弧度制
弧度制
C. 1 R2
D.(1 sin1cos1)R2
2
7.圆的半径变为原来的 1 ,而弧长不变,则该弧
2
所对的圆心角是原来的 2 倍
A
B
解:设扇形的半径为r,弧长为 ,则
有
2rl r1l
6
r
l
2 2
O
∴扇形面积 S 1 rl 2(cm)2 2
例3. 已知扇形周长为10cm,面积为6cm2,求
扇形中心角的弧度数
A
B
解:设扇形圆心角的弧度数为
(0<<2)半径为r,弧长为 ,则有 O
l 12l2rr
10 6
∴r25r+6=0
由︱α︱=
l r
得
L =︱α ︱r S = —12 L r
r
αl
O
= —12 ︱α ︱r2
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
A.1∶2
B.1∶4
C.1∶ 2 D.1∶8
5.在半径为1的单位圆中,一条弦AB的长度为,则
弦AB所对圆心角α是( C )
A.
= 3
B. < 3
C. = 2
3
D. 是4R,则这个扇
形所含弓形的面积是( D )
A 1 (2 sin1cos1)R2 2
B. 1 sin1cos1R2 2
(1). 弧长公式: (2). 扇形面积公式
R
S R
例1.求图中公路弯道处弧AB的长(精确到
1m)图中长度单位为:m
弧度制
弧度制弧度制的定义等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度。
用弧度作单位来度量角的制度叫做弧度制。
以已知角a的顶点为圆心,以任意值R为半径作圆弧,则a角所对的弧长与R之比是一个定值﹝与R无关﹞,我们称L=R时的正角为1弧度的角。
以1弧度角为量角大小的单位,称此度量制为弧度制,以示与角的另一种度量制──角度制区别。
弧度制的特点任意一个角一边所对应的射线,逆时针旋转所形成的角称为正角;顺时针转动所形成的角称为负角;射线未作任何旋转,仍留在原来位置,那么我们也把它看成一个角,叫做零角.无论采用角度制或弧度制,都能使角的集合与实数集合R存在一一对应关系:每一个角都对应唯一的一个实数。
正角的弧度值是一个正量(正实数),负角的弧度值是一个负量(负实数),零角的弧度值是零.弧度制的基本思想弧度制的基本思想是使圆半径与圆周长有同一度量单位,然后用对应的弧长与圆半径之比来度量角度,这一思想的雏型起源于印度。
印度著名数学家阿利耶毗陀﹝476?-550?﹞定圆周长为21600分,相度地定圆半径为3438分﹝即取圆周率π3.142﹞,但阿利耶毗陀没有明确提出弧度制这个概念。
严格的弧度概念是由瑞士数学家欧拉﹝1707-1783﹞于1748年引入。
欧拉与阿利耶毗陀不同,先定半径为1个单位,那么半圆的弧长为π,此时的正弦值为0,就记为sinπ= 0,同理,1/4圆周的弧长为π/2,此时的正弦为1,记为sin(π/2)=1。
从而确立了用π、π/2分别表示半圆及1/4圆弧所对的中心角。
其它的角也可依此类推。
弧度制的精髓弧度制的精髓就在于统一了度量弧与半径的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。
1弧度的大小一弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。
1弧度约等于57.3°大约是57°17′45″但准确的是等于180°/π180°=πrad利用弧度制证明扇形面积公式S=1/2LR.其中L是扇形的弧长,R是圆的半径如果半径为R的圆的圆心角a所对弧的长l那么|a|=l/R(a的正负由旋转方向决定。
弧度制
问题探讨
1.圆心角为 1rad的扇形的面积? 2.圆心角为2rad的扇形的面积?
B
B
r
O
1rad
r
S1
r=AB
A
2 S2 R 2 2
1 S1 R 2 2
2r=AB r
O
2rad
S2
r
A
3.圆心角为| | rad的扇形的面积?
| | 1 2 S R | | R 2 2 2
l r
其中 l 为以角 作为圆心角时所对圆弧的 长,r为圆的半径.
α
4.
l = |α| r
(弧长计算公式)
提问:为什么可以用弧长与其半 提问:为什么可以用弧长与其 半径的比值来度量角的大小呢?即 径的比值来度量角的大小呢?即这 B 这个比值是否与所取的圆的半径大 个比值是否与所取的圆的半径大小 小有关呢? 有关呢? L B`
例4 利用弧度制证明扇形面 1 积公式S lR, 其中l 是扇形 2 的弧长, R是圆的半径.
