动态几何的定值
例谈几何定值问题的几种解决方法
点 ,F为 BC中点 ,由中位 线 定 理 可得 G = 1 D GF =
,
Eh(1)、(2)、(3)得 ·_AV.鬈_l_
评点 面积在计算和证 明 中也是常用 的工具 之一 ,往 往有出其不意的效果 ,但有时候不一定能想到.
例 3 (1)如 图4所 示 ,在正 Z ̄Jff,ABC中 ,M是 曰C边 (不含端点 B、c)上任意一点,P是 BC延长线上一点 ,Ⅳ是 /ACP 的 平 分 线 匕一 点.若 AMN = 60 ̄.求 证 :AM =MN.
例 1 如 图 1,已知 AABC中 ,MN是 中位线 ,P是 MN 上任 意一点 ,曰P、CP的延 长线 分别 交 AC、AB于 D、E,当 P 在线 段 删 (不 包括 端点 M、Ⅳ)上移 动 时 , +A E是 否为
定 值 ?若是 定值 ,请 给予证 明 ,如不 是定值 ,请 说 明理 由.
180。 一 A AM B — A_AMN ,/ 2 = 180。 一 A AMB 一 /_B,
AAMN = B = 60。,所 以 /- 1 = /-2.
又因为 4=÷ /ACP=60。,
所 以 /-MCN = /3+ 4 = 120。.
④
因为 BA =BC,AE =MC,所 以 BA—AE =BC—MC,
即 BE =BM.所 以 △BEM为 等边三角 形.所 以 /-6=60。.所
以 / 5 = 180。 一 / 6 = 120。.
(
所 以由 ①② 得 /-MCN = /_5. 在 AAEM 和 AMCN 中,因为 1= 2,MC =AE,
/-MCN = / -5.所 以 AAEM △ CⅣ (ASA).所 以 AM =
方法一 :利 用分 式运算 法则 求定值 . 解析 异 分 母 分 式 相 加 必 须 转 化 成 同 分 母 分 式 加
(完整)解析几何中的定点和定值问题
解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。
此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。
考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。
一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知A 、B 是抛物线y 2=2p x (p 〉0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,解析: 设A (121,2y p y ),B (222,2y py ),则212tan ,2tan y py p ==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。
例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C 的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则1228214k x x k +=-+,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m 〉0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
解析几何中定值和定点问题
解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。
“定值型”问题——动态几何题之二
每 秒 3个 单 位 的 速 度 沿 A 一 0 \ \ C 一 B 运 动 ,当 其 中 一 个 点 到 达
终 点 时 , 一 个 点也 随 即停 止. 另
( ) ( )略 ; 1 、2
图 5
( ) 断 A B 是 否 为 定 值 ? 是 , 出 2 判 C 若 求 A B 的 大小 ; 则 , 说 明理 由; C 否 请
( 0 o年 重 庆 ) 21
・
25 ・
《 理 天 地 》 中版 数 初
中 考 数 学 高 分 之 路
2 1 年第 1 0 1 期
解 ( ) ( ) . 1 、2 略 () B N 的周长不 变. 3△ M 如 图 6 延 长 B 至 点 F, , A 使
AF 一 (M , 接 C ) 连 F.
在 Rt O A AF 中 ,
A 一、 F_ 一 厂—专 一/ F = — () ’ = √ 一 , — 3
所以
图 1
点, AB 一 3, - 4, 点 P 到 BC 一 求 矩 形 的 两 条 对 角 线 AC 和 BD
的 距 离 之 和 . (O o年 山 东聊 城 ) 2l
( 3)略 . ( 0 0年 广 东 广 州 ) 21
( )如 图 5 现 有 M C 一 6 。其 两 边 分 3 , N 0,
别 与 ∞ 、 AB 交 于 点 M 、 , 连 接 M N . 将 N
解 ( )连 接 O , O 与 AB 的 交 点 为 1 A 设 P
F, C 一 1 则 .
所 以 连 接 AD 、 D , B 则
CAB 一 2 DA E , CBA 一 2 DBA ,
初中数学动态几何定值问题(word版+详解答案)
动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
数学动点问题技巧
数学动点问题技巧
数学动点问题是指在几何图形中,某一个点或多个点在运动变化时,引起图形中其他相关量随之变化的问题。
这类问题涉及的知识点较多,需要运用动态思维和函数思想进行解答。
以下是一些常见的数学动点问题技巧:
- 确定图形有定值:如果图形中的一些元素是确定的,例如角度、边长等,那么这个图形可能存在一些固定的数值或比例关系。
在求解时,可以利用这些固定的数值或比例关系来求解。
- 不定图形有最值:如果图形中的一些元素是不确定的,例如动点的位置等,那么这个图形可能存在一些极端的情况或最大值、最小值。
在求解时,可以通过分析动点的运动轨迹和范围,找到可能的最值情况。
数学动点问题需要灵活运用数学知识和思维方法,多加练习和思考,才能提高解决问题的能力。
在遇到数学动点问题时,你可以采用以下方法来确定图形中的定值和不定值:
- 定值:如果图形中的一些元素是确定的,例如角度、边长等,那么这个图形可能存在一些固定的数值或比例关系。
在求解时,可以利用这些固定的数值或比例关系来求解。
- 不定值:如果图形中的一些元素是不确定的,例如动点
的位置等,那么这个图形可能存在一些极端的情况或最大值、最小值。
在求解时,可以通过分析动点的运动轨迹和范围,找到可能的最值情况。
在求解数学动点问题时,需要灵活运用数学知识和思维方法,多加练习和思考,才能提高解决问题的能力。
