清华大学机械原理课件--第5章轮系机构
《清华大学机械原理》课件
配套习题
教材应配备一定数量的习题,以帮助学生加深对基本概念和理论的理解和应用。
教材使用
参考资料
参考资料形式多样
参考资料质量要高
参考资料
网络资源丰富
01
互联网上拥有大量的机械原理相关资源,如学术论文、课程资料、论坛讨论等。
网络资源
利用网络资源进行教学
02
教师可以通过网络平台进行辅助教学,发布教学视频、教学资料和作业等,以便更好地帮助学生掌握机械原理知识。
常用机构的工作原理、设计方法及其应用
机械系统动力学和平衡的基本理论和方法
课程目标
掌握机械原理的基本概念、基本理论和基本方法
掌握机构性能分析和优化设计的基础知识和技能
理解常用机构的工作原理、设计方法及其应用
提高机械系统动力学和平衡分析的能力
教学内容
02
机构的结构分析
机构组成
机架、机构、构件、运动副
实践操作
学生应积极参与实验和实践活动,通过实际操作加深对理论知识的理解和掌握。
学习方法
学习效果
学生应能够运用所学知识解决实际问题,如分析机械系统、设计机构等。
知识应用
学生的平时成绩、期中考试和期末考试成绩应符合教学要求和标准。
成绩评定
教师要求
06
具备扎实的机械原理专业知识
掌握机械原理的基本概念、基本理论和基本方法,能够准确、清晰地讲解课程内容。
xx年xx月xx日
《清华大学机械原理》课件
contents
目录
课程简介教学内容教学方法教学资源学生要求教师要求
课程简介
01
机械原理是机械工程的基础课程
为学生掌握机械设计方法和原理提供基础知识
机械原理第05章 轮系
i12
ω1 = = ω2
z2 z 1
z1 ω1 z2 ω2
两轮转向相同
i12
ω1 z2 = =+ ω2 z1
z1 ω1 z2 ω2
i12
ω1 z2 = = ω2 z1
(转向如图所示) 转向如图所示) 两轮的转向只能用画箭头的办法表示
ω1 z2 i12 = = ω2 z1 ω3′ z4 i3′4 = = ω4 z3′
第五章 轮系
Chapter 5 Gear Trains
轮系: 轮系:由齿轮组成的传动系统 5.1轮系的分类 5.1轮系的分类 (types of gear train) 根据轮系在运转过程中各轮轴 线在空间的位置关系是否固定, 线在空间的位置关系是否固定, 对轮系进行分类。 对轮系进行分类。 定轴轮系( 定轴轮系(ordinary gear trains) 所有齿轮轴线的位置 在运转过程中固定不 变的轮系
= 3×4 2×4 2 = 2
根据周转轮系中基本构件的不同,周转轮系可以分为 根据周转轮系中基本构件的不同, 2K2K-H型周转轮系 K表示中心轮,H表示系杆 表示中心轮,
3K型周转轮系 3K型周转轮系
在此轮系中系杆H只 在此轮系中系杆H 起支承行星轮使其与 中心轮保持啮合的作 不起传力作用, 用,不起传力作用, 故在轮系的型号中不 含“H”。 。
的周转轮系。 的周转轮系。
单一的定轴轮系或单 计算混合轮系传动比的正确方法是: 计算混合轮系传动比的正确方法是: 一的周转轮系 (1)首先将各个基本轮系正确地区分开来 首先将各个基本轮系正确地区分开来。 (1)首先将各个基本轮系正确地区分开来。 (2)分别列出计算各基本轮系传动比的方程式。 (2)分别列出计算各基本轮系传动比的方程式。 分别列出计算各基本轮系传动比的方程式 (3)找出各基本轮系之间的联系 找出各基本轮系之间的联系。 (3)找出各基本轮系之间的联系。 (4)将各基本轮系传功比方程式联立求解.即可求得 (4)将各基本轮系传功比方程式联立求解. 将各基本轮系传功比方程式联立求解 混合轮系的传动比 正确划分各个基本轮系的方法 几何轴线位置不固定的齿轮; 几何轴线位置不固定的齿轮 (1) 先找行星轮 —几何轴线位置不固定的齿轮; 支承行星轮的构件即为系杆; 支承行星轮的构件即为系杆 (2) 然后找系杆 —支承行星轮的构件即为系杆; 几何轴线与系杆重合且直接与行星轮相 (3) 再找中心轮 —几何轴线与系杆重合且直接与行星轮相 啮合的定轴齿轮。 啮合的定轴齿轮。 这一由行星轮、系杆、中心轮所组成的轮系,就是一个 这一由行星轮、系杆、中心轮所组成的轮系, 基本的周转轮系。区分出各个基本的周转轮系后. 基本的周转轮系。区分出各个基本的周转轮系后.剩余的那 些由定轴齿轮所组成的部分就是定轴轮系。 些由定轴齿轮所组成的部分就是定轴轮系。
