cycle.4. ConclusionIn conclusion,we have achieved an efficient intramolecular cyclization of substituted 1-acetyl-3-(2-phenyl) thioureas catalyzed by palladium(II) catalysts through C(sp2)-H functionalization. This method can provide more diversiform N-benzothiazol-2-yl-amides efficiently and quickly in high yields under relatively mild conditions. The combination of the generality with respect to the substrate scope and facile accessibility to the starting materials may generate numerous synthetic possibilities. Further mechanistic analysis of these reactions will be the subject of future work.AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Nos. 21462016,21262010),Natural Science Foundation of Gansu Province and the Advanced Research Fund of Jinchuan Group Co.,Ltd.References[1] R.S. Keri, M.R. Patil, S.A. Patil, S. Budagumpi, A comprehensive review in currentdevelopments of benzothiazole-based molecules in medicinal chemistry, Eur. J.Med. Chem. 89 (2015) 207-251.[2] A. Rouf, C. Tanyeli, Bioactive thiazole and benzothiazole derivatives, Eur. J. Med.Chem.97 (2015) 911-927.[3] A.G. DiKundar, G.K. Dutta, T.N. Guru Row, S. Patil, Polymorphism inopto-electronic materials with a benzothiazole-fluorene core: a consequence of high conformational flexibility of p-conjugated backbone and alkyl sidechains, Cryst. Growth Des. 11 (2011) 1615-1622.[4] T. Girihar, W. Cho, Y.H. Kim, et al., A systematic identification of efficiencyenrichment between thiazole and benzothiazole based yellow iridium(III)complexes, J. Mater. Chem.2 (2014) 9398-9405.[5] F. Parlati, U.V. Ramesh, R.P. Singh, et al., Benzothiazole and thiazole5,5-bipyridine compositions and their use as ubiquitin ligase inhibitors, PCT Int.Appl. WO 2005037845, 2005.[6] M. Yoshida, I. Hayakawa, N. Hayashi, et al., Synthesis and biological evaluation ofbenzothiazole derivatives as potent antitumor agents, Bioorg. Med. Chem. Lett. 15 (2005) 3328-3332.[7] T.R. Bailey, D.C. Pevear, Benzothiazol compounds, compositions and methods fortreatment and prophylaxis of rotavirus infections and associated diseases, PCT Int. Appl. WO 2004078115, 2004.[8] A. Alanine, A. Flohr, A.K. Miller, R.D. Norcross, C. Riemer, Benzothlazolederivatives, PCT Int. Appl. WO 2001097786, 2001.[9] S. Kerwin, L.H. Hurley, M.R. De, Compounds and method for providingpharmacologically active preparation and uses thereof, PCT Int. Appl.WO9748694, 1997.[10] H. Liu, X. Jiang, Transfer of sulfur: from simple to diverse, Chem. Asian J. 8 (2013)2546-2563.[11] D.V. Partyka, Transmetalation of unsaturated carbon nucleophiles fromboroncontaining species to the mid to late block metals of relevance to catalytic C-X coupling reactions (X = C, F, N, O, Pb, S, Se, Te), Chem. Rev.111 (2011)1529-1595.[12] H. Yu, M. Zhang, Y. Li, Copper-catalyzed synthesis of benzo[b]thiophenes andbenzothiazoles using thiocarboxylic acids as a coupling partner, J. Org. Chem. 78 (2013) 8898-8903.[13] H. Deng, Z. Li, F. Ke, X. Zhou, Cu-catalyzed three-component synthesis ofsubstituted benzothiazoles in water,Chem. Eur. J.18 (2012) 4840-4843.[14] H.J. Xu, Y.Q. Zhao, T. Feng, Y.S. Feng, Chan-lam-type S-arylation of thiols withboronic acids at room temperature, J. Org. Chem.77 (2012) 2878-2884.[15] D.J.C. Prasad, G. Sekar, Cu-catalyzed one-pot synthesis of unsymmetrical diarylthioethers by coupling of aryl halides using a thiol precursor, Org. Lett. 13 (2011) 1008-1011.[16] L.L. Sun, C.L. Deng, R.Y. Tang, X.G. Zhang, CuI/TMEDA-catalyzed annulation of 2-bromo alkynylbenzenes with Na2S: synthesis of benzo[b]thiophenes, J. Org.Chem.76 (2011) 7546-7550.[17] H.L. Kao, C.F. Lee, Efficient copper-catalyzed s-vinylation of thiols with vinylhalides, Org. Lett. 13 (2011) 5204-5207.[18] F. Ke, Y. Qu, Z. Jiang, et al., An efficient copper-catalyzed carbon-sulfur bondformation protocol in water, Org. Lett.13 (2011) 454-457.[19] D. Chen, Z.J. Wang, W. Bao, Copper-catalyzed cascade syntheses of2H-benzo[ b][1,4]thiazin-3(4H)-ones and quinoxalin-2(1H)-ones throughcapturing S and N atom respectively from AcSH and TsNH2, J. Org. Chem. 75(2010) 5768- 5771.[20] C.L. Li, X.G. Zhang, R.Y. Tang, P. Zhong, J.H. Li, Copper-catalyzed thiolationannulations of 1,4-dihalides with sulfides leading to 2-trifluoromethylbenzothiophenes and benzothiazoles, J. Org. Chem.75 (2010) 7037-7040.[21] W. You, X. Yan, Q. Liao, C. Xi, Cu-catalyzed double s-alkenylation of potassiumsulfide: a highly efficient method for the synthesis of various thiophenes, Org.Lett. 12 (2010) 3930-3933.[22] Y. Jiang, S. Xie, Y. Qin, X. Zhang, D. Ma, A general and efficient approach to arylthiols: CuI-catalyzed coupling of aryl lodides with sulfur and subsequentreduction, Org. Lett. 11 (2009) 5250-5253.[23] S. Murru, P. Mondal, R. Yella, B.K. Patel, Copper(I)-catalyzed cascade synthesis of2-substituted 1,3-benzothiazoles: direct access to benzothiazolones, Eur. J. Org.Chem. (2009) 5406-5413.[24] S. Murru, H. Ghosh, S.K. Sahoo, B.K. Patel, Intra- and intermolecular C-S bondformation using a single catalytic system: first direct access toarylthiobenzothiazoles, Org. Lett. 11 (2009) 4254-4257.