初中数学竞赛:几何的定值与最值(附练习题及答案)
初中数学竞赛:几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变⌒思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.⌒注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.专题训练1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 . 4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案。
动态几何之定值(恒等)问题
动态几何之定值(恒等)问题动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
原创模拟预测题1.如图,在Rt△ABC和Rt△DEF中,∠ACB=∠DEF=900,∠A=∠F=450,DF=4,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB。
求证:点E到AC的距离为常数2。
【答案】解:如图,过点E作EH⊥AC于点H,则EH即为点E到AC的距离。
∵在Rt△DEF中,∠DEF=900,∠F=450,DF=4,∴DE222==∵DE∥AB,∴∠EDH=∠A=450。
∴22EH22==。
∴点E到AC的距离为常数2。
【考点】平移问题,作辅助线,等腰直角三角形的性质,平行的性质。
原创模拟预测题2.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.如图,当点D在边CB的延长线上时,证明AC=CD﹣CF。
【答案】解:∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF。
∵在△BAD和△CAF中,AB=AC,∠DAB=∠CAF,AD=AF,∴△BAD≌△CAF(SAS)。
∴CF=BD。
∴CD﹣CF=CD﹣BD=BC=AC。
∴AC=CD﹣CF。
【考点】单动点问题,菱形的性质,等边三角形的性质,全等三角形的判定和性质,等量代换。
【解析】根据SAS证△BAD≌△CAF,推出CF=BD即可。
原创模拟预测题3.已知,点A、B、C在⊙O上,OC⊥AB,∠AOC=40°,点D ⊙O上的动点(与点B、C不重合)是则∠BDC的度数是。
【答案】20°或160°。
【考点】圆周角定理,垂径定理,圆内接四边形的性质,分类思想的应用。
原创模拟预测题5. 如图,已知菱形ABCD 中,∠ABC=60°,点P 是对称线AC 上的一点,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=60°。
动态几何问题汇总
动态几何问题
【动态几何问题的解决方法】
解决动态几何题,通过观察,对几何图形运动变化 规律的探索,发现其中的“变量”和“定量”。动中求 静,即在运动变化中探索问题中的不变性;动静互化, 抓住“静”的瞬间,使一般情形转化为特殊问题,从而 找到“动与静”的关系;这需要有极敏锐的观察力和多 种情况的分析能力,加以想象、结合推理,得出结论。 解决这类问题,要善于探索图形的运动特点和规律,抓 住变化中图形的性质与特征,化动为静,以静制动。解 决运动型试题需要用运动与变化的眼光去观察和研究图 形,把握图形运动与变化的全过程,抓住其中的等量关 系和变量关系,并特别关注一些不变量和不变关系或特 殊关系.
动态几何问题
(2)如图②,当点M在BC上时,其它条件不变, (1)的结论中EN与MF的数量关系是否仍然成立?若成 立,请利用图②证明;若不成立,请说明理由;
动态几何问题
(3)若点M在点C右侧时,请你在图③中画出相应的图 形,并判断(1)的结论中EN与MF的数量关系是否仍 然成立?若成立?请直接写出结论,不必证明或说明理 由.
动态几何问题
分析:(1)根据题意可知:当P在线段AD上,则 当PD=CQ时,四边形PQCD为平行四边形,P在 线段AD的延长线上,则当PD=CQ时,四边形 DQCP为平行四边形,所以列方程求解即可。 (2)由BC-CD=2cm,可知当CQ-PD=4cm时,四边 形PQCD为等腰梯形,列方程求解即可。
动态几何问题
八上练习册P31页第10题
如图,△ABC中,点O是AC边上的一个动点,过点O 作直线MN平行于BC,设MN交∠BCA的角平分线于点E, 交∠BCA的外角平分线于F 。 (1)求证:EO=FO (2)当点O运动到何处时, 四边形AECF是矩形? 并说明理由。
几何模型之二图形中的最短距离定值及不等式问题
学生: 科目: 数 学 教师: 谭 前 富知识框架在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决方法通常有两种: (1) 应用几何性质:① 三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ② 两点间线段最短;③ 连结直线外一点和直线上各点的所有线段中,垂线段最短; ④ 定圆中的所有弦中,直径最长。
⑵运用代数证法:① 运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式。
【例题精讲】一. 最短路径和几何不等式问题: 考查知识点----:“两点之间线段最短”,“两边之和大于第三边”,“斜边大于直角边”,“垂线段最短”,“点关于线对称”,“线段的平移”。
原型----“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
最短路径和几何不等式问题的两种基本模型----:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
解题总思路----找点关于线的对称点实现“折”转“直”,较难的会出现“三折线”转“直”等变式问题考查。
二.最短距离中的数形结合:例:求代数式9)12(422+-++x x 的最小值.课 题几何模型之二:图形中的最短距离、定值及不等式问题教学内容三.立体几何中的最短路径问题:(1)台阶问题 如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?(2)圆柱问题 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?变式1:有一圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?变式2: 桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。
