【配套K12】高考数学四海八荒易错集专题12空间平行与垂直理

合集下载

高考数学总复习---空间中的平行与垂直关系知识点总结及真题训练.doc

高考数学总复习---空间中的平行与垂直关系知识点总结及真题训练.doc

空间中的平行与垂直关系知识点总结及真题训练【知识图解】【知识梳理】一、平行1、平行公理2、构造三角形:3、构造平行四边形:4、线面平行性质:5、面面平行性质:6、线面平行判定:7、面面平行的性质:8、面面平行的判定1:9、面面平行的判定2:【典型例题】例1、正方体ABCD_A、B\GD\屮,E,F分别是的屮点,求ffi: EF〃面ABCD.变式:如图,两个全等的正方形ABCD和M3EF所在的平面相交于AB, M eAC, Nw FB 且AM = FN,求证:MN〃平面BCE.例2、如图,以垂直于矩形ABCD所在的平面,PA=AD f E、F分别是AB、PD 的中点。

(1)求证:AF〃平面PCE;*(2)求证:平面PCE丄平面PCD。

/ \\(1) 求证:BC 】//平面CAD(2) 求证:平面CAJ)丄平面AAiBiBo例3、浙江理20.(本题满分15分)如图,平面PAC 丄平面ABC, \ABCPB, AC 的中点,AC = 16, PA = PC = 10.(I) 设G 是0C 的中点,证明:FG//平面BOE ;(II) 证明:在AABO 内存在一点M ,使FM 丄平面BOE, 并求点M 到Q4, 03的距离.练习:1、(浙江卷文)(本题满分14分)如图,DC 丄平面ABC , EB//DCAC = BC = EB = 2DC = 2 , ZACB = 120 ,只Q 分别为AE.AB 的中点.(I )证明:PQII 平面ACD ; (II )求AD 与平面ABE Wr 成角的.正弦值.2、如图,在直三棱柱ABC-A1B1C1屮,AC=BC,点D 是AB 的屮点。

是以4C 为斜边的等腰直角三角形,匕£0分别为必,(第20(2) 求二面角B-FC!-C 的余眩值。

. Ei D L-.-.♦ E / ■<C 3、如图,在四面体ABCD 中,截而EFGH 是平行四边形•求证:AB 〃平面EFGH.安徽理(19)如图,圆锥定点为P,底面圆心为O,其母线与底而所成的角为22.5°, AB 和 CD 是底面圆0上的两条平行的弦,轴OP 与平面PCD 所成的角为60°-(1) 证明:平面PAB 与平面PCD 的交线平行于底面;(2) 求 cosZCOD4、点P 是平行四边形ABCD 所在的平面外一点,E,F 分别是PA,BD 上的点,且 PE:EA=BF ・・FD,求证:EF//面PBC.5、(山东卷理)(本小题满分12分)如图,在直四棱柱ABCD ・A]B]C]D]中,底面ABCD 为等腰梯形,AB//CD, AB=4, BC=CD=2, AA )=2, E 、E“ F 分别是棱 AD 、AA 【、AB 的中点。

高考数学复习考点讲解与真题分析15---空间平行垂直综合问题

高考数学复习考点讲解与真题分析15---空间平行垂直综合问题
∠ABC = ∠BAD = 90°, PA = BC = 1 AD. 2
(1) 求证:平面 PAC ⊥ 平面 ; PCD (2) 在棱 PD 上是否存在一点 E,使 CE//平面 PAB?若存在,请确定 E 点的位置,若不存在,请说明理
由。 解:设 PA=1.
由题意 , , 由 易得 由勾股定理 (1)
例 3、在正四棱锥 -P ABCD 中, PA = 3 AB ,M 是 BC 的中点,G 是三角形 PAD 的重心,则在平 2
面 PAD 中经过 G 点且与直线 PM 垂直的直线有_______条。 分析:可以通过研究直线 PM 与平面 PAD 的位置关系来研究直线 PM 与平面 PA化能够给某些有关空间中垂直关系的问题巧妙地创造条件。近几年以探索性 问题考查线面、面面关系是考查热点,如探索点的存在性、探索点的位置等是命题热点。
2、空间的角度与距离知识的考查形式既有选择题与填空题,有时又会出现解答题。特别是异面直线所 成角,直线与平面所成的角,二面角以及两点间的距离,点到平面的距离等,都是命题的重要内容。高考 中常把空间角与距离综合在一起,以解答题的形式考查,通常情况下,这类问题都可以用两种解法,即传
统法与向量法,其中向量法更简单。 二、考点例析
1、点、线、面之间位置关系
例 1、若l,m,n是互不相同的空间直线,α,β 是不重合的平面,则下列命题中为真命题的是( )
∥ A.若α ∥β,l ⊂ α,n ⊂ β ,则l n
B.若α ⊥ β,l ⊂ α ,则l ⊥ β
∥ C.若l ⊥ n,m ⊥ n ,则l m
例 2、给出下列命题:(1)若平面α 上的直线 a 与平面 β 上的直线 b 为异面直线,直线
c 是α 与 β 的交线,那么 c 至多与 、a b 中一条相交;(2)若直线 a 与 b 异面,直线 b 与 c 异面,则直线 a

高考数学二轮复习考点知识专题讲解12---立体几何中的平行与垂直问题(含解析)

高考数学二轮复习考点知识专题讲解12---立体几何中的平行与垂直问题(含解析)