[25] C.G. Bates, P. Saejueng, M.Q. Doherty, D. Venkataraman, Copper-catalyzedsynthesis of vinyl sulfides 6 (2004) 5005-5008.[26] Z. Qiao, H. Liu, X. Xiao, et al., Efficient access to 1,4-benzothiazine:palladiumcatalyzed double C-S bond formation using Na2S2O3 as sulfuratingreagent, Org. Lett. 15 (2013) 2594-2597.[27] M. Kuhn, F.C. Falk, J. Paradies, Palladium-catalyzed C-S coupling: access tothioethers, benzo[b]thiophenes, and thieno[3,2-b]thiophenes, Org. Lett.13(2011) 4100-4103.[28] C.C. Eichman, J.P. Stambuli, Zinc-mediated palladium-catalyzed formation ofcarbon-sulfur bonds, J. Org. Chem. 74 (2009) 4005-4008.[29] T. Dahl, C.W. Tornoe, B. Bang-Andersen, P. Nielsen, M. Jorgensen,Palladiumcatalyzed three-component approach to promazine with formation of one carbon- sulfur and two carbon-nitrogen bonds, Angew. Chem. Int. Ed. 47(2008) 1726-1728.[30] J.Y. Lee, P.H. Lee, Palladium-catalyzed carbon-sulfur cross-coupling reactionswith indium tri(organothiolate) and its application to sequential one-potprocesses, J. Org. Chem.73 (2008) 7413-7426.[31] M.A. Fernandez-Rodroeguez, Q. Shen, J.F. Hartwig, A general and long-livedcatalyst for the palladium-catalyzed coupling of aryl halides with thiols, J. Am.Chem. Soc. 128 (2006) 2180-2181.[32] M. Iwasaki, M. Iyanaga, Y. Tsuchiya, et al., Palladium-catalyzed direct thiolation ofaryl C-H bonds with disulfides, Chem. Eur. J. 20 (2014) 2459-2462.[33] X.B. Xu, J. Liu, J.J. Zhang, Y.W. Wang, Y. Peng, Nickel-mediated inter- andintramolecular C-S coupling of thiols and thioacetates with aryl Iodides at room temperature, Org. Lett. 15 (2013) 550-553.[34] N. Sakai, T. Miyazaki, T. Sakamoto, et al., Single-step thioetherification byindiumcatalyzed reductive coupling of carboxylic acids with thiols, Org. Lett.14 (2012) 4366-4369.[35] Y. Yang, W. Hou, L. Qin, et al., Rhodium-catalyzed directed sulfenylation of areneC-H bonds, Chem. Eur. J.20 (2014) 416-420.[36] Y.Y. Lin, Y.J. Wang, C.H. Lin, J.H. Cheng, C.F. Lee, Synthesis of alkenyl sulfidesthrough the iron-catalyzed cross-coupling reaction of vinyl Halides with thiols, J.Org. Chem.77 (2012) 6100-6106.[37] V.P. Reddy, K. Swapna, A.V. Kumar, K.R. Rao, Indium-catalyzed C-S cross-couplingof aryl halides with thiols, J. Org. Chem.74 (2009) 3189-3191.[38] M. Arisawa, T. Suzuki, T. Ishikawa, M. Yamaguchi, Rhodium-catalyzed substitutionreaction of aryl fluorides with disulfides: p-orientation in the polyarylthiolation of polyfluorobenzenes, J. Am. Chem. Soc.130 (2008) 12214-12215.[39] Y.C. Wong, T.T. Jayanth, C.H. Cheng, Cobalt-catalyzed aryl-sulfur bondformation, Org. Lett.8 (2006) 5613-5616.[40] H. Wang, L. Wang, J. Shang, et al., Fe-catalysed oxidative C-H functionalization/C-S bond formation, Chem. Commun.48 (2012) 76-78.[41] Y. Cheng, J. Yang, Y. Qu, P. Li, Aerobic visible-light photoredox radical C-Hfunctionalization: catalytic synthesis of 2-substituted benzothiazoles, Org. Lett.14 (2012) 98-101.[42] F. Jia, Z.P. Li, Iron-catalyzed/mediated oxidative transformation of C-Hbonds, Org. Chem. Front. 1 (2014) 194-214.[43] L. Chu, X. Yue, F.L. Qing, Cu(II)-mediated methylthiolation of aryl C-H bonds withDMSO, Org. Lett. 12 (2010) 1644-1647.[44] X. Zhang, W. Zeng, Y. Yang, H. Huang, Y. Liang, Copper-catalyzed double C-Sbonds formation via different paths: synthesis of benzothiazoles from N-benzyl- 2-iodoaniline and potassium sulfide, Org. Lett. 16 (2014) 876-879.[45] K. Inamoto, Y. Arai, K. Hiroya, T. Doi, Palladium-catalysed direct synthesis ofbenzo[b]thiophenes from thioenols, Chem. Commun. 43 (2008) 5529- 5531.[46] K. Inamoto, C. Hasegawa, K. Hiroya, T. Doi, Palladium-catalyzed synthesis of 2-substituted benzothiazoles via a C-H functionalization/intramolecular C-S bond formation process, Org. Lett.10 (2008) 5147-5150.[47] J.K. Wang, F. Peng, J.L. Jiang, et al., Synthesis of N-benzothiazol-2-yl-amides by acopper-catalyzed intramolecular cyclization process, Tetrahedron Lett. 49 (2008) 467-470.[48] J.K. Wang, Y.X. Zong, Y.X. Zhang, et al., Synthesis of N-benzothiazol-2-yl-amidesby a Fe-catalyzed oxidative C(sp2)-H functionalization, Synlett 25 (2014) 2143- 2148.[49] X.C. Wang, Z. Li, Y. Tu, Y.X. Da, Synthesis of N-(5-aryloxymethyl-1,3,4-thiadiazol-2-yl)-N'-(5-aryl-2-furoyl)-thioureas under phase transfer catalysis, Synth.Commun.32 (2002) 1113-1119.[50] Z. Li, X.C. Wang, Synthesis of1-aryloxyacetyl-4-(4-nitrobenzoyl)-thiosemicarabzides under phase transfercatalysis and microwave irradiation, Synth. Commun.32 (2002) 3087-3092.[51] K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Palladium-catalyzed C-Hactivation/intramolecular amination reaction: a new route to3-aryl/alkylindazoles, Org. Lett. 9 (2007) 2931-2934.。
化学专业外文文献初稿和译文稿
化学专业外文文献初稿和译文稿引言该文档旨在提供化学专业的外文文献初稿和译文稿。
以下是一个初步概述,其中包含选定的文献和简要讨论。
文献1:《化学反应动力学研究》- 作者:John Smith- 出版年份:2020年- 摘要:本文研究了化学反应的动力学,并通过实验数据对反应速率进行了建模和计算。
作者使用了不同的方法来确定反应活化能和动力学常数,并通过分析反应机理来解释实验结果。
文献2:《化学反应的溶剂效应》- 作者:Emily Johnson- 出版年份:2018年- 摘要:本文研究了不同溶剂对化学反应速率和选择性的影响。
通过在不同溶剂中进行反应实验,并分析实验结果,作者确定了溶剂对反应速率和选择性的重要性,并提出了一种新的溶剂选择指南。
译文稿请注意,以下是对上述两篇文献的简要翻译稿,仅供参考。
文献1翻译稿《化学反应动力学研究》是John Smith于2020年发表的一篇关于化学反应动力学的研究论文。
该文研究了化学反应的动力学,并通过实验数据对反应速率进行了建模和计算。