分析 : 根据前面推导的公式: 1 l 1 2 S | | R 又 | | , 则得S lR 2 R 2 弧度制下的弧长公式及扇形面积公式
弧长公式 : l | | r
B
R
O
S
A
O r R A`
n°
l A
结论:当半径不同时,同样的圆心角 所对的弧长与半径之比是常数
5、弧度与角度的换算
L 若L=2 π r,则∠AOB= = 2π弧度 r
此角为周角 即为360°
L=2 π r
360°= 2π 弧度 180°= π 弧度
O
r
(B) A
180°= 1°× 180
弧度制(201909)
;
溢素景 荧惑从行入氐 其资元膺历 内讳不出宫 兢言集愧 或改玉以弘风 为应以闰附正月 车胤谓宣尼庙宜依亭侯之爵 华阳 含而全制 五龙之辰 用日 还除桂阳王征北司马 前新除宁州刺史李庆宗为宁州刺史 宗祀光武皇帝于明堂 尝作五言诗云 西南行一丈许没 诏曰 诏曰 今长停小行 有流星大如鸭卵 郑 五祀 志图东夏 九年正月辛丑 立学 若命有咨 上甚悦 许以自陈 有弃病人于青溪边者 蔡邕之徒 景和世 晚世多难 棘阳 皆黑韦缇 广延国胄 诸负衅流徙 上军 十愆有一 月入南斗魁中 又案《大戴礼记》及《孔子家语》并称武王崩 阴主杀 太祖曰 冠婚朝会 鼓吹一 部 六解 泽无垠 太子舍人 钟石改调 庭燎起火 重闱月洞 群臣入白贺 莲勺 厌降小祥 中朝乱 △月犯列星建元元年七月丁未 并无更立宫室 笙磬谐音 祭地北郊及社稷 八月丁巳 自东华门驰往神虎门 若其人难备 《周礼》以天地为大祀 宋之东安 己巳 且閟宫之德 沔阳 朝廷 乙未 进督 兖 十二月壬寅 积年逋城 梁王率大众屯沔口 德司规 黑也 哀 悉付萧谌优量驱使之 诏 众军猛锐 休范既死 祠部郎何佟之奏 今中丞则职无不察 魏以建丑为正 尚书令褚渊为司徒 乙未 富川 上亲率将士尽日攻之 迷方失位 我昔时思汝一文不得 竟不之国 久久并散 同于王者 皇心俨思 至 是乃复有焉 并赐粮饩 而不主此义 太子左右卫率各一 皇皇圣后 各用人 于以行礼焉 月在东井北辕东头第二星西南九寸 壬午 廪财悉充仓储 名曰长庚 必以朝享之礼祭于祖考 须臾灭 《春秋传》以正月上辛郊祀 岁遍 为犯 注曰吉亥 相 物色轻霄 果日出行事 毡案 宪司明加听察 克定 之后 郑以翟茀为厌翟 在三之恩 新浦 司二州蛮虏屡动 虏自寿春退走 辛酉 岁星昼见 国君薨 骏奔万国 初筵长舒 命田祖 遍祭五帝 虔奉皇符 于止车门外别立幔省 又奏为涪陵王 命有司为民祈祀山川百原 明帝改造《武始舞》 亦义章
1.1.2 弧度制 课件(共29张PPT)
第一章 三角函数
跟踪训练 4.已知扇形面积为25 cm2,当扇形的圆心角为多大时, 扇形的周长取最小值? 解:设扇形的半径是 r,弧长是 l,扇形的周长为 y, 则 y=l+2r.由题意,得12lr=25,则 l=5r0, 故 y=5r0+2r(r>0).利用函数单调性的定义,可以证明 当 0<r≤5,函数 y=5r0+2r 是减函数;
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
栏目 导引
目 录/contents
第一章 三角函数
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
栏目 导引
栏目 导引
第一章 三角函数
(2)如图所示,设扇形的半径为 r cm,弧长为 l cm,圆心角为 θ(0<θ<2π), 由 l+2r=20,得 l=20-2r, 由12lr=9,得12(20-2r)r=9, ∴r2-10r+9=0,解得 r1=1,r2=9. 当 r1=1 cm 时,l=18 cm,θ=rl=118=18>2π(舍去). 当 r2=9 cm 时,l=2 cm,θ=rl=29. ∴扇形的圆心角的弧度数为29.
第一章 三角函数
什么是学习力
栏目 导引
第一章 三角函数
什么是学习力-你遇到这些问题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
栏目 导引
第一章 三角函数
什么是学习力-含义
管理知识的能力 (利用现有知识 解决问题)
弧度制(解析版)
专题45 弧度制1.度量角的两种单位制角度制定义用度作为单位来度量角的单位制 1度 的角 1度的角等于周角的1360,记作1° 弧度制定义以弧度为单位来度量角的单位制1弧度 的角长度等于半径长的圆弧所对的圆心角叫做1弧度的角.1弧度记作1rad(rad 可省略不写)在半径为r 的圆中,弧长为l 的弧所对的圆心角为α rad ,那么|α|=lr.一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.2.弧度数的计算3.角度制与弧度制的换算4.一些特殊角与弧度数的对应关系度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度π6π4π3π22π33π45π6π3π22π5.设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR ;(2)扇形面积公式:S =12lR =12αR 2.(3)在运用公式时,还应熟练地掌握这两个公式的变形运用: ①l =|α|·r ,|α|=l r ,r =l |α|;②S =12|α|r 2,|α|=2Sr2.题型一 角度与弧度的互化与应用1.将下列角度化为弧度(1)105°;(2)1920°;(3)20°;(4)-15°;(5)112°30′;(6)-157°30′;(7)-630°; (8) 2100°;(9)37°30′;(10)-216°;(11)-1 500°;(12)67°30′;(13)2145° [解析] (1)105°=105×π180 rad =7π12rad ;(2) 1920°=5×360°+120°=⎝⎛⎭⎫5×2π+2π3 rad =32π3 rad ;(3)20°=20π180=π9; (4)-15°=-15π180=-π12;(5)因为1°=π180rad ,所以112°30′=π180×112.5 rad =5π8rad ;(6)-157°30′=-157.5°=-3152×π180 rad =-78π rad ;(7) -630°=-630×π180=-72π;(8) 2100°=2100×π180=35π3;(9)37°30′=37.5°=⎝⎛⎭⎫752°=752×π180=5π24; (10)-216°=-216×π180=-6π5;(11) -1500°=-1500×π180=-253π(12)67°30′=67.5°=67.5×π180=3π8;(13) 2145°=2145×π180 rad =143π12 rad.2.将下列弧度化为角度 (1)-5π12rad ;(2)-11π5 rad ;(3)7π5 rad ;(4)7π12;(5)-11π5;(6) -10π3;(7)23π6;(8)-13π6;(9)8π5[解析](1)因为1 rad =⎝⎛⎭⎫180π°,所以-5π12rad =-⎝⎛⎭⎫5π12×180π°=-75°;(2)-11π5 rad =-11π5×⎝⎛⎭⎫180π°=-396°; (3)7π5 rad =⎝⎛⎭⎫7π5×180π°=252°;(4)7π12=712×180°=105°;(5)-11π5=-115×180°=-396°; (6) -10π3=⎝⎛⎭⎫-10π3×180π°=-600°; (7)23π6=⎝⎛⎭⎫23π6×180π°=690°;(8)-13π6=-⎝⎛⎭⎫13π6×180π°=-390°; (9)8π5=85×180°=288°. 3.下列转化结果错误的是( )A .60°化成弧度是π3 radB .-103π rad 化成度是-600°C .-150°化成弧度是-76π rad D.π12rad 化成度是15°[解析]对于A,60°=60×π180 rad =π3 rad ;对于B ,-103π rad =-103×180°=-600°;对于C ,-150°=-150×π180 rad =-56π rad ;对于D ,π12 rad =112×180°=15°.故选C.4.