有理数的绝对值及加减法(详细题型)
有理数-数轴-绝对值-加减法练习卷
2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。
有理数绝对值加减法混合计算题
有理数绝对值加减法混合计算题当涉及有理数绝对值的加减法混合计算题时,我们可以按照以下步骤进行分析和解答:
步骤1:理解绝对值的概念
首先,我们需要明确绝对值的含义。
对于一个有理数a,它的绝对值(记作|a|)表示该数到0的距离。
无论这个数是正数、负数还是零,它的绝对值总是非负的。
步骤2:根据运算符号确定正负性
在解决有理数绝对值的加减法混合计算题时,我们需要根据运算符号来确定各个数的正负性。
具体规则如下:
-加法:正数加正数得正数,负数加负数得负数,正数加负数或负数加正数时,需要比较绝对值的大小,结果取绝对值较大的符号。
-减法:正数减正数得正数,负数减负数得负数,正数减负数或负数减正数时,需要转化为加法运算,并将被减数取相反数。
步骤3:计算绝对值
在确定了各个数的正负性之后,我们可以计算绝对值并进行运算。
对于绝对值的计算,只需要忽略符号即可。
步骤4:根据步骤2的结果恢复正负性
在计算完绝对值之后,我们需要根据步骤2中确定的正负性来恢复结果的正负性。
下面通过一个具体的例子来说明这个过程:
问题:计算下列表达式的值:|-7|+(-3)-|5|
解答:
步骤1:理解绝对值的概念
绝对值表示数到0的距离。
对于|-7|,它的绝对值是7;对于|5|,它的绝对值是5。
步骤2:根据运算符号确定正负性
|-7|的绝对值为7,(-3)保持负号不变,|5|的绝对值为5。
步骤3:计算绝对值
|-7|+(-3)-|5|=7+(-3)-5
步骤4:根据步骤2的结果恢复正负性
7+(-3)-5=4-5=-1
因此,|-7|+(-3)-|5|的值为-1。
初中有理数的加减法
初中有理数的加减法1. 有理数概述有理数是整数和分数的统称,包括正整数、负整数、零以及正分数、负分数。
有理数可以用分数形式表示,例如:1/2、3/4等。
有理数可以进行加减乘除等运算。
2. 有理数的加法有理数的加法规则如下:•同号相加,取绝对值相加,结果的符号与原来的符号相同。
例如:(+3) + (+2) = +5,(-3) + (-2) = -5。
•异号相加,取绝对值相减,结果的符号取绝对值较大的数的符号。
例如:(+3) + (-2) = +1,(-3) + (+2) = -1。
3. 有理数的减法有理数的减法可以转化为加法进行计算。
例如,a - b 可以转化为 a + (-b) 进行计算。
4. 有理数的加减法练习题4.1 加法练习题1.计算:(+5) + (+3) = ?2.计算:(-7) + (-2) = ?3.计算:(+4) + (-6) = ?4.计算:(-9) + (+1) = ?5.计算:(+3/4) + (+1/2) = ?6.计算:(-1/3) + (+2/3) = ?7.计算:(+5/6) + (-1/6) = ?8.计算:(-2/5) + (+3/5) = ?4.2 减法练习题1.计算:(+7) - (+4) = ?2.计算:(-5) - (-2) = ?3.计算:(+9) - (-3) = ?4.计算:(-6) - (+1) = ?5.计算:(+3/4) - (+1/2) = ?6.计算:(-2/3) - (-1/3) = ?7.计算:(+5/6) - (-1/6) = ?8.计算:(-3/5) - (+2/5) = ?5. 有理数的加减法运算规律有理数的加法满足交换律和结合律。
•交换律:a + b = b + a,即加法的顺序不影响结果。
例如:2 + 3 = 3 + 2。
•结合律:(a + b) + c = a + (b + c),即加法的括号位置不影响结果。
例如:(2 + 3) + 4 = 2 + (3 + 4)。
有理数加减法的八大经典例题及详细解析
一.有理数加减法的应用1 某检修小组乘一辆小汽车沿东西方向检修道路,约定向东走为正,某天从w 地出发到收工时行走记录(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,求:(1)收工时检修小组在w地的哪一边,距w地多远?(2)若小汽车耗油2升/每千米,开工时储存160升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?2若m、n互为相反数,则|m-9+n|= ________.【答案】【解析】解:∵m、n互为相反数,∴m+n=0.∴|m-9+n|=|-9|=9.3小明家冰箱冷冻室的温度为-5℃,调高2℃后的温度为多少【答案】【解析】解:-5+2=-34 甲潜水员在海平面-56米作业,乙潜水员在海平面-30米作业,哪个离海平面比较近,近多少?乙潜水员离海平面比较近,近26米.【解析】解:乙潜水员离海平面比较近,56-30=26米.4每袋白面的标准重量为50千克,10袋白面称重记录如下:.51,51,51.5,49,51.2,51.3,48.7,48.8,51.8,51.1(1)与标准重量比较,10袋白面总计超过多少千克或不足多少千克?(2)10袋白面的总重量是多少千克?【答案】(1)5.4千克(2)505.4千克【解析】【答案】(1)该图书馆上周共借出520册书,(2)上星期一比上星期三多借出38册.解:(1)(100+21)+(100+20)+(100-17)+(100+8)+(100-12)=520册.(2)(100+21)-(100-17)=121-83=38册6今天白天是28℃,夜晚下降了18℃,请问夜间气温是多少度?解:28℃—18℃=10℃7 若∣a-3∣+∣b-5=0,则a=(),b=()8计算(1)23+(-17)+6+(-22)(2)1+(--)。
有理数绝对值加减法混合计算题
有理数绝对值加减法混合计算题
(原创实用版)
目录
1.有理数绝对值的概念和性质
2.有理数绝对值加减法的运算规则
3.有理数绝对值加减法混合计算的解题方法
4.示例题目及解答
正文
有理数绝对值是指一个有理数到 0 的距离,因此它总是非负的。
有理数绝对值的概念和性质是我们解决有理数绝对值加减法混合计算题的基础。
有理数绝对值的性质有以下几点:
1.|a| = a, 若 a >= 0
2.|a| = -a, 若 a < 0
3.|a| = |-a|
4.|a + b| = |a| + |b|
5.|a - b| = |a| + |b|
根据以上性质,我们可以得出有理数绝对值加减法的运算规则:
1.同号相加,取相同符号,并把绝对值相加。
2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
有了这些规则,我们就可以开始解决有理数绝对值加减法混合计算题了。
以下是一个示例题目:
求解 |2 - 3| + |-1 + 4|
首先,我们计算绝对值内部的运算:
|2 - 3| = |-1| = 1
|-1 + 4| = 3
然后,根据运算规则,我们将两个结果相加:
1 + 3 = 4
因此,最终答案为 4。
通过以上步骤,我们可以解决有理数绝对值加减法混合计算题。
需要注意的是,我们要灵活运用运算规则,根据题目的特点选择合适的解题方法。
七年级(上)数学有理数加减法绝对值练习题(附答案)
七年级(上)数学有理数加减法绝对值练习题一、单选题1.计算74-+的结果是( )A .3B .-3C .11D .-112.比1小3的数是( )A.1-B.2-C.3-D.2 3.十堰冬季里某一天的气温为32-℃~℃,则这一天的温差是( )A.1℃B.1-℃C.5℃D.6-℃4.数轴上的点A 表示的数是2-,将点A 向左移动3个单位,终点表示的数是( )A.1B.2-C.5D.5-二、解答题5.老李上周五以收盘价每股8元买入某公司股票10000股,下表为本周内每日该股票的涨跌情况(单位:元):(2)本周内该股票的最高收盘价出现在星期几?是多少元?(3)已知老李买进股票时要付成交额1‰的手续费,卖出时还需要付成交额的1‰的印花税和1‰的手续费.如果老李在星期五收盘前将该股票全部卖出,则他的收益情况如何?6.若42a b ==,,且a b <,求a b -的值. 7.阅读下面的解题过程,并用解题过程中的解题方法解决问题.示例:计算:523112936342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解:原式:5231(1)(2)9(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 5231[(1)(2)9(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦534⎛⎫=+- ⎪⎝⎭74= 以上解题方法叫做拆项法.请你利用拆项法计算52153201920201403963264⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 8.计算题(1)()()43772743+-++-(2)()()()340328-++-+-(3)()()()72372217------(4)()()237636105-----9.基础计算(1)()()107-++;(2)()()4539-+-(3)()()37---(4)()3327--10.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米)251,103256-+-+---+,,,,,,请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?11.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776-=-;7676-=-;6767--=+根据上面的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题. (1)721-=; (2)10.82-+=; (3)771718-=; (4)111111520162016221008-+--+ 12.下表给出了某班6名同学身高情况(单位:cm).(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?13.计算:18133⎛⎫-- ⎪⎝⎭三、填空题14.如图是某市连续5天的天气情况,最大的日温差是________℃.15.计算()24---的结果是______.16.数轴上表示1-的点,先向右移动6个单位长度,再向左移动9个单位长度,则此时这个点表示的数是________17.已知m 是4的相反数,n 比m 的相反数小2,则m n -等于_______. 18.若130x y -++=,则x y -=__________.19.计算:21--= ________.参考答案1.答案:B解析:2.答案:B解析:3.答案:C解析:4.答案:D解析:5.答案:(1)涨了0.1元;(2)星期二,8.25元;(3)他的收益为1756元.解析:6.答案:-2或-6.解析:7.答案:3712-解析:8.答案:(1)-50;(2)-3;(3)-30;(4)168;解析:9.答案:(1)-3;(2)-84;(3)4;(4)60.解析:10.答案:(1)小王在下午出车的出发地的南面,距下午出车的出发地8千米;(2)盈利,盈利了46.8元.解析:11.答案:(1)217-;(2)10.82-;(3)771718-;(4)15.解析:12.答案:(1)169,164,171,0,+5;(2)8cm;(3)168cm.解析:13.答案:2解析:14.答案:10 解析:15.答案:2 解析:16.答案:4-解析:17.答案:6-解析:18.答案:4 解析:19.答案:1 解析:。
有理数加减法知识点
有理数加减法知识点一、有理数的定义有理数是可以表示为两个整数比的数,形式为a/b,其中a和b是整数,且b不为零。
有理数包括所有整数、分数和小数(有限或无限循环小数)。
二、有理数的加法1. 同号相加:两个正有理数或两个负有理数相加,取相同的符号,并将绝对值相加。
例如:+2/3 + +1/2 = +(2*2 + 1*3)/6 = +7/62. 异号相加:两个有理数,一个正数和一个负数相加,需要比较它们的绝对值。
如果绝对值相等,则结果为零;如果不相等,则结果取较大绝对值的符号,并用较大绝对值减去较小绝对值。
例如:-3/4 + 2/4 = +(2*1 - 3*1)/4 = 1/43. 加法的交换律和结合律:交换律:a + b = b + a结合律:(a + b) + c = a + (b + c)三、有理数的减法1. 有理数的减法可以转化为加法来进行计算:例如:5 - 3/4 可以转化为 5 + (-3/4),然后按照加法规则进行计算。
2. 减法的性质:a -b = a + (-b),其中 -b 表示 b 的相反数。
四、有理数加减法的运算规则1. 先计算同号的加减法。
2. 再计算异号的加减法。
3. 如果有多个数进行加减运算,可以按照从左到右的顺序依次进行。
4. 可以利用加法的交换律和结合律简化计算过程。
五、有理数加减法的实例1. 实例一:计算:1/2 + 3/4 - 1/4解:= (1/2 + 3/4) - 1/4= 1 + 1/4= 5/42. 实例二:计算:-2/3 - 1/6 + 1/2解:= -2/3 + (-1/6) + 1/2= -(2*2 + 1*4)/6 + 1/2= -9/6 + 3/6= -6/6= -1六、注意事项1. 在进行有理数加减法时,要注意分数的通分和约分。
2. 要注意运算的顺序,先进行括号内的运算,然后进行加减运算。
3. 在合并同类项时,要注意保持分母不变,只对分子进行加减运算。
绝对值贯穿有理数经典题型(八大题型)(原卷版)
