2018届高三构造函数利用导数解不等式(原卷版)

合集下载

2018-2016三年高考真题理科数学分类汇编: 导数与不等式、函数零点相结合(解析附后)

2018-2016三年高考真题理科数学分类汇编: 导数与不等式、函数零点相结合(解析附后)

三年真题专题08 导数与不等式、函数零点相结合(解析附后)考纲解读明方向2018年高考全景展示1.【2018(1时,(22.【2018年理数全国卷II(1(23.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD OC 与MN(1(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .12.【2017课标1,理21】已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。

4.【2017天津,理20】设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间; (Ⅱ)设00[1,)(,2]m x x ∈,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈ 满足041||p x q Aq -≥.2016年高考全景展示1.【2016高考新课标1卷】已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.2. 【2016高考山东理数】(本小题满分13分) 已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.3.【2016高考江苏卷】已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

2018年高考数学二轮复习专题二函数与导数2.3.2利用导数解不等式及参数范围课件

2018年高考数学二轮复习专题二函数与导数2.3.2利用导数解不等式及参数范围课件

利用导数解与不等式恒成立有关的问题
【思考】 求解不等式的恒成立问题和有解问题、无解问题的基本
方法有哪些?
例 2 已知函数 f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)设 a=2,b= .
1 2
①求方程 f(x)=2 的根; ②若对于任意 x∈R,不等式 f(2x)≥mf(x)-6 恒成立,求实数 m 的
②由条件知 f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x))2-2.
因为 f(2x)≥mf(x)-6 对于 x∈R 恒成立,且 f(x)>0, 所以
(������(������)) +4 m≤ 对于 ������(������)
2
x∈R 恒成立.
4 (������(0))2 +4 ������(������)· =4,且 =4, ������(������) ������(0)
-4-
(1)解 由题意可知点 A(0,1). 由 f(x)=ex-ax,得 f'(x)=ex-a. 所以 f'(0)=1-a=-1,得 a=2. 所以 f(x)=ex-2x,f'(x)=ex-2. 令 f'(x)=0,得 x=ln 2, 当 x<ln 2 时,f'(x)<0,f(x)单调递减; 当 x>ln 2 时,f'(x)>0,f(x)单调递增. 所以当 x=ln 2 时,f(x)取得极小值,极小值为 f(ln 2)=2-2ln 2=2-ln 4.f(x) 无极大值. (2)证明 令 g(x)=ex-x2,则 g'(x)=ex-2x. 由(1)得 g'(x)=f(x)≥f(ln 2)=2-ln 4>0, 则 g(x)在 R 上单调递增. 因为 g(0)=1>0,所以当 x>0 时,g(x)>g(0)>0,即 x2<ex.

第二节构造函数求极值最值解函数不等式问题(原卷版)

第二节构造函数求极值最值解函数不等式问题(原卷版)

第二节 构造函数法求极值、最值及求解函数不等式考点梳理1、多元归一构造法:(1)对于形如()()f m g n =的问题,令()()t f m g n ==,确定n m -关于t 的函数关系式,构造函数并利用导数求解;(2)对于形如()b f a 的函数,令=b t a,构造函数(t)f 求解. 2、“同构法”构造新函数:对于等式左右两边结构特征相同的问题可利用“同构法”构造新函数求解(主要是“指数”“对数”同构型函数问题),其常见形式有:(1)积型:e ln a a b b ≤的三种构造形式:①()ln e ln e a b a b ≤型,构建函数()e x f x x =; ①e ln e ln a a b b ≤型,构建函数()ln f x x x =;①()ln ln ln ln a a b b +≤+型,构建函数()ln f x x x =+.(2)商型:e ln a b a b≤的三种构造形式为: ①ln e e ln a ba b ≤型,构建函数()e x f x x=; ①e lne ln a a b b≤型,构建函数()ln x f x x =; ①()ln ln ln ln a a b b -≤-型,构建函数()ln f x x x =-.(3)已知()f x 和()f x '的关系式,适当构造新函数求解函数不等式或比较大小问题,常见类型有: ①()()'xfx f x +型,构造函数()()x xf x g = ①()()'xfx f x -型,构造函数()()x x f x g =()0≠x ①()()'xfx nf x +型,构造函数())(x f x x g n = ①()()'xfx nf x -型,构造函数()n x x f x g )(= ①()()'fx f x -型,构造函数()x e )(x f x g = ①()()'fx f x +型,构造函数())(x f e x g x = ①()()'f x kf x +型,构造函数())(x f e x g kx =⑧()()cos sin f x x f x x '+型,构造函数()()cos f x g x x =.重难点题型突破一、多元归一构造法例1、(2023·广东湛江·统考二模)对于两个函数()1e t h t -=,12t ⎛⎫> ⎪⎝⎭与()()ln 212g t t =-+,12t ⎛⎫> ⎪⎝⎭若这两个函数值相等时对应的自变量分别为1t ,2t ,则21t t -的最小值为( )A .1-B .ln2-C .1ln3-D .12ln2-二、“同构法”构造新函数例2、(2022·四川遂宁市·高三模拟)若()()e 1ln 0,0x a x ax a x ≥-+>>,则a 的最大值为()A .e4 B .e2 C .e D .2e点睛:对于等式左右两边结构特征相同的问题可利用“同构法”构造新函数求解:(1)x 化为ln e x 是“指”“对”同构型函数的常用变形技巧,注意掌握;(2)构造函数、参变分离,转化为恒成立问题求解.三、已知()f x 和()f x '的关系式,适当构造新函数问题求解函数不等式或比较大小问题 例3、(2023·山东淄博二模)已知定义在R 上的函数()f x 的导函数为()f x ',若()e x f x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是( )A .()0,2B .()20,eC .()2e ,+∞D .()2,+∞例4、(2023·山东菏泽二模)已知函数()f x 是定义在R 上的可导函数, 其导函数记为()f x ',若对于任意实数x ,有()()f x f x '>,且()01f =,则不等式()e x f x <的解集为( )A .(),0∞-B .()0,∞+C .()4e -∞,D .()4e +∞,。

专题06 构造函数法解决导数不等式问题(一)(原卷版)

专题06 构造函数法解决导数不等式问题(一)(原卷版)

专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)(2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016}(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)(6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x的解集为 . (2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.(5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ (7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e xf (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4(6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6。

(完整版)构造函数法证明导数不等式的八种方法

(完整版)构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可. 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

导数中的构造函数(原卷版)高考数学选填压轴题 第20讲

导数中的构造函数(原卷版)高考数学选填压轴题  第20讲

第20讲导数中的构造函数近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;…………………()()0xf x nf x ->',构造()()nf x F x x =.()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e xf x F x =,………………()()f x nf x '-,构造()()e nxf x F x =,奇偶性结论:奇乘除奇为偶;奇乘偶为奇。