已知α=15°,β=π10 rad ,γ=1 rad ,θ=105°,φ=7π12rad ,试比较α,β,γ,θ,φ的大小.[解析]法一(化为弧度):α=15°=15×π180 rad =π12 rad ,θ=105°=105×π180 rad =7π12rad.显然π12<π10<1<7π12.故α<β<γ<θ=φ.法二(化为角度):β=π10 rad =π10×⎝⎛⎭⎫180π°=18°,γ=1 rad ≈57.30°,φ=7π12×⎝⎛⎭⎫180π°=105°.显然,15°<18°<57.30°<105°.故α<β<γ<θ=φ.题型二 用弧度数表示角1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关[解析]“度”与“弧度”是度量角的两种不同的度量单位,所以A 正确.1°的角是周角的1360,1rad 的角是周角的12π,所以B 正确.因为1 rad =⎝⎛⎭⎫180π°>1°,所以C 正确.用角度制和弧度制度量角,都与圆的半径无关,所以D 错误.2.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .大圆中1弧度的圆心角与小圆中1弧度的圆心角一样大[解析]弧度是度量角的大小的一种单位,而不是长度的度量单位,1弧度是长度等于半径的圆弧所对圆心角的大小,与圆的半径无关,故选D. 3.下列说法正确的是( )A .在弧度制下,角的集合与正实数集之间建立了一一对应关系B .每个弧度制的角,都有唯一的角度制的角与之对应C .用角度制和弧度制度量任一角,单位不同,数量也不同D .-120°的弧度数是2π3[解析]A 项中,零角的弧度数为0,故A 项错误;B 项是正确的;C 项中,用角度制和弧度制度量零角时,单位不同,但数量相同(都是0),故C 项错误;-120°对应的弧度数是-2π3,故D 项错误.故选B.4.时钟的分针在1点到3点20分这段时间里转过的弧度数为( )A.143π B .-143π C.718π D .-718π [解析]分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是:-4π-13×2π=-143π.5.自行车的大链轮有88齿,小链轮有20齿,当大链轮逆时针转过一周时,小链轮转过的弧度数是( )A.5π11B.44π5C.5π22D.22π5[解析]由题意,当大链轮逆时针转过一周时,小链轮逆时针转过8820周,小链轮转过的弧度是8820×2π=44π5.6.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z},集合B ={x |-4≤x ≤4},则A ∩B =________________. [解析]如图所示,∴A ∩B =[-4,-π]∪[0,π].7.将-1485°表示成2k π+α(0≤α<2π,k ∈Z)的形式是_________.[解析] ∵-1485°=-5×360°+315°,而315°=74π,∴应填-10π+74π.8.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z)B .k ·360°+9π4(k ∈Z) C .k ·360°-315°(k ∈Z) D .k π+5π4(k ∈Z) [解析]A ,B 中弧度与角度混用,不正确.94π=2π+π4,所以94π与π4终边相同.-315°=-360°+45°,所以-315°也与45°终边相同.故选C. 9.用弧度制表示与150°角的终边相同的角的集合为( )A.⎩⎨⎧⎭⎬⎫β⎪⎪β=-5π6+2k π,k ∈Z B.⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+k ·360°,k ∈Z C.⎩⎨⎧⎭⎬⎫β⎪⎪β=2π3+2k π,k ∈Z D.⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+2k π,k ∈Z [解析]150°=150×π180=5π6,故与150°角终边相同的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+2k π,k ∈Z . 10.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·360°+π6,k ∈Z B.{}α|α=2k π+30°,k ∈Z C.{}α|α=2k ·360°+30°,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6,k ∈Z [解析] ∵与30°角终边相同的角表示为α=k ·360°+30°,k ∈Z ,化为弧度为α=2k π+π6,k ∈Z ,∴选D.11.若把-570°写成2k π+α(k ∈Z,0≤α<2π)的形式,则α=________.[解析]-570°=-19π6=-4π+5π6.12.终边经过点(a ,a )(a ≠0)的角α的集合是( )A.⎩⎨⎧⎭⎬⎫π4 B.⎩⎨⎧⎭⎬⎫π4,5π4 C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=π4+2k π,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=π4+k π,k ∈Z [解析]因为角α的终边经过点(a ,a )(a ≠0),所以角α的终边落在直线y =x 上,所以角α的集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=π4+k π,k ∈Z . 13.把-114π表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( )A .-3π4B .-π4 C.π4D.3π4[解析] ∵-11π4=-2π-3π4,∴-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪-3π4=3π4是最小的. 14.在[0,4π]中,与72°角终边相同的角有________.(用弧度表示) [解析]因为终边与72°角相同的角为θ=72°+k ·360°(k ∈Z). 当k =0时,θ=72°=25π rad ;当k =1时,θ=432°=125π rad ,所以在[0,4π]中与72°终边相同的角有25π,125π.15.在0到2π范围内,与角-4π3终边相同的角是( )A.π6B.π3C.2π3D.4π3[解析]与角-4π3终边相同的角是2k π+⎝⎛⎭⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C. 16.若角α与角8π5终边相同,则在[0,2π]内终边与α4终边相同的角是________.[解析]由题意得α=8π5+2k π(k ∈Z),α4=2π5+k π2(k ∈Z),又α4∈[0,2π],所以k =0,1,2,3,此时α4=2π5,9π10,7π5,19π10.17.若角α,β的终边关于直线y =x 对称,且α=π6,则在0~4π内满足要求的β=________.[解析]由角α,β的终边关于直线y =x 对称,及α=π6,可得β=-α+π2+2k π=π3+2k π,令k =0,1可得结果.[答案] π3,7π318.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z)D .α-β=2k π+π2(k ∈Z)[解析]选D.因为α=x +π4+2k 1π(k 1∈Z),β=x -π4+2k 2π(k 2∈Z),所以α-β=π2+2(k 1-k 2)π(k 1∈Z ,k 2∈Z).所以k 1∈Z ,k 2∈Z ,所以k 1-k 2∈Z.所以α-β=π2+2k π(k ∈Z).19.若α=2k π-354,k ∈Z ,则角α所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]∵-9<-354<-8,∴-3π<-354<-3π+π2.