作者使用了不同的方法来确定反应活化能和动力学常数,并通过分析反应机理来解释实验结果。
文献2翻译稿《化学反应的溶剂效应》是Emily Johnson于2018年发表的一篇关于溶剂对化学反应速率和选择性的影响的研究论文。
该文通过在不同溶剂中进行反应实验并分析实验结果,确定了溶剂对反应速率和选择性的重要性,并提出了一种新的溶剂选择指南。
结论该文档提供了两篇化学专业的外文文献初稿和译文稿的简要介绍。
这些文献涵盖了化学反应动力学和化学反应的溶剂效应两个重要研究领域。
通过阅读这些文献,读者可以了解到关于化学反应动力学和溶剂选择的最新研究成果,并为进一步的研究提供了参考依据。
Keck大环内酯化反应
Keck大环内酯化反应羟基羧酸与二烷基碳二酰亚胺,胺的盐酸盐和胺的混合物作用制备得到中等和大环内酯的反应。
上世纪70年代Corey-Nicolaou大环内酯化反应发现后,广泛应用于天然产物的全合成,导致后续有大量有关大环内酯化反应的研究。
到80年代早期,利用大环内酯化反应全合成了很多大环内酯类抗生素。
1985年,G.E. Keck和E.P. Boden发展了一种新的大环内酯合成方法,此方法利用羟基羧酸得到的活性酯中间体不用分离直接反应得到产物。
在他们研究初期,试图利用Steglich酯化法 (DMAP/DCC)制备大环内酯,但是即使在过量的试剂中反应仍不能进行。
然而当加入质子原(如二甲基胺基吡啶盐酸盐,DMAP·HCl)促进关键的质子转移步骤时,则反应以很高的产率得到大环内酯。
反应特点:1、和其他的大环内酯反应类似,此反应要求高度稀释的反应条件(≤ 0.03 M);2、底物通常先溶于非质子性溶剂中,然后在数小时内通过注射泵加入到回流的缩合试剂的溶液中;3、活化试剂:N,N'-二烷基碳二酰亚胺(DCC or EDCI),其可以吸收反应体系中少量的水,防止破坏生成的活性酯中间体,此反应是一种自干燥反应;4、碳二酰亚胺试剂通常要加入几倍当量以确保底物完全反应;5、DMAP·HCl可以稳定活性酰基中间体,延长其存在时间,阻止生成副产物N-酰基脲。
此反应的主要缺点是需要加入过量的碳二酰亚胺试剂,反应结束时需要加入AcOH/MeOH 淬灭,因此反应产物需要在大量的二烷基脲中分离出产物。
此反应的一个重要的改进法就是利用聚合物吸附的DCC进行反应,简化后处理过程【Tetrahedron Lett. 2000,41, 8673-8676】。
反应机理反应实例【Org. Lett. 2002, 4, 1307-1310】【J. Am. Chem. Soc. 2001, 123, 10200-10206】【Org. Biomol. Chem. 2003, 1, 104-116】【J. Org. Chem. 2000, 65, 7456-7467】编译自:Strategic Applications of Named Reactions in OrganicSynthesis, László Kürti and Barbara Czakó, Keck Macrolactonization, page 238-239.相关反应Corey–Nicolaou大环内酯化反应Shiina大环内酯化反应Yamaguchi酯化反应Steglich酯化法。
X—PTA直接酯化过程动力学的研究
第26卷 第6期合 成 纤 维 工 业 Vol.26 No.6 2003年12月 CHINA SYN THETIC FIBER INDUSTR Y Dec. 2003 收稿日期:2003-04-02;修订日期:2003-09-20。
作者简介:张旭霞(1975-),男,硕士,湖南岳阳市人。
目前主要从事连续直接酯化合成聚酯的研究与开发。
PTA 直接酯化过程动力学的研究张旭霞 汪少朋 杨立英(中国纺织科学研究院聚合工程事业部,北京 100025)摘 要:研究了不同工艺条件下精对苯二甲酸(PTA )的直接酯化过程,分别按零级和一级动力学模型处理,得出了酯化反应的动力学模型,动力学模拟表明一级动力学模型更为接近实际生产过程。
关键词:精对苯二甲酸 直接酯化 动力学 聚酯 摩尔比中图分类号:TQ320.62 文献识别码:A 文章编号:1001-0041(2003)06-0015-031 实验 利用回归方程[1]求取PTA 直接酯化过程最佳酯化工艺参数,即温度290℃、EG /PTA 摩尔比1.8、齐聚物/原料质量比3.3。
动力学模型的建立实验以此为前提,结合实际生产,实验工艺条件如下:EG /PTA 摩尔比分别取1.7,2.0;齐聚物/原料质量比取3.0,5.0;温度取272,281,289℃。
实验原料、装置、方法见参考文献[1]。
2 动力学模型的建立2.1 主要反应主要反应有酯化反应、酯化缩聚反应和缩聚反应[2]。
直接酯化反应在液相中进行,反应初期大量PTA 以固态粉末状颗粒悬浮在反应液中,只有少部分溶解了的PTA 与EG 发生反应,此时的反应控速步骤为PTA 的溶解速率。
随着反应的进行,溶解了的PTA 在液相中不断减少,固相PTA 又不断地补充溶解到液相中形成一个动态平衡过程[3]。
固态PTA 在齐聚物中的溶解度远大于在EG 中的溶解度,当非均相体系中固相PTA 的量减少到一定程度,并随着生成的齐聚物的量不断增加,固态PTA 的溶解速度较液相PTA 的反应速度快很多,此时控速步骤转为PTA 的反应速率。
对苯二甲酸与1,4-环己烷二甲醇直接酯化反应的研究
对苯二甲酸与1,4-环己烷二甲醇直接酯化反应的研究蔡智怡;黄关葆【摘要】In this research, the effects of the molar ratio of TPA/CHDM and the mass ratio of catalyst on the esterification extent and reaction time were studied. Based on the systematic experiments, the esterification kinetics equation and activation energy were obtained. For comparison,the esterification of TPA and EG was also studied at the same conditions. It showed that the best recipes were TPA/CHDM=1 : 1.6, and the content of catalyst was 0. 035 %. It also found that the activation energy, reactiontime of the reaction between TPA and CHDM was lower than those of TPA and EG, and the effect of temperature on the reaction between TPA and CHDM was also moderate.%研究了对苯二甲酸(TPA)与1,4-环己烷二甲醇(CHDM)的直接酯化反应,讨论了酸/醇配比、催化剂用量对酯化反应的程度、反应时间的影响,对实验过程及动力学处理方法进行了分析探讨,并对实验结果进行了相应的型理,得到了该反应的动力学参数,确定了较佳的工艺条件。
聚酯_PET_反应过程研究_对苯二甲酸和乙_省略_醇直接酯化反应过程分析及主反应
第13卷第2期 化学反应工程与工艺 Vo l 13,N o 21997年6月 Chemical R eact ion Engineer ing and T echnolog y June,1997聚酯(PET )反应过程研究Ⅰ 对苯二甲酸和乙二醇直接酯化反应过程分析及主反应化学平衡研究沈瀛坪 赵 玲(华东理工大学联合反应工程研究所,上海 200237)摘 要 对乙二醇和对苯二甲酸直接酯化反应过程进行了分析和简化,对TPA 和E G 的酯化和缩聚反应的化学平衡常数进行了测定。
关键词:平衡常数 酯化 缩聚 聚酯 对苯二甲酸 乙二醇1 前 言聚对苯二甲酸乙二醇酯(PET )具有优良的性能,广泛应用于工业和日常生活制品中,在合成纤维、薄膜、胶片、塑料等方面个占重要地位。
目前对苯二甲酸和乙二醇直接酯化工艺逐步取代了酯交换工艺,成为聚酯生产的主导路线,其反应过程的研究具有工业意义。
2 酯化反应过程分析目前国内外200t/d 以上的聚酯装置技术主要为吉玛、钟纺、卡尔弗休和杜邦4家。
技术各具特色。
酯化反应工艺前3家有相似之处,都采用二釜流程,杜邦技术采用单釜流程。
现以吉玛技术的酯化工艺流程为例作说明,见图1。
T PA 和EG 浆料进入第一酯化反应器内室,第一酯化反应器内部分为2室,内室设有搅拌浆和加热列管,外室为环形,反应物通过一垂直间隙流入外室,环向流经外室后进入第二酯化反应器进行反应,再流向予缩聚反应器,在2个酯化反应器中产生的水蒸发的EG 进入精镏塔,从顶部分离出水,底部EG 用泵按量分别送回2个酯化反应器。
在酯化反应器内进行着酯化反应也发生缩聚反应,同时又发生其逆反应——水解反应和醇解反应。
与上述主反应同时还存在着生成乙醛的副反应和生成DEG 的副反应以及由热裂解发生的各种副反应。
在酯化反应器内发生的各种反应,通过简化,以如下8个反应方程式表示(以代表苯环):参加本研究工作的还有化学工程1993届毕业生张鲁、何正峰、刘启升、王兴。
schotten-baumann酯化反应中文名
《探讨schotten-baumann酯化反应的原理与应用》一、引言在有机化学中,酯化反应是一种重要的合成方法,它可以通过酸或碱的作用,将酸与醇以及酸与酸酐反应生成酯。
在酯化反应中,schotten-baumann酯化反应是一种常用且重要的反应类型,它具有独特的特点和广泛的应用。
二、schotten-baumann酯化反应的原理schotten-baumann酯化反应是一种酸催化的酯化反应,其基本原理是在酸的催化下,酸与醇反应生成酯。
具体而言,是通过在碱性条件下,将酚类化合物与酸酐反应得到相应的酯。
在这一过程中,碱的作用是为了中和生成的醋酸,从而促进酯的生成。
三、schotten-baumann酯化反应的应用1. 生物化学领域在生物化学领域,schotten-baumann酯化反应被广泛应用于合成具有生物活性的化合物,如药物、激素等。
通过这种反应,可以有效地将生物活性的基团引入到分子中,从而改善其药理活性和生物利用度。
2. 有机合成化学领域在有机合成化学领域,schotten-baumann酯化反应被广泛用于合成各种酯类化合物。
由于其反应条件温和、反应效率高、产率较高等优点,使得它成为有机合成中一种重要的酯化反应方法。
四、个人观点与理解对于schotten-baumann酯化反应,我认为它在有机合成领域具有非常重要的地位。
通过这种反应,我们可以合成一系列具有重要生物活性和药用价值的化合物,为医药领域的发展做出了重要贡献。
我也认为在未来的研究中,我们还可以进一步优化schotten-baumann酯化反应的条件,提高其反应的选择性和效率,以满足更多复杂化合物的需求。
五、总结与回顾通过对schotten-baumann酯化反应的深入探讨,我们不仅对其原理和应用有了更加全面的了解,同时也认识到了其在有机合成中的重要性。
我相信,在今后的研究和应用中,schotten-baumann酯化反应将会发挥更加重要的作用,为化学领域的发展贡献力量。
甘油酯化反应动力学研究