专题1.1 绝对值贯穿有理数经典题型(八大题型)【题型1 利用绝对值的性质化简或求值】 【题型2 根据绝对值的非负性求值】 【题型3 根据参数的取值范围化简绝对值】 【题型4 根据绝对值的定义判断正误】 【题型5 根据绝对值的意义求取值范围】 【题型6 绝对值中分类讨论aa问题】 【题型7 绝对值中的分类讨论之多绝对值问题】 【题型8 绝对值中最值问题】【题型1 利用绝对值的性质化简或求值】【典例1】有理数a ,b ,c 在数轴上对应点的位置如图所示.(1)在数轴上表示﹣c ,|b |.(2)试把﹣c ,b ,0,a ,|b |这五个数从小到大用“<”连接起来; (3)化简|a +b |﹣|a ﹣c |﹣2|b +c |.【变式1-1】有理数a ,b ,c 在数轴上对应的点如图所示,化简|b +a |+|a +c |+|c ﹣b |的结果是( )A .2b ﹣2cB .2c ﹣2bC .2bD .﹣2c【变式1-2】a 、b 、c 三个数在数轴上位置如图所示,且|a |=|b |(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【题型2 根据绝对值的非负性求值】【典例2】已知|a−|+|b+|+|c+|=0,求a﹣|b|+(﹣c)的值.【变式2-1】已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|+3a.【变式2-3】若|x﹣2|+2|y+3|+3|z﹣5|=0.计算:(1)x,y,z的值.(2)求|x|+|y|﹣|z|的值.【变式2-4】已知m,n满足|m﹣2|+|n﹣3|=0,求2m+n的值.【变式2-5】已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.【变式2-6】若|a+2|+|b﹣5|=0,求的值.【变式2-7】若a、b都是有理数,且|ab﹣2|+|a﹣1|=0,求++ +……+的值.【题型3 根据参数的取值范围化简绝对值】【典例3】已知1<a<4,则|4﹣a|+|1﹣a|的化简结果为()A.5﹣2a B.﹣3C.2a﹣5D.3【变式3-1】已知1<x<2,则|x﹣3|+|1﹣x|等于()A.﹣2x B.2C.2x D.﹣2【变式3-2】若1<x<2,则化简|x+1|﹣|x﹣2|的结果为()A.3B.﹣3C.2x﹣1D.1﹣2x【变式3-3】已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【变式3-4】若a<0,则化简|3﹣a|+|2a﹣1|的结果为.【题型4 根据绝对值的定义判断正误】、【典例4】在实数a,b,c中,若a+b=0,b﹣c>c﹣a>0,则下列结论:①|a|>|b |,②a >0,③b <0,④c <0,正确的个数有( ) A .1个B .2个C .3个D .4个【变式4-1】将符号语言“|a |=a (a ≥0)”转化为文字表达,正确的是( ) A .一个数的绝对值等于它本身 B .负数的绝对值等于它的相反数C .非负数的绝对值等于它本身D .0的绝对值等于0【变式4-2】已知a 、b 、c 的大致位置如图所示:化简|a +c |﹣|a +b |的结果是( )A .2a +b +cB .b ﹣cC .c ﹣bD .2a ﹣b ﹣c【变式4-3】下列说法中正确的是( ) A .两个负数中,绝对值大的数就大 B .两个数中,绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【题型5 根据绝对值的意义求取值范围】【典例5】若|5﹣x |=x ﹣5,则x 的取值范围为( ) A .x >5B .x ≥5C .x <5D .x ≤5【变式5-1】已知|a |=﹣a ,则化简|a ﹣1|﹣|a ﹣2|所得的结果是( ) A .﹣1B .1C .2a ﹣3D .3﹣2a【变式5-2】若|1﹣a |=a ﹣1,则a 的取值范围是( ) A .a >1B .a ≥1C .a <1D .a ≤1【变式5-3】若不等式|x ﹣2|+|x +3|+|x ﹣1|+|x +1|≥a 对一切数x 都成立,则a 的取值范围是 .【题型6 绝对值中分类讨论aa问题】 【典例6】计算:(abc ≠0)= .【变式6-1】若n=,abc>0,则n的值为.【变式6-2】已知abc>0,则式子:=()A.3B.﹣3或1C.﹣1或3D.1【变式6-3】已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5B.0或±1C.0或±5D.±1或±5【变式6-4】已知:,且abc>0,a+b+c=0.则m 共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.1【变式6-5】已知a、b、c均为不等于0的有理数,则的值为.【变式6-7】已知a,b,c都不等于零,且++﹣的最大值是m,最小值为n,求的值.【变式6-8】在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+1=3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.【变式6-9】阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.【题型7 绝对值中的分类讨论之多绝对值问题】【典例7】(2022•河北模拟)(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使|x+1|+|x﹣3|=x?(3)是否存在整数x,使|x﹣4|+|x﹣3|+|x+3|+|x+4|=14?如果存在,求出所有的整数x;如果不存在,说明理由.【变式7-1】(2022春•宝山区校级月考)已知|a﹣1|+|a﹣4|=3,则a的取值范围为.【变式7-2】(2022秋•玉门市期末)在数轴上有四个互不相等的有理数a、b、c、d,若|a﹣b|+|b﹣c|=c﹣a,设d在a、c之间,则|a﹣d|+|d﹣c|+|c﹣b|﹣|a﹣c|=()A.d﹣b B.c﹣b C.d﹣c D.d﹣a【题型8绝对值中最值问题】【典例8】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=1时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.【变式8-1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.【变式8-2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.【变式8-3】阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x =﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.。
有理数的加法与减法知识点以及专项训练(含答案解析)
有理数的加法与减法知识点以及专项训练(含有答案解析)【知识点1:有理数的加法】1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).4. 运算律:【知识点1:有理数的加法练习】1.华罗庚说:“数学是中国人民擅长的学科”,中国是最早认识负数并进行运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负数”的方法.图1表示的是()34+-的过程,按照这种方法,图2表示的过程是在计算()A.()52+-B.()52-+C.()()52-+-D.52+【答案】A【解析】由左图知:白色表示正数,黑色表示负数,所以右图表示的过程应是在计算5+(−2), 故选:A .2. 计算(﹣2)+(﹣3)的结果是( ) A .﹣5 B .﹣1 C .1 D .5【答案】A【解析】原式=﹣(2+3)=﹣5, 故选:A3. 比3大-1的数是( ) A .2 B .4 C .-3 D .-2【答案】A【解析】3+(﹣1)=2,所以比3大-1的数是2. 故选:A .4. 奶奶把35000元钱存入银行2年,按年利率2.50%计算,到期时可得到本金和利息共多少元?( ) A .1750 B .36750 C .175 D .35175【答案】B【解析】本金+本金×年利率×年数=到期本息和。
根据题意得:35000+35000×2.50%×2=35000+1750=36750(元), 故选:B .5. 小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ). A .加法的交换律和结合律 B .加法的交换律 C .加法的结合律 D .无法判断【答案】A【解析】将式子(−8)+(−3)+8+(−4)先变成[(−8)+8]+[(−3)+(−4)],再计算结果,则小红运用了:加法的交换律和结合律.故选:A .6.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定【答案】B【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.7.两个数的和为正数,那么这两个数是()A.正数B.负数C.至少有一个为正数D.一正一负【答案】C【解析】根据题意,当两个数为正数时,和为正;当两数一个正数和0时,和为正;当两数一个为正一个为负,且正数的绝对值较大时,和为正.故选C.8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b= ________.【答案】0【解析】∵a,b互为相反数,∴a+b=0.∴a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b=(a+b)+2(a+b)+3(a+b)+⋯+50(a+b)=0.故答案为:0.10.已知|a|=4>a,|b|=6,则a+b的值是________.【答案】2或-10【解析】∵|a|=4>a,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.11.绝对值不大于2.1的所有整数是____,其和是____.【答案】﹣2,﹣1,0,1,2 0【解析】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;012.若a,b为整数,且|a-2|+| a-b|=1,则a+b=________.【答案】2,6,3或5【解析】当|a-2|=1,| a-b|=0时,得:a+b=6或2;当|a-2|=0,| a -b|=1时,得:a+b=3或5;故答案为:2,6,3或5【知识点2:有理数的减法】1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.2. (1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.3.运算法则:减去一个数,等于加这个数的相反数,即有:a−b=a+(−b).将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:【知识点2:有理数的减法练习】1.冬季某天我国三个城市的最高气温分别是 -10℃,1℃, -7℃,它们任意两城市中最大的温差是()A.11℃B.7℃C.8℃D.3℃【答案】A【解析】它们任意两城市中最大的温差是:1-(﹣10)=1+10=11℃.故选:A.2.计算-2-3=()A.1-B.1 C.5-D.5 【答案】C【解析】解:-2-3=-2+(-3)=-5.故选:C.3.计算2136⎛⎫---⎪⎝⎭的结果为( )A.12-B.12C.56-D.56【答案】A【解析】原式=−46+16=−36=−12,故选:A.4.今年10月份某市一天的最高气温为11℃,最低气温为﹣3℃,那么这一天的最高气温比最低气温高()A.﹣14℃B.14℃C.8℃D.11℃【答案】B【解析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:这一天的最高气温比最低气温高11﹣(﹣3)=11+3=14(℃),故选:B.5.气温由6℃下降了8℃,下降后的气温是()A.14-℃B.8-℃C.2-℃D.2℃【答案】C【解析】用原来的气温减去下降的温度,求出下降后的气温是多少即可.解:6-8=-2(℃),故选:C.6.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.12D.12【答案】A【解析】∵-2+2=0,故选A.7.-3-(-2)的值是( )A.-1 B.1 C.5 D.-5【答案】A【解析】本题按照有理数的减法运算法则直接求解即可.−3−(−2)=−3+2=−1,故选:A.8.小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高( )A.3℃B.﹣3℃C.7℃D.﹣7℃【答案】C【解析】用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.依题意得:5-(-2)=5+2=7℃,所以冷藏室温度比冷冻室温度高7℃.故选C.9.下列说法中正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数【答案】C【解析】解:A. 一个有理数不是正数就是负数,错误,如0既不是正数,也不是负数;B. |a|一定是正数,错误,如|0|=0;C. 如果两个数的和是正数,那么这两个数中至少有一个正数,正确;D. 两个数的差一定小于被减数,错误,如3-0=3. 故选:C10. 若3x =,2y =,且0x y +>,那么x y -的值为( ). A .5或1 B .1或-1 C .5或-5 D .-5或-1【答案】A【解析】由题意,利用绝对值的代数意义确定出x 与y 的值,即可求出x-y 的值.解:∵|x|=3,|y|=2,x+y >0, ∴x=3,y=2;x=3,y=-2, 则x-y=1或5, 故选A .11. 在数轴上,a 所表示的点总在b 所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( ) A .-3 B .-9 C .-3或-9 D .3或9【答案】D 【解析】∵|a|=6,|b|=3,∴a=±6,b=±3,∵在数轴上,a 所表示的点总在b 所表示的点的右边,∴a=6,当a=6,b=3时,a ﹣b=6﹣3=3,当a=6,b=﹣3时,a ﹣b=6﹣(﹣3)=6+3=9,所以,a ﹣b 的值为3或9.