清华大学机械原理——轮系PPT课件
(2) 运动分解
nH
1 2
(n3
n5 )
n3 r L n5 r L
n3
r
r
L
nH
n5
r
r
L
nH
第46页/共75页
6. 实现执行机构的复杂运动
行星轮既有自转又有公转—复杂运动
例:行星搅拌机构
第47页/共75页
用于食品加工的行星搅拌机构
第48页/共75页
5.5 轮系的设计
定轴轮系的设计 基本内容 ➢选择轮系的类型 ➢确定轮系中各轮的齿数 ➢选择轮系的布置方案
缺点:中间轴较长,变 形使齿宽上的载荷分布 不均匀。
周转轮系的设计 基本内容 ➢周转轮系类型的选择 ➢确定轮系中各轮的齿数 ➢*周转轮系的均衡装置
第55页/共75页
1.周转轮系类型的选择
考虑因素:
➢传动比范围; ➢效率高低; ➢结构复杂程度; ➢外廓尺寸等。
第56页/共75页
➢当轮系主要用于传递运动时
双排2K-H 单排2K-H
假想一个中心
z1
x
z2 z2'
2) 同心条件
z2
i1H
(x 1) x 1
z1
3) 装配条件
k z1 i1H (Q Rx)
(Q, R均为正整数)
第68页/共75页
➢ 双排2K-H行星轮系(标准齿轮传动,各轮模数相等)
4) 邻接条件
(z1
z2
)
sin
180 k
z2
+2 ha*
假定z2 z2'
若 x z2 1 z2'
第34页/共75页
2. 实现减速、增速或变速运动
例1:汽车手动变速器(130)
第5章-机械设计基础-轮系1PPT课件
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )
《清华机械原理》课件
课程安排
包括理论讲解、实际案例分析和设计优化,通 过多种教学方法提高学习效果。
教学理念
通过鼓励学生主动学习和动手实践,激发学生 的创新和设计能力。
核心概念
机械结构
探索机械系统的组成 和排列方式,理解结 构对运动学和动力学 的影响。
机械运动链
研究机械系统中零部 件的相互作用和运动 传递的方式。
运动学基本概 念
学习描述机械运动的 基本概念,如速度、 加速度和位置。
动力学基本概 念
了解机械系统中力的 作用和动力学原理, 分析力对运动的影响。
运动学分析
1
驱动机构
研究机械系统中不同类型的驱动机构和
运动方程
2
其运动特性。
通过建立运动方程,推导和分析机械系
统的运动规律。
3
变速装置
学习不同类型的变速装置,如齿轮传动
《清华机械原理》PPT课件
清华机械原理的PPT课件,旨在介绍与深入讨论机械结构、运动学和动力学的 核心概念。通过案例分析和实验结果分析,帮助学生进行机械设计与优化。
课程介绍
授课教师
由清华大学资深教师执教,具有丰富的机械工 程经验。
课程目的
帮助学生深入理解机械原理,掌握机械设计与 分析的基本工具和方法。
拉杆机构
4Hale Waihona Puke 和连杆机构,分析其传动效果。
探究拉杆机构的运动学特性和应用,如 曲柄滑块机构。
动力学分析
1 单自由度机构
研究单自由度机构在力的作用下的平衡和运 动情况。
2 质心运动
分析机械系统中质心的运动规律和特性。
3 矢量方法
使用矢量方法进行力的分析和动力学计算。
4 质心加速度分析
《清华大学机械原理》课件