初中数学竞赛:动态几何的定值
初中数学竞赛:动态几何的定值【内容提要】1.动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.用动的观点看几何定理,常可把几个定理归为一类. 例如:①梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线;②两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;③相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长定理等等.2.动态几何的轨迹、极值和定值. 几何图形按一定条件运动,有的几何量随着运动的变化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题. 例如:半径等于R A的圆A与半径为R B (R B>R A) 的定圆B内切.那么:动点A有规律地变化,形成了一条轨迹:以B为圆心,以R B-R A的长为半径的圆. 而A,B两点的距离,却始终保持不变:AB=R B-R A.若另有一个半径为R C的圆 C与圆B外切,则A,C两点的距离变化有一定的范围:R B+R C-(R B-R A)≤AC≤R B+R C+(R B-R A).即R C+R A≤AC≤2R B+R C-R A .所以AC有最大值:2R B+R C-R A ;且有最小值:R C+R A.3.解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:①先探求定值. 它要用题中固有的几何量表示.②再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【例题】例1. 已知:△ABC 中,AB =AC ,点P 是BC 上任一点,过点P 作BC 的垂线分别交AB ,AC 或延长线于E ,F. 求证:PE +PF 有定值.分析:(探求定值)用特位定值法.① 把点P 放在BC 中点上. 这时过点P 的垂线与AB ,AC 的交点都是点A , PE +PF =2PA ,从而可确定定值是底上的高的2倍. 因此原题可转化:求证:PA +PB =2AD (AD 为底边上的高). 证明:∵AD ∥PF ,∴BD BP AD PE ; BD PDCD CD CP AD PF +=. ∴2BDBD 2BD PD CD BD BP AD PF AD PE =++=. 即2ADPFPE =+. ∴PE +PF =2AD. ② 把点P 放在点B 上.这时PE =0,PF =2AD (三角形中位线性质), 结论与①相同.还可以由PF =BC ×tanC ,把定值定为:BC ×tanC. 即求证PE +PF =BC ×tanC. (证明略)同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可.例2. 已知:同心圆为O 中,AB 是大圆的直径,点P 在小圆上求证:PA 2+PB 2有定值.分析:用特位定值法.设大圆,小圆半径分别为R ,r. ① 点P 放在直径AB 上.得PA 2+PB 2=(R +r )2+(. R -r )2=2(R 2+r 2). ② 点P 放在与直径AB 垂直的另一条直径上 也可得PA 2+PB 2= R 2+r 2+R 2+r 2=2(R 2+r 2).证明: 设∠POA =α,根据余弦定理,得PA 2=R 2+r 2-2RrCos α, PB 2=R 2+r 2-2RrCos(180-α). ∵Cos(180-α)=Cos α. ∴PA 2+PB 2=2(R 2+r 2).本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA ,PB 与R, r 的关系式,关键是引入参数α.例3. 已知:△ABC 中,AB =AC ,点P 在中位线MN 上,BP ,CP 的延长线分别交AC ,AB 于E ,F.求证:CE1BF 1+有定值, 分析: 本题没有明显的特殊位置,不过定值一般是用三角形边长a, b, c 来表示的, 为便于计算引入参数t, 用计算法证明.证明:设MP 为t, 则NP=21a -t. ∵MN ∥BC ,∴BF MF BC MP =, CENEBC NP =. 即=a t BF ac t a BF ca t a c BF 12121BF 21=-⇒=-⇒-; CE ab ta CEb a t a CE b CE a t a 1212121212121=+⇒=+⇒-=-CA∴CE 1BF 1+=c ac ta t a 32121=++-∵c 是定线段,∴c3是定值.即CE 1BF 1+有定值c3.例4. 已知:在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆M和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C. 求证:∠ACB 有定值.分析: ⊙M 是△ABC 的内切圆,∠AMB 是以定线段AB 为弦的定弧所含的圆周角,它是个定角.(由正弦定理Sin ∠AMB=R2AB), 所求定值可用它来表示.证明:在△ABC 中,∠MAB+∠MBA=180-∠AMB ,∵M 是△ABC 的内心,∴∠CAB+∠CBA=2(180-∠AMB).∴∠ACB=180-(∠CAB+∠CBA )=180 -2(180-∠AMB)= 2∠AMB -180.由正弦定理R 2AMB S AB =∠in , ∴Sin ∠AMB=R2AB.∵弧AB 所在圆是个定圆,弦AB 和半径R 都有定值, ∴∠AMB 有定值.∴∠ACB 有定值2∠AMB -180.【练习】1. 用固有的元素表示下列各题中所求的定值 (不写探求过程和证明): ①.等腰三角形底边上的任一点到两腰距离的和有定值是___________. ②.等边三角形内的任一点到三边距离的和有定值是________. ③.正n 边形内的任一点到各边距离的和有定值是_________.④.延长凸五边形A 1A 2A 3A 4A 5的各边,相交得五个角:∠B 1,∠B 2,∠B 3,∠B 4,∠B 5它们的度数和是________,延长凸n 边形 (n ≥5)的各边相交,得n 个角,它们的度数和是___________.⑤.两个定圆相交于A ,B ,经过点B 任意作一条直线交 一圆于C ,交另一圆于D , 则.ADAC有定值是_____________. ⑥.在以AB 为直径的半圆内,任取一点P ,AP ,BP 的延长线分别交半圆于C ,D ,则AP ×AC+BP ×BD 有定值是_________.