故选D .12. 设|a|=4,|b|=2,且|a+b|=-(a+b),则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2【答案】A 【解析】∵|a+b|=-(a+b ),∴a+b≤0,∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=-4,b=±2,当a=-4,b=-2时,a-b=-2; 当a=-4,b=2时,a-b=-6;故a -b 所有值的和为:-2+(-6)=-8.故选A .13. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg .【知识点3:有理数加减混合运算】1. 将加减法统一成加法运算,适当应用加法运算律简化计算.2.举例:一、几个有理数相加,把相加得零的数先行相加: 例1 计算38−213−18−20+523−14−313. 【答案】-14【解析】原式=(38-18-20)+(-213+523-313)-14=0+0-14=-14. 例2 计算1+2-3-4+5+6-7-8+9+…+1998-1999-2000+2001+2002-2003-2004+2005+2006. 【答案】2007【解析】原式=1+(2-3-4+5)+(6-7-8+9)+…+(1998-1999-2000+2001)+(2002-2003-2004+2005)+2006=1+0+0+…+0+2006=2007. 二、几个有理数相加,把同号的数分别相加: 例3 计算-18+21-16+8-23+28. 【答案】0【解析】原式=(21+8+28)+(-18-16-23)=57-57=0. 三、几个非整数的有理数相加,先把相加得整数的数相加: 例4 计算-0.375+3.15+114-658+735. 【答案】5【解析】原式=(-0.375-658)+(3.15+114+735)=-7+12=5. 例5 计算214-123+325-113+2.35+9. 【答案】14【解析】原式=(2.35+214+325)+(-123-113)+9=8-3+9=14.四、几个分数相加,先把同分母的分数分别相加: 例6 计算413+514+634-113. 【答案】15【解析】原式=(514+634)+(413-113)=12+3=15.五、几个带分数相加,先把它们的整数部分和分数部分分别相加: 例7 计算413+514+634-113. 【答案】15【解析】原式=(4+5+6-1)+(13+14+34-13)=14+1=15. 六、先变形,后相加:例8 计算38+27-49-996+2006+28. 【答案】1234【解析】原式=(40-2)+(30-3)+(-50+1)+(-1000+4)+(2000+6)+(30-2)=(40+30-50-1000+2000+30)+(-2-3+1+4+6-2)=1230+4=1234.小结:进行有理数的加减混合运算前,根据减法法则把减法变成加法.进行有理数的加减混合运算时,一般先应考虑到符号相同的数先加;互为相反数的数先加,同分母的数先加,和为整数的几个数先加. 【知识点3:有理数加减混合运算 练习】 1. |1−2|+3的相反数是( ) A .4 B .2 C .4- D .2-【答案】C【解析】先化简求解,再根据相反数的定义即可求解. 解:|1−2|+3=2−1+3=4. ∵4的相反数为-4, ∴|1−2|+3的相反数是-4. 故选:C .2. 我市今年某一天上午9点的气温是4°C,下午1点上升了3°C,半夜(24时)又下降了5°C,半夜的气温是( ) A .3°C B .-3°C C .4°C D .2°C【答案】D【解析】根据有理数的加减运算法则计算即可. 解:由题意可得:4+3-5=2°C, 故选D .3. 1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是( ) A .0 B .100 C .﹣1003 D .1003【答案】C【解析】1﹣2+3﹣4+5﹣6+…+2005﹣2006 =1003(1)(1)(1)(1)(1)--+-+-++-个=-1003.4. 50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( ) A .0 B .50 C .﹣50 D .5050 【答案】C【解析】试题解析::(1+3+5+7+…+99)-(2+4+6+8+…+100) =-[(2-1)+(4-3)+(6-5)+(8-7)…+(100-99)] =-(1+1+1+1+…+1) =-50. 故选C .5. 绝对值大于1且小于4的所有整数的和是( ) A .6 B .–6 C .0 D .4【答案】C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0. 故选C .6. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .11 | 13【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-17. 阅读下题的计算方法.计算−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−54) =−54上面这种解题方法叫做拆项法,按此方法计算:(−201156)+(−201023)+402223+(−112). 【答案】−43【解析】解:原式=[(−2011)+(−56)]+[(−2010)+(−23)]+[4022+23]+[(−1)+(−12)]=[(−2011)+(−2010)+4022+(−1)]+[(−56)+(−23)+23+(−12)] =0+(−43) =−438. “九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】【解析】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.9.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】1594千克【解析】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6 200×8+(-6)=1594(千克)法二:197+202+197+203+200+196+201+198=1594(千克)10.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【答案】(1)(2)6千米(3)18千米【解析】解:(1)以邮局为原点,以向北方向为正方向用1cm表示1km,数轴为:;12 | 13(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).11.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【答案】10【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.12.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【答案】(1)11.85元;(2)周四,本周该只股票最高价12.1元出现在周四。
有理数-有理数加减法法则以及习题大全
【有理数】 【有理数的加法】1、有理数的加法法则(1)同号两数相加,_____取相同的符号,并把绝对值相加____;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数; (4)互为相反数的两个数相加,等于0。
2.有理数加法的运算律:(1)加法的交换律:a+b=_b+a_; (2)加法的结合律:(a+b )+c=a+(b+c); 3.有理数的减法法则减去一个数,等于加上这个数的相反数即:a -b=a+(-b)➢ 有理数的加法 【基础练习】1.足球比赛中,甲队攻入乙队两球,同时被乙队攻入五球,则计算甲队净胜球数的算式为__________________. 2.-2的相反数与21的倒数的和的绝对值等于______. 3.有理数加法法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,若将正数记为a ,负数记为b ,将这句话用符号语言表示为_________ _________________________________________________________________________. 4.下列运算中正确的是( ). (A)(+8)+(-10)=-(10-8)=-2 (B)(-3)+(-2)=-(3-2)=-1 (C)(-5)+(+6)=+(6+5)=+11(D)(-6)+(-2)=+(6+2)=+85.三个数-15,-5,+10的和,比它们绝对值的和小( ). (A)-20(B)20(C)-40(D)406.如果两个数的和是正数,那么这两个数一定( ). (A)都是正数 (B)只有一个正数 (C)至少有一个正数(D)不确定7.(+8)+(-17)= 8.(-17)+(-15)=9.(-32.8)+(+51.76)= 10.(-3.07)+(+3.07)=11.=-+)325(012.)71.2()325(-+-=13.)12511()8119(-++= 14.=+++-2075.123.22)5.10(15.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处的位置能否用两种方法表示?【培优练习】16.小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm) (1)小虫最后是否回到出发点O ?为什么?(2)小虫离开O点最远时是多少?(3)在爬行过程中,如果每爬行1cm奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?17.有一批食品罐头标准质量为每听454克,现抽取10听样品进行检测,结果如下表:(单位:克)这10听罐头的平均质量是多少克?想一想:有没有好的方法算得又快又准确?18.试比较a+b与a的大小.➢有理数减法【基础练习】1.加法、减法统一成加法变形(1)(-28)-(+12)-(-3)-(+6)=(2)(-25)+(-7)-(-15)-(-6)+(-11)-(-2)=(3)14 -(-12)+(-25)-17=(4)-26+43-24+13-46=(5)(+17)-(-32)-(+23)(6)(+6)-(+12)+(+8.3)-(+7.4)(7)1.2-2.5-3.6+4.5 (8)-7+6+9-8-5; (9)73-(8-9+2-5) (10)-16+25+16-15+4-10 (11)-5.4+0.2-0.6+0.82. 13.a ,b ,c ,d 在数轴上的对应点位置如图所示,且|a |=|b |,|d |>|c |>|a |,则下列各式中,正确的是( ).(A)d +c >0 (B)d >c >b >a (C)a +b =0(D)b +c >03. 14.若a <b ,则|b -a +1|-|a -b |等于( ).(A)4(B)1(C)-2a +b +6(D)不能确定4. 15.若|a |=4,|b |=3,且a ,b 异号,则|a -b |等于( ).(A)7(B)±1(C)1(D)1或75. 有理数a ,b ,c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 6. 17.)31()21()54()32(21+--+---+7. 18.|87432||)851(213|+---+-8.19.当a=2.7,b=-3.2,c=-1.8时,求-a-b-c的值.9.寻道员沿东西方向的铁路进行巡视维护。
七年级有理数加减法相反数绝对值等运算题
七年级有理数加减法相反数绝对值等运算题一、有理数的加减运算1. 加法运算* 例题1:计算 $(-3) + 5$ 的结果。
解:$(-3) + 5 = 2$。
* 例题2:计算 $(-7) + (-2)$ 的结果。
解:$(-7) + (-2) = -9$。
2. 减法运算* 例题1:计算 $6 - (-8)$ 的结果。
解:$6 - (-8) = 14$。
* 例题2:计算 $(-5) - (-3)$ 的结果。
解:$(-5) - (-3) = -2$。
二、相反数和绝对值1. 相反数* 定义:对于任意有理数 $a$,$b$ 是 $a$ 的相反数,当且仅当$a + b = 0$。
* 例题1:求 $5$ 的相反数。
解:$5$ 的相反数为 $-5$,因为 $5 + (-5) = 0$。
* 例题2:求 $-2$ 的相反数。
解:$-2$ 的相反数为 $2$,因为 $-2 + 2 = 0$。
2. 绝对值* 定义:对于任意有理数 $a$,$a$ 的绝对值表示为 $|a|$,当$a \geq 0$ 时,$|a| = a$;当 $a < 0$ 时,$|a| = -a$。
* 例题1:求 $|-3|$ 的结果。
解:$|-3| = 3$,因为 $-3$ 小于 $0$。
* 例题2:求 $|5|$ 的结果。
解:$|5| = 5$,因为 $5$ 大于或等于 $0$。
三、综合运算题1. 加减法综合运算* 例题1:计算 $(-2) - 5 + 3$ 的结果。
解:$(-2) - 5 + 3 = -4$。
* 例题2:计算 $4 - 6 - (-3)$ 的结果。
解:$4 - 6 - (-3) = 1$。
2. 绝对值综合运算* 例题1:计算 $|8 - 10|$ 的结果。
解:$|8 - 10| = 2$。
* 例题2:计算 $|-5 + 7|$ 的结果。
解:$|-5 + 7| = 2$。
以上是关于七年级有理数加减法相反数绝对值等运算题的内容,希望可以帮助到你。
有理数绝对值加减法混合计算题