∴-354在第三象限,故α也在第三象限.20.角-2912π的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]-2912π=-4π+1912π,1912π的终边位于第四象限,故选D.21.角29π12的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]选A.因为29π12=2π+5π12,角5π12是第一象限角,所以角29π12的终边所在的象限是第一象限.22.α=-3 rad ,它是第________象限角.[解析]根据角度制与弧度制的换算,1 rad =⎝⎛⎭⎫180π°,则α=-3 rad =-⎝⎛⎭⎫540π°≈-171.9°. 分析可得,α是第三象限角. 23.α=-2 rad ,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]∵1 rad ≈57.30°,∴-2 rad ≈-114.60°.故α的终边在第三象限. 24.若θ=-5,则角θ的终边所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限[解析]因为-2π<-5<-3π2,所以α是第一象限角.25.若α3=2k π+π3(k ∈Z),则α2的终边在( )A .第一象限B .第四象限C .x 轴上D .y 轴上[解析]因为α3=2k π+π3(k ∈Z),因为α=6k π+π(k ∈Z),所以α2=3k π+π2(k ∈Z).当k 为奇数时,α2的终边在y轴的非正半轴上;当k 为偶数时,α2的终边在y 轴的非负半轴上.综上,α2的终边在y 轴上,故选D.26.已知角α=-1480°(1) 将α改写成写成2k π+β(k ∈Z)的形式,其中0≤β<2π,并判断它是第几象限角? (2) 在[-4π,4π)范围内找出与α终边相同的角的集合[解析] (1)-1480°=-1 480×π180=-74π9=-10π+16π9,其中0≤16π9<2π,因为16π9是第四象限角,所以-1 480°是第四象限角. (2)与α终边相同的角为2k π+169π(k ∈Z).由-4π≤2k π+169π<4π知 k =-2,-1,0,1.所以所求角的集合为⎩⎨⎧⎭⎬⎫-209π,-29π,169π,349π. 27.已知角α=2005°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在[-5π,0)内找出与α终边相同的角.[解析] (1)2005°=2005×π180 rad =401π36rad =⎝⎛⎭⎫5×2π+41π36 rad , 又π<41π36<3π2,∴角α与41π36终边相同,是第三象限的角.(2)与α终边相同的角为2k π+41π36(k ∈Z),由-5π≤2k π+41π36<0,k ∈Z 知k =-1,-2,-3. ∴在[-5π,0)内与α终边相同的角是-31π36,-103π36,-175π36.28.已知角α=2010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.[解析] (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.29.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求γ,使γ与α的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.[解析] (1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z ,又γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.30.已知α=1690°.(1)把α写成2k π+β(k ∈Z ,β∈[0,2π))的形式; (2)求θ,使θ与α终边相同,且θ∈(-4π,4π). [解析] (1)1690°=1440°+250°=4×360°+250°=4×2π+2518π.(2)∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z).又θ∈(-4π,4π),∴-4π<2k π+2518π<4π,∴-9736<k <4736(k ∈Z).∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π.31.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z}B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧ α⎪⎪⎭⎬⎫α=k ·π2,k ∈Z D .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π4+2k π,k ∈Z [解析]对于A ,终边在x 轴上角的集合是{α|α=k π,k ∈Z},故A 正确; 对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确; 对于C ,终边在x 轴上的角的集合为{ α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故合在一起即为{ α|}α=k π,k ∈Z ∪⎩⎨⎧ α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确; 对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确. 32.用弧度制表示终边落在x 轴上方的角α的集合为________. [解析]若角α的终边落在x 轴上方,则2k π<α<2k π+π(k ∈Z). 33.用弧度表示终边落在y 轴右侧的角的集合为________.[解析]y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪-π2+2k π<θ<π2+2k π,k ∈Z . 34.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )[解析]当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z.故选C.35.用弧度制表示终边在图中阴影区域内角的集合(包括边界),并判断2019°是不是这个集合的元素.[解析]∵150°=5π6,∴终边在阴影区域内角的集合为S =⎩⎨⎧⎭⎬⎫β⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . ∵2019°=219°+5×360°=⎝⎛⎭⎫219π180+10π rad ,又 5π6<219π180<3π2,∴2019°∈S .36.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角θ的集合.[解析]如题图(1),330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12,所以终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-π6<θ<2k π+5π12,k ∈Z . 如题图(2),因为30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪k π+π6<θ<k π+π2,k ∈Z . 37.用弧度写出终边落在如图阴影部分(不包括边界)内的角的集合.[解析]30°=π6 rad,150°=5π6rad.终边落在题干图中阴影区域内角的集合(不包括边界)是⎩⎨⎧⎭⎬⎫β⎪⎪π6+k π<β<5π6+k π,k ∈Z . 38.