甘油酯化反应动力学研究蔡莉;解庆龙;吴振宇;李肖华;卢美贞;聂勇;计建炳【摘要】Glycerol esterification is an effective method to reduce the acid value of acidic oil,which can be used for biodiesel production.A mixture of soybean oil and oleic acid was used as the model compound.The effect of reaction temperature on glycerol esterified product distribution was examined.Kinetic parameters,including reaction rate constant k and activation energy Ea,of all the reactions involved in glycerol esterification process were determined using the second-order reaction kinetics model.The effects of reaction temperature,molar ratio of glycerol to free fatty acid,and acid value of feedstock on acid value reduction were predicted based on the model.The results showed that the model values were in good agreement with the experimental values.The reduction of acid value was highly dependent on the reaction temperature.The higher acid value reduction rate and lower final acid value were observed at higher reaction temperature,higher molar ratio of glycerol to free fatty acid and higher initial acid value of feedstock.The research results were helpful to reveal the mechanism of glycerol esterification reaction and design of glycerol esterification reactor.%甘油酯化是高酸值油脂降酸值的有效方法,可用于生物柴油的制备.采用大豆油与油酸的混合物为模型化合物,考察了反应温度对甘油酯化产物分布的影响,建立了甘油酯化二级反应动力学模型,并关联出相关反应的动力学参数速率常数后和反应活化能Ea;通过该模型预测了反应温度、甘油与游离脂肪酸摩尔比和原料油酸值对降酸效果的影响.结果表明:模型值与实验值有较好的一致性;降酸反应对反应温度有较高的依赖性,反应温度越高、甘油与游离脂肪酸摩尔比越大及原料油初始酸值越高,降酸速率越快,降酸反应越彻底.研究结果将有助于揭示甘油酯化反应机理,为甘油酯化反应器的设计提供依据.【期刊名称】《中国油脂》【年(卷),期】2017(042)009【总页数】5页(P117-120,132)【关键词】甘油酯化;反应动力学;生物柴油;模型预测【作者】蔡莉;解庆龙;吴振宇;李肖华;卢美贞;聂勇;计建炳【作者单位】浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014;浙江工业大学化工学院,浙江省生物燃料利用技术研究重点实验室,杭州310014【正文语种】中文【中图分类】TQ641;TQ423生物柴油作为一种清洁可再生燃料被认为是一种很好的石化能源替代燃料[1-2]。
研究酯化反应
六、思考题
• 1、实验报告 • (1)、酯化反应有什么特点,本实验如何创造条件 使酯化反应尽量向生成物方向进行? • (2)、本实验有哪些可能副反应? • (3)、如果采用醋酸过量是否可以,为什么? • 答:不可以。本实验中,我们是利用过量的乙醇 来增大反应物的浓度,使平衡右移;另外醇还可 以和生成的水、乙酸乙酯生成二元或三元共沸物 而蒸馏出去,从而促使酯化反应的进行。
ቤተ መጻሕፍቲ ባይዱ
二、实验仪器几所需药品
• 仪器:恒压漏斗、三口圆底烧瓶、温度计、 刺形分馏柱、蒸馏头、直形冷凝管、接引 管和锥形瓶。 • 药品:冰醋酸、95%乙醇、浓硫酸、饱和 碳酸钠溶液、饱和食盐水、饱和氯化钙溶 液、无水碳酸钾。
三、实验步骤
• 1、反应 • 在100 mL三口烧瓶中的一侧口装配一恒压滴液漏斗,滴 液漏斗的下端通过一橡皮管连接一J形玻璃管,伸到三口 烧瓶内离瓶底约3 mm处,另一侧口固定一个温度计,中 口装配一分馏柱、蒸馏头、温度计及直型冷凝管。冷凝管 的末对端连接接引管及锥形瓶,锥形瓶用冰水浴冷却。 在一小锥形瓶中放入3 mL 3 mL乙醇,一边摇动,一边慢慢加入 3 mL浓硫酸,并将此溶液倒入三口烧瓶中。配制20 mL乙 醇和14.3 mL冰醋酸的混合溶液倒入滴液漏斗中。用油浴 加热烧瓶,保持油浴温度在140℃左右,反应体系温度约 为120℃左右。然后把滴液漏斗中的混合溶液慢慢滴加到 三口烧瓶中。调节加料的速度,使和酯蒸出的速度大致相 等。加料约70 min。这时保持反应物温度120-125℃。滴 加完毕后,继续加热约10 min,直到不在有液体流出为止
• 名称 分子量 性状 折光率 比重 熔点℃ 沸点℃ 溶解度:g/100 mL 水 醇 醚 • 冰醋酸 60.05 无色 液体 1.3698 1.049 16.6 118.1 ∞ ∞ ∞ • 乙醇 46.07 无色 液体 1.3614 0.780 -117 78.3 ∞ ∞ ∞ • 乙酸乙酯 88.10 无色 液体 1.3722 0.905 -84 77.15 8.6 ∞ ∞
PTT直接酯化反应动力学研究
法 ( D T法 ) 由于直 接 酯 化 一熔融 缩 聚法更 即 M 。
为经济、 环保 , 一般采用此法来进行 P r的合成。 T
国内 m ’ 的工 业 化 生 产 目前 还 有许 多难 点 有 待 解决 , 国内外这 方 面 的报 道 也较 少 ¨ 。 因此 , 进 行 P A( 对 苯二 甲酸 ) P O( 、 T 精 、D 13一丙 二 醇 ) 直 接酯 化 反 应 规律 的 研究 对 m
金
山
油
化
纤
第2 5卷
o (H )0 C o c 2 30
PT 1' I
州 o C 23 (H )佣
() 3
模 型进 行 处 理 的过 程 中 忽 略 体 积 的 变 化 , 假 即 设 反应 混 合 物 的体 积 为 常 数 。在 一 级 反 应 模 型 中 , 应 速 度 与 P A 浓 度 有 关 , 反 应 体 系 中 反 T 而 P A在 反 应 混 合 物 中 的 溶 解 度 在 不 断 变 化 , T 必
维普资讯
第 1 (0 6 期 20 )
金
山
油
化
纤
P T直 接 酯 化反 应 动 力 学研 究 T
张 晓静
( 中国石化上 海石 油化 工股份 有 限公 司涤纶部 ,0 50 204 )
摘要: 研究 了不同温度下 m ( 聚对苯 二甲酸丙二 醇酯 ) 直接酯化 反应动力 学。建立 了零级 和一级 反应 动力 学模 型。用实验数据进行的检验表明, 一级动力学模型更为接 近该反应过程 。
反应 混合 物 中 B P H T的浓度 ;
对式 ( ) 7 和式 ( ) 行积 分 计算 , 别得 到如 8进 分
聚丁二酸丁二醇酯的合成
聚丁二酸丁二醇酯的合成郑文俊;黄关葆【摘要】A poly(butylene succinate) (PBS) with higher relative molecular weight was synthesized by direct esterification-polycondensation of succinic acid(SA) and 1,4-butanediol( BD), and it was the first time to investigate the side reaction of esterification in PBS by using refractometric analysis. The results showed that the esterification rate was significantly affected by SA/BD ratio, temperature and catalysts. The side reaction increased with the increase of the amount of BD and rising of the temperature. The viscosity- average molecular weight of the synthesized PBS was from 5. 7 x 104 g/mol to 8. 0 x 104 g/mol, and the highest molecular weight PBS was obtained when the esterification temperature was 150 ℃ , SA/ BD ratio was 1: 1. 2, the amount of titanium catalyst was 0. 1% of SA( mole ratio) , and the temperature of polycondensation was220 ℃.%通过直接酯化-缩聚法,以丁二酸、丁二醇为原料,合成了相对分子质量较高的聚丁二酸丁二醇酯(PBS),并首次采用折光率法研究了PBS酯化反应中的副反应.结果表明:酯化反应中,酸醇比、反应温度及催化剂对酯化率的影响较大;随着丁二醇加入量的增加,酯化反应中的副反应增强,随着反应温度的升高也增强;缩聚反应所合成PBS的黏均摩尔质量在5.7 ×104~8.0×104 g/mol之间,且在酯化反应温度为150℃,酸醇比为1∶1.2,采用钛系催化剂,其用量为所加入丁二酸的0.1%(物质的量比),缩聚反应温度为220℃时,所得产物分子质量最高.【期刊名称】《纺织学报》【年(卷),期】2011(032)010【总页数】5页(P6-9,36)【关键词】聚丁二酸丁二醇酯;酯化率;副反应【作者】郑文俊;黄关葆【作者单位】北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京 100029【正文语种】中文【中图分类】TQ316.37生物降解高分子是一类新型高分子材料[1],可分为完全生物降解高分子和生物破坏性高分子。
edci催化酯化反应条件探究
edci催化酯化反应条件探究1. 引言在有机合成中,酯化反应是一种常见而重要的化学反应。
酯是一类重要的有机化合物,广泛应用于食品、香料、药物等领域。
为了实现高效、高产和环保的酯化反应,科学家们一直在寻求更好的催化剂和反应条件。
本文将围绕EDCI催化酯化反应的条件进行探究,以期对此主题有更全面的了解。
2. EDCI催化酯化反应EDCI(1-(3-二甲基氨丙基)-3-环氧羰基丙烷)是一种常用的有机合成催化剂,特别适用于酯化反应。
它可以促进酸和醇之间的酯化反应,生成酯和水。
EDCI的催化作用基于其与酸和醇之间的反应,形成酰化剂中间体,从而加速酯化反应的进行。
3. 研究EDCI催化酯化反应的条件为了实现高效的酯化反应,研究人员一直在寻找适合EDCI催化的最佳条件。
以下是一些常见的实验探究EDCI催化酯化反应条件的方法和结果。
3.1 温度温度是影响酯化反应速率的重要因素之一。
研究表明,较高的反应温度可以促进反应的进行。
通常情况下,EDCI催化酯化反应的温度范围在30-60摄氏度之间,具体的最佳温度取决于反应物质和反应体系。
3.2 溶剂选择溶剂的选择对酯化反应的进行也起着重要作用。
酯化反应通常在非水溶剂中进行,常见的溶剂包括二氯甲烷、甲醇、乙醇等。
然而,溶剂的选择应根据反应物质的溶解性和反应的特性来确定。
3.3 底物比例底物比例是影响酯化反应选择性和收率的因素之一。
研究表明,适当的底物比例可以提高酯化反应的产率。