有理数绝对值加减法混合计算题摘要:一、有理数绝对值加减法混合计算题的概念和基本规则二、有理数绝对值加减法混合计算题的解题方法与技巧三、有理数绝对值加减法混合计算题的实例解析四、有理数绝对值加减法混合计算题的练习与提高正文:有理数绝对值加减法混合计算题是初中数学中的一个重要内容,它涉及到有理数的加法、减法以及绝对值的概念。
在解决这类题目时,我们需要灵活运用有理数的加减法法则以及绝对值的性质,同时掌握一些解题的方法与技巧。
一、有理数绝对值加减法混合计算题的概念和基本规则有理数绝对值加减法混合计算题主要涉及到有理数的加法、减法以及绝对值的概念。
在加减法混合计算中,我们需要注意以下几点基本规则:1.同号相加,取相同符号,并把绝对值相加。
2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3.任何数与零相加,仍得原数。
4.任何数与零相减,仍得原数。
二、有理数绝对值加减法混合计算题的解题方法与技巧在解决有理数绝对值加减法混合计算题时,我们可以采用以下几种方法与技巧:1.分类讨论法:根据加减法混合计算题的特点,我们可以将问题分为同号、异号、零加减等情况,然后分别进行讨论。
2.符号法则:在计算过程中,我们可以先确定结果的符号,再进行绝对值的计算。
3.化简法:将分数进行通分、约分等操作,化简计算过程。
4.利用数学公式:利用平方差公式、完全平方公式等数学公式,将复杂的加减法计算简化。
三、有理数绝对值加减法混合计算题的实例解析例如,解以下题目:计算表达式|3 + 5| - |-2 - 4| 的值。
首先,我们根据绝对值的性质,将表达式化简为|3 + 5| - |2 + 4|,再根据加减法混合计算的基本规则,分别计算同号和异号的情况。
得到结果为8 -6 = 2。
四、有理数绝对值加减法混合计算题的练习与提高为了更好地掌握有理数绝对值加减法混合计算题的解题方法,我们需要进行大量的练习。
在练习过程中,我们可以总结经验,发现自己的不足之处,并及时调整解题策略。
有理数加减法知识点与练习
有理数加减法知识点与练习有理数是数学中的一种数,包括整数和分数。
有理数的加减法是我们研究数学的重要基础。
本文将介绍有理数加减法的基本知识点,并提供相关练题,帮助学生巩固所学知识。
一、有理数的加法有理数的加法是指对两个有理数进行相加的操作。
具体步骤如下:1. 正数加正数:直接将两个数的绝对值相加,并保持符号不变。
例如:3 + 5 = 82. 正数加负数:将两个数的绝对值相减,结果的符号取决于绝对值大的数的符号。
例如:3 + (-5) = -23. 负数加负数:将两个数的绝对值相加,并保持符号不变。
例如:(-3) + (-5) = -8二、有理数的减法有理数的减法是指对两个有理数进行相减的操作。
具体步骤如下:1. 正数减正数:直接将两个数的绝对值相减,并保持符号不变。
例如:3 - 2 = 12. 正数减负数:将两个数的绝对值相加,结果的符号取决于第一个数的符号。
例如:3 - (-2) = 53. 负数减负数:将第二个数的绝对值减去第一个数的绝对值,并保持符号不变。
例如:(-3) - (-2) = -1三、练题1. 请计算以下有理数的值:a) 5 + 3b) 7 + (-4)c) (-6) + (-2)d) 9 - 3e) 5 - (-2)f) (-8) - (-3)2. 请回答以下问题:a) 正数和正数相加的结果是什么?b) 正数和负数相加的结果是什么?c) 负数和负数相加的结果是什么?d) 正数和正数相减的结果是什么?e) 正数和负数相减的结果是什么?f) 负数和负数相减的结果是什么?以上是有理数加减法的基本知识点和练习,希望对你的学习有所帮助!。
有理数减法(6种题型)(解析版)
有理数减法(6种题型)【知识梳理】一.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.二.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.三、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】题型一:有理数减法法则的直接运用例1、计算:(1)(-32)-(+5);(2)(+2)-(-25).【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【变式1】计算:(1)7.2-(-4.8); (2)-312-514.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.【变式2】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+−⎪⎝⎭.【答案与解析】本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2 733721 +−=−−=−题型二:有理数减法的实际应用例2.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( ) A.5℃ B.6℃ C.7℃ D.8℃解析:由题意得6-(-1)=6+1=7(℃),故选C.【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是()A.18℃B.﹣26℃C.﹣22℃D.﹣18℃【解答】解:根据题意得:4﹣2218(℃),则这台电冰箱冷冻室的温度为﹣18℃.故选:D.题型三:应用有理数减法法则判定正负性例3.已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解:因为b<0,所以-b>0.又因为a<0,a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.【变式1】若|a|=4,|b|=2,且a+b的绝对值与相反数相等,则a﹣b的值是()A.﹣2B.﹣6C.﹣2或﹣6D.2或6【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,又∵a+b的绝对值与相反数相等,∴a+b≤0,∴a=﹣4,b=2或a=﹣4,b=﹣2,当a=﹣4,b=2时,a﹣b=﹣4﹣2=﹣6,当a=﹣4,b=﹣2时,a﹣b=﹣4﹣(﹣2)=﹣2,综上,a﹣b的值为﹣2或﹣6,故选:C.题型四:加减混合运算统一成加法运算例4.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法①:负13、正7、负21、负9、正32的和;读法②:负13减去负7减去21减去9加上32.题型五:有理数的加减混合运算例5.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38).解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12.【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432(4) (5)(6)【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)→同分母的数先加(4) →统一成加法→整数、小数、分数分别加(5)→统一同一形式(小数或分数),把可凑整的放一起113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭132.2532 1.87584+−+1355354624618−++−⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++−= ⎪⎝⎭132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++(6)→整数,分数分别加【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.464 3.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组; 4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93- =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组. 解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.76395684.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+= 0.55 4.5=−+=1355354624618−++−1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13−易于通分,把它们分为一组;124−与34同分母,把它们分为一组.解:51133.464 3.872 1.54 3.376344+−−−+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解:1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−182********−++−=+2936=113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++ 0.55 4.5=−+=题型六:利用有理数加减运算解决实际问题例6.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米. 【变式1】小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻? 【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10) =(5+10+12)+(-3-8-6-10)=27-27=0 0表示最后小虫又回到了出发点O 答:小虫最后回到了出发地O. (2) (+5)+(-3)=+2; (+5)+(-3)+(+10)=+12; (+5)+(-3)+(+10)+(-8)=+4; (+5)+(-3)+(+10)+(-8)+(-6)=-2; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O 点最远时是向右12cm; (3)(cm ), 所以小虫爬行的总路程是54 cm ,531086121054++−+++−+−+++−=由 (粒) 答:小虫一共可以得到54粒芝麻.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5. (1)问收工时距A 地多远?(2)若每千米路程耗油0.2升,问从A 地出发到收工时共耗油多少升? 解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5) =[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3) =0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可. (|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升.【过关检测】一、单选题【答案】C【分析】由最高温度减去最低温度可求解. 【详解】解:由题意,这天的温差是()()527℃−−=,故选:C .【点睛】本题考查有理数减法的应用,理解题意,正确得出算式是解答的关键. 2.(2023·浙江·七年级假期作业)计算(3)(5)−−−的结果是( ) A .8− B .2−C .8D .2【答案】D【分析】直接利用有理数的减法运算法则计算得出答案. 【详解】解:(3)(5)(3)(5)2−−−=−++=,15454⨯=故选:D .【点睛】此题主要考查了有理数的减法,正确掌握有理数减法法则是解题关键.3.(2022秋·七年级单元测试)不改变原式的值,把()()()7561−−+−−+−写成省略加号的和的形式为( )A .7561−−+−B .7561−++−C .7561−+−D .7561−+−−【答案】A【分析】根据有理数减法法则计算即可. 【详解】()()()75617561−−+−−+−=−−+−,故选A .【点睛】本题考查了有理数减法法则,熟练掌握法则是解题的关键.4.(2023·浙江·七年级假期作业)给出下列计算:①()()321−−−=−②()()422−−−=③()()532−−−=−④()()725+−+=,其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】分别求出各个式子的值,然后进行判断即可. 【详解】解:①()()13322=−−+−=−−,故①正确;②()()42422−−−=−+=−,故②错误;③()()53532−−−=−+=−,故③正确;④()()72725+−+=−=,故④正确;综上分析可知,正确的有3个,故C 正确. 故选:C .【点睛】本题主要考查了有理数减法运算,解题的关键是熟练掌握有理数加减运算法则,准确计算. 5.(2022秋·山东临沂·七年级校考阶段练习)计算()()32−−−的结果等于( ) A .5− B .1−C .5D .1【答案】B【分析】利用有理数的减法法则计算即可.【详解】()()()32321−=−−−+=−,故选:B .【点睛】本题考查有理数的减法运算,把减法变成加法是解题的关键. 6.(2023·浙江·七年级假期作业)算式35−−的结果对应图中的( )A .aB .bC .cD .d【答案】A【分析】根据有理数的减法进行计算,然后在数轴上找到8−,即可求解. 【详解】解:∵35−−8=−, ∴算式35−−的结果对应图中的a , 故选:A .【点睛】本题考查了有理数的减法运算,在数轴上表示有理数,掌握有理数的减法运算,数形结合是解题的关键.【答案】C【分析】根据有理数的加减,逐项进行判断即可求解. 