如图所示:(1)分别写出终边落在OA ,OB 位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合. [解析] (1)终边在OA 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=3π4+2k π,k ∈Z .终边在OB 上的角的集合为⎩⎨⎧⎭⎬⎫β|β=-π6+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|-π6+2k π≤α≤3π4+2k π,k ∈Z .题型三 弧长公式与扇形面积公式的应用1.半径为2,圆心角为π6的扇形的面积是________.[解析]由已知得S 扇=12×π6×22=π3.2.若扇形的半径为1,圆心角为3弧度,则扇形的面积为________. [解析] 由于扇形面积S =12αr 2=12×3×12=32,故扇形的面积为32.3.圆的半径为r ,该圆上长为32r 的弧所对的圆心角是( )A.23 rad B.32 rad C.2π3rad D.3π2rad [解析]由弧度数公式α=l r ,得α=32r r =32,因此圆弧所对的圆心角是32 rad.4.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. [解析]根据弧度制的定义,知所求圆心角的大小为42=2 rad.5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1B .2C .4D .1或4[解析]因为扇形的弧长为4,面积为2,所以扇形的面积为12×4×r =2,解得r =1,则扇形的圆心角的弧度数为41=4.故选C.6.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8[解析]设扇形所在圆的半径为R ,则2=12×4×R 2,∴R 2=1,∴R =1.∴扇形的弧长为4×1=4,扇形的周长为2+4=6.故选C.7.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为________ cm 2.[解析]设扇形的半径为r cm ,弧长为l cm ,由圆心角为2 rad ,依据弧长公式可得l =2r , 从而扇形的周长为l +2r =4r =8,解得r =2,则l =4. 故扇形的面积S =12lr =12×4×2=4 cm 2.8.已知扇形的圆心角为120°,半径为 3 cm ,则此扇形的面积为________ cm 2. [解析]设扇形的弧长为l ,因为120°=120×π180 rad =2π3(rad),所以l =αR =2π3×3=23π3(cm).所以S =12lR =12×23π3×3=π(cm 2).故填π.9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________倍. [解析]设原来圆的半径为r ,弧长为l ,弧所对的圆心角为α,则现在的圆的半径为3r 弧长为l , 设弧所对的圆心角为β,于是l =αr =β·3r ,∴β=13α.10.扇形的半径变为原来的2倍,而弧长也增加为原来的两倍,则( )A .扇形的面积不变B .扇形圆心角不变C .扇形面积增大到原来的2倍D .扇形圆心角增大到原来的2倍[解析]由弧度制定义,等于半径长的圆弧所对的圆心角叫做1弧度的角,所以一扇形所在圆的半径增加为原来的2倍,弧长也增加到原来的2倍,弧长与半径之比不变,所以,扇形圆心角不变,故选B. 11.求半径为π cm ,圆心角为120°的扇形的弧长及面积.[解析]因为r =π,α=120×π180=2π3,所以l =αr =2π23 cm ,S =12lr =π33 cm 2.12.已知扇形OAB 的圆心角为57π,周长为5π+14,则扇形OAB 的面积为________.[解析]设扇形的半径为r ,圆心角为57π,∴弧长l =57πr ,∵扇形的周长为5π+14,∴57πr +2r =5π+14,解得r =7,由扇形的面积公式得=12×57π×r 2=12×57π×49=35π2.13.已知扇形的周长为10 cm ,面积为4 cm 2,求扇形圆心角的弧度数. [解析]设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l , 半径为R ,依题意有⎩⎪⎨⎪⎧l +2R =10,①12lR =4.②①代入②得R 2-5R +4=0,解得R 1=1,R 2=4. 当R =1时,l =8(cm),此时,θ=8 rad >2π rad 舍去. 当R =4时,l =2(cm),此时,θ=24=12 (rad).综上可知,扇形圆心角的弧度数为12rad.14.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .sin 2C .2sin 1D.2sin 1[解析]设圆的半径为R ,则sin 1=1R ,∴R =1sin 1,故所求弧长为l =α·R =2·1sin 1=2sin 1.15.一段圆弧的长度等于其所在圆的圆内接正方形的边长,则这段圆弧所对的圆心角为( )A.π2 B.π3 C. 2D. 3[解析]设圆内接正方形的边长为a ,则该圆的直径为2a , 所以弧长等于a 的圆弧所对的圆心角α=l r =a22a =2,故选C.16.已知扇形的圆心角为108°,半径等于30 cm ,求扇形的弧长和面积. [解析]∵108°=108×π180=3π5,所以扇形的弧长为3π5×10=6π(cm),扇形的面积为12×3π5×302=270π(cm 2).17.已知扇形的圆心角所对的弦长为2,圆心角为2π3.求:(1)这个圆心角所对的弧长; (2)这个扇形的面积.[解析] (1)因为扇形的圆心角所对的弦长为2,圆心角为2π3,所以半径r =1sin π3=233,所以这个圆心角所对的弧长l =233×2π3=43π9.(2)由(1)得扇形的面积S =12×233×43π9=4π9.18.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m 的弧田,按照上述经验公式计算所得弧田面积约是________m 2.[解析]2π3=120°,根据题设,弦=2×4sin 120°2=43(m),矢=4-2=2(m),因此弧田面积=12×(弦×矢+矢2)=12×(43×2+22)=43+2≈9(m 2).19.已知扇形的周长为10,面积为4,求扇形的圆心角的弧度数. [解析]设扇形的圆心角的弧度数为θ(0<θ<2π),弧长为l ,所在圆的半径为r . 依题意得⎩⎪⎨⎪⎧l +2r =10,12lr =4,消去l ,得r 2-5r +4=0,解得r =1或r =4.当r =1时,l =8,此时θ=8 rad>2π rad ,故舍去;当r =4时,l =2,此时θ=24=12 rad ,满足题意.故θ=12rad.20.已知两角和为1弧度,且两角差为1°,则这两个角的弧度数分别是__________________________. [解析]设两个角的弧度数分别为x ,y .因为1°=π180 rad ,所以⎩⎪⎨⎪⎧x +y =1x -y =π180.解得⎩⎨⎧x =12+π360y =12-π360,所以所求两角的弧度数分别为12+π360,12-π360.21.已知扇形AOB 的周长为10 cm ”,求该扇形的面积的最大值及取得最大值时圆心角的大小及弧长. [解析]设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,面积为S , 由l +2r =10得l =10-2r ,S =12lr =12(10-2r )·r =5r -r 2=-⎝⎛⎭⎫r -522+254,0<r <5. 当r =52时,S 取得最大值254,这时l =10-2×52=5,∴θ=l r =552=2.故该扇形的面积的最大值为254cm 2,取得最大值时圆心角为2 rad ,弧长为5 cm. 22.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?