(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。

给出导函数,构造原函数,本质上离不开积分知识。

【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是()A .1x y <<B .1y x <<C .1x y <<D .1y x<<【来源】广东省佛山市2021届高三下学期二模数学试题【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=()A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为()A .11[,22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞-D .1[,)2+∞3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为()A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为()A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________.类型二巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是()f x ¢,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为()A .(1,1)-B .(),1-∞-C .()1,+¥D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟)【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是()A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是()A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当成立(是函数的导数),若,则的大小关系是()A .B .C .D .5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+ ,,∞∞B .()()2002- ,,C .()()202-+ ,,∞D .()()202-- ,,∞6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<- ,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001- ,,B .()()11--+ ,,∞∞C .()()101-+ ,,∞D .()()101-- ,,∞7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则()A .()0f x >B .()0f x <C .()f x 为减函数D .()f x 为增函数8.已知()y f x =为R 上的连续可导函数,且()()()xf x f x f x ''+>,则函数1()(1)()2g x x f x =-+在()1+,∞上的零点个数为__________.类型三巧设“()()f xg x ”型可导函数【例3】已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,2021(2021)f e =,则不等式1ln f x e⎛⎫< ⎪⎝⎭的解集为()A .()2021,e+∞B .()20210,eC .()2021,ee+∞D .()20210,ee【来源】广东省汕头市2021届高三三模数学试题【举一反三】1.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是()A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π【来源】湘豫联考2021届高三5月联考文数试题2.(2020·江西高考模拟(理))已知定义在(0,)+∞上的函数()f x ,恒为正数的()f x 符合()()2()f x f x f x '<<,则(1):(2)f f 的取值范围为()A .(,2)e e B .211(,)2e eC .(3,e e )D .211(,)e e3.(2020·辽宁高考模拟)已知()f x 是定义在区间(1,)+∞上的函数,'()f x 是()f x 的导函数,且'()ln ()(1)xf x x f x x >>,2()2f e =,则不等式()x f e x <的解集是()A .(,2)-∞B .(2,)+∞C .(0,2)D .(1,2)3.(2020·四川高考模拟)下列四个命题:①ln 52<;②ln π>;③11<;④3ln 2e >,其中真命题的个数是()(e 为自然对数的底数)A .1B .2C .3D .44.(2020遵义模拟)设函数()f x 是奇函数()f x ()x ∈R 的导函数,(1)0f -=,且当0x >时,()()0xf x f x ->',则使得()0f x >成立的x 的取值范围是()A .()()101-+ ,,∞B .()()101-- ,,∞C .()()110--- ,,∞D .()()011+ ,,∞5.(2020咸阳一模)已知函数()f x 是定义在R 上的奇函数,(2)0f =,当0x >时,有2()()0xf x f x x ->'成立,则不等式2()0x f x >的解集是()A .()()202-+ ,,∞B .()()2002- ,,C .()2+,∞D .()()22--+ ,,∞∞6.(2020正定一中模拟)设()f x '是函数()f x ,x ∈R 的导数,且满足()2()0xf x f x ->',若ABC △是锐角三角形,则()A .22(sin )sin (sin )sin f AB f B A >B .22(sin )sin (sin )sin f A B f B A <C .22(cos )sin (sin )cos f A B f B A>D .22(cos )sin (sin )cos f A B f B A<7.(2020衡水金卷)设偶函数()f x 定义在()()ππ0022- ,,上,其导函数为()f x ',当π02x <<时,()cos ()sin 0f x x f x x '+<,则不等式()π()2cos 3f x f x >的解集为()A .()()πππ0233-- ,,B .()()πππ0332- ,,C .()()ππ0033- ,,D .()()ππππ2332-- ,,8.(2020绵阳一诊)奇函数()f x 定义域为()()π00π- ,,,其导函数是()f x '.当0πx <<时,有()sin ()cos 0f x x f x x '-<,则关于x 的不等式()π()sin4f x x <的解集为__________.类型四综合运用求导法则及复合函数的求导法则,构造函数【例4】已知函数()f x 及其导数()f x '满足()()()0xf x f x x x'+=>,()22e f =,对满足4ab e =的任意正数a ,b 都有()22112xf a b<+,则x 的取值范围是()A .()0,1B .()1,2C .(),1-∞D .()1,+∞【来源】浙江省绍兴市上虞区2021届高三下学期第二次教学质量检测数学试题【举一反三】1.(2020·石嘴山市第三中学高考模拟)已知函数()f x 的导函数'()f x 满足(ln )'()()x x x f x f x +<对1,x e ⎛⎫∈+∞ ⎪⎝⎭恒成立,则下列不等式中一定成立的是()A .2(1)()f f e <B .2(1)()e f f e >C .2(1)()f f e >D .(1)()ef f e <2.在关于的不等式()2222e e 4ee4e 0x xx a x a -+++>(其中 2.71828e = 为自然对数的底数)的解集中,有且仅有一个大于2的整数,则实数的取值范围为()A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .241,32e e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,43e e ⎡⎫⎪⎢⎣⎭【来源】四川省攀枝花市2021届高三一模考试数学(理)试题3.(2020·江西高考模拟(理))已知函数()f x 满足()()()122xe f x f x f ⎛⎫+== ⎪⎭'⎝,若对任意正数,a b 都有222111322648x xab f a e b ⎛⎫--<++ ⎪⎝⎭,则x 的取值范围是()A .(),1-∞B .(),0-∞C .()0,1D .()1,+∞4.(2020•九江一模)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且对∀x ∈(0,+∞)都有f ′(x )lnx >f (x ),则()A .12f (2)>3f (4)>f (8)B .3f (4)>12f (2)>f (8)C .f (8)>3f (4)>12f (2)D .f (8)>12f (2)>3/f (4)5.(2020石家庄模拟)定义在R 上的函数()f x 使不等式ln2(2)(2)2f x f x '>恒成立,其中()f x '是()f x 的导数,则()A .(2)2(0)f f >,(0)2(2)f f >-B .(2)2(0)4(2)f f f >>-C .(2)2(0)f f <,(0)2(2)f f <-D .(2)2(0)4(2)f f f <<-6.(2020·黑龙江高考模拟)设'()f x 是函数()f x 的导函数,且'()2()()f x f x x R >∈,12f e ⎛⎫=⎪⎝⎭(e 为自然对数的底数),则不等式2(ln )f x x <的解集为()A .0,2e ⎛⎫ ⎪⎝⎭B .C .1,2e e ⎛⎫⎪⎝⎭D .2e ⎛ ⎝7.(2020浙江模拟)设函数()f x '是函数()()f x x ∈R 的导函数,(0)1f =,且1()()13f x f x '=-,则4()()f x f x '>的解集为()A .()ln43+,∞B .()ln23+,∞C .)+∞D .)+∞8.(2020大连一模)设函数()f x 满足2e ()2()x xf x xf x x '+=,2e (2)8f =,则0x >时,()f x ()A .有极大值,无极小值B .有极小值,无极大值C .即有极大值又有极小值D .既无极大值也无极小值【强化训练】一、选择题1.【2020银川模拟】已知函数()f x 的导函数()f x '满足22()()()f x xf x x x '+>∈R ,则对x ∀∈R 都有()A .2()0x f x ≥B .2()0x f x ≤C .2[()1]0x f x -≥D .2[()1]0x f x -≤2.【2020届高三第二次全国大联考】设是定义在上的可导偶函数,若当时,,则函数的零点个数为A.0B.1C.2D.0或23.【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A.B.C.当时,取得极大值D.当时,3.【2020湖南省长郡中学高三】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是()A.B.C.D.4.已知0a b <<且满足a b e -=,则下列说法正确的是()A 1a b <-+B .ln 2ln 2a a b b +=+C .12a >D .不存在,a b 满足1a b +=【来源】山东省泰安市2021届高三四模数学试题5.α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是()A.αβ>B.22αβ>C.αβ<D.0αβ+>6.【2020福建省适应性练习】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是()A.B.C.D.7.【2020云南省玉溪市第一中学调研】设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.8.【2020河北省唐山市一模】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.9.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是()A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【来源】四川省广元市2021届高三三模数学(理)试题10.【2020辽宁省抚顺市一模】若函数有三个零点,则实数的取值范围是()A.B.C.D.11.【2020辽宁省师范大学附属中学】已知函数,若是函数的唯一极值点,则实数k 的取值范围是()A.B.C.D.12.【2020安徽省毛坦厂中学联考】已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.13.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:[](1)()()0x f x f x -'->,22(2)()e x f x f x --=,则下列判断一定正确的是()A .(1)(0)f f <B .(2)e (0)f f <C .3(3)e (0)f f >D .4(4)e (0)f f <14.【2020四川省教考联盟一诊】已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.15.【2020届高三全国大联考】已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0B.1C.2D.0或216.已知实数(),,0,a b c e ∈,且33a a =,44b b =,55c c =,则()A .c b a<<B .b c a<<C .a c b<<D .a b c<<【来源】2021年浙江省高考最后一卷数学(第一模拟)17.已知62a x x ⎛⎫+ ⎪⎝⎭展开式的常数项的取值范围为[]135,240,且()2ln 2x a x a x ++≥恒成立.则a 的取值范围为()A .[][]4,33,4--B .[][]4,13,4--C .[]1,4D .[]4,3--【来源】陕西省西安地区八校联考2021届高三下学期高考押题理科数学试题18.已知定义域为R 的函数()f x 满足()()1f x xf x '+>(()'f x 为函数()f x 的导函数),则不等式2(1)(1)(1)x f x f x x +->-+的解集为()A .(0,1)B .(0,1]C .(0,)+∞D .(0,1)(1,)⋃+∞【来源】2021届吉林省长春市高三四模数学理科试题19.已知π(0,6θ∈,2222ln(2cos 1)(2cos 1)a θθ-=-,22ln(cos 1)(cos 1)b θθ-=-,22ln(sin 1)(sin 1)c θθ-=-,则,,a b c 的大小关系为()A .b c a <<B .a c b <<C .a b c<<D .c a b<<20.已知()f x 是定义在()0,∞+上的可导函数,()f x '是()f x 的导函数,若()()2x xf x x f x e '+=,()1f e =,则()f x 在()0,∞+上()A .单调递增B .单调递减C .有极大值D .有极小值【来源】江西省九江市2021届高三三模数学(理)试题21.已知两个不等的正实数x ,y 满足lnx x y y xy -=,则下列结论一定正确的是()A .1x y +=B .1xy =C .2x y +>D .3x y +>【来源】宁夏银川市2021届高三二模数学(理)试题二、填空题22.【2020·贵州高考模拟】已知()f x 是定义在R 上的奇函数,()f x '是()f x 的导函数,当0x <时,()()+0f x xf x '<,若()()22log log 1a f a f ⋅>,则实数a 的取值范围是__________.23.【2020济南市山东师范大学附属中学高三】定义在R 上的奇函数的导函数满足,且,若,则不等式的解集为______.。