汇报人:日期:•绪论•机构的结构分析•机构的运动分析•机构的力分析•机械效率与自锁•常用机构及其设计•机械系统的动力学设计•机械系统的运动控制目录绪论机械原理的研究对象030201机械原理课程的重要性基础理论设计与制造创新能力培养机械原理的发展历程古代机械文明18世纪工业革命后,机器逐渐取代了手工劳动,机械原理得到了广泛应用和发展。
工业革命现代发展机构的结构分析机构的组成机构的特点机构的组成及特点机构的分类机构可根据其结构分为连杆机构、凸轮机构、齿轮机构等。
结构分类详解每种机构的分类都有其特定的结构特点和使用范围。
机构的结构分类机构的结构组成要素机构的组成要素机构的组成要素包括构件、运动副和运动链等。
结构组成要素详解每个组成要素都有其特定的含义和作用,对机构的运动和受力性能有着重要影响。
机构的运动分析机构运动的基本概念解析法通过对机构进行数学建模,利用数值计算方法求解机构中各点的位置、速度和加速度等运动参数。
仿真的应用利用计算机仿真软件对机构进行模拟,可视化机构运动过程,方便快捷地分析机构的运动特性。
矢量图解法法分析机构中各构件之间的相对位置关系和运动特性。
1 2 3基于牛顿第二定律,分析机构中各构件之间的作用力和反作用力,以及它们之间的加速度和速度等运动参数。
牛顿力学法分别用于分析机构在运动过程中质量和力对时间和空间的积累效应,导出机构的运动微分方程。
动量定理和动量矩定理用于分析机构在运动过程中能量的转换与守恒关系,以及机构的功率和效率等性能指标。
能量守恒机构的力分析机构力分析的基本概念机构力分析的基本方法平衡状态下的力分析运动状态下的力分析动力学分析03惯性力分析机构力分析的特殊问题01摩擦力分析02重力分析机械效率与自锁机械效率是指机械在单位时间内输出功率与输入功率的比值。
定义机械效率可以通过测量机械输出端和输入端的功率,然后求比值得到。
计算方法机械效率受到多种因素的影响,如摩擦、构件之间的间隙、润滑状况等。
机械原理第五章 轮系
(1) z1 44, z2 40, z2 42, z3 42 (2) z1 100 , z2 101, z2 100 , z3 99 (3) z1 100 , z2 101, z2 100, z3 100
z2
z2
H
解:(1)
i1H3
n1 n3
nH nH
(1)2
z2 z3 z1z2
(1)3
z2 z4 z6 z1 z3 z5
30 40 120 60 30 40
2
i1H
n1 nH
1 i1H6
12 3
nH
n1 3
6.5
转/分
nH与 n1 同向
例9:图示小型起重机机构,已知 z1 53, z1 44, z2 48, z2 53, z3 58, z3 44, z4 87 ,一般工作情况下,5轴不转,动力由电机M 输入,带动滚筒N 转动;
H H
3 H (1)2 z1z2 1
0 H
z2 z3
上式表明,轮3的绝对角速度为0,但相对角速度不为0。
ω2=2ωH ω3=0
z2
z3
z1
铁锹
ωH
z3
z2 H
z1
z3
H z2 ωH
z1
例5:图示圆锥齿轮组成的轮系中,已知
z1 48, z2 48, z2 18, z3 24, n1 250 r/min , n3 100 r/min
(3) i1H 1 i1H3 1101 100 /100 100 1/100
结论:系杆转100圈时,轮1反向转1圈
iH1 1/ i1H 100
讨论:(1)行星轮系用少数几个齿轮,就可以获得很大的传动比,比定轴轮系要紧凑轻便很多,但当 传 动比很大时,效率很低。因此行星轮系常用于仪表机构,用来测量高速转动或作为精密微调机构。
机械原理轮系ppt课件
3
轮系的类型
定轴轮系:当轮系运转时,所有齿轮的几何轴线相对于 机架的位置均固定不变
4
轮系的类型
周转轮系: 当轮系运转时,至少有一个齿轮的几何轴线 相对于基架的位置不固定,而是绕某一固定轴线回转
5
轮系的类型