⑦.AB 是定圆O 的任意的一条弦,点P 是劣弧AB 上的任一点(不含A 和B),PA ,PB分别交AB 的中垂线于E ,F.则OE ×OF 有定值是__________.2. 已知:点P 是⊙O 直径AB 上的任一点,过点P 的弦CD 和AB 相交所成的锐角45.求证:PC 2+PD 2有定值.3. 已知:点O 是等腰直角三角形ABC 斜边BC 的中点,点P 在BC 的延长线上,PD ⊥BA交BA 延长线于D ,PE ⊥AC 交AC 的延长线于E. 求证:∠DOE 是定角4. 已知:点P 是线段AB 外一点,PD ⊥AB 于D ,且PD=AB ,H 是△PAB 的垂心,C 是AB 的中点.求证:CH+DH 是定值.5. 已知:AB ,CD 是⊙O 的两条直径,点P 是⊙O 上任一点(不含A ,B ,C ,D). . 求证:点P 在AB ,CD 的射影之间的距离是个定值.6. 经过∠XOY 的平分线上的任一点A ,作一直线与OX ,OY 分别交于P ,Q 则OP ,OQ 的倒数和是一个定值.7. △ABC 中,AB=AC=2,BC 边有100个不同点P 1,P 2,……,P 100, 记m i =AP i 2+Bp i ×P i C (i=1,2,3,……,100).则m 1+m 2+……+m 100=________.8.. 直角梯形ABCD 中,AB ∥CD ,DA ⊥AB ,AB =26cm,CD=24cm,AD=8cm,有两个动点P 和Q ,点P 在CD 上,由D 向C 以每秒1cm 的速度移动,点Q 在AB 上由B 向A 以每秒3cm 的速度移动.问时间t 经过几秒时,①BCPQ 为平行四边形?等腰梯形?②PQ 与以AD 为直径的圆O 相切?相离?相交? 【答案】1 ①腰上的高. ②一边上的高或3r 3 . ③ nr n. ④ 180度,(n -4)180度. ⑤两圆半径比. ⑥AB2 ⑦⊙O 的半径的平方.2. 定值是AB 平方的一半, 证Rt △COM ≌Rt △OBD , OM=DN.3. 定值是直角, 以PA 为直径的圆经过A ,O ,E ,P ,D 五点, PE=AD , ∠AOD=∠POE .4. 定值是AB 的一半,证明 仿例3.5. 定值是⊙O 的半径与两直径夹角的正弦的积,证明仿例4.6. 定值是OA os αC 2(∠xoy=2α),证明 作AR ∥OQ 交Dx 于R ,AR1OP 1OQ 1=+.7. 4×100.。
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略注意到A∈[÷,2],可得所求为[2,÷].JJ点评:求参数的取值范围,一直是数学中的经典问题.解题的关键是如何构造出关于参数的表达式或不等式,转化为求函数的值域或解不等式问题.本例是直接利用题设的A的范围,求出值域,属简单题.而一些较复杂的题,往往要用以下一些条件和方法:圆锥曲线的范围,几何图形的性质,变量的取值范围(如sinO,cosO●徐素琴舒林军''的范围),判别式法,基本不等式法,分离参数法等.以上五类问题是解析几何中的重点题型,一定要掌握求解的通法,在解题实践中不断对各种解法加以比较,总结,提高自己择优解题的能力,使解析几何解答题成为你的得分点,从而在高考中获得数学卷的高分0-动中求定"的八大策略探索解析几何中求解定点,定值,定向,定线等问题的策略在解析几何中常常出现求定点,定值,定向,定线等问题,它已经成为当前各省高考试题中的热点.本文对此类问题加以探究,得出一些行之有效的方法策略,供以参考.策略一:提取参数对于某些含参数的曲线方程,如果可以把参数与x,y分离,则提出参数后,再根据恒等式的性质,即可以解得x,y的值,得到定点的坐标.例?1已知动直线(2+k)x一(1+k)一2(3+2k)=0,求证:点P(一2,2)到该动直线的距离d≤4.证明:把直线方程化为.i}(一),一4)+(2x—Y一6)=0,知J.一),一4=o,L2x一),一6=0.解得=2,Y=一2,即动直线过定点(2,一2).连,则点P(一2,2)到该动直线的距离d≤lPI=~/(一2—2)+(2+2)=4.'策略二:观察巧代?2O?充分利用已知式的结构特征,经过观察分析,只要找出满足条件的,y的值,就是定点的坐标.例2(1)已知实数17/.,n满足三+=l,则动直线羔+上:l必过定点的坐标为——;(2)已知实数p,g满足p+2q—l=0,则动直线+3y+q=0恒过定点M的坐标为略解:(1)只要令=2,,,=l,即得定点(2,1);(2)已知式化为号一下1+q=0,只要令=寺一IM(1,一吉).策略三:设参分离根据题意,设立参数,建立方程,分离参数,即可以求得定点.例3已知抛物线C:y=8x,焦点为F,定点P(2,4),动点A,B是抛物线C上的两个点, 且满足后?keB=8,试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.解:设A(8t;,8t1),B(8t,8t2)(t1≠t2),则】.1PA,kpB'fl+一2f2+一2因为J}?后雎=8,所以8t1t2=一1—4(tl+t2).①因为Ij}仙,所以A曰的方程:),一8tt:(一8£;)?再利用①化简即得(一1)一(t1+t2)(),+4)=0.可见直线AB过定点(1,一4).策略四:巧"特"结论有两种情形:一种利用特殊值探求结论,再验证其充分性;另一种是也先用特殊值探求结论,后作一般性探求...2.2.例4已知椭圆等+=1,过左焦点作不垂直于轴的弦交椭圆于A,两点,AB的垂直平分线交轴于点,则IFI:IABl的值为()(A1(B1(c了2(D)}解:本题为选择题,即知此比值为定值,故可用特殊值法.设AB与轴重合时,就是原点,则AB长为6,MF的长为2,故IMFl:IABI =1,答案为(B).如果不用特殊法解,本题就是一个较难的解答题,同学们不妨一试.若用极坐标方程解较方便一些.可见在解选择题时,用特殊值法来判断和寻找答案尤为重要.2例5已知椭圆方程+=1,过点s(o,一÷)的动直线f交该椭圆于A,B两点,试问:在坐标平面内是否存在一个定点,使得以AB为直径的圆恒过定点,若存在求出T的坐标;若不存在,请说明理由.解:假设满足条件的定点存在.当直线Z与轴平行时,以AB为直径的圆方程为2+-y')=;当直线Z与),轴重合时,以AB为直径的圆方程为+),=1.以上两圆方程联立解得』=o,即r(0,1)ty=1,是满足条件的必要条件.下面证明其充分性: 若存在v(o,1),对过点S不与坐标轴平行的直线设为y=kx一÷(Il}≠0),把它代人椭圆方程得到(1+2)2一一=o.