一般来说,较高的醇酸比可以促进酯的生成,但过高的醇酸比可能导致副反应的发生。
3.4 反应时间反应时间是影响酯化反应进程的重要因素之一。
研究表明,随着反应时间的增加,酯化反应的产率和选择性会逐渐提高。
然而,过长的反应时间可能导致副反应的发生,因此需要根据具体反应体系来确定最佳的反应时间。
4. EDCI催化酯化反应的优点和应用EDCI催化酯化反应具有以下几个优点:4.1 高选择性EDCI催化酯化反应的选择性较高,能够有效地将酸与醇反应生成酯,同时减少副反应的发生。
2-甲基烯丙基氯与乙酸钠的酯化反应动力学研究
2021 年 4 月 Journal of Chemical Engineering of Chinese Universities Apr. 2021文章编号:1003-9015(2021)02-0273-072-甲基烯丙基氯与乙酸钠的酯化反应动力学研究陈志荣, 蔡维玲, 王斌, 袁慎峰, 尹红(浙江大学化学工程与生物工程学院, 浙江杭州310027)摘要:针对2-甲基烯丙基氯与乙酸钠的固-液相转移催化酯化反应的反应机理进行探究,为了获得该酯化反应动力学数据,以2-甲基烯丙基氯、乙酸钠固体为原料,在反应温度353.15~383.15 K、搅拌转速600 r⋅min-1条件下进行实验,在不同反应时间时取样,得到鎓盐类相转移催化剂的催化酯化反应机理和动力学方程,并考察了反应温度、搅拌转速、催化剂用量和种类、溶剂种类等因素对反应的影响。
结果表明,反应符合拟一级反应动力学规律,十六烷基三甲基氯化铵催化生成2-甲基烯丙醇乙酸酯的表观反应活化能为97.61 kJ⋅mol-1。
关键词:2-甲基烯丙基氯;2-甲基烯丙醇乙酸酯;酯化;动力学中图分类号:TQ222.4 文献标志码:A DOI:10.3969/j.issn.1003-9015.2021.02.011Esterification kinetics of 2-methylallyl chloride and sodium acetateCHEN Zhi-rong, CAI Wei-ling, WANG Bin, YUAN Shen-feng, YIN Hong (College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)Abstract: The reaction mechanism of solid-liquid phase transfer catalytic esterification of 2-methylallyl chloride with sodium acetate was investigated. The reaction experiments using 2-methylallyl chloride and sodium acetate as reactants were carried out under different reaction conditions, and the reactant and product concentrations of catalytic esterification by the phase-transfer catalyst of onium salt were obtained for developing mechanism and kinetic equations by sampling at different reaction times. The influence of reaction temperature, stirring speed, type and amount of catalyst, and type of solvent was studied. The results show that the reaction forming 2-methylallyl acetate with catalyst of cetyltrimethylammonium chloride is quasi-first-order reaction and its apparent activation energy of the reaction is 97.61 kJ⋅mol-1.Key words: 2-methylallyl chloride; 2-methylallyl acetate; esterification; kinetics1前言2-甲基烯丙醇是一种重要的有机中间体,含有羟基和不饱和双键,能溶于有机物、部分溶于水,毒性比烯丙醇更低,反应活性较高,广泛用于农药、医药、香料、树脂和聚羧酸减水剂等的合成[1]。
乙二酸和乙醇的酯化反应
乙二酸和乙醇的酯化反应
一、实验目的
本实验旨在通过乙二酸和乙醇的酯化反应,研究乙二酸和乙醇之间的酯化反应,以及此反应机理及动力学。
二、实验原理
乙二酸和乙醇之间发生酯化反应,生成了椰诺酯。
反应可以用下面的化学方程式代表:
CH3CH2OH + CH2CO2H --> CH3CH2CO2H + H2O
该反应由一个ACID-BASE反应催化,乙醇和乙二酸互相作用共价离子对形成,发生环状碳链变型,在环状碳链上发生重排,从而形成椰诺酯。
三、实验步骤
1. 将1毫升乙二酸加入到10毫升乙醇之中,搅拌均匀。
2. 将上述混合物加入到25毫升的0.6N醋酸中,搅拌均匀。
3.将上述混合物加入到60℃的水浴中,搅拌均匀,继续加热,直至反应完全结束。
4. 除去沉淀,并在室温下冷却,保持悬浮液的清澈。
5.将上述悬浮液加入到20毫升的40%的乙醇溶液中,搅拌均匀,使其完全溶解。
6.测定椰诺酯的纯度,并得出乙二酸和乙醇之间的酯化反应平衡常数。
四、实验结果
实验经过反应,椰诺酯的产物达到80%的纯度。
乙二酸和乙醇之间的酯化反应平衡常数计算结果为K=0.45。
五、实验讨论
本实验从实验结果来看,乙二酸和乙醇之间的酯化反应满足反应热的条件,乙二酸和乙醇之间的离子对可以稳定形成,椰诺酯的活化能可以得到抵消,从而实现酯化反应。
并得出乙二酸和乙醇之间的酯化反应平衡常数K=0.45。
乙酸乙酯反应平衡常数
乙酸乙酯反应平衡常数乙酸乙酯反应平衡常数乙酸乙酯是一种常见的有机物,它具有广泛的应用领域,例如作为溶剂、香料和工业用途。
乙酸乙酯的制备过程中涉及到一种重要的化学反应,即酯化反应。
本文将探讨乙酸乙酯的反应平衡常数以及与之相关的因素。
酯化反应是一种酸催化反应,通常使用酸作为催化剂。
在乙酸乙酯的制备过程中,常用的催化剂是硫酸。
乙酸和乙醇在酸催化下发生酯化反应,生成乙酸乙酯和水。
该反应的化学方程式如下所示:CH3COOH + C2H5OH ⇌ CH3COOC2H5 + H2O乙酸(CH3COOH)和乙醇(C2H5OH)在反应过程中通过酸催化,发生酯键的形成,从而产生乙酸乙酯(CH3COOC2H5)和水(H2O)。
这是一个可逆反应,达到平衡时反应物与生成物的浓度保持常数。
反应平衡常数(Keq)描述了反应达到平衡时反应物和生成物之间的相对浓度关系。
对于乙酸乙酯的酯化反应,这个平衡常数可以通过测定反应物与生成物的浓度来确定。
平衡常数的表达式为:Keq = [CH3COOC2H5] / [CH3COOH] [C2H5OH]Keq的值越大,说明反应向生成乙酸乙酯的方向偏移,反应更加倾向于产生乙酸乙酯。
如果Keq的值小于1,反应则偏向反应物,生成乙酸和乙醇。
乙酸乙酯反应平衡常数的大小受到多种因素的影响。
首先,温度是一个关键因素。
根据Le Chatelier原理,温度的升高会使平衡常数减小,而温度的降低则会增大平衡常数。
对于乙酸乙酯的酯化反应来说,增加温度将导致反应向生成乙酸乙酯的方向偏移,从而增大平衡常数。
其次,催化剂的种类和用量也对反应平衡常数产生影响。
酸催化剂能够提高反应速率,并影响反应平衡。
不同的酸催化剂对乙酸乙酯反应的平衡常数有不同的影响。
例如,硫酸催化剂会使乙酸乙酯反应偏向生成乙酸乙酯,从而增大平衡常数。
此外,反应物和生成物的浓度也会影响反应平衡常数。
根据Le Chatelier原理,反应物浓度的增加或生成物浓度的减小都会使平衡常数增大。
酯化液中酯类物质检测方法的探讨
酯化液中酯类物质检测方法的探讨高江婧;刘国英;周庆伍;李安军;汤有宏;万春环【摘要】The detection methods of esters in esterifying liquid were investigated and the method to measure the content of ethyl caproate and ethyl lactate in esterifying liquid accurately had been developed.The effects of adding lactic acid in esterifying liquid on the activity of esterifying enzyme were analyzed and the results suggested that the addition of lactic acid would result in rapid drop of esterifying liquid pH value because the dissociation constant of lactic acid was higher than other acid,and low pH value would further result in lower enzyme activity.Accordingly,the content of lactic acid in esterifying liquid should be reduced as possible during the preparation of esterifying liquid.%对酯化液中酯化物质成分的检测方法进行了试验研究,建立了对酯化液中己酸乙酯含量和乳酸乙酯含量较为准确的检测方法。
对酯化液中添加乳酸对酯化酶活性的影响进行了分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Visually equilibrium may look like completion unless there are cues in the reaction system (e.g., color) which indicate that reactants remain when there are no further changes observed. Even if we are tempted to conclude that the reaction simply stopped "short", in many cases it is a fairly simple matter to demonstrate that the reaction system remains dynamic, i.e., the reaction continues to occur in both directions. Changes in conditions of temperature, pressure and concentration can in fact "move" the equilibrium "position" forward or backward (LeChâtelier's Principle).Experimental observations therefore reveal the criteria for maintaining a system in equilibrium (assuming the system has the potential to reach equilibrium as opposed to going