【详解】解:A 、比3−大的负数有无数个,故答案错误; B 、231−+=,则比2−大3的数是1,故答案错误; C 、253−=−,则比2小5的数是3−,故答案正确; D 、325−−=−,则比3−小2的数是5−,故答案错误. 故选:C .【点睛】本题考查了有理数的加减运算,熟练掌握有理数的加减运算是解题的关键.8.(2023·江苏·七年级假期作业)若a b c d=+−−,则的值是()−A.2B.4−C.10D.10【答案】B【分析】根据题干中的运算规则,计算求解即可.=+−−=−,【详解】解:由题意得,12344故选:B.【点睛】本题考查了有理数的加减运算.理解题干的运算规则是解决问题的关键.+−−++−−+++−−值为()9.(2022秋·全国·七年级期末)计算123456782017201820192020A.0B.﹣1C.2020D.-2020【答案】D【分析】根据加法的结合律四个四个一组结合起来,每一组的和都等于-4,共505组,计算即可.【详解】解:1+2-3-4+5+6-7-8+9+10-11-12+……+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+……+(2017+2018-2019-2020)=(-4)+(-4)+(-4)+(-4)+……+(-4)=(-4)×505=-2020.故选D.【点睛】本题考查了有理数的加减混合运算,观察出规律是解题的关键.10.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们−−−−−这12 个数填入“六角感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a的值为()A.4−B.3−C.3D.4【答案】B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5−−这一行最后一个圆圈数字应填3,则a所在的横着的一行最后一个圈为3,2,1,1−−这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6−−,1,5这一行剩下的两个圆圈数字和应为4−,则取4,3,0,6−−中的4,0−,2,2−这一行剩下的两个圆圈数字和应为2,则取4,3,0,6−−中的4,6−,这两行交汇处是最下面那个圆圈,应填4−,所以1,5这一行第三个圆圈数字应为0,则a所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a为3−故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.二、填空题【答案】1【分析】根据有理数的加减法进行求解即可.【详解】()45=45=1−−−−+,故答案为1.【点睛】本题考查了有理数的加减法,掌握有理数的加减法是解题的关键.【答案】8【分析】由最高气温减去最低气温确定出该日的日温差即可.【详解】解:根据题意得:()()628C −−=︒,则该日的日温差是8C ︒.故答案为:8.【点睛】此题考查了有理数的减法的实际应用,熟练掌握减法法则是解本题的关键. 13.(2023·浙江·七年级假期作业)大米包装袋上标注着“净含量:10kg 100g ±”,则该袋大米的净含量最低值是 kg .【答案】9.9【分析】根据正负数的意义计算即可.【详解】∵100g=0.1kg ,∴该袋大米的净含量最低值是10kg 0.1kg=9.9kg −.故答案为:9.9.【点睛】本题考查了有理数的减法,正负数的意义,注意单位的一致性是解题的关键.【答案】16/6【分析】先将小数化为分数,再计算括号内的,最后计算减法.【详解】解:213 5.75334⎛⎫−− ⎪⎝⎭ 231353344⎛⎫=−− ⎪⎝⎭213232=−116=.故答案为:116. 【点睛】本题考查了分数的减法运算,解题的关键是掌握运算法则.15.(2022秋·七年级单元测试)数轴上点A 表示的数是3−,将点A 在数轴上平移7个单位长度得到点B ,则平移后点B 表示的数是 .【答案】10−或4【分析】根据数轴上有理数的表示及有理数的加减法可进行求解.【详解】解:当点A 在数轴上向左平移7个单位长度得到点B ,则平移后点B 表示的数是3710−−=−; 当点A 在数轴上向右平移7个单位长度得到点B ,则平移后点B 表示的数是374−+=;故答案为10−或4.【点睛】本题主要考查数轴上有理数的表示及有理数的加减法,熟练掌握数轴上有理数的表示及有理数的加减法是解题的关键. 16.(2022秋·河南南阳·七年级统考期中)把()()()()1213149−−−+−−+写成省略加号的和的形式是 .【答案】1213149−+−−【分析】先把原式统一为加法运算,再省略括号与括号前面的加号,从而可得答案.【详解】解:()()()()1213149−−−+−−+()()()()1213149=−+++−+− 1213149=−+−−故答案为:1213149−+−−.【点睛】本题考查的是把加减运算统一为加法运算,再写成省略“+”的和的形式,掌握“减去一个数,等于加上这个数的相反数”是解题的关键.【答案】10− 【分析】由41133=+,7111234=+,9112045=+,11113056=+,13114267=+,15115678=+,17117289=+,可得n 的值,即可求出负倒数.【详解】∵479111315173122030425672n =−+−+−+11111111111111()()()+()()()3344556677889=+−+++−++−+++11111111111111+3344556677889=+−−++−−+−−++119=+ 109=,∴n 的负倒数是910−. 故答案为:910−. 【点睛】本题考查了有理数的加减混合运算,认真审题,找出规律是解决此题的关键. 18.(2023春·湖南衡阳·七年级校考期末)如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.2=3,[]5=5,[ 2.1]3−=−.那么,[]x x a =+,其中01a ≤<.例如,[]3.2 3.20.2=+,[]550=+, 2.1 2.10.9[]−=+-.现有[]31a x =+,则x 的值为 .【答案】1−或13或213【分析】根据[]x 为不超过x 的最大整数且[]31a x =+,可知3a 是整数,根据01a ≤<,得到a 为0或13或23,根据[]x x a =+,得到41x a =−,得到x 为1−或13或213.【详解】∵不超过x 的最大整数为[]x ,[]31a x =+,∴3a 是整数,∵01a ≤<,∴a 为0或13或23, ∵[]x x a =+, ∴[]x x a =−,∴31a x a =−+,41x a =−,∴x 为1−或13或213.故答案为:1−或13或213.【点睛】本题主要考查了新定义“不超过x 的最大整数[]x ”,解决问题的关键是熟练掌握任意一个有理数都可以看作一个整数和一个正小数或0的和,进行分类讨论.三、解答题19.(2023·全国·七年级假期作业)计算:()()()()0.5 3.2 2.8 6.5−−−++−+.【答案】1−【分析】按照有理数的加减法运算法则和运算律进行计算.【详解】解:原式0.5 3.2 2.8 6.5=−++−()()0.5 6.5 3.2 2.8=−−++ ()76=−+1=−. 【点睛】本题考查了有理数的加减混合运算,解题的关键是掌握有理数的加减法运算法则和运算律.【答案】(1)10− (2)6 【分析】(1(2)根据有理数加减计算法则求解即可.【详解】(1)原式201257=−++−10=−;(2)原式1121322332=++− 1112322233⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭ 33=+6=.【点睛】本题主要考查了有理数的加减计算,熟知相关计算法则是解题的关键.【答案】8【分析】先去括号和绝对值,然后按有理数加减混合运算法则解答即可.【详解】解:()()() 219812−−−+−−−219812=−+++12812=−++8=.【点睛】本题主要考查了有理数加减混合运算、去括号、去绝对值等知识点,掌握去括号、去绝对值成为解答本题的关键.22.(2022秋·广东茂名·七年级校考期中)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4−,点B表示的数为1−,点C表示是数为3,则()14143 AB=−−−=−+=,()31314BC=−−=+=,()34347AC=−−=+=,故答案为:3;4;7.(2)解:将点A向右移动5个单位到点D,则点D表示是数为451−+=,点B表示的数为1−,点C表示是数为3,∵311>>−,∴表示最大数的是点C,表示最小数的是点B()31314−−=+=,∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A 、B 、C 在数轴上所表示的有理数.与9月30日相比,10月7日的客流量是上升了还是下降了,变化了多少【答案】与9月30日相比,10月7日的客流量是上升了.上升了24万人【分析】将表格数据相加即可得出结果.【详解】解:10月7日的客流量与9月30日相比:20310329324+−−+++=+万人,答:与9月30日相比,10月7日的客流量是上升了.上升了24万人.【点睛】本题考查有理数的混合运算、正数和负数,解答本题的关键是明确题意,写出相应的算式.【答案】37级【分析】根据题意,结合数轴,确定原点,可以求出梯子的最高点距中点的级数,进而求出梯子的总级数.【详解】解:把梯子的中点确定为原点用0表示,规定向上为正,则梯子的最高的距原点的距离为:03738918−+−++=级,即梯子中点以上有18级,因此梯子的总级数为182137⨯+=级.【点睛】本题考查数轴的应用,有理数的加减运算,理解数轴表示数的意义以及正负数的意义是解决问题的关键.25.(2023秋·内蒙古巴彦淖尔·七年级统考期末)一只蚂蚁在一根横木上从某点出发,以笔直的线路来回爬行,规定向右爬行记为正,爬行轨迹记录如下:647961210+−−+−+−,,,,,,(单位:厘米). (1)蚂蚁最后是否回到了出发点O ?(2)蚂蚁离开出发点最远是______厘米?(3)在爬行过程中,如果蚂蚁每爬行1厘米奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?【答案】(1)蚂蚁最后回到了出发点O(2)小虫离开出发点O最远是10厘米(3)小虫共可得到芝麻108粒【分析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和,继而可得答案.【详解】(1)()()()() 6479612100 ++−+−++−++−=,∴蚂蚁最后回到了出发点O;(2)根据记录,小虫离开出发点O的距离分别为66+=642+−=6475+−−=64794+−−+=647962+−−+−=647961210+−−+−+=()()()()6479612100++−+−++−++−=∴故小虫离开出发点O最远是10厘米;(3)爬行距离64796121054++++++=(厘米),则小虫共可得到芝麻542108⨯=(粒).【点睛】此题考查正数和负数以及有理数的混合运算,此题的关键是读懂题意,理清正数和负数的意义.【答案】(1)5;(2)6或4;(3)1−(4)3;2−,1−,0,1;(5)2023【分析】(1)根据题意可得3与2−的两点之间的距离是()32−−,计算即可; (2)51x −=表示x 到5的距离为1,据此可解;(3)|1||3|x x −=+表示x 到1的距离和到3−的距离相等,据此可解;(4)根据绝对值的意义可知|2||1|x x ++−表示x 到2−的距离与x 到1的距离之和,根据点在数轴上的位置求解即可;(5)根据绝对值的意义可知10125041011x x x ++++−表示x 到1012−的距离,x 到504−的距离与x 到1011的距离之和,根据点在数轴上的位置求解即可.【详解】(1)解:由题意可得:()325−−=, 故答案为:5;(2)解:51x −=表示x 到5的距离为1,根据数轴可得,到数轴上表示5的数距离为1的点表示的数为6或4故答案为:6或4;(3)解:|1||3|x x −=+表示x 到1的距离和到3−的距离相等,根据数轴上点的位置可得到1的距离和到3−的距离相等的点表示的数为3112−+=−,即=1x −,故答案为:1−;(4)解:根据绝对值的意义可知|2||1|x x ++−表示x 到2−的距离与x 到1的距离之和,∵表示2−的数与表示1的数之间的距离为213−−=,根据数轴可知,当<2x −时,|2||1|3x x ++−>,当21x −≤≤时,|2||1|3x x ++−=,当1x >时,|2||1|3x x ++−>,综上,当21x −≤≤时,|2||1|x x ++−有最小值为3,且此时整数x 的值为2−,1−,0,1;故答案为:3;2−,1−,0,1;(5)解:如图,根据绝对值的意义可知10125041011x x x ++++−表示x 到1012−的距离,x 到504−的距离与x 到1011的距离之和,∵表示1012−的数与表示1011的数之间的距离为101210112023−−=, 根据数轴可知,当1012x <−时,101250410112531x x x ++++−>, 当x −1012≤<−504时,101250410112023x x x ++++−>, 当x =−504时,101250410112023x x x ++++−=, 当x −504<≤1011时,101250410112023x x x ++++−>, 当x >1011时,101250410113538x x x ++++−>,综上,当504x =−时,10125041011x x x ++++−有最小值为2023,故答案为:2023. 【点睛】本题主要考查了绝对值及数轴,解题的关键是理解两点间的距离表达式,注意数形结合思想的应用.。
有理数的加减及混合运算(8种题型)-2023年新七年级数学常见题型(北师大版)(解析版)