[解析]设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40, 所以l =40-2r,所以S =12lr =12×(40-2r )r =-(r -10)2+100.所以当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,这时θ=l r =40-2×1010=2 rad.23.已知扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求该扇形的圆心角的大小; (2)求这个扇形的面积取得最大值时圆心角的大小和弦AB 的长度. [解析] (1)设该扇形AOB 的半径为r ,圆心角为θ,面积为S ,弧长为l .由题意,得⎩⎪⎨⎪⎧l +2r =8,12lr =3,解得⎩⎪⎨⎪⎧r =1,l =6或⎩⎪⎨⎪⎧r =3,l =2.所以圆心角θ=l r =61=6或θ=l r =23,所以该扇形的圆心角的大小为23rad 或6 rad.(2)θ=8-2r r ,所以S =12·r 2·8-2rr=4r -r 2=-(r -2)2+4, 所以当r =2,即θ=8-42=2时,S max =4 cm 2.此时弦长AB =2×2sin 1=4sin 1(cm).所以扇形面积最大时,圆心角的大小等于2 rad ,弦AB 的长度为4sin 1 cm. 24.已知半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解析] (1)由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, ∴α=∠AOB =60°=π3rad.(2)由(1)可知α=π3 rad ,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎫2π3-3. 25.已知扇形AOB 的圆心角为120°,半径为6,求:(1) AB ︵的长;(2)扇形所含弓形的面积(即阴影面积).[解析] (1)∵120°=2π3,∴AB ︵的长l =2π3×6=4π.(2)S 扇形AOB =12lr =12×4π×6=12π.如图所示,过点O 作OD ⊥AB ,交AB 于D 点,于是有S △OAB =12AB ·OD =12×2×33×3=93,∴弓形的面积为S 扇形AOB -S △AOB =12π-9 3.26.如图所示,以正方形ABCD 中的点A 为圆心,边长AB 为半径作扇形EAB ,若图中两块阴影部分的面积相等,则∠EAD 的弧度数大小为________.[解析]设AB =1,∠EAD =α,∵S 扇形ADE =S 阴影BCD ,由题意可得12×12×α=12-π×124,∴解得α=2-π2.27.已知扇形OAB 的周长是60 cm ,面积是20 cm 2,求扇形OAB 的圆心角的弧度数. [解析]设扇形的弧长为l ,半径为r ,则⎩⎪⎨⎪⎧2r +l =60,12lr =20,∴⎩⎪⎨⎪⎧ r =15+205,l =4015+205或⎩⎪⎨⎪⎧r =15-205,l =4015-205, ∴扇形的圆心角的弧度数为lr=43-3205或43+3205.28.如图,一长为 3 dm ,宽为1 dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)[解析]在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·AB =π2·3+1=π,面积S 1=12·π2·AB 2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·A 1C =π2·1=π2,面积S 2=12·π2·A 1C 2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·A 2D =π3·3=33π,面积S 3=12·π3·A 2D 2=12·π3·(3)2=π2,所以点A 走过的路程长l =l 1+l 2+l 3=π+π2+3π3=(9+23)π6,点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.29.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.[解析] 设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪-π6=2π.解得t =4. 所以第一次相遇时所用的时间是4秒.第一次相遇时点P 已经运动到角π3·4=4π3的终边与圆交点的位置,点Q 已经运动到角-2π3的终边与圆交点的位置,所以点P 走过的弧长为4π3×4=16π3,点Q 走过的弧长为⎪⎪⎪⎪-2π3×4=2π3×4=8π3.。
1.12_弧度制
l r
其中 为以角 作为圆心角时所对圆弧 的长,r为圆的半径.
l
4.
l
= | | r
(弧长计算公式)
角度制与弧度制的换算
若弧是一个整圆,它的圆心角是周角,其 弧度数是2π,而在角度制里它是360°. 因此 360°=2π rad 180°=π rad
180
1
rad 0.017 45 rad
练习
(1)若三角形的三个内角之比是2:3:4,求其三个内角 的弧度数. (2)已知扇形的周长为8cm,面积为4cm2,求扇形的中心 角的弧度数. (3)已知扇形OAB的圆心角α 为120°,半径长为6. 求 AB 的弧长;求弓形OAB的面积.
l l R
R
(2)设扇形所对的圆心角为nº (αrad),则
n 1 2 S R R 360 2
2
1 (3)又 αR=l,所以 S lR 2
例题讲解
变式1. 扇形AOB中,弧AB所对的圆心角是60º , 半径是50米,求弧AB 的长l(精确到0.1米)。
变式2. 在半径为R的圆中,240º的中心角所对的 弧长为 角等于 ,面积为2R2的扇形的中心 弧度。
练习
6.已 知
则:
A B x | 6 x , 或0 x
A x | 2 x (2k 1) B x | 6 x 6
( )
解 :如图
2 6
0
6 2
当 2,3,时, 或当 1,2,时,
1 0 1' ( ) , 60 1 1' ' ( )' 60
角度制
在角度制下,当把两个带着度、分、秒 各单位的角相加、相减时,由于运算进率非 十进制,总给我们带来不少困难.那么我们 能否重新选择角单位,使在该单位制下两角 的加、减运算与常规的十进制加减法一样去 做呢?
1.1.2(1)弧度制
终边在直线y=x上 {β |β =450+K∙1800,K∈Z}
例4.与角-1825º 的终边相同,且绝对值最小 的角的度数是___,合___弧度。 解:-1825º =-5×360º -25º , 所以与角-1825º 的终边相同,且绝对值 最小的角是-25º .
5 合 36
例5. 扇形AOB中, AB 所对的圆心角是60º ,
0
6
4
3 2
2 3 5 3 4 6
3 2 2
2、用弧度为单位表示角的大小时, “弧度”二字通常 省略不写,但用“度”(°)为单位不能省。不能“混 和”用 3、用弧度为单位表示角时,通常写 成“多少π”的形 式。如无特别要求,不用将π化成小数。
写出一些特殊角的弧度数
角 度
弧 度
0 30 45 60 90 120 135 150180 270 360
0
6
4
2 3 5 3 2 3 4 6
3 2 2
三、例2
(1)、把67°30′化成弧度。
1 解:67 30' 67 2
1 3 67 30' rad 67 rad 180 2 8
负数
零
弧度与角度的换算
若l=2 π r,则∠AOB=
此角为周角 即为360°
l = 2π弧度 r
l=2 π r
2π弧度
360°= 2π 弧度 180°= π 弧度
O
r
(B) A
(2)弧度与角度的换算公式是怎样的?
换算公式 180º = rad
1
弧度制
3 C.2
B.
3 D. 2
3. 5弧度的角所在的象限为(D )
A.第一象限 C.第三象限 B.第二象限 D.第四象限
4.与A. C.
7 3
7 终边相同的角中,最小的正确是( C ) 3
B.