高考数学二轮复习考点知识专题讲解专题 12 立体几何中的平行与垂直问题【自主热身,归纳总结】1、 设 α,β 为互不重合的平面,m,n 是互不重合的直线,给出下列四个命题:⊂ ①若 m∥n,n α,则 m∥α; ⊂ ⊂ ②若 m α,n α,m∥β,n∥β,则 α∥β; ⊂ ⊂ ③若 α∥β,m α,n β,则 m∥n; ⊂ ④若 α⊥β,α∩β=m,n α,n⊥m,则 n⊥β.其中正确命题的序号为________. 【答案】.④ 【解析】:对于①,直线 m 可能在平面 α 内,故①错误;对于②,没有 m 与 n 相交的条件,故②错误;对 于③,m 与 n 也可能异面,故③错误. 2、已知平面 α,β,直线 m,n,给出下列命题: ①若 m∥α,n∥β,m⊥n,则 α⊥β; ②若 α∥β,m∥α,n∥β,则 m∥ n; ③若 m⊥α,n⊥β,m⊥n,则 α⊥β; ④若 α⊥β,m⊥α,n⊥β,则 m⊥n. 其中是真命题的是________(填序号). 【答案】③④ 如图,在正方体 ABCDA1B1C1D1 中,CD∥平面 ABC1D1,BC∥平面 ADC1B1,且 BC⊥CD,又因为平面 ABC1D1 与平面 ADC1B1 不垂直,故①不正确;因为平面 ABCD∥平面 A1B1C1D1,且 B1C1∥平面 ABCD,AB∥平面 A1B1C1D1,但 AB 与 B1C1 不平行,故②不正确.同理,我们以正方体的模型来观察,可得③④正确.3、若 α,β 是两个相交平面,则在下列命题中,真命题的序号为________(写出所有真命题的序号). ①若直线 m⊥α,则在平面 β 内,一定不存在与直线 m 平行的直线; ②若直线 m⊥α,则在平面 β 内,一定存在无数条直线与直线 m 垂直;⊂ ③若直线 m α,则在平面 β 内,不一定存在与直线 m 垂直的直线; ⊂ ④若直线 m α,则在平面 β 内,一定存在与直线 m 垂直的直线.【答案】:②④1 / 16⊂ 4、已知 α,β 是两个不同的平面,l,m 是两条不同的直线,l⊥α,m β.给出下列命题: ⇒ ⇒ ①α∥β l⊥m; ②α⊥β l∥m; ⇒ ⇒ ③m∥α l⊥β; ④l⊥β m∥α.其中正确的命题是________(填.写.所.有.正.确.命.题.的.序.号.). 【答案】: ①④⊂ 【解析】:①由 l⊥α,α∥β,得 l⊥β,又因为 m β,所以 l⊥m; ⊂ ⊂ ②由 l⊥α,α⊥β,得 l∥β 或 l β,又因为 m β,所以 l 与 m 或异面或平行或相交;③由 l⊥α,m∥α,得 l⊥m.因为 l 只垂直于 β 内的一条直线 m,所以不能确定 l 是否垂直于 β;⊂ ④由 l⊥α,l⊥β,得 α∥β.因为 m β,所以 m∥α.5、 设 b, c 表示两条直线,α,β 表示两个平面,现给出下列命题:⊂ ⊂ ①若 b α,c∥α,则 b∥c;②若 b α,b∥c,则 c∥α;③若 c∥α,α⊥β,则 c⊥β;④若 c∥α,c⊥β,则 α⊥β.其中正确的命题是________.(写出所有正确命题的序号)【答案】: ④⊂ ⊂ 【解析】:①b 和 c 可能异面,故①错;②可能 c α,故②错;③可能 c∥β,c β,故③错;④根据面面垂直判定 α⊥β,故④正确.6、在所有棱长都相等的三棱锥 P-ABC 中,D,E,F 分别是 AB,BC,CA 的中点,下列四个命题:(1) BC∥平面 PDF;(2) DF∥平面 PAE;(3) 平面 PDF⊥平面 ABC;(4) 平面 PDF⊥平面 PAE.其中正确命题的序号为________.【答案】:(1)(4)【解析】 由条件可证 BC∥DF,则 BC∥平面 PDF,从而(1)正确;因为DF 与 AE 相交,所以(2)错误;取 DF 中点 M(如图),则 PM⊥DF,且可证 PM 与 AE 不垂直,所以(3)错误;而 DM⊥PM,DM⊥AM,⊂ 则 DM⊥平面 PAE.又 DM 平面 PDF,故平面 PDF⊥平面 PAE,所以(4)正确.综上所述,正确命题的序号为(1) (4).2 / 167、在正方体 ABCD-A1B1C1D1 中,点 M,N 分别在 AB1,BC1 上(M,N 不与 B1,C1 重合),且 AM=BN,那么①AA1 ⊥MN;②A1C1∥MN;③MN∥平面 A1B1C1D1;④MN 与 A1C1 异面.以上 4 个结论中,正确结论的序号是________. 【答案】:①③ 【解析】 过 M 作 MP∥AB 交 BB1 于 P,连接 NP,则平面 MNP∥平面 A1C1,所以 MN∥平面 A1B1C1D1,又 AA1⊥平 面 A1B1C1D1,所以 AA1⊥MN.当 M 与 B1 重合,N 与 C1 重合时,则 A1C1 与 MN 相交,所以①③正确.【问题探究,变式训练】 :例 1、如图,在直三棱柱 ABCA1B1C1 中,AB=AC,E 是 BC 的中点,求证: (1) 平面 AB1E⊥平面 B1BCC1; (2) A1C∥平面 AB1E.⊂ 【解析】: (1) 在直三棱柱 ABCA1B1C1 中,CC1⊥平面 ABC.因为 AE 平面 ABC,所以 CC1⊥AE因为 AB=AC,E 为 BC 的中点,所以 AE⊥BC.⊂ ⊂ 因为 BC 平面 B1BCC1,CC1 平面 B1BCC1,且 BC∩CC1=C,所以 AE ⊥平面 B1BCC1.⊂ 因为 AE 平面 AB1E,所以平面 AB1E⊥平面 B1BCC1 (2) 如图,连结 A1B,设 A1B∩AB1=F,连结 EF.在直三棱柱 ABCA1B1C1 中,四边形 AA1B1B 为平行四边形,所以 F 为 A1B 的中点.又因为 E 是 BC 的中点,所以 EF∥A1C⊂ ⊄ 因为 EF 平面 AB1E,A1C 平面 AB1E,3 / 16所以 A1C∥平面 AB1E.【变式 1】、【如图,在三棱锥 PABC 中,AB⊥PC,CA=CB,M 是 AB 的中点,点 N 在棱 PC 上,点 D 是 BN 的中点.求证: (1) MD∥平面 PAC;⊂ 又因为 CE 平面 BEC,所以 AH⊥CE.(14 分) 【变式 6】、如图,正三棱柱 ABCA1B1C1 的高为 6,其底面边长为 2.已知点 M,N 分别是棱 A1C1,AC 的中点,点 D 是棱 CC1 上靠近 C 的三等分点.求证: (1) B1M∥平面 A1BN; (2) AD⊥平面 A1BN.【解析】: (1) 如图,连结 MN,在正三棱柱 ABCA1B1C1 中,四边形 A1ACC1 是矩形.因为 M,N 分别是棱 A1C1,AC 的中点, 所以四边形 A1ANM 也是矩形,从而 MN∥A1A.(2 分) 又因为 A1A∥B1B,所以 MN ∥B1B. 所以四边形 B1BNM 是平行四边形,则 B1M∥BN.(4 分)⊄ ⊂ 因为 B1M 平面 A1BN,BN 平面 A1BN,所以 B1M∥平面 A1BN.(6 分)⊂ (2) 在正三棱柱 ABCA1B1C1 中,AA1⊥平面 ABC,BN 平面 ABC,所以 AA1⊥BN.因为 N 是正三角形 ABC 的边 AC 的中点,所以 AC⊥BN.⊂ 又因为 A1A∩AC=A,A1A,AC 平面 A1ACC1,所以 BN⊥平面 A1ACC1. ⊂ 因为 AD 平面 A1ACC1,所以 BN⊥AD.(10 分)4 / 166 63 在平面 A1ACC1 中,tan∠A1NA·tan∠DAC= 1 · 2 =1,所以∠A1NA 与∠DAC 互余,得 AD⊥A1N.