专题16 破解恒成立问题【原卷版】

专题16  破解恒成立问题【原卷版】

专题16 破解恒成立问题【热点聚焦】从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:,等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论(三)数形结合法1.函数的不等关系与图象特征:()21log a x x -<111ax x e x-+>-(1)若,均有的图象始终在的下方(2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义(3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围.热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠.(1)讨论()f x 的单调性; x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x(2)当0x >时,不等式()()22cos ea x x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可.热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【典例6】(2015·全国·高考真题(理))设函数()(21)x f x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ).A .211[)e e ,B .221[)32e e ,C .212[)e e ,D .221[)3e e, 【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a 的取值范围是( )A .[)3,+∞B .()3,+∞C .[)9,+∞D .()9,+∞2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x =-,满足() f x a x ≥-恒成立,则a 的最大值为( )A .3B .4C .3ln 2-D .3ln 2+3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2x f x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .12⎛ ⎝B .)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭ 5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( )A .0B .1eC .1D .e二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈B .()f x 在()2022,2024上的最大值为2025C .()f x 有且只有2个零点D .()f x x ≥恒成立.三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________. 8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()e e ln m x mx m x x mx x x +≤+-恒成立,则实数m 的最小值为________9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________.10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x x f x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++.(1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围.15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R.(I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()x f x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).16.(2020·河南开封市·高三一模(理))已知函数()()ln 0a f x ax x a =>. (1)当1a =时,求曲线()y f x =在x e =处的切线方程;(2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值. 17.(2022·广东·高三阶段练习)已知函数()ln(1)1,f x x =+-(1)求证:(1)3f x -≤;(2)设函数21()(1)()12=+-+g x x f x ax ,若()g x 在(0,)+∞上存在最大值,求实数a 的取值范围.18.(2022·浙江嘉兴·模拟预测)已知函数.(注:是自然对数的底数)(1)当时,求曲线在点处的切线方程;(2)若只有一个极值点,求实数a 的取值范围;(3)若存在,对与任意的,使得恒成立,求的最小值. 2()e e,x f x ax a =+-∈R e 2.71828=1a =()y f x =(1,(1))f ()f x b ∈R x ∈R ()f x b ≥-a b。

第09讲:拓展二:构造函数法解决导数不等式问题(原卷版)-备战2025年高考新结构数学一轮复习精讲练

第09讲:拓展二:构造函数法解决导数不等式问题(原卷版)-备战2025年高考新结构数学一轮复习精讲练

类型五:根据不等式(求解目标)构造具体函数 ..............................7
1、两个基本还原
① f (x)g(x) f (x)g(x) [ f (x)g(x)]

f (x)g(x) f (x)g(x) [g( x)]2
[ f (x) ] g(x)
2、类型一:构造可导积函数
(x) x2
f
(x)
[
f
(x) ] x
高频考点 2:
xf
(x) 2 x3
f
(x)
[
f
(x x2
)
]

f (x) sin x sin 2
f (x) cos x x
[ f (x) ] sin x

f (x) cos x cos2
f (x) sin x x
[ f (x) ] cos x
高频考点
1 2
2
f
1 4
C.
f
1 2
2
f
1
B.
f
1 2
2
f
1 4
D. 2 f
1 2
f
1
类型二:构造 F (x) enx f (x) 或 F (x)
f (x) enx
(
n
Z
,且 n 0 )型
典型例题
例题 1.(23-24 高二下·河北石家庄·阶段练习)已知定义在 R 上的函数 f x ,其导函数为 f x ,且 f x f x ,则( )
4
xf (x) f (x) 0
F (x) xf (x)
5
xf (x) 2 f (x) 0
F(x) x2 f (x)

2018年高考理科数学试卷(全国卷Ⅰ)第21题的几种解法——构造函数证

2018年高考理科数学试卷(全国卷Ⅰ)第21题的几种解法——构造函数证
得x=
a-
a2 - 4 a + a2 - 4

.