to completion): constant temperature and a closed system. But why is there equilibrium in the first place? Why don't all chemical processes continue until at least one of the reactants has been exhausted?Theoretically all reactions are reversible, i.e., under some conditions it should be possible to make either the forward or reverse reaction occur. Practically speaking this is not true for some processes and is "less true" for others. In searching for characteristics of potential equilibrium systems it is helpful to consider the kinds of reactions which go essentially to "completion", i.e., chemical systems in which the reverse reaction is negligible for practical purposes at standard conditions.The formation of an additional phase during a reaction is a classic indication that the forward reaction will usually proceed so far to the right as to be considered "complete". Examples include precipitations and gas formations. Even among these types there are common exceptions but they do point to at least one aspect of what is happening at equilibrium: in order to have a reverse reaction of any significance the products should ideally remain in the same phase system. This is a consequence of simple collision theory. Molecules can't collide and react with something that is gone.157This insight suggests that homogeneous systems are better candidates for practical equilibrium. Many gaseous systems fit this description, from the equilibrium between NO2 and N2O4 to the synthesis of ammonia from elements. As long as all of the molecules are able to move freely in the reaction mixture one collision possibility is as good as another. Or is it?We know that according to collision theory not all collisions are created equal. Some molecular collisions require large amounts of energy in order to be effective (i.e., result in reaction). We say the reactions involving these collisions have high activation energies. Ignoring other possibly significant factors temporarily, it should then make some sense that reactions with "smaller" enthalpy changes are more likely to reach practical equilibrium rather than practical completion. When the enthalpy change for a reaction is "small" the activation energies of the forward and reverse processes are more nearly equal. So it seems likely that all of the collisions have roughly "equal" footing [note that it doesn't matter that the activation energies are either large or small, only that they are similar; the magnitude of E a is a rate-determining factor, not an indicator of potential equilibrium].products tend to predominate equilibrium mixture likely reactants tend to predominateOf course, this is a great oversimplification. In addition to the energy requirements for an effective collision there are geometry factors that are not easily predictable. This variable brings analyses starting from the enthalpy-only perspective into the realm of "I can see why this reaction reaches equilibrium" after you know already that it does!An important factor not mentioned is, of course, entropy. As a reaction proceeds, the free energy in the system gradually decreases. When no more free energy can be moved from the system to the surroundings no further net chemical change occurs. At what mixture of reactants and products this occurs is partially dependent on the entropy change during the reaction. It is not difficult to imagine that homogeneous systems with a mixture of reactants and products have a generally greater entropy than systems containing only products. But the interplay between the magnitude (and sign) of the enthalpy change in the system and hence the entropy change in the surroundings makes this kind of analysis complex and not easily generalized. That is, after all, what standard free energy changes are good for: deciding whether reactions will be very spontaneous (i.e., go to "completion") or only so-so spontaneous (i.e., reach practical equilibrium). An appreciation of some of the factors which go into favoring equilibrium over "completion" is valuable nonetheless for the insight it offers into the complex nature of the interaction of matter with energy at the molecular level.Adapted from: an NSF-sponsored institute for high school students, San Diego State University, Jim Malik158Determining the value of an equilibrium constant for a reaction in the laboratory can present some interesting challenges. Measurements on the system must either be non-intrusive (i.e., they must not result in changes which will cause a shift in equilibrium) or the reaction rate must be slow enough so that any equilibrium shift is negligible during the measurement. Many esterifications are slow at room temperature, even with catalysts. Recall that esterification is the reaction of a carboxylic acid with an alcohol:R CO+O H R'H+RCOOR'+H2OThe specific esterification reaction studied in this experiment is that between ethanoic acid (acetic acid) and ethanol:CH3COOH + C2H5OH ' CH3COOC2H5 + H2OH+The formation of ethyl ethanoate (ethyl acetate) is particularly well-suited to the determination of the equilibrium constant. The reaction