(12 分)⊂ 因为 AD⊥BN,AD⊥A1N,BN∩A1N=N,且 A1N,BN 平面 A1BN,所以 AD⊥平面 A1BN.(14 分) 【关联 1】、 如图,正三棱柱 A1B1C1-ABC 中,点 D,E 分别是 A1C,AB 的中点.(1) 求证:ED∥平面 BB1C1C;(2) 若 AB= 2BB1,求证:A1B⊥平面 B1CE.【解析】 (1) 连结 AC1,BC1,因为 AA1C1C 是矩形,D 是 A1C 的中点,所以 D 是 AC1 的中点.(2 分)在△ABC1 中,因为 D,E 分别是 AC1,AB 的中点,所以 DE∥BC1.(4 分)⊄ ⊂ 因为 DE 平面 BB1C1C,BC1 平面 BB1C1C,所以 ED∥平面 BB1C1C.(6 分)(2) 因为△ABC 是正三角形,E 是 AB 的中点,所以 CE⊥AB.⊂ 又因为正三棱柱 A1B1C1ABC 中,平面 ABC⊥平面 ABB1A1,平面 ABC∩平面 ABB1A1=AB,CE 平面 ABC,所以 CE⊥平面 ABB1A1.从而 CE⊥A1B.(9 分)在矩形 ABB1A1 中,因为AB11BB1= 2=BB1EB,所以 Rt△A1B1B∽Rt△B1BE,从而∠B1A1B=∠BB1E.因此∠B1A1B+∠A1B1E=∠BB1E+∠A1B1E=90°,所以 A1B⊥B1E.⊂ 又因为 CE,B1E 平面 B1CE,CE∩B1E=E,所以 A1B⊥平面 B1CE.(14 分)例 2、如图,在四棱锥 P − ABCD 中, (1)若 PB = PD ,求证: PC ⊥ BD ; (2)求证: CE //平面 PAD ., CB = CD ,点 E 为棱 PB 的中点.5 / 16, 【解析】: 证明:(1)取 BD 的中点 O ,连结 CO PO ,因为 CD = CB ,所以△ CBD 为等腰三角形,所以 BD ⊥ CO . 因为 PB = PD ,所以△ PBD 为等腰三角形,所以 BD ⊥ PO .又,所以 BD ⊥ 平面 PCO .因为 PC ⊂ 平面 PCO ,所以 PC ⊥ BD .(2)由 E 为 PB 中点,连 EO ,则 EO ∥ PD ,又 EO ⊄ 平面 PAD ,所以 EO ∥ 平面 PAD .由,以及 BD ⊥ CO ,所以 CO ∥ AD ,又 CO ⊄ 平面 PAD ,所以 CO ∥ 平面 PAD .又,所以平面 CEO ∥ 平面 PAD ,而 CE ⊂ 平面 CEO ,所以 CE ∥ 平面 PAD .【变式 1】、如图,在三棱锥 A-BCD 中,E,F 分别为棱 BC,CD 上的点,且 BD∥平面 AEF.(1)求证:EF∥平面 ABD;(2)若 BD⊥CD,AE⊥平面 BCD,求证:平面 AEF⊥平面 ACD.【解析】:(1)因为 BD∥平面 AEF,6 / 16BD平面 BCD,平面 AEF∩平面 BCD=EF, 所以 BD∥EF. 因为 BD平面 ABD,EF平面 ABD, 所以 EF∥平面 ABD. (2)因为 AE⊥平面 BCD,CD平面 BCD, 所以 AE⊥CD. 因为 BD⊥CD,BD∥EF, 所以 CD⊥EF, 又 AE∩EF=E,AE平面 AEF,EF平面 AEF, 所以 CD⊥平面 AEF. 又 CD平面 ACD, 所以 平面 AEF⊥平面 ACD.【变式 2】、如图,在四棱锥 P − ABCD 中,底面 ABCD 是矩形,点 E 在棱 PC 上(异于点 P ,C ),平面 ABE与棱 PD 交于点 F .∥ (1)求证: AB EF ;(2)若平面 PAD ⊥ 平面 ABCD ,求证: AF ⊥ EF . PF DE CA第题 B( 16 )【变式 3】、如图,在四棱锥 P − ABCD 中,底面 ABCD 是矩形,平面 PAD⊥平面 ABCD,AP=AD, M,N 分别为棱 PD,PC 的中点.7 / 16求证:(1)MN∥平面 PAB; (2)AM⊥平面 PCD.【解析】(1)因为 M,N 分别为棱 PD,PC 的中点, 所以 MN∥DC, 又因为底面 ABCD 是矩形,所以 AB∥DC, 所以 MN∥AB. 又 AB ⊂ 平面 PAB , MN ⊄ 平面 PAB, 所以 MN∥平面 PAB. (2)因为 AP=AD,M 为 PD 的中点, 所以 AM⊥PD. 因为平面 PAD⊥平面 ABCD, 又平面 PAD∩平面 ABCD= AD, 又因为底面 ABCD 是矩形,所以 CD⊥AD,又 CD ⊂ 平面 ABCD, 所以 CD⊥平面 PAD. 又 AM ⊂ 平面 PAD,所以 CD ⊥AM.因为 CD, PD ⊂ 平面 PCD,,所以 AM⊥平面 PCD. 【易错警示】立几的证明必须严格按教材所给的公理、定理、性质作为推理的理论依据,严禁生造定理, 在运用定理证明时必须在写全定理的所有条件下,才有相应的结论,否则会影响评卷得分.【变式 4】、 如图,在四棱锥 PABCD 中,底面 ABCD 为平行四边形,E 为侧棱 PA 的中点.(1) 求证:PC∥平面 BDE; (2) 若 PC⊥PA,PD=AD,求证:平面 BDE⊥平面 PAB.8 / 16易错警示 在立体几何中,一定要用课本中允许的有关定理进行推理论证,在进行推理论证时,一定要将 定理的条件写全,不能遗漏,否则,在评分时将予以扣分,高考阅卷对立体几何题证明的规范性要求较 高.【关联 1】、如图,在四棱锥 PABCD 中,AB∥CD,AC⊥BD,AC 与 BD 交于点 O,且平面 PAC⊥平面 ABCD,E 为棱 PA 上一点. (1) 求证:BD⊥OE; (2) 若 AB=2CD,AE=2EP,求证:EO∥平面 PBC.⊂ 【解析】(1) 因为平面 PAC⊥ 平面 ABCD,平面 PAC∩ 平面 ABCD=AC,BD⊥AC,BD 平面 ABCD,所以 BD⊥平面 PAC.⊂ 又因为 OE 平面 PAC,所以 BD⊥OE.(6 分)9 / 16(2) 因为 AB∥CD,AB=2CD,AC 与 BD 交于点 O, 所以 CO∶OA=CD∶AB=1∶2. 又因为 AE=2EP,所以 CO∶OA=PE∶EA, 所以 EO∥PC.⊂ ⊄ 又因为 PC 平面 PBC,EO 平面 PBC,所以 EO∥平面 PBC.(14 分)【关联 2】、如图,在直三棱柱 ABC-A1B1C1 中,CA=CB,AA1= 2AB,D 是 AB 的中点.(1) 求 证:BC1∥平面 A1CD; 1(2) 若点 P 在线段 BB1 上,且 BP=4BB1,求证:AP⊥平面 A1CD.【解析】 (1)连结 AC1,交 A1C 于点 O,连结 OD. 因为四边形 AA1C1C 是矩形,所以 O 是 AC1 的中点. (2 分) 在△ABC1 中, O,D 分别是 AC1,AB 的中点, 所以 OD∥BC1. (4 分)⊂ ⊄ 又因为 OD 平面 A1CD,BC1 平面 A1CD,所以 BC1∥平面 A1CD.(6 分) (2) 因为 CA=CB,D 是 AB 的中点,所以 CD⊥AB﹒ 又因为在直三棱柱 ABC-A1B1C1 中,底面 ABC⊥侧面 AA1B1B,交线为 AB,⊂CD 平面 ABC,所以 CD⊥平面 AA1B1B﹒ (8 分) ⊂ 因为 AP 平面 A1B1BA,所以 CD⊥AP. (9 分)1 因为 BB1=AA1= 2BA ,BP=4BB1,BP 2 AD 所以BA= 4 =AA1,所以 Rt△ABP∽Rt△A1AD, 从而∠AA1D=∠BAP, 所以∠AA1D+∠A1AP=∠BAP+∠A1AP=90°, 所以 AP⊥A1D.