当 x∈ æ 0ꎬa - a - 4 ÷ö∪ çæ a + a - 4 ꎬ + ∞ ÷ö时ꎬ


è
ø è
ø

- x2 + 2lnx2 < 0ꎬ
x2
f( x1 ) - f( x2 )

< a - 2 成立.
x1 - x2
解法二 由 ( 1 ) 知ꎬ f ( x) 存 在 两 个 极 值 点 当 且 仅 当
域为(0ꎬ + ∞ ) ꎬf′( x) = - 2 - 1 +
= -
.


x2
( ⅰ) 若 a ≤2ꎬ 则 f′ ( x) ≤0ꎬ 当 且 仅 当 a = 2ꎬ x = 1 时
f′( x) = 0ꎬ所以 f( x) 在(0ꎬ + ∞ ) 上单调递减.
( ⅱ) 若 a > 2ꎬ令 f′( x) = 0ꎬ
◎陈俊国 ( 安徽省太湖中学ꎬ安徽 安庆 246400)
构造函数证明不等式问题是全国卷考查函数与导数及
不等式综合的重要内容ꎬ2018 年高考理科数学试卷( 全国卷

Ⅰ) 第 21 题( 已知函数 f( x) =
- x + alnx. (1) 讨论 f( x)

的单调 性ꎻ ( 2 ) 若 f ( x ) 存 在 两 个 极 值 点 x1 ꎬ x2 ꎬ 证 明:
a+
> 0ꎬ
a2 - 4
∴ h( a) 在(2ꎬ + ∞ ) 上单调递增ꎬ
∴ h( a) > h(2) = 0ꎬ
则 h′( a) =

a2 - 4 - 2ln

2018年全国高考卷数学导数解答题含答案

2018年全国高考卷数学导数解答题含答案

2018年全国I -III 文理数学卷导数解答题1、(2018年全国I 理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2()2a a x +∈+∞时,()0f x '<; 当x ∈时,()0fx '>.所以()f x 在)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 2、(2018年全国I 文)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.解:(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥.3、(2018年全国II 理)已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞的最小值.学&科网 ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.4、(2018年全国II 文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-3+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.学·科网又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.5、(2018年全国III 理)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,. 所以在单调递增.学#科网又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾. (ii )若,设函数.()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a 0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点. 如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,. 6、(2018年全国III 文)已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.解:(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +≥+-+,则1()21e x g x x +'≥++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-7、(2018•浙江)已知函数f x lnx =()﹣.(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:12882f x f x ln +()()>﹣;(Ⅰ)若342a ln ≤﹣,证明:对于任意k >0,直线y kx a =+与曲线y f x =()有唯一公共点.证明:(Ⅰ)∵函数f (x )=﹣lnx ,∴x >0,f′(x )=﹣,∵f (x )在x=x 1,x 2(x 1≠x 2)处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得f (x 1)+f (x 2)==﹣ln (x 1x 2),设g (x )=,则,∴列表讨论:x (0,16)16 (16,+∞)g′(x ) ﹣ 0 + g (x )↓2﹣4ln2↑∴g (x )在[256,+∞)上单调递增, ∴g (x 1x 2)>g (256)=8﹣8ln2, ∴f (x 1)+f (x 2)>8﹣8ln2. (Ⅰ)令m=e ﹣(|a |+k ),n=()2+1,则f (m )﹣km ﹣a >|a |+k ﹣k ﹣a ≥0, f (n )﹣kn ﹣a <n (﹣﹣k )≤n (﹣k )<0,∴存在x 0∈(m ,n ),使f (x 0)=kx 0+a ,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

2018届高三理科数学函数与导数解题方法规律技巧详细总结版

2018届高三理科数学函数与导数解题方法规律技巧详细总结版

2018届高三理科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,也有根据不等式恒成立或零点问题求参数范围的问题,但一般难度不大,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明,方法灵活,难度较大.【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时, ()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f(x)=ax+ln x,x∈[1,e].(1)若a=1,求f(x)的最大值;(2)若f(x)≤0恒成立,求实数a的取值范围.【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b 2.【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可.典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数;【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可;(2,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈). (1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =x 0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,求解使f ′(b )<0的b 满足的约束条件0<b <a 4,且b<14.如第(2)问中x 0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。

高考数学热点必会题型第6讲 导数构造函数解决问题类型总结(原卷及答案)

高考数学热点必会题型第6讲 导数构造函数解决问题类型总结(原卷及答案)