有理数的加减及混合运算(8种题型)【知识梳理】一、有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.)二、相关运算律交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).三.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.四.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.五、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】 题型一:有理数的加法法则 例1.计算:(1)(-0.9)+(-0.87); (2)(+456)+(-312);(3)(-5.25)+514; (4)(-89)+0.解:(1)(-0.9)+(-0.87)=-1.77; (2)(+456)+(-312)=113; (3)(-5.25)+514=0;(4)(-89)+0=-89. 【变式】计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0. (1)(+20)+(+12)=+(20+12)=+32=;(2)(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【答案】(1) 4.62−; (2)0.25−.1223⎛⎫⎛⎫−+− ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫−+−=−+=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【详解】(1)解:()()33 2.71 1.695⎛⎫−+−++ ⎪⎝⎭()()3.6 2.71 1.69=−+−+()3.6 2.71 1.69=−++6.31 1.69=−+()6.31 1.69=−−4.62=−;(2)115 4.257522⎛⎫−++−+ ⎪⎝⎭ ()5.5 4.257 5.5=−++−+()1.25 1.5=−+−()1.25 1.5=+− ()1.5 1.25=−−0.25=−.例2.已知|a |=5,b 的相反数为4,则a +b =________.解析:因为|a |=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1. 【变式】若,且,那么的值是( ) A .5或1 B .1或C .5或D .或【答案】D【详解】解:∵|a|=3,|b|=2, ∴a=±3,b=±2, ∵,∴a=-3,b=2或a=-3,b=-2, ∴a+b=-3+2=-1或a+b=-3+(-2)=-5. 故选:D .3,2a b ==a b <+a b 1−5−5−1−a b <题型三:有理数加法在实际生活中的应用例3.股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.【变式1】温州市实验中学于10月30日开展了“行走的力量”之七都环岛毅行活动,其中九年级同学的行程要经过四个打卡点.在活动中,安全负责人王老师骑着电动车在2,3,4号打卡点之间来回巡查(2,3,4号打卡点可近似看作在一条直线上),并接送途中身体不适的同学到4号打卡点.若记队伍行进方向为“+”,王老师在2号打卡点出发,当天的6次行驶记录如下:(单位:km)(1)王老师最终停留的位置离2号打卡点的距离是多少km?(2)若电动车一次充电可以骑行30km,王老师的电动车充满电后骑8km到2号打卡点,做以上6次往返后,还需要骑行5.8km到学校车辆集中点,请问王老师的电动车能否顺利骑到学校车辆集中点?【答案】(1)1km;(2)不能++−+++−+++−【详解】解:(1)( 2.5)(2)( 4.5)(3)(2)(3)=+−0.5 1.51=1km,∴王老师最终停留位置距2号点1km.+++++++=km,(2)8 2.52 4.5323 5.830.8>,∵30.830∴王老师不能顺利骑到车辆集中点.【变式2】国内汽油价格每月会有两次调整,如果以今年6月底的油价为基准,涨价记为正方向,7月至10月的油价调整情况记录如下(单位:元/吨):(1)7月至10月之间,今年_______(填时间)的调价令油价与基准价格相差最大. (2)到10月底,油价能否回到基准价格?请说明理由. 【答案】(1)8月下旬;(2)不能,理由见解析 【详解】解:(1)7月上旬与基准价格相差:+100, 7月下旬与基准价格相差:+100, 8月上旬与基准价格相差:+100, 8月下旬与基准价格相差:+100+85=185, 9月上旬与基准价格相差:185,9月下旬与基准价格相差:185-315=-130, 10月上旬与基准价格相差:-130, 10月下旬与基准价格相差:-130+70=-60, ∴8月下旬的调价令油价与基准价格相差最大; (2)由题意可得:100+0+0+85+0-315+0+70=-60,∴到10月底,油价不能回到基准价格. 题型四:加法运算律及其应用 例4.计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35); (3)(+635)+(-523)+(425)+(1+123).解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20; (3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.【答案】(1)12 (2)3【详解】(1)解:()()25.77.313.77.3+−+−+()()25.713.77.37.3=+−+−+⎡⎤⎡⎤⎣⎦⎣⎦120=+12=(2)()()112.12535 3.258⎛⎫⎛⎫−+++++− ⎪ ⎪⎝⎭⎝⎭()()112.12553 3.285⎡⎤⎡⎤=−+++−⎢⎥⎢⎥⎣⎦⎣⎦30=+ 3=【变式2】计算(1)()()2317622+−++−; (2)()()6.35 1.47.6 5.35−+−+−+. 【答案】(1)-10 (2)-10【详解】(1)解:()()2317622+−++−2317622=−+−()()2361722=+−+2939=−10=−;(2)解:()()6.35 1.47.6 5.35−+−+−+()()()6.35 5.35 1.47.6=−++−+−⎡⎤⎣⎦()1 1.47.6=−+−+⎡⎤⎣⎦19=−−10=−. 【变式3】某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km) +18,-9,+7,-14,+13,-6,-8. (1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km) 故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a(L). 答:该天耗油75aL.题型五:有理数减法法则的直接运用例5、 计算:(1)(-32)-(+5); (2)(+2)-(-25). 【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27 【变式1】计算:(1)7.2-(-4.8); (2)-312-514.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.【变式2】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+− ⎪⎝⎭. (1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)273321+−=−−=− 题型六:有理数减法的实际应用例6.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( ) A .5℃ B .6℃ C .7℃ D .8℃ 解析:由题意得6-(-1)=6+1=7(℃),故选C.【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是( ) A .18℃B .﹣26℃C .﹣22℃D .﹣18℃【解答】解:根据题意得:4﹣22=﹣18(℃), 则这台电冰箱冷冻室的温度为﹣18℃. 故选:D .题型七:有理数的加减混合运算例7.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38). 解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) (4) (5)(6) 【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭132.2532 1.87584+−+1355354624618−++−⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432→同分母的数先加(4) →统一成加法→整数、小数、分数分别加(5)→统一同一形式(小数或分数),把可凑整的放一起(6)→整数,分数分别加【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.4643.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++−= ⎪⎝⎭132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++0.55 4.5=−+=1355354624618−++−1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组; 4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组. 解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.76395684.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+= (4)3.46和1.54的和为整数, 3.87与3.37的和为-0.5,把它们分为一组;546与13−易于通分,把它们分为一组;124−与34同分母,把它们分为一组.解:51133.464 3.872 1.54 3.376344+−−−+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解:1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−182********−++−=+2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++ 0.55 4.5=−+=题型八:利用有理数加减运算解决实际问题例8.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米. 【变式1】小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻? 【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10) =(5+10+12)+(-3-8-6-10)=27-27=0 0表示最后小虫又回到了出发点O 答:小虫最后回到了出发地O. (2) (+5)+(-3)=+2; (+5)+(-3)+(+10)=+12; (+5)+(-3)+(+10)+(-8)=+4; (+5)+(-3)+(+10)+(-8)+(-6)=-2; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O 点最远时是向右12cm; (3)(cm ), 所以小虫爬行的总路程是54 cm ,由 (粒) 答:小虫一共可以得到54粒芝麻.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5. (1)问收工时距A 地多远?(2)若每千米路程耗油0.2升,问从A 地出发到收工时共耗油多少升?【答案与解析】(1)求收工时距A 地多远,应求出已知10个有理数的和,若和为正数,则在A 地前面,若和为负数,则在A 地后面;距A 地的路程均为和的绝对值. 解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5) =[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3) =0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可. (|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升.531086121054++−+++−+−+++−=15454⨯=【过关检测】一.选择题(共10小题)1.(2023•晋中模拟)计算﹣2+6的结果是()A.﹣8B.8C.﹣4D.4【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(6﹣2)=4.故选:D.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.(2023•洞头区二模)计算:2+(﹣3)的结果是()A.1B.﹣1C.﹣5D.5【分析】依据有理数的加法法则进行计算即可.【解答】解:2+(﹣3)=﹣(3﹣2)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟记法则是解题的关键.3.(2023•顺庆区三模)比﹣1大2的数是()A.3B.1C.﹣1D.﹣3【解答】解:﹣1+2=(2﹣1)=1,故选:B.【点评】本题考查了有理数的加法,异号两数相加取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值.4.