is slow enough at room temperature so that the order of mixing, temperature fluctuations over two days of reaction time, and even a final titration with a strong base have little effect on the reaction. Since this is a homogeneous reaction with the same number of moles of reactants and products, the equilibrium constant, K c--generally expressed in terms of Molarity--can be calculated in terms of moles alone--an added convenience.Because the reaction is very slow at room temperature, dilute HCl is added as a catalyst to speed it up. The HCl does not take part in the overall reaction, but the water found in the dilute acid does take part in the reaction and the number of moles of it added to a mixture must be taken into consideration.To demonstrate that the equilibrium constant has in fact the same value, regardless of the starting amounts, a variety of mixtures can be prepared, each of which is then analyzed to determine the distribution of reactants and products in the equilibrium mixture. We know from LeChâtelier's Principle that adding more of one reactant at the beginning of an equilibrium process should result in a greater yield of product. It may not be as convincing that the overall ratio of the equilibrium constant will be the same as if the extra reactant has not been added. So the virtue of repetition in the lab can serve more than one purpose.The analysis of the equilibrium mixtures is based on a simple titration with standardized NaOH. Since the initial amounts of all materials are known the final amount of acid determined will reflect the overall changes in the reaction. For example, the HCl catalyst remains unchanged. Once this amount of acid is subtracted out there remains only the ethanoic acid. If less acid is detected than was originally added then the reaction has moved in the forward direction. If more acid is detected then the reaction has moved in the reverse direction. Since the stoichiometric ratios in the reaction are all unity the loss or gain in ethanoic acid can be used to figure the loss or gain in everything else.The calculations involved in determining the equilibrium constant in this experiment become quite complex due to the use of aqueous solutions of ethanoic acid and hydrochloric acid in a system in which water is a participant [a spreadsheet would probably be very useful for the repetitive calculations, but a long-hand series is not out of the question].159The simplest way to approach the problem is the familiar start/equilibrium set-up:But how much is x? The titration of the equilibrium mixture will reveal how much acid is present. Part of that acid is the HCl catalyst added to each mixture (this is the "blank"). The volume of NaOH required to titrate just this acid will be known from the data and can be subtracted from the total volume of NaOH used to titrate each mixture. The remaining NaOH required is a measure of the amount of ethanoic acid present, in this case, x.The ExperimentThere are three parts to this experiment:•preparation of the various mixtures•standardization of the sodium hydroxide•titration of the equilibrium mixturesThe following non-locker materials will be provided:•ethyl acetate (ethyl ethanoate)•glacial acetic acid (ethanoic acid) [fume hood]•concentrated HCl [fume hood]•micropipettor w/tips•8 vials•approx. 1 M NaOH•solid potassium hydrogen phthalate•phenolphthalein•beral pipets160The ChemicalsEthanol or ethyl alcohol is a clear, colorless liquid with a pleasant odor and a burning taste. It absorbs water readily from the air and is miscible with water and many organic liquids. Most ethanol is used in alcoholic beverages in dilute form. It is also used in the laboratory as a common solvent, in pharmaceuticals, and as a common topical antiseptic. Nearly all ethanol sold as "alcohol" (not for drinking) has been denatured (including the ethanol in the lab). Denaturing in this context means adding some substance which does not markedly interfere with the behavior or properties of ethanol except to render it unfit for drinking. Most denaturants are toxic.Acetic acid (or ethanoic acid) has a pungent odor and in concentrated form (17 M) produces painful burns on the skin. It is soluble in water and is itself an excellent solvent for many organic compounds. While it is a weak acid, concentrated solutions are extremely irritating to tissue, especially mucous membranes. It is used in the manufacture of various acetates including plastics and textiles, in dyeing, preserving foods and in many organic syntheses. Household vinegar is 5% acetic acid. Ingestion of more concentrated solutions may cause severe corrosion of the mouth with vomiting, circulatory collapse and eventual death.Ethyl acetate has a characteristic fruity odor and a pleasant taste when diluted. It is somewhat soluble (1 mL in 10 mL) in water and mostly soluble in common organic solvents. It is used in artificial fruit essences and as a solvent for lacquers and varnishes (including fingernail polish). Prolonged breathing of vapors may cause liver and kidney damage.Sodium hydroxide is commonly known as lye or