高考数学热点必会题型第5讲 导数构造函数解决问题类型总结——每天30分钟7天掌握一、重点题型目录【题型】一、构造函数)(x f x n型【题型】二、构造函数)(x f e nx型【题型】三、构造函数n xx f )(型 【题型】四、构造函数nxe xf )(型 【题型】五、构造函数x sin 与函数)(x f 型 【题型】六、构造函数x cos 与函数)(x f 型 【题型】七、构造ne 与)()(x bf x af +型 【题型】八、构造()b kx +与)(x f 型 【题型】九、构造()b kx +ln 型 【题型】十、构造综合型 二、题型讲解总结第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________.【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f e f x x <D .(0)(1)f <例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值第二天学习及训练【题型】三、构造函数n xx f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( ) A .(,1)(1,)-∞-+∞ B .(1,0)(0,1)-⋃ C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【题型】四、构造函数nxe xf )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c <<B .a c b <<C .c a b <<D .b a c <<例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x ()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例18.(2022·河南·高三阶段练习(文))已知函数()e x f x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <aB .c <a <bC .b <c <aD .a <c <b例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1B .2C .3D .4例27.(2022·江苏·南京师大附中高三期中)已知函数()2ln f x x ax =-,则下列结论正确的有( ) A .当12ea <时,()y f x =有2个零点 B .当12ea >时,()0f x ≤恒成立 C .当12a =时,1x =是()y f x =的极值点 D .若12,x x 是关于x 的方程()0f x =的2个不等实数根,则12e x x >例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()f x 的定义域是()0,+∞,()f x '是()f x 的导数,若()()f x xf x x '=-,()1=1f ',则下列结论正确的是( )A .()f x 在10,e ⎛⎫⎪⎝⎭上单调递减B .()f x 的最大值为eC .()f x 的最小值为1e-D .存在正数0x ,使得()00ln f x x <参考答案 第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2【答案】D【分析】构造函数()()2h x x f x =,得到函数()h x 的单调性,根据单调性解不等式即可.【详解】令()()2h x x f x =,则()()()220h x xf x x f x ''=+<,所以()h x 在()0,+∞单调递减,不等式()23f x x >可以转化为()()2234224x f x f >⨯=,即()()2h x h >,所以02x <<. 故选:D.例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________. 【答案】()1,3-【分析】构造新函数()()3g x x f x =,根据()f x 的性质推出()g x 的性质,最后利用()g x 单调性解不等式.【详解】设()()3g x x f x =,x ∈R ,()f x 为奇函数,∈()()()33=()=()=g x x f x x f x g x ---,即()g x 是偶函数,有()()=()=g x g x g x -,∈[)0,+x ∈∀∞,()()30f x xf x '+>恒成立,故[)0,+x ∈∞时,()()()()()()232=3+=3+0g x x f x x f x x f x xf x '''≥,∈函数()g x 在[)0,∞+上为增函数,∈()22f =,∈()()2=2=16g g -,()()311<16x f x --等价于()1<16=(2)g x g -,()(1)=1<(2)g x g x g --,且函数()g x 在[)0,∞+上为增函数,∈1<2x -,解得13x . 故答案为:()1,3-【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】 【分析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)【答案】D 【解析】 【分析】通过构造函数法,结合导数确定正确答案. 【详解】构造函数()()()()()''e ,e 0x xF x f x F x f x f x ⎡⎤=⋅=+⋅>⎣⎦,所以()F x 在R 上递增,所以()()()()20210,02021F F F F -<<, 即()()()()20212021e20210,0e 2021f f f f -⋅-<<⋅.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数 B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )xf ef x x <D .(0)(1)f <【答案】D 【解析】 【分析】根据奇函数的定义结合()0f x >即可判断A ;令()()22ex g x f x =,利用导数结合已知判断函数()g x 的单调性,再根据函数()g x 的单调性逐一判断BCD 即可得解. 【详解】解:若()f x 是奇函数,则()()f x f x -=-, 又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222e eex x x g x x f x f x xf x f x '''=+=+,因为22e0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<, 所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <sin 12x <<,所以sin cos x x >, 故()()sin cos g x g x >,即()()22sin cos 22e sin ecos x x f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确. 故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值【答案】ABC【分析】先由题意得()10f '-=,再构造()()2e xg x f x =,得到()3e x g x x '=,进而再构造()()()23e e 2x x h x f x x g x '==-,判断出()0h x >,即0fx ,由此得到选项.【详解】根据题意,()()2e x f x f x x '+=,故()()1211e f f -'-+-=-,又()112e f -=-,得()11212e e f ⎛⎫'-+-=- ⎪⎝⎭,故()10f '-=,令()()2e xg x f x =,则()()()()()222232e e e 2e e e x x x x x x g x f x f x f x f x x x '''⎡⎤=+=+=⋅=⎣⎦,又()()2232e e e x x x f x f x x '+=,记()()()()2323e e 2e e 2x x x xh x f x x f x x g x '==-=-,所以()()()333333e 3e 2e 3e 2e e 1x x x x x xh x x g x x x x ''=+-=+-=+,当1x <-时,()0h x '<,()h x 单调递减;当1x >-时,()0h x '>,()h x 单调递增,所以()()()21e 10h x h f -'>-=-=,即()2e 0xf x '>,即0fx ,所以()f x 在R 上单调递增,故()f x 在R 上没有极值. 故选项ABC 说法错误,选项D 说法正确. 故选:ABC第二天学习及训练【题型】三、构造函数nx x f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( )A .(,1)(1,)-∞-+∞B .(1,0)(0,1)-⋃C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞【答案】D【分析】根据题意构造函数()()f x g x x=,由求导公式和法则求出()g x ',结合条件判断出()g x '的符号,即可得到函数()g x 的单调区间,根据()f x 奇函数判断出()g x 是偶函数,由(1)0f -=求出(1)0g -=,结合函数()g x 的单调性、奇偶性,再转化()0f x >,由单调性求出不等式成立时x 的取值范围. 【详解】由题意设()()f x g x x =,则2()()()xf x f x g x x '-'=当0x >时,有()()0xf x f x '->,∴当0x >时,()0g x '>,∴函数()()f x g x x=在(0,)+∞上为增函数, 函数()f x 是奇函数,()()g x g x ∴-=,∴函数()g x 为定义域上的偶函数,()g x 在(,0)-∞上递减, 由(1)0f -=得,(1)0g -=, 不等式()0()0f x x g x >⇔>,∴>0()>(1)x g x g ⎧⎨⎩或<0()<(1)x g x g -⎧⎨⎩,即有1x >或10x -<<,∴使得()0f x >成立的x 的取值范围是:(1-,0)(1⋃,)+∞, 故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【分析】构造函数,根据函数的单调性比较大小. 【详解】令()2ln x f x x =,则()42ln x x xf x x -'=,令()0f x '<,解得x >因此()2ln x f x x =在)∞+上单调递减,又因为()ln 4416a f ===,()221ln e e e e b f ===,ln 2c f ππ===,因为4e >>a b c <<. 故选:C.【题型】四、构造函数nxex f )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e e x xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<,所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数, 于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解. 【详解】由()()f x f x '>,得()()0f x f x '->, 设()()x f x g x =e ,则()()()0e xf x f xg x '-'=>, 所以函数()g x 在(),-∞+∞上单调递增,因为()1e f =,所以()()1111f g ==e , 所以不等式()2525e0x f x --->等价于()25251e x f x -->即()()251g x g ->,所以251x ->,解得3x >,所以不等式()2525e0x f x --->的解集为()3,+∞. 故选:D.例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝【答案】C【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=,因为()()()3R f x f x x '>∈, 所以()()()330e xf x f xg x '-'=>,所以函数()g x 在R 上为增函数, 不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭, 所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得0x <<所以不等式()3ln f x x <的解集为(.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0 【答案】ABC 【分析】构造()()ex f x g x =,结合已知求()g x 的解析式,进而可得2()e x f x x =,再利用导数研究()f x 的极值点、单调性,并判断其值域范围,即可判断各选项的正误. 【详解】令()()e x f x g x =,则()()()2exf x f xg x x '-'==,故2()g x x C =+,(C 为常数),所以2()e ()x f x x C =+,而()()00e 00f C =+=,故0C =,所以2()e x f x x =,则2()(2)e x f x x x '=+, 令()0f x '=,可得2x =-或0x =,在(,2)-∞-、(0,)+∞上()0f x '>,()f x 递增;在(2,0)-上()0f x '<,()f x 递减; 所以()f x 有2个极值点,在3,0上不单调,A 、B 错误;由x 趋于负无穷时()f x 趋向于0,24(2)e f -=,(0)0f =,x 趋于正无穷时()f x 趋向于正无穷, 所以()f x m =有三个实数根时m 的范围为()20,4e -,()f x 的最小值为0,C 错误,D 正确;故选:ABC第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c << B .a c b <<C .c a b <<D .b a c <<【答案】B【分析】根据结构构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,利用导数判断单调性,即可得到a b <;根据结构构造函数()ln 1g x x x =+-,利用导数判断单调性,即可得到a c <;根据结构构造函数3()ln(1)3xh x x x=+-+,利用导数判断单调性,即可得到c b <. 【详解】构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,则()1cos 0f x x =-≥',故函数=()y f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,故1(0)011f f ⎛⎫>= ⎪⎝⎭,即11sin 1111>,又313111>,故a b <.