(2023•哈尔滨一模)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8),=2+8,=10℃.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.5.(2023•建平县模拟)计算﹣3﹣2的结果是()A.﹣1B.﹣5C.1D.5【分析】根据有理数的减法法则计算即可求解.【解答】解:﹣3﹣2=﹣5.故选:B.【点评】本题考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).6.(2023•旺苍县模拟)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【分析】利用有理数的减法法则计算即可.【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.【点评】本题考查了有理数的减法,解题的关键是熟练掌握有理数的减法法则.7.(2022秋•裕华区期末)能与﹣(﹣)相加得0的是()A.﹣B.﹣+C.﹣﹣D.﹣(﹣)【分析】利用有理数的加减混合运算与相反数的定义判断.【解答】解:∵﹣(﹣)的相反数是﹣,∴能与﹣(﹣)相加得0的是﹣.故选:A.【点评】本题考查了有理数的加减混合运算与相反数的定义,解题的关键是掌握有理数的加减混合运算与相反数的定义.8.(2023•孟村县校级模拟)不改变原式的值,把7﹣(+6)﹣(﹣3)+(﹣5)写成省略加号的和的形式为()A.7﹣6+3﹣5B.7﹣6﹣3+5C.﹣7﹣6+3﹣5D.﹣7+6+3﹣5【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式【解答】解:原式=7﹣6+3﹣5,【点评】本题考查有理数加减混合运算的方法,掌握有理数加减法统一成加法是解题关键.9.(2023•温州二模)计算﹣8+2的结果是()A.﹣6B.6C.﹣10D.10【分析】根据正负数的加减法运算即可.【解答】解:﹣8+2=﹣6,故答案为:A.【点评】本题考查了有理数的加法运算,熟练掌握正负数的加减法运算是解本题的关键,难度不大,仔细审题即可.10.(2023•青龙县模拟)将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是()A.﹣3+6﹣5﹣2B.﹣3﹣6+5﹣2C.﹣3﹣6﹣5﹣2D.﹣3﹣6+5+2【分析】原式利用减法法则变形即可得到结果.【解答】解:﹣3﹣(+6)﹣(﹣5)+(﹣2)=﹣3﹣6+5﹣2.故选:B.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)11.(2022秋•郸城县期末)把5+(﹣3)﹣(﹣7)﹣(+2)写成省略括号的形式是.【解答】解:原式=5+(﹣3)+7+(﹣2)=5﹣3+7﹣2,故答案为:5﹣3+7﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是熟练掌握运算法则.12.(2023•黔东南州一模)计算:﹣3+4=.【分析】根据有理数的加法法则计算即可.【解答】解:原式=+(4﹣3)=1.故答案为:1.【点评】本题考查了有理数的加法,掌握绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.13.(2022秋•秦淮区期末)有理数的减法法则是“减去一个数等于加上这个数的相反数.”在学过用字母表示数后,请借助符号描述这句话,.【分析】根据有理数的减法法则即可解决问题.【解答】解:依题意得:减去一个数,等于加上这个数的相反数,用字母表示这一法则,可写成:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b).【点评】此题主要考查了有理数的减法法则,同时也考查了利用字母表示数或公式,正确记忆代数式的概念是解题关键.14.(2023•德兴市一模)绝对值小于3的所有整数的和是.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.【点评】此题考查了绝对值的意义,并能熟练运用到实际当中.15.(2023•抚松县一模)23﹣|﹣6|﹣(+23)=.【分析】先计算绝对值,再根据有理数减法法则计算即可.【解答】解:23﹣|﹣6|﹣(+23)=23﹣6﹣23=﹣6.16.(2023•杨浦区三模)计算:﹣3﹣2=.【分析】根据有理数减法的法则,减去2等于加上﹣2,即可得解.【解答】解:﹣3﹣2=﹣3+(﹣2)=﹣5.故填﹣5.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.有理数的加法法则:两个负数相加,符号不变,把绝对值相加.17.(2022秋•辛集市期末)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号和括号的和的形式为.【分析】将有理数的加减混合运算统一成加法后,利用有理数的加法法则解答即可.【解答】解:原式=(+5)+(﹣2)+(+3)+(﹣9)=5﹣2+3﹣9,故答案为:5﹣2+3﹣9.【点评】本题主要考查了有理数的加减混合运算,将有理数的加减混合运算统一成加法是解题的关键.18.(2023•贾汪区一模)已知甲地的海拔高度是200m,乙地的海拔高度是﹣80m,那么甲地比乙地高m.【分析】根据有理数减法的运算方法,用甲地的海拔高度减去乙地的海拔高度,求出甲地比乙地高多少即可.【解答】解:200﹣(﹣80)=280(m)答:甲地比乙地高280m.故答案为:280.【点评】此题主要考查了有理数减法的运算方法,要熟练掌握.三.解答题(共10小题)19.(2022秋•德惠市期中)列式并计算:(1)求4与﹣的差;(2)求﹣15的绝对值与12的相反数的和.【分析】(1)根据题意列出算式:4,再根据有理数减法法则进行计算便可;(2)根据题意列出算式:|﹣15|+(﹣12),再根据绝对值的定义,加法法则计算便可.【解答】解:(1)4=4=5;(2)|﹣15|+(﹣12)=15﹣12=3.【点评】本题考查了有理数的加减法,绝对值和相反数的概念,关键是正确列出算式和熟记运算法则.20.(20220.5)﹣(﹣3.2)+(+2.8)﹣(+6.5).【分析】根据有理数的加减法法则以及加法交换律和结合律计算即可.【解答】解:原式=﹣0.5+3.2+2.8﹣6.5=(3.2+2.8)﹣(0.5+6.5)=6﹣7=﹣1.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.21.(2022秋•北京期末)计算:10﹣(﹣6)+8﹣(+2).【分析】先化简,再计算加减法即可求解.【解答】解:10﹣(﹣6)+8﹣(+2)=10+6+8﹣2=24﹣2=22.【点评】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.22.(2022秋•松原期末)计算:20﹣11+(﹣10)﹣(﹣12).【分析】根据同号结合的原理,求解.【解答】解:20﹣11+(﹣10)﹣(﹣12)=20﹣11﹣10+12=32﹣21=11.【点评】本题考查了有理数的加减混合运算,掌握加法结合律是解题的关键.23.(2023春•黄浦区期中)计算:.【分析】根据有理数的加减混合运算计算即可.【解答】解:原式=3﹣2.4+1﹣1.6=(3+1)﹣(2.4+1.6)=5﹣4=1.【点评】本题考查了有理数的混合运算,根据加法的交换律结合律计算是关键.24.(2022秋•锡山区期末)在数学活动课上,王老师介绍说有人建议向火星发射如图1的图案.它叫幻方,幻方最早源于我国,古人称之为纵横图.其中9个格中的点数分别是1,2,3,4,5,6,7,8,9.每一横行、每一竖列以及两条对角线上的点数的和都相等.如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).(1)将﹣10,﹣8,﹣6,﹣4,﹣2,0,2,4,6这9个数分别填入图2的幻方的空格中,使得每一横﹣6,并请同学们补全其余的空格.(2)在图3的幻方中,每一横行、每一竖列以及两条对角线上的数的和都相等.根据所给信息求出x的值,并根据x的值补全图4的幻方的空格.【分析】(1)求出所给数的和为﹣18,即可求每行、每列、两条对角线上的数的和为﹣6;(2)由题意可知3x+2+=x﹣1﹣4,求出x的值,填表即可.【解答】解:(1)∵﹣10+(﹣8)+(﹣6)+(﹣4)+(﹣2)+0+2+4+6=﹣18,∴﹣18÷3=﹣6,∴每行、每列、两条对角线上的数的和为﹣6,如图,故答案为:﹣6;(2)∵每一横行、每一竖列以及两条对角线上的数的和都相等,∴3x+2+=x﹣1﹣4,∴x=﹣5,所填表如图.【点评】本题考查有理数的加法,理解题意,能够根据所给的数,列出代数式并求解是解题的关键.25.(2022秋•衡阳县期中)学习了绝对值的概念后,我们可以认为:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,也即当a<0时,|a|=﹣a,根据以上阅读完成下面的问题:(1)|2﹣3|=;(2)|3.14﹣π|=;(3)如果有理数a<b,则|a﹣b|=;(4)请利用你探究的结论计算下面式子:|﹣1|+|﹣|+|﹣|+…+||+||.【分析】(1)原式利用绝对值的代数意义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值;(3)判断a﹣b的正负,利用绝对值的代数意义计算即可求出值;(4)原式利用绝对值的代数意义化简,计算即可求出值.【解答】解:(1)|2﹣3|=3﹣2=1;(2)|3.14﹣π|=π﹣3.14;(3)∵a<b,即a﹣b<0,∴|a﹣b|=b﹣a;(4)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:(1)1;(2)π﹣3.14;(3)b﹣a.【点评】此题考查了有理数减法,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.26.(2022秋•邻水县期末)数学张老师在多媒体.上列出了如下的材料:计算:.解:原式==.上述这种方法叫做拆项法.请仿照上面的方式计算:.【分析】根据题目所提供的计算方法,写成几个整数的和以及几个分数的和即可.【解答】解:原式=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+=(﹣2021﹣2022+4044)+(﹣﹣+)=1+(﹣)=.【点评】本题考查有理数的加法,掌握有理数加法的计算方法是正确解答的关键.27.(2023•龙川县校级开学)一批货品每箱重量标准为2千克,质量检验员抽查其中5箱的重超过标准的记为“+”,不足的记为“﹣”,分别记为﹣0.1、﹣0.2、+0.3、+0.1、+0.5,问这5箱货品的平均重量为多少千克?【分析】超过标准的记为量,“+”,不足的记为“﹣”,所以﹣0.1、﹣0.2、+0.3、+0.1、+0.5相加就是这五箱的总情况.要注意标准为2千克.【解答】解:+2=2.12千克【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.28.(2022秋•新河县校级月考)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,,,所以1,﹣2,3的“分差”为﹣.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,求这些不同“分差”中的最大值.【分析】(1)根据题中意思分别求出三个数,然后比较大小即可得出答案;(2)先给这三个数进行排序,分别求出其中的分差,然后比大小即可得出答案.【解答】解:(1)根据题意可得:﹣2﹣(﹣4)=2,,=﹣,∵﹣<<2,∴﹣2,﹣4,1的“分差”为﹣,故答案为:﹣;(2)①这三个数的位置为:﹣2,﹣4,﹣1时,根据(1)中所求“分差”为﹣;②这三个数的位置为:﹣2,1,﹣4时,则﹣2﹣1=﹣3,,=,∵﹣3<1<,∴﹣2,1,﹣4的“分差”为﹣3;③这三个数的位置为:1,﹣2,﹣4时,则1﹣(﹣2)=3,,=,∵<<3,∴1,﹣2,﹣4的“分差”为;④这三个数的位置为:1,﹣4,﹣2时,则1﹣(﹣4)=5,,=﹣,∵﹣<<5,∴1,﹣4,﹣2的“分差”为﹣;⑤这三个数的位置为:﹣4,1,﹣2时,则﹣4﹣1=﹣5,,=1,∵﹣5<﹣1<1,∴﹣4,1,﹣2的“分差”为﹣5;’⑥这三个数的位置为:﹣4,﹣2,1时,则﹣4﹣(﹣2)=﹣2,,=﹣1,∵<﹣2<1,∴﹣4,﹣2,1的“分差”为;∵>﹣>﹣>﹣>﹣3>﹣5,∴这些不同“分差”中的最大值为.【点评】本题考查了新定义以及有理数的运算,解题关键:理解什么叫做“分差”.。
有理数绝对值加减法混合计算题
有理数绝对值加减法混合计算题
摘要:
一、有理数绝对值的概念
二、有理数绝对值的性质
三、有理数绝对值的加减法混合计算
四、例题解析
五、总结
正文:
一、有理数绝对值的概念
有理数绝对值是指一个有理数到原点的距离,用“| |”表示。
例如,|3|表示3 到原点的距离,结果为3;而|-3|也表示3 到原点的距离,结果同样为3。
二、有理数绝对值的性质
有理数绝对值具有以下性质:
1.对于任意有理数a,有|a| = a (a >= 0) 或|a| = -a (a < 0)。
2.对于任意有理数a 和b,有|a + b| <= |a| + |b|。
3.对于任意有理数a 和b,有|a - b| <= |a| + |b|。
三、有理数绝对值的加减法混合计算
在有理数的加减法混合计算中,我们可以利用绝对值的性质来简化计算。
例如:
计算|2 + 3| - |-2 - 1|,根据性质2,可以转化为计算2 + 3 - (-2 - 1),
进一步计算得到结果为4。
四、例题解析
例题:计算|2 + 3| - |-2 - 1|
解答:根据上面的分析,我们可以直接计算|2 + 3| 和|-2 - 1| 的值,分别为5 和3。
然后将它们代入原式,得到结果为5 - 3 = 2。
五、总结