(12 分)⊂ ⊂ 又因为 CD∩A1D=D,CD 平面 A1CD,A1D 平面 A1CD,10 / 16所以AP⊥平面A 1CD.(14分)【关联3】、如图,在三棱锥PABC 中,平面PAB⊥平面ABC,PA⊥PB,M,N 分别为AB,PA 的中点.(1) 求证:PB∥平面MNC;(2) 若AC=BC,求证:PA⊥平面MNC.【解析】 (1) 因为M,N 分别为AB,PA 的中点,所以MN∥PB.(2分)因为MN ⊂平面MNC,PB ⊄平面MNC,所以PB∥平面MNC.(4分)(2) 因为PA⊥PB,MN∥PB,所以PA⊥MN.(6分) 因为AC=BC,AM=BM,所以CM⊥AB. (8分)因为平面PAB⊥平面ABC,CM ⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB. (12分) 因为PA ⊂平面PAB,所以CM⊥PA.因为PA⊥MN,MN ⊂平面MNC,CM ⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC. (14分)【关联4】、如图,已知四棱锥PABCD 的底面ABCD 是平行四边形,PA⊥平面ABCD,M 是AD 的中点,N 是PC 的中点.(1) 求证:MN∥平面PAB;(2) 若平面PMC⊥平面PAD,求证:CM⊥AD.【解析】 (1) 如图,取PB 的中点E,连结AE,NE. 因为E,N 分别是PB,PC 的中点,所以EN∥BC 且EN=12BC.因为底面ABCD 是平行四边形,M 是AD 的中点,所以AM∥BC 且AM=12BC,(3分)所以EN∥AM 且EN=AM,四边形AMNE 是平行四边形,所以MN∥AE,(5分)因为MN ⊄平面PAB,AE ⊂平面PAB,所以MN∥平面PAB.(7分)(2) 如图,在平面PAD 内,过点A 作AH⊥PM,垂足为H.因为平面PMC⊥平面PAD,平面PMC∩平面PAD=PM,因为AH ⊂平面PAD,AH⊥PM,所以AH⊥平面PMC,从而AH⊥CM.(10分) 因为PA⊥平面ABCD,CM⊂平面ABCD, 所以PA⊥CM.(12分)因为PA∩AH=A,PA,AH⊂平面PAD, 所以CM⊥平面PAD,因为AD ⊂平面PAD,所以CM⊥AD.(14分)例3、如图,在直三棱柱ABC-A 1B 1C 1中,D 为棱BC 上一点. (1) 若AB=AC,D 为棱BC的中点,求证:平面ADC 1⊥平面BCC 1B 1; (2) 若A 1B∥平面ADC 1,求BD DC【解析】: (1) 因为AB=AC,点D 为BC 中点,所以AD⊥BC.(2分) 因为ABC-A 1B 1C 1 是直三棱柱,所以BB 1⊥平面ABC. 因为AD ⊂平面ABC,所以BB 1⊥AD.(4分) 因为BC∩BB 1=B,BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B 1, 所以AD⊥平面BCC 1B 1.因为AD ⊂平面ADC 1,所以平面ADC 1⊥平面BCC 1B 1.(6分)(2) 连结A 1C,交AC 1于O,连结OD,所以O 为AC 1中点.(8分)因为A 1B∥平面ADC 1,A 1B ⊂平面A 1BC,平面ADC 1∩平面A 1BC=OD,所以A 1B∥OD.(12分)因为O 为AC 1中点,所以D 为BC 中点, 所以BD DC=1.(14分)【变式1】、如图,在四面体ABCD 中,AB=AC=DB=DC,点E 是BC 的中点,点F 在线段AC 上,且AF AC=λ. (1) 若EF∥平面ABD,求实数λ的值;(2) 求证:平面BCD⊥平面AED.【解析】 (1) 因为EF∥平面ABD,EF ⊂平面ABC,平面ABC∩平面ABD=AB,所以EF∥AB.(3分) 又E 是BC 的中点,点F 在线段AC 上,所以F 为AC 的中点. 由AF AC =λ得λ=12.(6分)(2) 因为AB=AC=DB=DC,E 是BC 的中点,所以BC⊥AE,BC⊥DE.(9分)又AE∩DE=E,AE,DE ⊂平面AED,所以BC⊥平面AED.(12分)而BC ⊂平面BCD,所以平面BCD⊥平面AED.(14分)【变式2】、如图,在四棱锥PABCD 中,AD=CD=12AB,AB∥DC,AD⊥CD,PC⊥平面ABCD. (1) 求证:BC⊥平面PAC;(2) 若M 为线段PA 的中点,且过C,D,M 三点的平面与PB 交于点N,求PN∶PB 的值.【解析】 (1) 连结AC.不妨设AD=1.因为AD=CD=12AB,所以CD=1,AB=2. 因为∠ADC=90°,所以AC=2,∠CAB=45°.在△ABC 中,由余弦定理得BC=2,所以AC 2+BC 2=AB 2. 所以BC⊥AC.(3分)因为PC⊥平面ABCD,BC⊂平面ABCD,所以BC⊥PC.(5分) 因为PC ⊂平面PAC,AC⊂平面PAC,PC∩AC=C, 所以BC⊥平面PAC.(7分) (2) 因为AB∥DC,CD⊂平面CDMN,AB ⊄平面CDMN, 所以AB∥平面CDMN.(9分) 因为AB ⊂平面PAB,平面PAB∩平面CDMN=MN, 所以AB∥MN.(12分)在△PAB 中,因为M 为线段PA 的中点, 所以N 为线段PB 的中点,即PN∶PB 的值为12.(14分)【关联1】、 如图,在三棱锥PABC 中,D 为AB 的中点. (1) 与BC 平行的平面PDE 交AC 于点E,判断点E 在AC 上的位置并说明理由; (2) 若PA=PB,且锐角三角形PCD 所在平面与平面ABC 垂直,求证:AB⊥PC.【解析】(1) E 为AC的中点.理由如下: 平面PDE 交AC 于点E,即平面PDE∩平面ABC=DE, 而BC∥平面PDE,BC⊂平面ABC,所以BC∥DE.(4分) 在△ABC 中,因为D 为AB 的中点,所以E 为AC 的中点.(7分) (2) 因为PA=PB,D为AB 的中点,所以AB⊥PD, 如图,在锐角三角形PCD 所在平面内过点P 作PO⊥CD 于点O,因为平面PCD⊥平面ABC,平面PCD∩平面ABC =CD,所以PO⊥平面ABC.(10分)因为AB⊂平面ABC,所以PO⊥AB.又PO∩PD=P,PO,PD⊂平面PCD,所以AB⊥平面PCD.又PC⊂平面PCD,所以AB⊥PC.(14分)【关联2】、 如图,在四棱锥PABCD中,底面ABCD是菱形,且PB=PD.(1) 求证:BD⊥PC;(2) 若平面PBC与平面PAD的交线为l,求证:BC∥l.【解析】 (1) 如图,连结AC,交BD于点O,连结PO.因为四边形ABCD为菱形,所以BD⊥AC.(2分)又因为O为BD的中点,PB=PD,所以BD⊥PO.(4分)又因为AC∩PO=O,所以BD⊥平面APC.又因为PC⊂平面APC,所以BD⊥PC.(7分)(2) 因为四边形ABCD为菱形,所以BC∥AD.(9分)因为AD⊂平面PAD,BC⊄平面PAD,所以BC∥平面PAD.(11分)又因为BC⊂平面PBC,平面PBC∩平面PAD=l.所以BC∥l.(14分)【关联3】、如图,在三棱锥PABC中,已知平面PBC⊥平面ABC.(1) 若AB⊥BC,CP⊥PB,求证:CP⊥PA:(2) 若过点A作直线l⊥平面ABC,求证:l∥平面PBC.。