构造函数()ln 1g x x x =+-,则1()1g x x'=-,易知函数=()y g x 在=1x 处取得最大值(1)0g =,故10011g ⎛⎫< ⎪⎝⎭,即1010ln 101111+-<,即11011ln ln ln1.1111110<-==,由前面知11sin 1111<,故a c <.构造函数3()ln(1)3x h x x x =+-+,则222219(3)9(1)(3)()1(3)(1)(3)(1)(3)x x x x h x x x x x x x +-+-=-==++++++',故知函数()y h x =在(0,3)上单调递减,故(0.1)(0)0h h <=,即0.33ln1.1 3.131<=,故c b <.综上,a c b <<. 故选:B .例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【答案】B【分析】令()()31sin 4g x f x x =-,结合题设条件可得()g x 为R 上的增函数,而原不等式即为π02g x ⎛⎫+> ⎪⎝⎭,从而可求原不等式的解集.【详解】3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭可化为3ππ1sin 0224f x x ⎛⎫⎛⎫++-> ⎪ ⎪⎝⎭⎝⎭,令()()31sin 4g x f x x =-, 则()()()()()322sin 3sin cos sin ()sin 3cos g x f x x f x x x x f x x f x x '''=+=+,因为3()cos ()sin 0f x x f x x '+>,故0g x (不恒为零),故()g x 为R 上的增函数,故3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭即为π02g x ⎛⎫+> ⎪⎝⎭,而33πππ1ππ1sin sin 06664664g f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故π02g x ⎛⎫+> ⎪⎝⎭的解为ππ26x +>-,故2π3x >-即3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解为2π,3⎛⎫-+∞ ⎪⎝⎭.故选:B.【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭【答案】B 【分析】 令()()cos f x F x x=,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x=在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<, 令()()cos f x F x x=,则()()()2'cos sin '0cos f x x f x xF x x+=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x的不等式()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值 【答案】B 【解析】 【分析】 令()()xf x F x e=,根据题意得到()cos F x x x '=+,设()cos ,0g x x x x =+>,利用导数求得()g x 在区间(0,)+∞单调递增,得到()0F x '>,由()()x f x e F x =⋅,得到()0f x '>,即函数()f x 为单调递增函数,得到函数无极值.【详解】 令()(),0x f x F x x e =>,可得()()()xf x f x F x e'-'=, 因为()()(cos )xf x f x e x x '-=+,可得()cos F x x x '=+,设()cos ,0g x x x x =+>,可得()1sin 0g x x '=-≥, 所以()g x 在区间(0,)+∞单调递增,又由()01g =,所以()()01g x g >=,所以()0F x '>,所以()F x 单调递增, 因为()0f x >且0x e > ,可得()0F x >,因为()()xf x F x e =,可得()(),0xf x e F x x =⋅>, 则()()()[]0xf x e F x F x ''=+>,所以函数()f x 为单调递增函数,所以函数()f x 无极值. 故选:B.第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e ex xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<, 所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数,于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,故选:D例18.(2022·河南·高三阶段练习(文))已知函数()e xf x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e【答案】D【分析】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e xg x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,结合导数分析函数()g x 的单调性与极值情况即可解决问题.【详解】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e x g x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,()e xg x a '=-.(1)若0,()0a g x '≤<在R 上恒成立,所以()g x 在R 上单调递减,()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦至多只有一个交点,不合题意;(2)若0a >,当ln x a <时,()0g x '>,当ln x a >时,()0g x '<, 所以()g x 的单调递增区间是(,ln )a -∞,单调递减区间是(ln ,)a +∞, 所以当ln x a =时,()g x 取得极大值,也是最大值,为ln a a a -. 当x →-∞时,()g x →-∞,当x →+∞时,()g x →-∞,所以要使()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,只需2ln e a a a ->.ln (ln 1)a a a a a -=-,当0e a <≤时,ln 0a a a -≤,当e a >时,ln 0a a a ->,所以2ln e ,e a a a a ->>,设()ln ,e h a a a a a =->,则()ln 0h a a '=>,所以()h a 在(e,)+∞上单调递增,而()22e e h =,所以2ln e a a a ->的解为2e a >,而23e e >, 故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫ ⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】A【分析】根据题干中的不等式,构造函数()()F x xf x =,结合()y f x =在在R 上为偶函数,得到()()F x xf x =在R 上单调递减,其中()()2226F f ==-,分12x >与12x <,对6(21)21f x x --<-变形,利用函数单调性解不等式,求出解集. 【详解】当0x >时,()()()()0f x xf x f x f x x x'+'+=<, 所以当0x >时,()()0xf x f x '+<,令()()F x xf x =,则当0x >时,()()()0F x xf x f x +''=<, 故()()F x xf x =在0x >时,单调递减, 又因为()y f x =在在R 上为偶函数, 所以()()F x xf x =在R 上为奇函数, 故()()F x xf x =在R 上单调递减, 因为(2)3f =-,所以()()2226F f ==-, 当12x >时,6(21)21f x x --<-可变形为()21(21)6x f x --<-, 即()()212F x F -<,因为()()F x xf x =在R 上单调递减, 所以212x ->,解得:32x >, 与12x >取交集,结果为32x >;当12x <时,6(21)21f x x --<-可变形为()21(21)6x f x -->-, 即()()212F x F ->,因为()()F x xf x =在R 上单调递减, 所以212x -<,解得:32x <, 与12x <取交集,结果为12x <; 综上:不等式6(21)21f x x --<-的解集为13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.故选:A例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【答案】D【分析】构造函数()()2g x f x =-,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将2(2)()4f a f a -+>变为2(2)()g a g a ->-,利用()g x 的单调性进行求解.【详解】构造函数()3()2e e x xg x f x x x -=-=-+-,因为()g x 的定义域为(,)-∞+∞,且()()()33e e e e x x x x g x x x x x ---=---+-=-+-+ 3e )()e (x x g x x x -=--+-=-,即()g x 是奇函数,又()22231e +e 31310x x g x x x x -=-+≥-+=+>', 所以()g x 在 (,)-∞+∞上单调递增;因为2(2)()4f a f a -+>,所以2(2)2[()2]f a f a -->--, 即2(2)()g a g a ->-,即2(2)()g a g a ->-,所以22a a ->-, 即220a a +->,解得1a >或2a <-, 即(,2)(1,)a ∈-∞-+∞. 故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数()()2g x f x =-,将问题转化为利用函数的奇偶性和单调性求2(2)()g a g a ->-的解集. 【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞【答案】C【分析】根据所求不等式()1223x x f +>-的形式,构造函数()()23g x f x x =-+,利用题目中的条件判断出()g x 在()0,∞+上单调递减,进而将所求转化为()()24xg g >,再利用单调性求出解集.【详解】设()()23g x f x x =-+,则()()2g x f x ''=-.因为()2f x '<,所以()20f x '-<,即()0g x '<,所以()g x 在()0,∞+上单调递减.不等式()1223x x f +>-等价于不等式()22230x x f -⨯+>,即()20xg >.因为()45f =,所以()()442430g f =-⨯+=,所以()()24xg g >.因为()g x 在()0,∞+上单调递减,所以24x <,解得2x <. 故选:C .例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解. 【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= ,由)(e 0x f x +>,得)>(e (2)x g g , ∈e 2x > ,即ln2x > ,∈不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <a B .c <a <bC .b <c <aD .a <c <b【答案】A【分析】构造函数()()ln 1g x x x =+-,()212cos f x x x ⎛⎫-- ⎝=⎪⎭,借助函数的单调性分别得出c <b 与a >b ,从而得出答案.【详解】构造函数()()ln 1g x x x =+-, x >-1,则()1111xg x x x -'=-=++, 当-1<x <0时,()0g x '>,()g x 单调递增,当x >0时,()0g x '<,()g x 单调递减, ∈()()00g x g ≤=,∈()ln 1x x ≤+(当x =0时等号成立), ∈1577ln ln 1888⎛⎫⎛⎫=+< ⎪ ⎪⎝⎭⎝⎭,则c <b ,构造函数()21cos 12f x x x ⎛⎫=-- ⎪⎝⎭,0<x <1,则()sin f x x x '=-,令()sin x x x ϕ=-,0<x <1,∈()1cos 0x x ϕ'=->,()x ϕ单调递增, ∈()()00ϕϕ>=x ,∈0fx,()f x 单调递增,从而()()00f x f >=,∈102f ⎛⎫> ⎪⎝⎭,即21117cos 12228⎛⎫>-⋅= ⎪⎝⎭,则a >b .∈c <b <a . 故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出:1q x ∀>-,ln(1)x x ≥+成立,从而判断出四个选项中的真命题.【详解】在ABC 中,若5π6A =,此时满足π4A >,但1sin 2A =<p 错误; 令()()ln 1,1f x x x x =-+>-, 则()1111xf x x x '=-=++, 当0x >时,0f x,当10x -<<时,()0f x '<,所以()f x 在0x >上单调递增,在10x -<<上单调递减, 所以()f x 在0x =处取得极小值,也是最小值,()()00ln 010f =-+=,所以:1q x ∀>-,ln(1)x x ≥+成立,为真命题;故p q ∧为假命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为真命题,()p q ∧⌝为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1 B .2C .3D .4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得∈错误;构造函数()ln xf x x=,利用导数研究其单调性和最值,进而判定∈∈正确;构造函数31()=sin 6h x x x x -+,π(0,)2x ∈,利用二次求导确定其单调性,利用1()>(0)2h h 得到∈正确.【详解】对于∈:若32log 23>,则2323>,即89>, 显然不成立,故∈错误; 对于∈:将eln ππ<变为ln πlne <πe, 构造()ln x f x x =,则()21ln xf x x -'=, 则当0e x <<时,0f x,e x >时,()0f x '<,所以()ln xf x x=在(0,e)上单调递增,在(e,+)∞上单调递减, 则e x =时,()f x 取得最大值1e,由()()πe f f <得ln πlne <πe, 即eln ππ<成立,故∈正确;对于∈:令31()=sin 6h x x x x -+,π(0,)2x ∈,。