caustic soda. It is a very hygroscopic white solid (absorbs water from the air rapidly) and also absorbs CO 2. It is very corrosive to vegetable and animal matter and aluminum metal, especially in the presence of moisture. Dissolving NaOH in water generates considerable heat.Besides its use in the laboratory, sodium hydroxide is used in commercial drain cleaner preparations, to treat cellulose in the manufacture of rayon and cellophane and in the manufacture of some soaps. It is corrosive to all tissues and can be detected on skin by the "slimy" feeling associated with bases. It should be rinsed off thoroughly upon contact. It can damage delicate eye tissues and cause blindness.Phenolphthalein (or 3,3-bis(p -hydroxyphenyl)phthalide), C 20H 14O 4, is a white powder or minute crystals and almost insoluble in water. One gram dissolves in 12 mL of alcohol. A 1% alcoholic solution is commonly used as an indicator in titrations of mineral and organic acids with most bases. It is not suitable for ammonia. It is very sensitive to CO 2, decolorizing slowly from its basic pink form on exposure to air. Colorless to pH 8.5; pink to deep red above pH 9. It has been used in the past as a laxative (the former active ingredient in Ex-lax and many other similar preparations) but recent studies have implicated it as a carcinogen. OC OOHphenolphthalein161Potassium hydrogen phthalate (or potassium biphthalate), KOOCC6H4COOH, consists of white crystals, stable in air. It is soluble in about 12 parts of cold water, only slightly soluble in alcohol. The salt is used as a primary standard for preparing volumetric base solutions and also in buffer solutions.Technique DiscussionThe experiment may be conveniently divided into three parts which must be done in sequence due to the time required for the equilibrium reaction. First the various mixtures must be prepared [table follows]. One of the ingredients, the dilute HCl, must be made before the mixtures can be assembled. Once the solutions are made they are capped securely and set aside for 48 hours to equilibrate.During the equilibration process the NaOH solution (which is supplied in only approximate concentration) can be standardized by titration against dried KHP. These titrations should be done in triplicate (standard practice). Because of the scale of the experiment the use of a buret is impractical. Drop titration from a beral pipet is adequate for the accuracy expected from the determination. The density of the NaOH will be supplied so the initial and final mass of NaOH [rough balance] can be used rather than a count of drops.Finally, after the 48 hours have elapsed the mixtures (and blank) are titrated with the standardized NaOH employing the same mass-difference technique.5 mL of approximately 3 M HCl acid solution is prepared by diluting a suitable volume of 12 M HCl with distilled water. Remember, always add concentrated acid to water, not the reverse! Do this in the fume hood. To facilitate the calculation of the amount of water added with the HCl catalyst the density of the mass of 0.500 mL will be useful [analytical balance].The following table contains the proportions for the mixtures.Mixture 3 M HCl Ethyl Acetate Ethanol Acetic Acid WaterA 0.500 mL 0.500 mL - - -B 0.500 mL 0.100 mL 0.200 mL0.100 mL 0.200 mLC 0.500 mL 0.200 mL - - 0.300 mLD 0.500 mL 0.400 mL 0.100 mL- -E 0.500 mL 0.400 mL - 0.100 mL -F 0.500 mL - 0.400 mL0.100 mL -G* 0.500 mL - - - 0.500 mL*blankA little more than 0.20 g [rough balance] of solid potassium hydrogen phthalate (KHP) in about20 mL of water can be used to standardize the approximately 1 M NaOH solution. This should be done three times. KHP is a little slow to dissolve in water so if there is time left on the day the mixtures are prepared these samples could also be made and left to dissolve overnight.[ordinarily this process would be done on the analytical balance but the results of this experiment do not justify the precision gained]When 48 hours have elapsed, solutions A through G should be titrated with the standardized NaOH. Be extremely careful not to pass the endpoint which will be different in each case. You only get one chance! Remember the solution should be the palest persistent pink possibly perceptible which may fade on standing for longer than 1 minute.162The ReportYour initial calculations should include:1. The concentration of the standard NaOH, shown in triplicate determinations[best value/standard deviation, 95% confidence]2. Using densities, the initial moles of each substance involved in the reaction for each mixture[a table would be helpful]3. From the titration data, the moles of acid neutralized in each mixture (with the blank subtracted)4. The START/EQUIL set-up for each reaction mixture [see Background for example]5. The equilibrium constant for each mixture6. The average equilibrium constant[apply the Q-test and then determine the best value/standard deviation, 95% confidence, with thevalues you do not reject]Your conclusion to this experiment should include a brief explanation for any significant deviations of duplicate results.163。