有理数绝对值的概念和性质对于解决加减法混合计算问题非常有帮助。
我们可以利用绝对值的性质简化计算过程,从而更快地得到结果。
初中数学有理数绝对值重点题型
初中数学有理数绝对值重点题型总结如下:一、理解绝对值的含义和绝对值计算公式的运用。
1. 任何有理数的绝对值都是非负数,也就是说,只要是有理数,它的绝对值就有且只有一个。
2. 互为相反数的两个数绝对值相等,负数的绝对值等于它的相反数,正数的绝对值也等于它的本身。
二、绝对值的重点题型有:1. 求一个数的绝对值:首先要弄清这个数的范围,然后再根据绝对值的含义求解。
例如,若|a|+5=0,则a=±5;若|a|+(a-1)÷3=0,则a=2。
又如,-2的绝对值是2;4的绝对值是4等。
求绝对值的关键是要深刻理解符号,也就是绝对值的含义。
2. 求代数式的绝对值:这类题目的表达式往往是将数或式看成字母的绝对值,也就是用字母的绝对值来求表达式的值。
例如,求|a|+3的值,如果a是正有理数,则值为4;如果a 是负有理数,则值为-3;如果a是零,则值为0。
三、重点题型例题分析:(1)判断:-a的绝对值是-a( )解:本题应先根据题意列出算式,再根据绝对值的非负性得出结论。
因为-a表示的数小于0,所以它的绝对值应是它的相反数-a,答案为正确。
(2)若|a|=b,则a=b( )解:因为|a|表示数a的点到原点的距离,所以由|a|=b可得到a为一切有理数(包括正数、负数和0),即答案不成立。
【例1】当式子|x+1|+|x-2|取最小值时,x的取值范围是( )【分析】利用几何方法可以作出这个式子的几何解释,在数轴上表示出数x到-1和2的距离之和,当且仅当x在点-1和2之间的线段上时距离之和最小。
【解答】解:当式子|x+1|+|x-2|取最小值时,x的取值范围是1≤x≤2以上就是初中数学有理数的重点题型和知识点总结。
在学习中我们要注意定义中的细节问题,并善于运用各种方法灵活解题。
同时要结合自己的实际情况进行复习,有针对性地进行强化训练,以提升自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三人行教育陈老师教案——绝对值及有理数加减运算:请同学们认真答题,每一道题都经过精选3 绝对值(满分100分)知识要点:1.绝对值的概念:在数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作 .2.绝对值的求法:由绝对值的意义可以知道:(1)一个正数的绝对值是 ;(2)零的绝对值是 ;(3)一个负数的绝对值是 .即()()()⎪⎩⎪⎨⎧<=>=0a 0a0a a 3.绝对值的非负性:数轴上表示数a 的点与原点的距离 零,所以,任意有理数a 的绝对值总是一个 ,即4.有理数大小的比较:一个有理数的绝对值越大,在数轴上表示这个数的点就离原点越 ,所以,两个负数比较大小,绝对值大的 ;正数都 零;负数都 ;正数 一切负数.5.绝对值等于()0>a a 的有理数有两个,它们 .(基础知识填空20分,每错一空扣2分)同步练习A 组(共40分)一、填空题(每空1分)1.(1)=-2 ; (2)=+7 ;(3)=--323 ; (4)()=--6 . 2. 212- 的绝对值是 ,绝对值等于5的数是 和 . 3.绝对值最小的数是 ;绝对值小于的整数是 ;绝对值小于3的自然数有 ;绝对值大于3且小于6的负整数有 .4.如果a a =,那么a 是 ,如果a a -=,那么a 是 .5.若a ≤0,则=a ;若a ≥0,则=+1a .二、选择题(每题3分)6.下列说法中,正确的是()A. 绝对值相等的数相等 B.不相等两数的绝对值不等C. 任何数的绝对值都是非负数D. 绝对值大的数反而小7. 下列说法中,错误的是( )A. 绝对值小于2的数有无穷多个B. 绝对值小于2的整数有无穷多个C. 绝对值大于2的数有无穷多个 (D) 绝对值大于2的整数有无穷多个8.有理数的绝对值一定是( )A. 正数 B. 整数 C. 正数或零 D. 非正数9.如果m 是一个有理数,那么下面结论正确的是( )A. m -一定是负数B. m 一定是正数C. m -一定是负数D. m 不是负数10.如果甲数的绝对值大于乙数,那么( )A. 甲数大于乙数B. 甲数小于乙数C. 甲、乙两数符号相反D. 甲、乙两数的大小不能确定11.设1--=a ,1-=b ,c 是1的相反数,则c b a ,,的大小关系是( )A. c b a ==B. c b a <<C. c b a <=D. c b a >> 三、解答题(每题2分)12.比较下列各数的大小(要有解答过程):(1)85 ,2413-- (2)2117 ,76 ,65--- 13.(3分))若一个数a 的绝对值是3,且a 在数轴上的位置如图所示,试求a 的相反数. aB 组(40分)一、填空题(每题3分)14.5--的相反数是 ;4的相反数的绝对值是 ; 的相反数是它本身.15.若2-<a ,给出下面4个结论:①a a >;②a a ->;③a a <1;④a a>1.其中不正确的有 (填序号).16.若11-=-m m ,则m 1;若11->-m m ,则m 1; 若4-=x ,则=x ;若21-=-x ,则=x . 17.最小的自然数与绝对值最小的整数的和是 .18.若a a -=,则数a 在数轴上对应的点的位置在 .二、解答题(5分)19.分别写出a 为何值时,下列各式成立 (1)a a -=; (2)a a -=;(3)1=a a; (4)1-=aa 20.已知3c ,2b ,2===a ,且有理数c b a , ,在数轴上的位置如图所示,计算c b a ++的值.(6分)21.已知5=x ,3=y ,且y x y x -=-,求y x +的值.(6分)C 组22.已知甲数的绝对值是乙数的绝对值的3倍,且在数轴上表示这两个数的点位于原点的两侧,两点之间的距离是8,求这两个数。
若在数轴上表示这两个数的点位于原点的同侧呢(8分)4.有理数的加法(一)(满分80)知识要点:(基础知识填空8分,每错一空扣2分)1.有理数的加法法则:(1)同号两数相加,取 ,并 .(2)绝对值不相等的异号两数相加,取 ,并 .(3)互为相反数的两数相加, .(4)一个数同零相加, .2.有理数加法的运算步骤:先确定和的 ,再计算和的 .同步练习:A 组一、选择题(每题3分)1两个有理数的和为零,则这两个数一定是( )A. 都是零B. 至少一个是零C. 异号D. 互为相反数2.两个有理数的和比其中任何一个加数都小,那么这两个数( )A. 都是正数B. 都是负数C. 异号D. 其中一个为零3.下列说法正确的是( )A. 两数之和为负,则两数均为负B. 两数之和为零,则两数互为相反数C. 两数之和为正,则两数均为正D. 两数之和一定大于每一个加数 ca 04.下列计算错误的是( )A.()835-=+- B.()()835-=-+- C.()253=+- D.()253-=-+5.有理数a 、b 在数轴上对应位置如图所示,则b a +的值为( ) A. 大于0 B. 小于0 C. 等于0 D. 大于a6.某地一天上午的温度是10℃,下午上升2℃,半夜下降15℃,则半夜的温度是( )A. -15℃B. 3℃C. -3℃D. 15℃B 组二、填空题(每题3分,第10题4分)7.若b a -=,则=+b a .8.若0=+a a ,则a 的取值范围是 .9.若, 2b , 3==a 则=+b a .10.(1)某水文勘察队沿河勘察,向上游走的路程(千米),记为正数,向下游走的路程(千米)记为 数,在这个问题中,()()1030+++的实际意义是 ;()()2555-++的实际意义是 .(2)仿第(1)题举出一个实例使问题数量为()()55-++ .11.a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则()=+-+c b a .三、计算题12.(每题3分)计算下列各题:(1)()610++-; (2)()()7.29.0-+-; (3)()4.88.3-+;(4)()4.37-+; (5)()()31.09.2-+-; (6)()18.618.9+-.13. (每题3分)计算下列各题:(1)⎪⎭⎫ ⎝⎛-+5352; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3231; (3)5231+⎪⎭⎫ ⎝⎛-;(4)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-8365; (5)⎪⎭⎫ ⎝⎛-+32221; (6)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31121;(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-612311; (8)⎪⎭⎫ ⎝⎛-+1211413; (9)()81125.0+-.有理数的加法<二>(满分80分)知识要点:1.在有理数的运算中,加法的 律、 律仍然适用.2.用字母表示加法的交换律、结合律:加法的交换律: ;加法的结合律: .3.较多的有理数相加,可以利用运算律把符号 的加数结合在一起,也可以把和为 的加a数先加在一起,可使运算简便。
一般采用以下几种方法:(1)把正数和 分别相加;(2)把和为 的数先相加;(3)把同分母的分数先 ;(4)把整数和 分别先相加.(基础知识填空20分,每错一空扣2分)同步练习A 组一、计算题(利用加法运算律进行简便运算)(每题4分,共24分)1.()()25171513-++-+;2.()⎪⎭⎫ ⎝⎛-+++-21543225.35.0;3.()()()()71358++-++-+-;4.()()3742123213-++-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-;5.()()4.11.106.39.1+-++-; 6.()⎪⎭⎫ ⎝⎛-++-+25213118916.211333.B 组二、填空题(每题3分,共15分)7.某校储蓄所办理了7笔业务:取出元,存进5元,取出8元,存进12元,存进25元,取出2元,取出元,这时储蓄所现款增加了 元.8.已知:两数5和-3,则这两个数的和是 ,这两个数的和的相反数是 ,这两个数的相反数的和是 ,这两个数的和的绝对值是 ;这两个数的绝对值的和是 .9.已知0>+b a ,且b a <<0,则b .10.已知032=-++b a ,则()b a +的相反数是 .11.若b a , 互为相反数,d c , 互为倒数,则()()=+⋅+++cd cd b a b a 2 . 二、计算题12(6分).()()()()()()1075282015-+-+-+++-++三、解答题13(7分).10名同学参加数学竞赛,以80分为准,超过的记为正数,不足的记为负数,评分记录如下:+10,+15,-10,-9,-8,-1,+2,-1,-2,+1.(1)10名同学的总分超过或不足标准分多少(2)总分是多少14(8分).有8筐白菜,称重的记录如下(单位:千克):,22,27,,26,23,23,。
(1)以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,重新写出称重记录;(2)求8筐白菜的总重量是多少.5.有理数的减法(满分90分)知识要点: 1.有理数的减法法则:减去一个数,等于 。
即=-b a .2.加法与减法互为 的关系,所以加与减可以互相转化。
减法法则就是一种转化法则.3.减法无交换律。
当一个数是减数时切忌与 交换位置.4.减法运算的步骤:(1)把减法转化为 ;(2)按 的运算法则运算.(基础知识填空10分,每错一空扣2分)同步练习A 组一、填空题(每题3分,共12分)1.比0小-3的数是 ;比-5大2的数是 ;-7比 小-2.2.(1)若()47-=-+x ,则=x ;(2)若33-=-y ,则=y .3.(1)-6与()5.1--的差是 ;(2) 与a 的差等于a -.4.(1)温度3℃比-8℃高 ; (2)温度-10℃比-2℃低 ;(3)海拔-10m比-30m高 ;(4)从海拔20m到-8m,下降了 .二、选择题(每题3分,共18分)5若减数为正,则差与被减数的大小关系是( )A. 差比被减数大B. 差比被减数小C. 差可能等于被减数D. 以上答案都不是6.如果0>a ,且b a >,那么b a -是( )A. 正数B. 负数C. 正数或负数D. 07.较小的数减去较大的数,所得的差一定是( )A. 零 B. 正数 C. 负数 D. 零或负数8.下列说法正确的是( )A. 有理数减法中,被减数不一定比减数大B. 减去一个数,等于加上这个数C. 零减去一个数,仍得这个数D. 两个相反数相减得零9. 下列说法错误的是( )A. 若b a >,则0>-b aB. 若b a =,则0=-b aC. 若b a <,则0<-b aD. 若0 ,0<<b a ,则0<-b a10.若2 ,3==b a ,则b a -等于( )A. 1B. -5C. 1±D. 5±或1±三、计算题(每题3分,共18分)11.(1)()()2723--+; (2)()()1818+--; (3)()5.132+-⎪⎭⎫ ⎝⎛--;(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-2143; (5)()()1.69.5---; (6)()7.30--.12(每题4分,共24分).(1)()()932+----; (2)⎪⎭⎫ ⎝⎛-----4365;(3)312165--⎪⎭⎫ ⎝⎛--; (4)()[]()[]1331+------. B 组(5)()()()()4.25.35.31.7----+-+; (6)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-213218415411.13.某矿井下A、B、C三处的标高分别为A(-37.4米),B(-12.9米),C(米),A处比B处高多少米B处比C处低多少米A处比C处高多少米(8分)6.有理数的加减混合运算(满分80分)知识要点:1.加减法统一成加法:(1)有理数加减混合运算可以统一成只有 运算的运算式。