2020年高考数学(理)二轮复习命题考点串讲系列-专题12 空间的平行与垂直(含答案解析)

2020年高考数学(理)二轮复习命题考点串讲系列-专题12 空间的平行与垂直(含答案解析)

2020年高考数学(理)二轮复习命题考点串讲系列-专题12 空间的平行与垂直1、考情解读1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以客观题形式考查有关线面平行、垂直等位置关系的命题真假判断或充要条件判断等.3.以多面体或旋转体为载体(棱锥、棱柱为主)命制空间线面平行、垂直各种位置关系的证明题或探索性问题,以大题形式呈现.2、重点知识梳理1.点、线、面的位置关系(1)平面的基本性质名称图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内⎭⎬⎫A∈lB∈lA∈αB∈α⇒l⊂α公理2过不在一条直线上的三点有且只有一个平面若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a(2)平行公理、等角定理公理4:若a∥c,b∥c,则a∥b.等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°. 2.直线、平面的平行与垂直定理名称文字语言图形语言符号语言线面平行的判定定理平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行⎭⎬⎫a⊄αb⊂αa∥b⇒a∥α线面平行的性质定理一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b,⇒a∥b面面平行的判定定理如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β面面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β且γ∩α=a且γ∩β=b⇒a∥b线面垂直的判定定理一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α线面垂直的性质定理垂直于同一平面的两条直线平行a⊥α,b⊥α⇒a∥b面面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直a⊥α,a⊂β,⇒α⊥β面面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直α⊥β,b ∈β,α∩β=a ,b ⊥a ⇒b ⊥α3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础. 学科.网【误区警示】1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件. 2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.3.若a 、b 、c 代表直线或平面,△代表平行或垂直,在形如⎭⎬⎫a △b a △c ⇒b △c 的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a 、b 、c 中有两个为平面,一条为直线,命题⎭⎬⎫a ⊥αa ⊥β⇒α∥β是成立的.⎭⎬⎫a ∥αa ∥β⇒α∥β是不成立的. 3、高频考点突破考点1 空间中点、线、面的位置例1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行 C .若α,β不平行,则在α内不存在与β平行的直线 D .若m ,n 不平行,则m 与n 不可能垂直于同一平面答案 D【变式探究】已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α答案 B考点二 空间中平行的判定与垂直例2.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ,所以EF AB P.(第15题)ADBC EF又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥, 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD .又AB ⊥AD , BC AB B ⋂=, AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.【变式探究】【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=I ,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=I F ,平面平面 所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C , 所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.【举一反三】【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)295 25.【变式探究】如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则()A.∠A′DB≤α B.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB 都可以大于0,排除A,C.故选B.答案 B考点三平面图形的折叠问题例3、(2016·全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′-ABCFE的体积.由(1)知,AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322.【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.【变式探究】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且DGGH=BRRH.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径.(2)正方形ABCD 边长为4.由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4. S △DEF =12×22×252-22=6.设三棱锥P -DEF 内切球的半径为r ,则三棱锥的体积V P -DEF =13×12×2×2×4=13(S △PEF +2S △DPF +S △DEF )·r ,解得r =12. ∴三棱锥P -DEF 的内切球的半径为12.学科.网 4、真题感悟(2014-2017)1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A B C D答案:A2.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.3.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P.又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC.(第15题)ADBC EF1.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】由题意知,l l αββ=∴⊂I ,,n n l β⊥∴⊥Q .故选C .2.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.3.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=o .由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDCBAP过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△, 即2112342sin 3022x x d x -+⨯=⋅o ,解得2234x d x x =-+.而△BCD 的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-o .当平面PBD ⊥平面BDC 时: 四面体PBCD 的体积2111(23)332234BCD xV S d x x x =⨯=⨯-⋅-+△21(23)6234x x x x -=-+. 观察上式,易得23(23)2x xx x +--≤,当且仅当=23x x -,即=3x 时取等号,同时我们可以发现当=3x 时,2234x x -+取得最小值,故当=3x 时,四面体PBCD 的体积最大,为1.24.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)32 (B )22 (C)33 (D)13【答案】A5.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B6.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.1.【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP AN NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号),∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.【考点定位】立体几何中的动态问题2.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)π-D.312(21)π-【答案】A.322162()327a a a ++-≤⨯=,当且仅当y x =,3222=⇒-=a a a 时,等号成立,此时利用率为ππ98213127162=⨯⨯,故选A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.3.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B4.【2015高考四川,理14】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。