基本构件
2 —— 行星轮 H —— 系杆 1—— 中心轮 3—— 中心轮
如图上箭头所示。
i15
z 2 z3 z5 z1 z 2' z 3'
画箭头
传动比方向判断
传动比方向表示
17
定轴轮系的传动比计算
小结
1 从动齿轮齿数连乘积 大小: i1k k 主动齿轮齿数连乘积
转向: 1、所有齿轮轴线都平行的情况 2、输入、输出轮的轴线相互平行 画箭头方法确定,可在传动比大小前加正或负号 3、输入、输出齿轮的轴线不平行 画箭头方法确定,且不能在传动比大小前加正或负号
40
轮系的功用
五、实现结构紧凑且重量较小的大功率传动
由多个行星轮共同承担载荷
涡轮螺旋桨发动机 主减速器
41
轮系的功用
六、实现运动的合成与分解
两个输入,一个输出 一个输入,两个输出
H i13
运动合成
运动分解
z3 1 z1
nH
1 (n1 n3 ) 2
加法机构
n1 2nH n3
基本构件都是围绕着 同一固定轴线回转的
6
轮系的类型
根据轮系所具有的自由度不同,周转轮系 又可分为:差动轮系和行星轮系
计算图a)所示轮系自由度:
F 3 4 2 4 2 2
机械原理教程(清华大学出版社)第5章PPT课件
一、定轴轮系的传动比
1. 传动比大小的计算
i12
1 2
z2 ; z1
i23
ω2 ω3
z3 z2
;
i34
ω3 ω4
ω3 ω4
z4 z3
;
i45
4 5
4 5
z5 z4
8
i1i2 2 i3 3 4 i4 5 ω ω 2 1ω ω 2 3ω ω 4 3ω ω 5 4 ω ω 5 1 z z 1 2 z z 2 3 z z 3 4 z z 4 5 z z 1 3 z z 3 4 z z 4 5
(1)各齿轮的几何轴线相互平行
内啮合的圆柱齿轮转向相同,外啮合的圆柱齿轮转向相反。
若用m来表示轮系中外啮 合的对数,则可用(-1)m来确 定轮系传动比的正负号。若 计算为正,则说明主动轮、 从动轮转向相同,若结果为 负,则说明主动轮、从动轮 转向相反。
轮系传动比的正负号也可 以用画箭头的方法来确定。
❖2K-H型:2个中心轮,一个系杆。 ❖3K型:3个中心轮。系杆只起支承作用,不起传 力作用。
2K-H 型周转 轮系
3K型 周转轮
系
6
3. 混合轮系
又叫复合轮系。既包含定轴轮系部分,又包含周转 轮系部分,或包含几个周转轮系部分的复杂轮系。
含一个定轴轮系和一个周转轮系
含两个周转轮系
7
5.2 轮系的传动比
z3 z1
1nH 903 1nH 30
1 n H3 3 n H
1
nH
2
i1H
n1 nH
2
(负号表明二者的转向相反)
机械原理课件-轮系
i1K
n1 nK
轮1至轮K间所有从动轮齿数的乘积 轮1至轮K间所有主动轮齿数的乘积
(5 1)
如右图所
示轮系由7
个齿轮组
成,形成4
对齿轮啮
合。已知
各轮齿数,
传 动 比 i15 为:
i15
n1 n5
i12i23i3'4i4'5
n1 n2
n2 n3
n3' n4
n4' n5
轮系传动比————轮系中首、末两构件的角速度之比。计算时,要 确定其传动比的大小和首末两构件的转向关系。
定轴轮系各轮的相对转向用画箭头方法在图中表示,箭头方向表 明齿轮可见齿面圆周速度方向,如图所示。
定轴轮系的传动比等于该轮系中各齿轮副传动比的连乘积;也等 于各对啮合齿轮中从动轮齿数的连乘积与各对啮合齿轮中主动轮 齿数的连乘积之比。即
n1 nH
1 z2z3 z1 z2'
1 101 99 100 100
1 10000
iH1
1 i1H
10000
传动比iH1为正,表示行星架H与齿轮1转向相同。 该例说明行星轮系可以用少数几个齿轮获得很大的传动比。但要 注意,这种类型的行星轮系传动,减速比愈大,其机械效率 愈低。一般不宜用来传递大功率。如将其用作增速传动(即齿 轮1低速输入,行星架H高速输出),则可能产生自锁。