设A(,y.),B(,y),则有『+=吾_,116【la;:一'因为H=(l,y1—1),TB=(2,y2一1),7?TB=X12+(),1—1)(,,2—1)=(1):一争(+一16(1+)4,12k16——18k9一一一3—}8k9+一9++=0.所以上船,即以AB为直径的圆恒过定点其定点的坐标为(O,1).例6已知椭圆+:1(n>b>o)上任意一点,B,B:是椭圆短轴的两个端点,作直线MB1,MB2分别交轴于P,()两点,求证: lOP1.IDQI为定值,并求出定值.分析:当动点在长轴的端点时,则P,Q重合于长轴的端点,因此IOPI?loQI=a.?2l?再作一般证明即可得IOP1.IOQI为定值为0.策略五:设参消参为了求得定值,往往需要设立一个或两个参数,如直线的斜率,动点的坐标等,然后根据条件,寻找所求的定值,最后经过消参得到所求的定值.例6已知A(1,1)是椭圆x+=1(口>b>0)上的一点,F,F2是椭圆的两个焦点, 且满足lAFI+IAF,I=4.(1)求椭圆的方程;(2)设点B,C是椭圆上的两个动点,且直线AB,AC的倾斜角互补,试判断直线BC的斜率是否为定值?并说明理由.解:(1)易知口=2.再把点A坐标代人椭圆方程得b.=÷,所以椭圆方程为等2+等(2)由条件可以得到直线AB,AC的斜率存在且不为0,故设直线AB的方程为Y=(一1)+1,代人椭圆方程得(1+3k)+6(1一k)kx+3一6k一1=0.因为XA=1,XAXB=所以.①又设直线AC的方程为Y=一k(一1)+1,同理得到.②因此得到,口一YcJ}(B+Xc)一2k%c■'把①②代人得k.=下1,所以直线BC的斜率为定值.策略六:巧用定义结合圆锥曲线的定义,在运动变化中寻求?22?符合定义的不变量.'2,2例7已知P是双曲线一号=1(口>0,b>0)右支上不同于顶点的任意一点,,是双曲线的左右两个焦点,试问:三角形PFF2 的内心,是否在一定直线上,若存在,求出直线方程;若不存在,请说明理由.解:设三角形PFF2的内切圆与轴的切点为,则由双曲线的定义及切线长定理可知: IPF1I—IPF2l=IMF1I-IMF2I=2a,所以也在双曲线上,即M为双曲线右顶点.又IM上轴,所以三角形PF的内心,在一定直线=口上.例8以抛物线(Y+1)=g(一2)上任意一点P为圆心,作与Y轴相切的圆,则这些动圆必经过定点的坐标为一解:不难求得Y轴是抛物线的准线.由抛物线的定义可知,这些圆必经过抛物线的焦点可以求得F(4,一1),所以这些动圆必经过定点的坐标为(4,一1).策略七:结合平面几何有些求定值问题往往可以与平面几何的一些性质相结合,可以达到事半功倍的效果,如上面的例7就是运用了切线长定理.例9已知圆(一3)+(Y+4)=4,过原点0的动直线2:y=kx交圆于P,Q两点,则IoPIlOQl的值为一解:设OB切圆于点,则JOPIIOQI=IDBl=10I一r2:25—4=21.,22例10已知是双曲线一各=1(口>0,b>0)过焦点F1的任意一条弦,以AB为直径的圆被与相应的准线截得圆,求证:MN的度数为定值.解:设AB的中点为P,P,A,B到相应的准线距离分别为d,d,d,则.:,',d1+d2IF1AI+IF1BIlABId—一——■~=(r为以AB为直径的圆的半径),所以c.sPⅣ::,二,e即删的度数为定值,其定值为2arccos.策略八:极坐标法关于长度计算的某些问题,用极坐标法会来得很方便.先要根据条件建立恰当的极坐标系,然后给动点设出极坐标,极角之间的关系往往是解决问题的关键.例11椭圆x+=1(口>b>o)上有aD两个动点A,B满足OA上OB(0为坐标原点), 求证:+广为定值?解:设以原点为极点,轴为极轴,建立极坐标系.则有lpcosO,代人椭圆方程得到椭ty:psin0.圆的极坐标方程●赵小龙r+r?设椭圆上动点A(p,),因为上OB,则动点B(p:,0+),因此1COS0sin—丁十—一,PlnD1c.s(+詈).sin2(+詈)2一口2.bP2口sin20cos0r+.两式相加得P+=+,l111ap2D即击+=1+古为定值.以上的八大策略,提供同学们在解决此类问题的方法.对求定点,定值等问题往往先用特殊值法探求出结论,这样解题的方向就明确了, 然后在运算过程中心中有数,达到事半功倍的效果.1l.洙高毒中的五粪热燕题型思维能力是数学能力的核心,新课标的高考是通过数学基本能力与数学综合能力来考查数学思维的.针对高考对能力的考查,笔者认为临近高考时要努力达到下述目标:如果一个问题有多种数学思维方法,那么通过自身的思维应尽力发现其中大多数通法,并能靠自己丰富的解题实践择其优者实施.为此,只有平时对如下五类热点题型有思维模式的积淀,才能在应试中形成灵活的解题思维一,立体几何中的条件探索题此类题型是高考命题改革的先进成果,已被各省市的高考命题所大量采用,对考查新课标规定的数学基本能力中的空间想象能力,推理论证能力均大有裨益.抓住结论采到逆向探索,灵活转移,直观想象等思维方式,常可发现或猜出条件,进而给出充分性的证明.这是此类题型的一般思维模式.例1如图1,四棱锥P—ABCD中,M是棱船的中点;在底面四边形ABCD中,AB//CD, AB=4DC.在棱PC上找一点Ⅳ,使DⅣ∥平面?23?。
决胜2018中考数学压轴题全揭秘精品:(压轴题)专题25动态几何之定值(恒等)问题(原卷版)
连接 ON,点 M 从点 E 开始沿线段 EH 向点 H 运动,至与点 N 重合时停止,△MOG 和△NOG 的面积分别表示为
S1 和 S2,在点 M 的运动过程中,S1S2(即 S1 与 S2 的积)的值是否发生变化?若变化,请直接写出变化范围;若不
变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
19.(2015 河南)已知:如图 1,在面积为 3 的正方形 ABCD 中,E、F 分别是 BC 和 CD 边上的两点,AE⊥BF 于 点 G,且 BE=1. (1)求证:△ABE≌△BCF; (2)求出△ABE 和△BCF 重叠部分(即△BEG)的面积; (3)现将△ABE 绕点 A 逆时针方向旋转到△AB′E′(如图 2),使点 E 落在 CD 边上的点 E′处,问△ABE 在旋转前 后与△BCF 重叠部分的面积是否发生了变化?请说明理由.
(2)如图 2,已知直线 PA,PB 与 y 轴分别交于 E、F 两点.当点 P 运动时, OE OF 是否为定值?若是,试求 OC
出该定值;若不是,请说明理由.
9.(2016 贵州省黔南州)如图,在四边形 OABC 是边长为 4 的正方形,点 P 为 OA 边上任意一点(与点 O、A 不 重合),连接 CP,过点 P 作 PM⊥CP 交 AB 于点 D,且 PM=CP,过点 M 作 MN∥AO,交 BO 于点 N,连结 ND、 BM,设 OP=t. (1)求点 M 的坐标(用含 t 的代数式表示);
.