精品高考数学易错集专题12空间平行与垂直理

精品高考数学易错集专题12空间平行与垂直理
(1)求证:BC⊥平面ACEF;
(2)当FM为何值时,AM∥平面BDE?证明你的结论.
(1)证明∵在等腰梯形ABCD中,
AB∥CD,AD=DC=a,∠ABC=60°,
∴△ADC是等腰三角形,且∠BCD=∠ADC=120°,
∴∠DCA=∠DAC=30°,∴∠ACB=90°,即BC⊥AC.
又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,
(1)求证:A1E⊥FP;
(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请给予证明;若不存在,请说明理由.
(1)证明 在正△ABC中,取BE的中点D,连接DF,如图1.
图1
因为EF∩EB=E,
所以A1E⊥平面BEFC.
因为FP⊂平面BEFC,所以A1E⊥FP.
(2)平面B1DE⊥平面A1C1F.
证明(1)由已知,DE为△ABC的中位线,
∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,
∴DE∥A1C1,
且DE⊄平面A1C1F,A1C1⊂平面A1C1F,
∴DE∥平面A1C1F.
(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,
∴AA1⊥A1C1,
【锦囊妙计,战胜自我】
空间线面位置关系判断的常用方法
(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;
(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.
易错起源2、空间平行、垂直关系的证明
例2、如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.