专题07 构造函数法解决导数不等式问题(二)(原卷版)

专题07 构造函数法解决导数不等式问题(二)(原卷版)

专题07 构造函数法解决导数不等式问题(二)考点四 构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数 【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2. 由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ). 【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为( )A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎡⎦⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A .⎝⎛⎭⎫π3,4π3B .⎝⎛⎭⎫-π3,4π3C .⎝⎛⎭⎫0,π3D .⎝⎛⎭⎫-π3,π3 (4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是( )A .⎝⎛⎭⎫-12,0B .⎝⎛⎭⎫-∞,-12C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫-∞,12 (6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是( )A .2f (2)-3f (1)>5B .若f (1)=2,x >1,则f (x )>x 2+12x +12C .f (3)-2f (1)<7D .若f (1)=2,0<x <1,则f (x )>x 2+12x +12(8)已知函数f (x ),对∀x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上,f ′(x )<x ,若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为( )A .[-2,2]B .[2,+∞)C .[0,+∞)D .(-∞,-2]∪[2,+∞)(9)已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x >0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3(10)函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,当x >0时,f (x )的极值状态是___________. 【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 . 3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是( )A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x+3的解集为________. 5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为 .6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是( ) A .对于任意x ∈R ,f (x )<0 B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>010.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A .1B .2C .0D .0或2考点五 构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1] (1) (2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )A .a >2bB .a <2bC .a >b 2D .a <b 2(2)已知α,β∈⎣⎡⎦⎤-π2,π2,且αsin α-βsin β>0,则下列结论正确的是( ) A .α>β B .α2>β2 C .α<β D .α+β>0(3)(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x xD .12e x x <21e x x (4)已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围是( )A .(-∞,e ]B .(-∞,e )C .(-∞,e 2)D .(-∞,e 2] A .(a +1)a +2>(a +2)a +1 B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1aD .log a +1(a +2)<a +2a +1(6) (2021·全国乙)设a =2ln1.01,b =ln1.02,c = 1.04-1,则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b (7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且f ⎝⎛⎭⎫1e =1e ,则( )A .f ′⎝⎛⎭⎫1e =0B .f (x )在x =1e处取得极大值 C .0<f (1)<1 D .f (x )在(0,+∞)上单调递增 【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c2.设a ,b >0,则“a >b ”是“a a >b b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知0<x 1<x 2<1,则( )A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 24.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是( )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)5.设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为( )A .12B .1C .eD .2e 8.下列四个命题:①ln 5<5ln 2;②ln π>πe ;③11;④3eln 2>42.其中真命题的个数是( )A .1B .2C .3D .4 9.已知函数f (x )=e x +m ln x (x ∈R ),若对任意正数x 1,x 2,当x 1>x 2时,都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.10.若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是( )A .0<a <b <1B .b <a <0C .1<a <bD .a =b11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为( ) A .(-∞,e] B .(-∞,e) C .⎝⎛⎭⎫-∞,e 2 D .⎝⎛⎦⎤-∞,e 2 12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是( ) A .f (x )在(0,+∞)单调递增 B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值13.(多选)下列不等式中恒成立的有( )A .ln(x +1)≥x x +1,x >-1 B .ln x ≤12⎝⎛⎭⎫x -1x ,x >0 C .e x ≥x +1 D .cos x ≥1-12x 2。

专题12利用导数研究不等式恒成立问题(原卷版)

专题12利用导数研究不等式恒成立问题(原卷版)

专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决. 可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值 即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.典例2.设函数f (x )=ln x +k x,k ∈R. (1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.典例3.已知函数f (x )=13x 3+x 2+ax . (1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x e x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围. 典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数. (1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是() A .27a <- B .25a >- C .29a ≥ D .29a >2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+ 5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是() A .(],1-∞- B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦ 6.若关于x 的不等式()()22e222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为() A .1,e ⎡-+∞⎫⎪⎢⎣⎭ B .()1,-+∞C .[)1,-+∞D .[)2,-+∞ 7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为() A .[)1,+∞ B .[)2,+∞C .[]1,2D .()1,+∞ 8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1二、多选题 10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是() A.-B.CD.11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4 12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6e B.(2e C.(2e D .2e13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为() A.B .1- C .1 D三、填空题 14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________. 15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.16.已知函数()2f x x a =+,()ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.19.已知函数()ln 32a f x ax x =--,其中0a ≠. (1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围. 20.已知函数2()(2)e (1)(R,R)x f x x a x m a m =----∈∈.(1)若12a =,求()f x 的单调区间; (2)若()0,()2ln 2e x a f x x x =≥+-对一切,()0x ∈+∞恒成立,求m 的取值范围. 21.已知函数()()()21e ,12x f x x g x ax a R =-=+∈. (1)求()f x 的图象在0x =处的切线方程;(2)当[)0,x ∈+∞时,()()f x g x ≥恒成立,求a 的取值范围. 22.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 23.已知函数()()ln 1ln f x ax a x =-+的图像在点()()1,1f 处的切线方程为4y x b =+. (1)求a ,b 的值;(2)当4k ≥时,证明:()()1f x k x <-对()1,x ∈+∞恒成立.24.已知函数()()21ln R f x ax x a =--∈.(1)讨论函数()f x 的单调性;(2)若()f x 在x =()()0,,1x f x bx ∈+∞≥-恒成立,求实数b 的取值范围. 25.已知函数()e (2)1x f x a x =---.(1)当a =1时,求曲线在点()()1,1f 处的切线方程;(2)若2()()g x f x x =-,且()0g x ≥在[)0,∞+上恒成立,求a 的取值范围.26.已知函数()e x f x =.(1)证明:()1f x x ≥+;(2)当[]0,x π∈时,不等式()()sin 21ln 1x f x m x --≤+⎡⎤⎣⎦恒成立,求实数m 的取值范围.27.已知函数()()ln 0x f x e a x a =->.(1)当2a =时,直线2y kx =+与曲线()y f x =相切,求实数k 的值;(2)当0x >时,()ln f x a a >,求a 的取值范围.28.已知函数2()e (1)=+-+x f x a x x .(1)当1a =时,求()f x 的单调区间;(2)若不等式()2f x ≥恒成立,求实数a 的取值范围.29.设函数()()321f x x a x ax =+++.(1)0a =时,求()f x 在区间[]1,2-上的最大值与最小值.(2)0a >时,()f x 有两个不同的极值点1x ,2x ,且对不等式()()120f x f x +≤恒成立,求实数a 的取值范围? 30.已知函数()()()1e x f x a x a =--∈R ,()ln e k x x =-,e 为自然对数的底数.(1)讨论()f x 的单调性;(2)当1x >时,不等式()()f x k x ≤恒成立,求a 的取值范围.31.已知函数()()2ln 2f x x ax a =-+∈R .(1)讨论()f x 的单调性;(2)若()()20f x a x --≥在[]1,e x ∈上恒成立,求实数a 的取值范围. 32.已知函数()ln 1f x ax x =++.(1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围;(2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围.33.已知函数21()e sin 12x f x kx x =---,函数()21cos 12g x x x =+-.(1)求函数()g x 的单调区间.(2)0x ≥时,不等式()0f x ≥恒成立,求实数k 的取值范围. 34.已知函数12()(1)e -=--x f x a x x (其中a R ∈,e 为自然对数的底数).(1)当2e a >时,讨论函数f (x )的单调性;(2)当1x >时,2()ln(1)3f x x x x >--+-,求a 的取值范围. 35.已知函数()e ln 1x f x mx x =--.(1)当1m =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)若(x)x f ≥恒成立,求实数m 的取值范围.。