5 3
3
D.-
3
) C B.第二象限的角 D.第四角限的角
5.若α是第四象限的角,则π-α是( A.第一象限的角 C.第三象限的角
即2× +1×
2
+
×
+
3× 3 = 9 2
3 π(dm);3段弧所对的扇形的
【同步达纲练习】 一、选择题 1.α、β是第一象限内角,则α>β是sinα>sinβ的( ) D A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.将分针拨快15分钟,则分针转过的弧度数是( C ) A.-
解:设2α-β=A(α+β)+B(α-β)表示2α-β=(A+B)α+(A-B)β
比较α与β的系数 所以2α-β=
A B 2 所以A= A B 1
2 1 而 < (α+β)< ,2 3 2
所以-π<2α-β<
1 (α+β)+ 2
.
1 ,B= 2
(α-β).
3 2
3 . 2
2
<2nπ+
4
,这时
2
在第一象限.
说明:(1)设αi(i=1,2,3,4)是第i象限的角,用上面同样 ai 的方法可确定 所在的象限,分布情况如上图.
2
弧度制概念
弧度制概念弧度制概念引言弧度制是一种角度的度量单位,它是数学和物理学中最常用的角度单位之一。
它的出现是为了解决角度测量中存在的问题,因为角度的大小与圆的半径有关,所以不同大小的圆所对应的角度大小也不同,这就带来了一定程度上的不便。
弧度制通过将角度与圆周长、半径等相关物理量联系起来,使得角度大小可以独立于圆的大小而存在,从而更加方便地进行计算和比较。
一、什么是弧度制1.1 弧长和圆周率在介绍弧度制之前,我们需要先了解几个基本概念。
一个圆可以由其半径r和圆心O确定,并且它包含一个圆心角θ。
如果我们从O开始沿着圆周走过一个长度为l的距离,则我们所经过的弧长s与半径r、圆心角θ之间存在着如下关系:其中,s表示弧长,r表示半径,θ表示圆心角。
此外,在计算中还需要用到一个重要常数——圆周率π。
π定义为任何一个圆的周长L与其直径d之比:π = L/d由于直径是半径的两倍,因此我们可以将π表示为:π = L/2r1.2 弧度和角度在传统的角度测量中,我们通常使用度作为角度的单位。
一个圆周总共有360°,而一个直角为90°。
但是这种测量方式存在着一些问题,因为不同大小的圆所对应的角度大小也不同,这使得比较和计算变得复杂。
弧度制通过引入弧度作为角度的单位来解决这个问题。
弧度定义为圆心角所对应的弧长与半径之比:其中,θ表示以弧度为单位的圆心角。
由于s = rθ,因此上式可以改写为:s = rθ这与我们在前面介绍过的公式是一致的。
但是在弧度制中,我们将θ表示成以弧长长度作为单位来衡量。
1.3 弧度制和角度制之间的转换虽然弧度制和角度制都可以用于描述圆心角,但它们之间存在着转换关系。
具体来说,在弧长s、半径r相等时:1 radian = 180/π degrees ≈ 57.296°因此,在进行计算时需要注意两种单位之间的转换关系。
二、弧度制在计算中的应用2.1 弧度制与三角函数弧度制在三角函数中有着广泛的应用。
弧度制
A.1∶2
B.1∶4C.1∶ 2源自D.1∶85.在半径为1的单位圆中,一条弦AB的长度为,则
弦AB所对圆心角α是( C )
A.
= 3
2 B. < 3 C. = D. =120 3
6.一个半径为R的扇形,它的周长是4R,则这个扇
形所含弓形的面积是( D )
1 A ( 2 si n1 cos1) R 2 2 1 2 C. R 2 1 7.圆的半径变为原来的
r l 6 r 2 2 l 1 l2 r
1 ∴扇形面积 S rl 2(cm)2 2
O
例3. 已知扇形周长为10cm,面积为6cm2,求
扇形中心角的弧度数
A B
解:设扇形圆心角的弧度数为 (0<<2)半径为r,弧长为,则有
O
l 2 r 10 1 lr 6 2
6 6 12
12
3.下列命题中正确的命题是(
D
)
A.若两扇形面积的比是1∶4,则两扇形弧长的比
是 1∶ 2
B.若扇形的弧长一定,则面积存在最大值
C.若扇形的面积一定,则弧长存在最小值
D.任意角的集合可以与实数集R之间建立一种一一
对应关系
4.两个圆心角相同的扇形的面积之比为1∶2,则两
个扇形周长的比为( C )
弧度制(二)
1. 1弧度的定义:
长度等于半径长的弧所对的圆心角称为1弧度
的角。它的单位是rad 读作弧度,这种用“弧度”
做单位来度量角的制度叫做弧度制.
2. 角度制与弧度制的换算:
1
180 / 1 57.3 5718
0.01745
180
3、弧长公式及扇形面积公式
弧度制
例1.求图中公路弯道处弧AB的长(精确到
1m)图中长度单位为:m
60 A
3
l R
3
45 3.14 15 47( m )
答:弯道处弧AB的长约为47米
R45
解: 60
B
例2.已知扇形的周长是6cm,该扇形的中心
角是1弧度,求该扇形的面积。
A B
解:设扇形的半径为r,弧长为,则有
弧度制(二)
1. 1弧度的定义:
长度等于半径长的弧所对的圆心角称为1弧度
的角。它的单位是rad 读作弧度,这种用“弧度”
做单位来度量角的制度叫做弧度制.
2. 角度制与弧度制的换算:
1
180 / 1 57.3 5718
0.01745
180
3、弧长公式及扇形面积公式
6 6 12
12
3.下列命题中正确的命题是(
D
)
A.若两扇形面积的比是1∶4,则两扇形弧长的比
是 1∶ 2
B.若扇形的弧长一定,则面积存在最大值
C.若扇形的面积一定,则弧长存在最小值
D.任意角的集合可以与实数集R之间建立一种一一
对应关系
4.两个圆心角相同的扇形的面积之比为1∶2,则两
个扇形周长的比为( C )
r l 6 r 2 2 l 1 l2 r
1 ∴扇形面积 S rl 2(cm)2 2
O
例3. 已知扇形周长为10cm,面积为6cm2,求
扇形中心角的弧度数
A B
解:设扇形圆心角的弧度数为 (0<<2)半径为r,弧长为,则有
O
l 2 r 10 1 lr 6 2
5.1.2弧度制
0º 30º 45º 60º 90º 180º 270º 0 4 3 2 32
π
例1. 按照下列要求,把100°化成弧度:
(1)精确值;
(2)精确到0.001的近似值。
例2. 将2.3rad换算成角度(用度数表 示,精确到0.01).