高考数学总复习考点知识专题讲解42---平行与垂直

高考数学总复习考点知识专题讲解42---平行与垂直
[证明] 建立如图所示的空间直角坐标系 Dቤተ መጻሕፍቲ ባይዱxyz,则
A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,0),A1(1,0,1),B1(1,1,1), D1(0,0,1).
得 E1,12,0,F12,0,0, G1,0,12,E→F=-12,-12,0,E→G=0,-12,12. 设 n1=(x1,y1,z1)为平面 EFG 的法向量, n2=(x2,y2,z2)为平面 B1CD1 的法向量.
已知 BC=4,AB=AD=2. (1)求证:AC⊥BF; (2)在线段 BE 上是否存在一点 P,使得平面 PAC⊥平面 BCEF?若存在,求出BPPE的值;若不存在,请说明理由.
[思路引导] (1)证明 AC⊥AF→证明 AC⊥AB→AC⊥平
面 FAB. (2)由(1)建系设点→假设存在点 P,设B→P=λP→E→用 λ 表
因为 M 为 AD 的中点,故 M(0, 2,1). 又 P 为 BM 的中点,故 P0,0,12, 所以P→Q=34x0, 42+34y0,0. 又平面 BCD 的一个法向量为 n=(0,0,1), 故P→Q·n=0.
又 PQ⊄平面 BCD, 所以 PQ∥平面 BCD. 证法二:在线段 CD 上取点 F,使得 DF=3FC,连接 OF,同证法一建立空间直角坐标系,写出点 A,B,D 的坐 标,设点 C 坐标为(x0,y0,0). ∵C→F=14C→D,设点 F 坐标为(x,y,0),则(x-x0,y-y0,0) =14(-x0, 2-y0,0),
用向量证明垂直的方法 (1)线线垂直:证明两直线的方向向量互相垂直,即证它 们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共 线,或将线面垂直的判定定理用向量表示. (3)面面垂直:证明两个平面的法向量垂直,或将面面垂 直的判定定理用向量表示.

空间平行与垂直高考真题与解析

空间平行与垂直高考真题与解析

空间平行与垂直部分A级基础一、选择题1.在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC2.(2018·全国卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为() A.8B.62C.82D.8 33.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则点E到平面ABC1D1的距离为()A.32 B.22 C.12 D.334.(2018·全国卷Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.22 B.32 C.52 D.725.对于四面体A-BCD,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A-BCD的四个面中最多有四个直角三角形;④若四面体A-BCD的6条棱长都为1,则它的内切球的表面积为π6.其中正确的命题序号是()A.①③B.③④C.①②③D.①③④二、填空题6.如图,在空间四边形ABCD中,点M∈AB,点N∈AD,若AM MB=ANND,则直线MN与平面BDC的位置关系是________.7.在斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点,若平面BC1D∥平面AB1D1,则ADDC=________.8.在正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.三、解答题9.(2019·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.10.(2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.B级能力提升11.(2019·全国卷Ⅰ)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.12.(2019·河南郑州第二次质量预测)如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=π3,△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=14BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥D-CEG的体积;若不存在,请说明理由.A级基础一、选择题1.解析:如图,由题设知,A1B1⊥平面BCC1B1,从而A1B1⊥BC1.又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD.又A1E⊂平面A1B1CD,所以A1E⊥BC1.答案:C2.解析:连接BC1,AC1,AC,因为AB⊥平面BB1C1C,所以∠AC1B=30°,AB⊥BC1,所以△ABC1为直角三角形.又AB=2,所以BC1=2 3.又B1C1=2,所以BB1=(23)2-22=22,故该长方体的体积V=2×2×22=8 2.答案:C3.解析:因为A1B1∥AB,所以EB1∥AB,因此点E到平面ABC1D1的距离转化为点B1到平面的距离,取BC1的中点O,则OB1⊥BC1,OB1⊥AB,所以B1O⊥平面ABC1D1,则B1O为所求的距离.因此B1O=22是点E到平面ABC1D1的距离.答案:B4.解析:如图,因为AB∥CD,所以AE与CD所成的角为∠EAB.在Rt△ABE中,设AB=2,则BE=5,则tan∠EAB=BEAB=52,所以异面直线AE与CD所成角的正切值为5 2.故选C.答案:C5.解析:①正确,若AB=AC=AD,则AB,AC,AD在底面的射影相等,即与底面所成角相等;②不正确,如图1,点A在平面BCD的射影为点O,连接BO,CO,可得BO⊥CD,CO⊥BD,所以点O是△BCD的垂心;③正确,如图2,若AB⊥平面BCD,∠BCD=90°,则四面体A-BCD的四个面均为直角三角形;④正确,设正四面体的内切球的半径为r,棱长为1,高为6 3,根据等体积公式13×S ×63=13×4×S ×r ,解得r =612,那么内切球的表面积S =4πr 2=π6. 故正确的命题是①③④. 答案:D 二、填空题6 . 解析:由AM MB =ANND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC , 所以MN ∥平面BDC . 答案:平行7.解析:如图所示,连接A 1B ,与AB 1交于点O ,连接OD 1,因为平面BC 1D ∥平面AB 1D 1,平面BC 1D ∩平面A 1BC 1=BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O .所以A 1D 1D 1C 1=A 1O OB.同理AD 1∥DC 1,所以A 1D 1D 1C 1=DC AD ,因此A 1O OB =DCAD ,又因为A 1O OB =1,所以DC AD =1,即ADDC=1. 答案:18.解析:因AC ⊥平面BDD 1B 1,而BE ⊂平面BDD 1B ,故①正确;因B 1D 1∥平面ABCD ,故②正确;记正方体的体积为V ,则V E -ABC =16V ,为定值,故③正确;B 1E 与BC 1不垂直,故④错误.答案:①②③三、解答题9.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB. 在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.10.(1)证明:因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明:因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.又AB∩PA=A,所以AE⊥平面PAB.因为AE⊂平面PAE,所以平面PAB⊥平面PAE. (3)解:棱PB上存在点F,使得CF∥平面PAE.取PB的中点F,PA的中点G,连接CF,FG,EG,则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.B级能力提升11.解析:如图,过点P作PO⊥平面ABC于O,则PO为P 到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.又PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.答案: 212.(1)证明:连接PF,因为△PAD是等边三角形,F是AD的中点,所以PF⊥AD.因为底面ABCD是菱形,∠BAD=π3,所以BF⊥AD.又PF∩BF=F,所以AD⊥平面BFP.又PB⊂平面BFP,所以AD⊥PB.(2)解:能在棱PC上找到一点G,使平面DEG⊥平面ABCD.由(1)知AD⊥BF,因为PD⊥BF,AD∩PD=D,所以BF⊥平面PAD.又BF⊂平面ABCD,所以平面ABCD⊥平面PAD,又平面ABCD∩平面PAD=AD,且PF⊥AD,所以PF⊥平面ABCD.连接CF交DE于点H,过H作HG∥PF交PC于G,所以GH ⊥平面ABCD.又GH⊂平面DEG,所以平面DEG⊥平面ABCD.因为AD∥BC,所以△DFH∽△ECH,所以CHHF=CEDF=12,所以CGGP=CHHF=12,所以GH=13PF=33,所以V D-CEG=V G-CDE=13S△CDE·GH=13×12DC·CE sinπ3·GH=112.。