§5-3 周转轮系及其传动比
一、周转轮系的组成
如图所示为一常见的周转轮系,它由中心轮(太阳轮)1、3、 行星轮2和行星架(又称系杆或转臂)H组成。
周转轮系中,中心轮1、3和行星架H均绕固定轴线转动,称
清华大学机械原理课件--第5章轮系机构
1
1
2
3
32
SK360普通车床
4
4
走刀丝杠的三星轮换向机构
平面定轴轮系(各齿轮轴线相互平行)
第5章 轮系
i12
1 2
z2 z1
i34 4 3zz3 4
i2'3
2 3
z3 z2'
i45 5 4z z5 4
i15 15 (1)3
z2z3z5
z1z2'z3'
z2 z3 z5 z1 z2' z3'
第5章 轮系
1. 将混合轮系分解为几个基本轮系; 2. 分别计算各基本轮系的传动比; 3. 寻找各基本轮系之间的关系; 4. 联立求解。
行星轮 系杆
中心轮
周转轮系 定轴轮系
第5章 轮系
例3:z1=20,z2=30, z2’=20, z3=40, z4=45, z4’=44,
z5=81, z6=80 求: i16
z2z3 z1z2
18701.875 2824
1 H 1.875 0H
i1H H 1 11.8752.875
第5章 轮系
H 3
H 1
周转轮系传动比计算方法
周转轮系
- H
转化机构:假想的定轴轮系
第5章 轮系
上角标 H 正负号问题
i1Hn 1 n H i1 n
计算转化机构的传动比 计算周转轮系传动比
i1H n
SK360普通车床
国产红旗轿车自动变速机构
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
5.3.4 在机构尺寸和重量较小的条件下,实现大功率传动
《清华大学机械原理》PPT课件
19
第1章 机构的组成和结构
国标规定的构件和运动副的表示符号 运动简图的绘制方法
2021/4/26
20
1.2.1 构件与运动副的表达方法
第1章 机构的组成和结构
机架
A B
机架和活动构件通过转动副联接 (内副)
机架和活动构件通过移动副联接
2021/4/26
21
两个活动构件联接
第1章 机构的组成和结构
小型压力机
2021/4/26
第1章 机构的组成和结构
1. 分析整个机构的工作原理
机构组成 动作原理和运动情况
原动件 偏心轮1
齿轮1`
编号原杆则件:2注意区分位齿置轮重叠6`的不
同构件和杆同件轴3刚性联接槽的凸多个轮零6 件。
前者分别编号,后者采用一个编号,
加`以示区别。 杆件4
滑块7
执行构件
压头8
31
2021/4/26
33
1.2.2 运动简图的绘制
第1章 机构的组成和结构
1. 分析整个机构的工作原理
2. 沿着传动路线,分析相邻构件之间的相对运动 关系,确定运动副的类型和数目
3. 选择适当的视图平面
2021/4/26
34
4. 绘图
选择机架 提取构件的运动尺寸
确定比例尺 选择机构运动中的一个状态
确定各运动副位置,绘图
编号:A、B、C …表示运动副
1、2、3 …表示构件 O1、O2…表示固定转轴
原动件的运动方向
2021/4/26
第1章 机构的组成和结构
35
第1章 机构的组成和结构
运动链
具有确定的相对运动 机构
无相对运动
桁架
相对运动不确定 运动链
机械原理轮系ppt课件
基本构件都是围绕着 同一固定轴线回转的
6
轮系的类型
根据轮系所具有的自由度不同,周转轮系 又可分为:差动轮系和行星轮系
计算图a)所示轮系自由度:
F 3 4 2 4 2 2
差动轮系:F=2
计算图b)所示机构自由度, 图中齿轮3固定
F 3 3 2 3 2 1
行星轮系:F=1
第九章
轮系
一对齿轮传动的传 动比是5—7
轮系:由一系列互相啮合的齿轮组成的传动机构,用
于原动机和执行机构之间的运动和动力传递。
1
第九章
•轮系的类型
轮系
•定轴轮系的传动比计算