三、解答题 资 *源%库 ziy 1
5.(2016 广东省深圳市)如图,已知⊙O 的半径为 2,AB 为直径,CD 为弦.AB 与 CD 交于点 M,将 CD 沿 CD
翻折后,点 A 与圆心 O 重合,延长 OA 至 P,使 AP=OA,连接 PC. (1)求 CD 的长; (2)求证:PC 是⊙O 的切线;
解析几何中的定值问题
解析几何中的定值问题
在几何中,定值问题的概念可以说是比较复杂的,即让学生得出正确的结果,必须要综合运用几何中的相关规则,同时考虑到当前就件事物的特殊因素,就是找到合适的方法来应对定值问题。
通常情况下,定值问题应用程序能够帮助学生们更好地理解几何要素,例如形状、大小、位置、形状变换,以及复杂变化中相互联系的因素之间的关系。
比如:三角形中角度的和是180°,一个正三角形的边长之和两倍角的内锥角的余弦。
此外,如果学生了解几何概念的相关例子,他们可以学习到如何应用它们来解决定值问题。
此外,高级学生可以使用形式化几何学方法来解决定值问题,比如用符号表示变量和方程组,利用形式推理证明定值问题的结论,以及计算和联系多个变量的结果的方法。
总的来说,解决定值问题取决于学生的专业能力,只有具备了相应的几何知识和技巧,才有可能在学习定值问题的过程中取得成功。
当然,学生在尝试解决定值问题时,也可以借助一些常用解决方法,如试探法和排除法等。
此外,学生可以通过分析几何规定,应用化简、变换和复合算法等解决定值问题。
因此,几何定值问题不仅需要学生具备几何知识,而且还需要有一定的创新能力,以帮助学生在运用固定的解决方案之外,能够尝试发挥独特的想象力,实现几何知识的拓展与应用,实现几何定值问题的极致解决。
中考数学专题复习几何中的最值与定值问题公开课PPT课件
A
A
P
图(2-1) P
图(2-2)
P1
BC BC源自解:把△APB绕点A顺时针旋转600,使AB与AC重合,得△ACP1,连结 PP1,则△APP1是正三角形,PP1=AP=AP1=2,P1C=PB=3,当P、P1、 C不在一直线上时, PC<PP1+P1C=2+3=5,只有当P、P1、C在一直线 上时,PC之间的距离在到最大值,这个最大值是PP1+P1C=5。
例5. 如图,在ΔABC中,D、E分别是BC、
AB上的点,且∠1=∠2=∠3 ,如果ΔABC、
求Δ证E:BD的、最Δ小A值DC是的5周。长依次为m,m1,m2,
4
A
E
3
2
1
j
B
D
C
图(1-1)
课后练习
1.如图,在Rt△ABC中,∠ACB=90°,AC =BC=2,以BC为直径的半圆交AB于 点D,P是CD上的一个动点,连结AP, 则AP的最小值是_______.
例 3. 如图,在△ABC中,BC=5,AC=12, AB=13,在边AB、AC上分别取点D、E,使 线段DE将△ABC分成面积相等的两部分,试求 这样线段的最小长度.
例4.已知△XYZ是直角边长为1的等腰直角三角形 (∠Z=90°),它的三个顶点分别在等腰 Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的 最大可能值.
D B
E
当C、A、E三点共线 时,CD的值最大。 CD的最大值是a+b.
A
图(6-1)
D
C
F E
k O
A
图 ( 6-2)
j
B
C
例2 如图,正方形ABCD的边长为1,•点P为边BC上任意 一点(可与点B或点C重合),分别过点B、C、D作射线AP 的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的 最大值和最小值.
中考数学动态几何之定值问题真题与分析
中考数学动态几何之定值问题真题与分析动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。
从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。
一、线段(和差)为定值问题:典型例题:例1:如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.12(不需证明).(1)如图1,当点P为线段EC中点时,易证:PR+PQ=5(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.【答案】解:(2)图2中结论PR+PQ=125仍成立。
证明如下:连接BP,过C点作CK⊥BD于点K。
∵四边形ABCD为矩形,∴∠BCD=90°。
又∵CD=AB=3,BC=4,∴2 2 22BD CD BC345=+=+=。
∵S△BCD=12BC•CD=12BD•CK,∴3×4=5CK,∴CK=125。
∵S△BCE=12BE•CK,S△BEP=12PR•BE,S△BCP=12PQ•BC,且S△BCE=S△BEP+S△BCP,∴12BE•CK=12PR•BE+12PQ•BC。
又∵BE=BC,∴12CK=12PR+12PQ。
∴CK=PR+PQ。
又∵CK=125,∴PR+PQ=125。
(3)图3中的结论是PR-PQ=125.【考点】矩形的性质,三角形的面积,勾股定理。
【分析】(2)连接BP,过C点作CK⊥BD于点K.根据矩形的性质及勾股定理求出BD的长,根据三角形面积相等可求出CK的长,最后通过等量代换即可证明。
专题44 动态几何之定值(恒等)问题(压轴题)
《中考压轴题》专题42:动态几何之定值(恒等)问题一、解答题1.阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.2.已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,54),直线y=kx+2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1<x <3时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上,并求△GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则:1212bc x x x x a a+=⋅=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x 2﹣3x=15两根的和与积.解:原方程变为:x 2﹣3x ﹣15=0∵一元二次方程的根与系数有关系:1212b c x x x x a a +=⋅=∴原方程两根之和=331--=,两根之积=15151-=-.3.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ.4.如图,在平面直角坐标系xOy 中,一次函数5y x m 4=+的图象与x 轴交于A (﹣1,0),与y 轴交于点C .以直线x=2为对称轴的抛物线C 1:y=ax 2+bx+c (a≠0)经过A 、C 两点,并与x 轴正半轴交于点B .(1)求m 的值及抛物线C 1:y=ax 2+bx+c (a≠0)的函数表达式.(2)设点D (0,2512),若F 是抛物线C 1:y=ax 2+bx+c (a≠0)对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究1211M F M F +是否为定值?请说明理由.(3)将抛物线C 1作适当平移,得到抛物线C 2:()221y x h 4=--,h >1.若当1<x≤m 时,y 2≥﹣x 恒成立,求m的最大值.5.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为,点D 的坐标为(用t 表示);(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.6.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.7.如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO=8.AD=10.(1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线y=6x ﹣36是该抛物线的切线,求抛物线的解析式;(3)直线()35y k x 34=--与(2)中的抛物线交于P 、Q 两点,点B 的坐标为(3,354-),求证:11PB QB +为定值.(参考公式:在平面直角坐标系中,若M (x 1,y 1),N (x 2,y 2),则M ,N 两点间的距离为|MN|=.8.数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P 与等边△ABC 的内心O 重合,已知OA=2,则图中重叠部分△PAB 的面积为.(2)探究1:在(1)的条件下,将纸片绕P 点旋转至如图②所示位置,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD 为∠CAB 的角平分线,点P 在射线AD 上,且AP=2,以P 为顶点的等腰三角形纸片(纸片足够大)与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF=180°﹣α,求重叠部分的面积.(用α或2的三角函数值表示)9.