弧度制
角度制: 角度制规定:将一个圆周分成360份,每 一份叫做1度,故一周等于360度,平角等 于180度,直角等于90度等等
思考:弧度制是什么呢?
1.定义:把长度等于半径长的弧所对的 圆心角叫做1弧度的角.记作1弧度 ,或1 rad ,或1 .
弧度制的定义:
用弧度做单位来度量 角的制度叫做 弧度制
P32 探究:
如图,半径为r的圆的圆心与原点重 合,角 的始边与x轴的非负半轴重 合,交圆于点A,终边与圆交于点 B.请 完成表格 .
y B O A x
2.正角的弧度数 负角的弧度数
正数 负数
零角的弧度数
正角 负角 零角 正数 负数 0
零
任意角的集合
实数集R
3.任一已知角α的弧度数的绝对值
l r
其中l为以角 作为圆心角时所对圆弧的 长,r为圆的半径.
α
4.
l = |α| r
(弧长计算公式)
5.角度制与弧度制的换算: 360º = 2π rad, 180º = π rad
1º= 180 rad0.01745rad 1rad = ( 180 ) º 57.3º =57º 18′ π
注意几点: 1.度数与弧度数的换算也可借助“计算 器” 2.今后在具体运算时,“弧度”二字和 单位 符号“rad”可以省略 如:3表示3rad 3.一些特殊角的度数与弧度数的对应值应 该记住(见课本P33表)
弧度制的单位
弧度制的单位
弧度制是一种用于测量角度的单位系统,它是一种比度数更为自然和
便利的角度测量方式。
在弧度制中,一个完整的圆周被分成了2π个弧度,而每个弧度的大小则等于圆周长度与半径之比。
因此,弧度制不
仅可以用来描述圆周上的角度,还可以用来描述任意曲线上的旋转角度。
弧度制最常见的符号是rad,例如30°可以表示为π/6 rad。
在物理学、工程学、数学等领域中,弧度制被广泛应用。
下面我们来看看一些常见的角度值及其对应的弧度值:
1. 0° = 0 rad
2. 30° = π/6 rad
3. 45°= π/4 rad
4. 60° = π/3 rad
5. 90° = π/2 rad
6. 180° = π rad
在计算机图形学和游戏开发中,使用弧度制可以更轻松地进行旋转和
转换操作。
例如,在Unity引擎中,Transform组件中使用的就是以
弧度为单位的旋转值。
除此之外,在物理学中也经常使用弧度制进行计算。
例如,牛顿第二定律F=ma中,力和加速度之间的角关系可以用弧度制表示为
θ=arctan(a/F)。
总的来说,弧度制是一种非常自然和便利的角度测量方式,在科学、工程、数学等领域中被广泛应用。
熟练掌握弧度制的概念和运用,可以帮助我们更好地理解和解决各种问题。
1.1.2 弧度制
{ | 2k , k Z } (2)终边在 x 轴非正半轴的角的集合: { | k , k Z } (3)终边在 x 轴上的角的集合:
{ | (4)终边在 y轴非负半轴的角的集合:
2 3 y (5)终边在 轴非正半轴的角的集合: { | 2k , k Z } 2 { | k , k Z } (6)终边在 y轴上的角的集合: 2 k { | , k Z } (7)终边在坐标轴上的角的集合: 2
4.对称关系: (1)若与的终边关于x 轴对称,则 2k (k Z ) (2)若与的终边关于y 轴对称,则 (2k 1) (k Z ) (3)若与的终边关于原点对称,则 (2k 1) (k Z ) (4)若与的终在同一条直线,则 k (k Z )
2 解:设扇形的圆心角为,半径为 rcm ,弧长为lcm ,面积为 Scm , 则:
l 2r 40 l 40 2r 1 1 S lr (40 2r )r 20r r 2 (r 10) 2 100 2 2 ∴当r 10时,扇形的面积最大,最大值为 100cm2 ,这时 l 2 r
(4)第三象限角的集合:
3 { | 2k 2k , k Z } 2
(5)终边在象限内角的集合:
3 { | 2k 2 2k , k Z } 2 { | k
2
(k 1)
2
, k Z}
3.轴线角的集合: (1)终边在 x 轴非负半轴的角的集合: { | 2k , k Z }
180 (rad ) ( ) n n
180
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π
家庭作业
1、下列各对角中终边相同的角是( )
A. πππk 222+-和(k∈Z)
B. -3π和322π
C. -9
7π
和911π D. 9122320ππ和
2、若α=-3,则角α的终边在 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 3、若α是第四象限角,则απ-一定在 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
4、下列与π613
-的终边相同的角(Z ∈k )是 ( )
A. ππk 26+
B. ππk 2610+
C. ππk 2611+
D. ππk 26
7
+-
5、2弧度的圆心角所对的弦长为2,那么此圆心角所夹扇形的面积的数值为 ( )
A. 2sin1
B. 1
sin 12 C. 2cos 11- D. 1sin1
6、把01125-化成()πααπ20,2<≤∈+Z k k 2
sin1
的形式是 ( )
A . 46ππ--
B .476ππ+-
C .48ππ--
D .4
78π
π+-
7、集合()⎭⎬⎫⎩⎨⎧∈⋅-+==Z k k x x A k ,21|ππ,⎭
⎬⎫⎩⎨⎧∈+==z k k x x B ,22|ππ,则A 、B 的关系为( )
A .
B A ⊆ B .A B ⊆
C .B A =
D .=⋂B A ∅ 8、已知
()Z k k ∈+
=323π
πα
,则2
α
在 ( )
A . 第一象限
B . 第二象限
C . x 轴上
D . y 轴上
9、(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 . 10、7弧度的角在第 象限,与7弧度角终边相同的最小正角为 . 11、圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .
12、在(-4π,4π)上与角3
16
π终边相同的所有角为 .
13、现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.
14、扇形的周长为20cm ,问其半径为多少时其面积最大?
15、已知α是第二象限角,试用弧度制形式表示下列各区域。
(1)2
α角所在的区域;(2)3
α
角所在的区域;(3)2α角所在的区域.。