•周转轮系的传动比计算 •复合轮系的传动比计算
•轮系的功用
•其他行星传动简介
2
§9.1 轮系的类型
根据轮系在运转时各齿轮的几何轴线在空间的相对位
惰轮:不改变传动比的大小,但改变轮系的转向
15
定轴轮系的传动比计算
2、定轴轮系中各轮几何轴线不都平行,但是 输入、输出轮的轴线相互平行的情况
传动比方向判断
画箭头 在传动比的前面加正、负号
16
传动比方向表示
定轴轮系的传动比计算
3、输入、输出轮的轴线不平行的情况 齿轮1的轴为输入轴, 蜗轮5的轴为输出轴,输 出轴与输入轴的转向关系
1 i15 ? 5
4 z5 i45 5 z4
1 1 2 3 4 i15 i15i12 i23 i34 i45 5 2 3 4 5
z2 z3 z4 z5 所有从动轮齿数的乘积 z1 z2 z3 z4 所有主动轮齿数的乘积
14
定轴轮系的传动比计算
二、传动比转向的确定
机械原理——轮系
机械原理——轮系机械原理,轮系轮系是机械中常见的一种传动机构,通过多个轮齿的互相啮合实现能量的传递和转换。
轮系一般由一个或多个主动轮和一个或多个被动轮组成。
主动轮通过外力的作用将动力传递给被动轮,被动轮则将动力传递给其他机械部件。
轮系的基本原理是利用轮齿的啮合来实现转动的传递。
在轮系中,两个轮齿垂直于轴线的轮称为齿轮,两个平行于轴线的轮称为平轮。
轮齿的形状和尺寸决定了轮系的传动比和转矩大小。
常见的齿轮包括圆柱齿轮、锥齿轮、斜齿轮等,而平轮通常为圆盘状。
轮系的主要功能是实现速度变换、转矩变换和传递。
其中,速度变换是指通过不同大小的齿轮组合来改变传动的速度。
传动比由齿轮的齿数比决定,齿数越大的齿轮转速越慢,齿数越小的齿轮转速越快。
通过适当选择齿数比,可以实现从高速到低速或从低速到高速的转变。
转矩变换是指通过轮系将一定转矩转换为不同大小的转矩。
转矩的大小由齿轮的半径和传动力决定,半径越大转矩越大,传动力越大转矩越小。
通过合理选择齿轮的半径,可以实现转矩的放大或减小。
轮系的传递过程中会有一定的功率损耗。
这是由于轮齿间的副动摩擦、齿轮的弹性变形和轴承摩擦等原因引起的。
为了减少功率损耗,需要选择合适的材料、润滑方式和合理的轴承布置。
轮系的应用十分广泛。
在机械工程中,轮系经常用于传动装置中,如汽车的变速器、液压泵、风力发电机等。
此外,在各类设备和仪器中,轮系也被广泛应用于地铁、电梯、空调等。
轮系作为一种传动机构,在实际应用中需要考虑的因素很多。
例如,齿轮的设计和加工精度、齿轮的材料和强度、齿轮啮合时的噪声和振动等。
为了确保轮系的正常运行和使用寿命,需要进行合理的设计和维护。
总之,轮系是机械中一种常见的传动机构,通过轮齿的啮合实现转动的传递。
它具有速度变换、转矩变换和传递的功能。
轮系在汽车、机械设备和仪器仪表等领域具有广泛的应用。
在实际应用中,需要考虑轮系的设计和加工精度、材料强度、噪声和振动等因素,以确保其正常运行和使用寿命。
机械原理课件-轮系
2. 主 、从动轮转向关系的确定
(1)轮系中各轮几何轴线均互相平行的情况
i15 (1)3
z2 z3z5 z1z2, z3,
z2z3z5 z1z2, z3,
(2) 轮系中所有齿轮的几何轴线不都平行, 但首、尾两轮的轴线互相平行
用箭头表示各轮转向;
(3)轮系中首尾两轮几何轴线不平行的情况 其转向只能用箭头表示在图上。如图所示:
2、列出计算各基本轮系传动比的方程式; 3、找出各基本轮系之间的关系; 4、方程式联立求解,即可求得混合轮系的传动比。
§5-4 轮系的功能
一、实现分路传动:
利用轮系可以使一个 主动轴带动若干个从动轴同 时旋转,并获得不同的转速。
二、获得较大的传动比
采用周转轮系,可以在使用很 少的齿轮并且也很紧凑的条件下, 得到很大的传动比。
图5-1
§5-1 轮系的类型
2. 周转轮系:
至少有一个齿轮轴线的位置不固定,而是绕着其它定轴齿轮的轴线 做周向运动的轮系。
周转轮系举例:
图中所示为一基本型 周转轮系。它由4个活动构 件组成,它们是:两个定 轴转动的中心轮(又称太 阳轮)1和3,支承齿轮2轴 线且作定轴转动的系杆 (又称行星架或转臂)H, 轴线随系杆H而转动的行星 轮2。
五、实现换向传动:
在主轴转向不变的条件下, 可以改变从动轴的转向。
六、实现运动的分解:
差动轮系可以将一个基本构件的主 动转动按所需比例分解成另两个基本构件的不同转动。
七、实现结构紧凑的大功率传动
周转轮系常采用多个行星轮均 布的结构形式
多个行星轮共同分担载荷,可 以减少齿轮尺寸;
各齿廓啮合处的径向分力和行星 轮公转所产生的离心惯性力得以平衡, 可大大改善受力状况;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
iio
in out
传动比的大小 输入、输出轴的转向关系
第5章 轮系
轮系的分类
根据轮系在运转过程中,各齿轮的几何轴线在空间 的相对位置是否变化,可以将轮系分为三大类:
5.1.1 定轴轮系 5.1.2 周转轮系 5.1.3 混合轮系
第5章 轮系
5.1.1 定轴轮系:轮系运转过程中,所有齿轮轴线的几 何位置都相对机架固定不动
假想定轴轮系
第5章 轮系
2K-H型周转轮 系的转化机构
第5章 轮系
2K-H型周转轮系转化机构的传动比
i1H3
1H 3H
1H 3 H
i1H3
z3 z1
i1H313H H
z3 z1
第5章 轮系
一般周转轮系转化机构的传动比
i1H n 1 n H Hzz12 zzn n1
第5章 轮系
例:设计一个总传动比为12的定轴轮系。
第5章 轮系
5.4.1 定轴轮系的设计
定轴轮系布置方案的选择:多方案比较选优
5.4.2 周转轮系的设计
轮系类型的选择
第5章 轮系
关键因素:传动比、传动效率、结构复杂程度、外廓尺寸、重量 (1)传递运动时,优先考虑传动比,兼顾其他因素; (2)传递动力时,优先考虑效率,其次考虑传动比等因素。
rad/s,方向如图所示。求: H
H
i1H3
1 H
3
1H 3H
z2z3 z1z2
48244 4818 3
225050HH 101000HH
44 33
H 2
2
1 2‘
3
H
H 1
1
H 3
3
H 50
定轴轮系 周转轮系
1
21
2
I
第5章 轮系
1‘
2‘
II
双联滑移齿轮
第5章 轮系
车床走刀丝杠的三星轮换向机构
SK360普通车床
国产红旗轿车自动变速机构
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
5.3.4 在机构尺寸和重量较小的条件下,实现大功率传动
某涡轮螺旋桨发动机 主减速器
混合轮系的传动比
i16 16
33 0.0 1H
300
5.3 轮系的功能
5.3.1 实现分路传动
从动轴1 3
主
从动轴2
动
轴
从动轴n
第5章 轮系
9 8 7
4
5
6
主动轴 2
1
某航空发动机附加系统
第5章 轮系
5.3.2 实现大传动比
第5章 轮系
a
b
定轴轮系
第5章 轮系
第5章 轮系
5.3.3 实现变速和换向
第5章 轮系
1. 将混合轮系分解为几个基本轮系; 2. 分别计算各基本轮系的传动比; 3. 寻找各基本轮系之间的关系; 4. 联立求解。
行星轮 系杆
中心轮
周转轮系 定轴轮系
第5章 轮系
例3:z1=20,z2=30, z2’=20, z3=40, z4=45, z4’=44,
z5=81, z6=80 求: i16
第5章 轮系
行星轮系(F=1)
差动轮系(F=2)
中心轮是转动,还是固定?
2K-H 型 根据基本构件不同
3K 型
第5章 轮系
单排2K-H 型
双排2K-H 型
3K 型
周转轮系的传动比
第5章 轮系
周转轮系
定轴轮系
?