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.10.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.11.如图,二次函数22y a x 2()mx 3m =--(其中a ,m 是常数,且a>0,m>0)的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2))求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为定点,求出该定点坐标.13.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.14.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.(1)求∠OAB 的度数;(2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.17.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.18.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,12S y S .①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;②当图中两块阴影部分图形关于点P 成中心对称时,求y的值.19.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF.(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A ,B 两点)上时.①求证:∠BDE=∠ADP ;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.20.已知,如图(a),抛物线2y ax bx c =++经过点A(x 1,0),B(x 2,0),C(0,-2),其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N 。
几何定值与极值问题
例1.已知. 几何定值和极值1. 几何定值问题(1)定量问题:解决定量问题的关键在探求定值,一旦定值被找岀,就转化为熟悉的几何证明题了。
探 求定值的方法一般有运动法、特殊值法及计算法。
(2)定形问题:定形问题是指定直线、定角、定向等问题。
在直角坐标平面上,定点可对应于有序数对, 定向直线可以看作斜率一定的直线,实质上这些问题是轨迹问题。
2. 几何极值问题:最常见的几何极值问题大体包括:有关线段的最大最小问题;三角形面积的最大最小 问题;角的最大最小问题等。
【例题分析】M 、N ,P 为MN 上的任一点,BP 、CP 的延长线分别交 AC 、ABAD AE于D 、E ,求证: 为定值。
DC EB分析:用运动法探求定值,先考虑特殊情况,令P 在MN 上向M 运动,此时D 点向A 运动,P 点运AD AE 0 AM 动到M 时,D 点将与A 点重合,而AM = MB ,于是 0 • 1 = 1,于是转DC EB AC MB入一般证明。
证明:连结AP AE . AD _ S .A PC S.A PB _ S 「ABC - S 「BPCEB DC S BPC S.BPCSABC = ^BC h, S BPC-2S BPCS BPC£2AE AD S Bpc _ 1EB DC S BPC例2.两圆相交于P、Q两点,过点P任作两直线AA'与BB'交一圆于A、B,交另一圆于A'、B',AB与A'B'交于点c,求证:• C为定值。
分析:设两圆为。
o 、oO',现从运动极端分析,因为直线 AA'与BB'都是以P 为固定点运动的。
当AA'与BB'重合时,便成了左图的情况,而 AC 和A'C 分别成了两圆的切线。
且 PQ_AA'(BB'),QA 、QA'分别为直径。
容易求得.C = 180 -. AQA'二.QAP . QA' P1c QOP • . QO' P)这就是所求的定值。
几何动点题型(定值)
前言:初中动点问题中,主要分为三类。
1.动点最值问题2.动点定值问题3.动点存在/形成问题。
这几种不同类型的动点问题,处理方式上也有所不同。
那么在处理定值问题时,因为一般都处在填空或选择中,所以从考试的角度上说,特殊情况处理是一个很好的手段。
1.如图,点A 在双曲线y=上,点B 在双曲线y=上,且AB ∥x 轴,则△OAB 的面积等于.2.如图(10),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则DE DF += .3.如图,点E ,F 在函数y =2x 的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且点F 的横坐标是点E 的三倍,则△EOF 的面积是 .4. 如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )A图(10)CEF5.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.6.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.7.如图,已知动点P在函数y=12x(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为.8.如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP 绕O点旋转,无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,则这个定值为________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态几何的定值
一、内容提要
1. 动态几何是指用运动的观点研究几何图形的位置、大小的相互关系. 用动的观点看几何定理,常可把几个定理归为一类. 例如:
① 梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线; ② 两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点
距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;
③ 相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长
定理等等.
2. 动态几何的轨迹、极值和定值. 几何图形按一定条件运动,有的几何量随着运动的变化
而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题. 例如:
半径等于R A 的圆A 与半径为R B (R B >R A ) 的定圆B 内切.那么:
动点A 有规律地变化,形成了一条轨迹:以B 为圆心,以R B -R A 的长为半径的圆. 而A ,B 两点的距离,却始终保持不变:AB=R B -R A .
若另有一个半径为R C 的圆 C 与圆B 外切,则A ,C 两点的距离变化有一定的范围: R B +R C -(R B -R A )≤AC ≤R B +R C +(R B -R A ).
即R C +R A ≤AC ≤2R B +R C -R A .
所以AC 有最大值:2R B +R C -R A ; 且有最小值:R C +R A . 3. 解答动态几何定值问题的方法,一般有两种: 第一种是分两步完成 :
① 先探求定值. 它要用题中固有的几何量表示. ② 再证明它能成立.
探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.
第二种是采用综合法,直接写出证明. 二、例题
例1. 已知:△ABC 中,AB =AC ,点P 是BC 上任一点,过点P 作BC 的垂线分别交AB ,AC 或延长线于E ,F. 求证:PE +PF 有定值. 分析:(探求定值)用特位定值法.
① 把点P 放在BC 中点上. 这时过点P 的垂线与AB ,AC 的交点都是点A , PE +PF =2PA ,从而可确定定值是底上的高的2倍因此原题可转化: 求证:PA +PB =2AD (AD 为底边上的高).
证明:∵AD ∥PF ,
∴
BD BP AD PE =; BD PD
CD CD CP AD PF +=
=. ∴2BD
BD
2BD PD CD BD BP AD PF AD PE =++=+.
即
2AD
PF
PE =+. ∴PE +PF =2AD.
② 把点P 放在点B 上.
这时PE =0,PF =2AD (三角形中位线性质), 结论与①相同.
还可以由PF =BC ×tanC ,把定值定为:BC ×tanC. 即求证PE +PF =BC ×tanC. (证明略)
同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可. 例2. 已知:同心圆为O 中,AB 是大圆的直径,点P 在小圆上
求证:PA 2+PB 2有定值.
分析:用特位定值法.设大圆,小圆半径分别为R ,r. ① 点P 放在直径AB 上.