26导数不等式 答案打印

26导数不等式 答案打印

导数应用--证明不等式1.【2018年高考全国Ⅲ卷文数】【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()e x ax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=.(2)当1a ≥时,21()e (1e)ex xf x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21e x g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增;所以()g x (1)=0g ≥-.因此()e 0f x +≥.2.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x .由题设知,f ′(2)=0,所以a =212e.从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1e x x --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥. 3.【解析】(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx x x 333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n nx x x x x x -=12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以222233sin sin 2sin 2)4n nnn x xx ≤=.4【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0fx '=得,x =或x =.当2()a a x +∈+∞时,()0f x '<;当x∈时,()0fx '>.所以()f x 在)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.5.【解析】(Ⅰ)函数f (x )的导函数1()f x x '=-,由12()()f x f x ''=得1211xx -=-,因为12x x ≠,所以12=.由基本不等式得=≥.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)g x '=,所以 所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0,f (n )–kn –a <)a n k n-≤)n k <0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点.由f (x )=kx +a 得ln x ak x -=.设l (n )ah xx x -=,则22ln )1)((12x ag x x x a x h '=+--+=,其中(n )l g x x -=.由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根.综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 6.【答案】.(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+- ⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭,且()()()22e cos e cos 2e n n y x n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<.所以,20022sin c s e o n n n x x x -πππ+-<-.。

高中数学(一轮复习)最困难考点系列01 构造函数利用导数解不等式 含解析

高中数学(一轮复习)最困难考点系列01 构造函数利用导数解不等式 含解析

专题一 构造函数利用导数解不等式构造函数利用导数解不等式★★★★○○○○对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有()()g x xf x =,()()f x g x x =,()()x g x e f x =,()()x f x g x e=等等.【2017辽宁大连八中高三模拟(理)】设函数f (x )在R 上存在导函数f ′(x ),对任意的实数x 都有f (x )=4x 2−f (−x ),当x ∈(−∞,0)时,f ′(x )+12<4x 。

若f (m +1)≤f (−m )+3m +32,则实数m 的取值范围是( )A 。

[−12,+∞) B. [−32,+∞) C. [−1,+∞) D 。

[−2,+∞)【答案】A【2017四川省资阳高三一诊(文)】已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则( )A .4(1)(2)f f <B .4(1)(2)f f >C .(1)4(2)f f <D .(1)4(2)f f '< 【答案】B 【解析】设函数2()()f x g x x =(0)x >,则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<,所以函数()g x 在(0,)+∞为减函数,所以(1)(2)g g <,即22(1)(2)12f f >,所以4(1)(2)f f >,故选B .对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有()()g x xf x =,()()f x g x x =,()()x g x e f x =,()()x f x g x e=等等.【实战演练】每道试题20分,总计100分1. 【广东省惠州市2017届高三上学期第二次调研模拟考试数学(文)试题】定义在R 上的函数)(x f y =满足)()3(x f x f =-,0)(')23(<-x f x ,若21x x<,且321>+x x ,则有( )(A))()(21x f x f > (B))()(21x f x f < (C ))()(21x f x f = (D )不确定 【答案】A【解析】由(3)()f x f x -=知函数()y f x =的图像关于直线32x =对称,又因为'3()()02x fx -<,所以当32x <时,'()0f x >,()f x 单调递增;当32x >时,'()0f x <,()f x 单调递减。

专题08 导数压轴题之构造函数和同构异构详述(原卷版)

专题08 导数压轴题之构造函数和同构异构详述(原卷版)

导数章节知识全归纳专题08 导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()enxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( )A .()0,2ln 2B .(),2ln 2-∞C .()2ln 2,+∞D .()1,2ln 2变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A 64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B .36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C 43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭变式:2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一构造函数利用导数解不等式
对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有
1.对于()()x g x f ''>,构造()()()
x g x f x h -=更一般地,遇到()()0'≠>a a x f ,即导函数大于某种非零常数(若a =0,则无需构造),则可构()()ax
x f x h -=2.对于()()0''>+x g x f ,构造()()()
x g x f x h +=3.对于()()0'>+x f x f ,构造()()x f e x h x
=4.对于()()x f x f >'[或()()0'>-x f x f ],构造()()x e x f x h =
5.对于()()0'>+x f x xf ,构造()()
x xf x h =6.对于()()0'>-x f x xf ,构造()()x x f x h =
7.对于()()
0'>x f x f ,分类讨论:(1)若()0>x f ,则构造()()x f x h ln =;(2)若()0<x f ,则构造()()[]x f x h -=ln ;
例一设函数在上存在导函数,对任意的实数都有,当
时,.若,则实数的取值范围是()
A. B. C. D.
构造函数法,令2()()2F x f x x =-,则1()()402
F x f x x ''=-<-<,函数()F x 在(,0)-∞上为减函数,因为2()()()()40F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(,)-∞+∞上为减函数,而不等式3(1)()32f m f m m +≤-++
可化为(1)()F m F m +≤-,则1m m +≥-,即12m ≥-.选A.例二已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则()
A.4(1)(2)
f f <B.4(1)(2)f f >C.(1)4(2)f f <D.(1)4(2)f f '<
对点训练
1.【2017广东惠州】定义在R 上的函数)(x f y =满足)()3(x f x f =-,0)(')23(<-x f x ,若21x x <,且321>+x x ,则有()(A ))()(21x f x f >(B ))()(21x f x f <(C ))()(21x f x f =(D )不确定2.【2017沧州】函数()f x 的定义域为R ,(0)2f =,对任意x R ∈,都有()'()1f x f x +>,则不等式()1x x
e f x e >+ 的解集为()
A.{|0}
x x >B.{|0}x x < C.{|1}x x <-或1x >D.{|1}x x <-或01}x <<3.【2017湖南郴州】已知定义在R 上的可导函数()f x 的导函数为'()f x ,若对于任意实数x 有()'()f x f x >,且()1y f x =-为奇函数,则不等式()x f x e <的解集为(
)A.(,0)-∞B.(0,)+∞ C.4(,)e -∞D.4
(,)e +∞4.定义域为R 的可导函数()x f y =的导函数为()x f ',满足()()x f x f '
>,且(),10=f 则不等式()1<x e x f 的解集为()
A.()0,∞-
B.()+∞,0
C.()2,∞-
D.()+∞,2
5.已知偶函数是定义在上的可导函数,其导函数为
,当时有,则不等式
的解集为()A. B. C.D .。

相关文档
最新文档