绕固定轴线转动的系杆
- H H
第5章 轮系
周转轮系的 转化机构
周转轮系
H - H=0
第 5 章 轮系机构
5.1 轮系分类及传动比计算 5.2 轮系的功能 5.3 轮系的设计 5.4 其它类型的行星传动
第5章 轮系
齿轮机构的传动比
第5章 轮系
z2
i12
1 2
z1 z2
z1
外啮合 内啮合
i12
1 2
z2 z1
5.1 轮系传动比计算
第5章 轮系
轮系的传动比:
第 5 章 轮系机构
第5章 轮系
主动轮
从动轮
一对圆柱齿轮,传动比不大于5~7
12小时
时针:1圈 分针:12圈 秒针:720圈
i = 12 i = 60
i = 720
问题:大传动比传动
第5章 轮系
问题:变速、换向
第5章 轮系
第5章 轮系
轮系:由一系列彼此啮合的齿轮组成的传动机构, 用于原动机和执行机构之间的运动和动力传递。
5.4.2 周转轮系的设计
均衡装置设计
第5章 轮系
基本构件浮动式
采用弹性构件
杠杆联动式
5.5 其他类型的行星传动
5.5.1 渐开线少齿差行星传动
第5章 轮系
5.5 其他类型的行星传动
5.5.2 摆线针轮行星传动
第5章 轮系
5.5 其他类型的行星传动
5.5.3 谐波齿轮传动
第5章 轮系
本章重点小结
i15
z2 z3 z5 z1z2' z3'
传动比方向判断 表示 画箭头
第5章 轮系
定轴轮系的传动比
大小:
i1k
1 k
从动齿轮齿数连乘积 主动齿轮齿数连乘积
转向: 画箭头法(适合任何定轴轮系)
(1) m 法(只适合所有齿轮轴线都平行的情况)
结果表示:
i1k
1 k
从动齿轮齿数连乘积
i12
1 2
z2 z1
i34 4 3zz3 4
i2'3
2 3
z3 z2'
i45 5 4z z5 4
i15 15 (1)3
z2z3z5 z1z2'z3'
z2 z3 z5 z1 z2' z3'
第5章 轮系
惰轮
第5章 轮系
1
1
2
3
32
SK360普通车床
第5章 轮系
一、轮系传动比计算
定轴轮系是基础,重点掌握转向判断; 周转轮系传动比计算难点:转化机构 混合轮系传动比计算关键:基本轮系的划分
二、比较连杆机构、凸轮机构和齿轮机构,掌握轮系 机构的优缺点和应用场合。
第5章 轮系
周转轮系I
第5章 轮系
周转轮系II
5.1.3 混合轮系:由定轴轮系和周转轮系、或几部分周转
轮系组成的复杂轮系
第5章 轮系
定轴轮系
周转轮系
F = 2 差动轮系
封闭
F = 1 混合轮系
封闭差动轮系
第5章 轮系
混合轮系
?
周转轮系I 周转轮系II
周转轮系I 周转轮系II
各周转轮系相互独立 不共用一个系杆
周转轮系
- H
转化机构:假想的定轴轮系
第5章 轮系
上角标 H 正负号问题
i1Hn 1 n H i1 n
计算转化机构的传动比 计算周转轮系传动比
i1Hn
1nH H
z2zn z1zn1
i1 n
1 n
第5章 轮系
例2:z1=z2=48,z2’=18, z3=24,1=250 rad/s,3= 100
4
4
走刀丝杠的三星轮换向机构
平面定轴轮系(各齿轮轴线相互平行)
第5章 轮系
i12
1 2
z2 z1
i34 4 3zz3 4
i2'3
2 3
z3 z2'
i45 5 4z z5 4
i15 15 (1)3
z2z3z5
z1z2'z3'
z2 z3 z5 z1 z2' z3'
输入
输出
平面定轴பைடு நூலகம்系
输出
空间定轴轮系
定轴轮系的传动比计算
第5章 轮系
i15
1 5
?
i1 2
1 2
z2 z1
i34
3 4
z4 z3
i2'3
2 3
z3 z2'
i4
5
4 5
z5 z4
i12 i2 '3i3 4i45 1 2 3 41i15 2 3 4 5 5
行星搅拌器
第5章 轮系
第5章 轮系
机械手
轮系功能小结
实现分路传动 大传动比 变速、换向 大功率传动 运动的合成与分解 执行构件的复杂运动
第5章 轮系
5.4 轮系的设计
5.4.1 定轴轮系的设计 5.4.2 周转轮系的设计
第5章 轮系
5.4.1 定轴轮系的设计
轮系类型的选择
第5章 轮系
关键点: (1)正确掌握各种齿轮机构的特点和应用场合; (2)明确设计要求; (3)满足要求的前提下机构越简单越好。
第5章 轮系
5.3.5 实现运动的合成与分解 差动轮系 F=2 两个输入,一个输出 运动合成
i1H3
z3 z1
1
nH 12(n1 n3) 加法机构
n1 2nH n3 减法机构
广泛用于机床、计算装置、补偿调整装置中
一个输入,两个输出
第5章 轮系
运动分解
差速器