得PA 2+PB 2=(R +r )2+(. R -r )2=2(R 2+r 2). ② 点P 放在与直径AB 垂直的另一条直径上 也可得PA 2+PB 2= R 2+r 2+R 2+r 2=2(R 2+r 2).
证明: 设∠POA =α,根据余弦定理,得
PA 2=R 2+r 2-2RrCos α, PB 2=R 2+r 2-2RrCos(180
-α).
∵Cos(180
-α)=Cos α.
∴PA 2+PB 2=2(R 2+r 2).
本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA ,PB 与R, r 的关系式,关键是引入参数α.
例3. 已知:△ABC 中,AB =AC ,点P 在中位线MN 上,BP ,CP 的延长线分别交AC ,AB 于E ,F.
求证:
CE
1
BF 1+
有定值, 分析: 本题没有明显的特殊位置,不过定值一般是用三角形边长a, b, c 来表示的, 为便于计算引入参数t, 用计算法证明. 证明:设MP 为t, 则NP=
2
1
a -t. ∵MN ∥BC ,
∴BF MF BC MP =, CE
NE
BC NP =.
B
C
即=a t BF ac t a BF c a t a c BF 12
121BF 21=
-⇒=-⇒-; CE ab t
a CE
b a t a CE b CE a t a 12
12121212121=
+⇒=+⇒-=- ∴CE 1BF 1+=c ac
t
a t a 32121=++-
∵c 是定线段,∴c
3
是定值. 即CE 1BF 1+有定值c
3. 例
4. 已知:在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆M 和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C. 求证:∠ACB 有定值. 分析: ⊙M 是△ABC 的内切圆,∠AMB 是以定线段AB 为弦的定弧所含的圆周
角,它是个定角.(由正弦定理Sin ∠AMB=R
2AB
), 所求定值可用它来表示.
证明:在△ABC 中,∠MAB+∠MBA=180
-∠AMB ,
∵M 是△ABC 的内心,
∴∠CAB+∠CBA=2(180
-∠AMB). ∴∠ACB=180
-(∠CAB+∠CBA )
=180
-2(180
-∠AMB) = 2∠AMB -180
.
由正弦定理
R 2AMB S AB =∠in , ∴Sin ∠AMB=
R
2AB
. ∵弧AB 所在圆是个定圆,弦AB 和半径R 都有定值,
∴∠AMB 有定值.
∴∠ACB 有定值2∠AMB -180
.
B
C
三、练习
1. 用固有的元素表示下列各题中所求的定值 (不写探求过程和证明): ①.等腰三角形底边上的任一点到两腰距离的和有定值是___________. ②.等边三角形内的任一点到三边距离的和有定值是________. ③.正n 边形内的任一点到各边距离的和有定值是_________.
④.延长凸五边形A 1A 2A 3A 4A 5的各边,相交得五个角:∠B 1,∠B 2,∠B 3,∠B 4,∠B 5它们的度数和是________,延长凸n 边形 (n ≥5)的各边相交,得n 个角,它们的度数和是___________. (2001年希望杯数学邀请赛初二试题) ⑤.两个定圆相交于A ,B ,经过点B 任意作一条直线交 一圆于C ,交另一圆于D ,
则
.AD
AC
有定值是_____________. ⑥.在以AB 为直径的半圆内,任取一点P ,AP ,BP 的延长线分别交半圆于C ,D ,
则AP ×AC+BP ×BD 有定值是_________.
⑦.AB 是定圆O 的任意的一条弦,点P 是劣弧AB 上的任一点(不含A 和B),PA ,
PB 分别交AB 的中垂线于E ,F.则OE ×OF 有定值是__________.
2. 已知:点P 是⊙O 直径AB 上的任一点,过点P 的弦CD 和AB 相交所成的锐角45 .求证:PC 2+PD 2有定值.
3. 已知:点O 是等腰直角三角形ABC 斜边BC 的中点,点P 在BC 的延长线上,PD
⊥BA 交BA 延长线于D ,PE ⊥AC 交AC 的延长线于E. 求证:∠DOE 是定角
4. 已知:点P 是线段AB 外一点,PD ⊥AB 于D ,且PD=AB ,H 是△PAB 的垂心,C 是AB 的中点.
求证:CH+DH 是定值.
5. 已知:AB ,CD 是⊙O 的两条直径,点P 是⊙O 上任一点(不含A ,B ,C ,D). . 求证:点P 在AB ,CD 的射影之间的距离是个定值.
6. 经过∠XOY 的平分线上的任一点A ,作一直线与OX ,OY 分别交于P ,Q 则OP ,OQ 的倒数和是一个定值.
7. △ABC 中,AB=AC=2,BC 边有100个不同点P 1,P 2,……,P 100, 记m i =AP i 2+Bp i ×P i C (i=1,2,3,……,100).
则m 1+m 2+……+m 100=________. (1990年全国初中数学联赛题)
8.. 直角梯形ABCD 中,AB ∥CD ,DA ⊥AB ,AB =26cm,CD=24cm,AD=8cm,有两个动点P 和Q ,点P 在CD 上,由D 向C 以每秒1cm 的速度移动,点Q 在AB 上由B 向A 以每秒3cm 的速度移动.问时间t 经过几秒时,①BCPQ 为平行四边形?等腰梯形?②PQ 与以AD 为直径的圆O 相切?相离?相交?
动态几何的定值练习题参考答案
1 ①腰上的高. ②一边上的高或3r 3 . ③ nr n. ④ 180度,(n -4)180度. ⑤两圆半径比. ⑥AB
2 ⑦⊙O 的半径的平方.
2. 定值是AB 平方的一半, 证Rt △COM ≌Rt △OBD , OM=DN.
3. 定值是直角, 以PA 为直径的圆经过A ,O ,E ,P ,D 五点, PE=AD , ∠AOD=∠POE .
4. 定值是AB 的一半,证明 仿例3.
5. 定值是⊙O 的半径与两直径夹角的正弦的积,证明仿例4.
6. 定值是
OA
os α
C 2(∠xoy=2α),证明 作AR ∥OQ 交Dx 于R ,AR 1OP 1OQ 1=
+. 7. 4×100.。