精品高考数学易错集专题12空间平行与垂直文

精品高考数学易错集专题12空间平行与垂直文
(2)当FM为何值时,AM∥平面BDE?证明你的结论.
(1)证明∵在等腰梯形ABCD中,
AB∥CD,AD=DC=a,∠ABC=60°,
∴△ADC是等腰三角形,且∠BCD=∠ADC=120°,
∴∠DCA=∠DAC=30°,∴∠ACB=90°,即BC⊥AC.
又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,
答案①③④
解析 作出折叠后的几何体的直观图如图所示:
∴CE⊥AD,又BD∩AD=D,BD⊂平面ABD,
AD⊂平面ABD,
4.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是平行四边形,点M在线段EF上.
(1)求证:BC⊥平面ACEF;
解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.
(2)线面平行的判定定理中的条件要求a⊄α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D.
A.l与l1,l2都不相交
B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交
D.l至少与l1,l2中的一条相交
(2)关于空间两条直线a、b和平面α,下列命题正确的是()
A.若a∥b,b⊂α,则a∥α
B.若a∥α,b⊂α,则a∥b
C.若a∥α,b∥α,则a∥b
D.若a⊥α,b⊥α,则a∥b
答案(1)D(2)D
答案a或2a
3.如图,正方形BCDE的边长为a,已知AB=BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,对翻折后的几何体有如下描述:

2018高考数学(文)备考黄金易错点专题12 空间平行与垂直(易错练兵)

2018高考数学(文)备考黄金易错点专题12 空间平行与垂直(易错练兵)

2018高考数学(文)备考黄金易错点专题12 空间平行与垂直(易错练兵)1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF和GH不相交,E,F,G,H 四点可以共面,例如EF∥GH.故选B.答案:B2.设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中正确命题的序号是( )A.①③B.①④C.②③ D.②④答案:A3.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC答案:B4.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β.其中真命题的个数为( )A.1 B.2C.3 D.4解析:对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.答案:A5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )C解析:B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB ∥平面MNQ.故选A.答案:A6.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB 的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③C.① D.②③答案:B7.已知平面α及直线a,b,则下列说法正确的是( )A.若直线a,b与平面α所成角都是30°,则这两条直线平行B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直C.若直线a,b平行,则这两条直线中至少有一条与平面α平行D.若直线a,b垂直,则这两条直线与平面α不可能都垂直解析:对于A,若直线a,b与平面α所成角都是30°,则这两条直线平行、相交、异面,故A错;对于B,若直线a,b与平面α所成角都是30°,则这两条直线可能垂直,如图,直角三角形ACB的直角顶点C在平面α内,边AC、BC可以与平面α都成30°角,故B错;C显然错误;对于D,假设直线a,b与平面α都垂直,则直线a,b平行,与已知矛盾,则假设不成立,故D正确,故选D.答案:D8.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为( )A.110B.35C.710D.45答案:C9.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,且BD⊥CD,AB=BD=CD,点P在棱AC上运动,设CP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是( )解析:答案:A10.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D11.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 A解析由l1,l2是异面直线,可得l1,l2不相交,所以p⇒q;由l1,l2不相交,可得l1,l2是异面直线或l1∥l2,所以q⇏p.所以p是q的充分条件,但不是q的必要条件.故选A.12.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件答案 C解析若a,b是平面α内两条不同的直线,l是平面α外的一条直线,l⊥a,l⊥b,a∥b,则l可以与平面α斜交,推不出l⊥α.若l⊥α,a,b是平面α内两条不同的直线,l是平面α外的一条直线,则l⊥a,l⊥b.∴“l⊥a,l⊥b”是“l⊥α”的必要而不充分条件,故选C.13.设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( )A.若m⊂α,n∥α,则n∥mB.若m⊂α,m⊥β,则α⊥βC.若n⊥α,n⊥β,则α∥βD.若m⊂α,n⊥α,则m⊥n答案 A解析A中,若m⊂α,n∥α,则n∥m或m,n异面.故不正确;B,C,D均正确.故选A.14.将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是( )A .平行B .垂直C .相交成60°角D .异面且成60°角答案 D15.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC 答案 D解析 因为在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,所以BD ⊥CD , 又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,CD ⊂平面BCD ,所以CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB ,AD ∩CD =D ,所以AB ⊥平面ADC ,又AB ⊂平面ABC ,所以平面ABC ⊥平面ADC ,故选D.16.如图,在空间四边形ABCD 中,点M ∈AB ,点N ∈AD ,若AM MB =AN ND,则直线MN 与平面BDC 的位置关系是________.答案平行17.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________.(填序号)①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.答案①②③解析因AC⊥平面BDD1B1,故①正确;因B1D1∥平面ABCD,故②正确;记正方体的体积为V,则V E-ABC=16V,为定值,故③正确;B1E与BC1不垂直,故④错误.18.下列四个正方体图形中,点A,B为正方体的两个顶点,点M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).答案①③19.如图,在正方体ABCD—A1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.证明(1)在正方体ABCD—A1B1C1D1中,因为点M,P分别为棱AB,C1D1的中点,所以AM=PC1.又AM∥CD,PC1∥CD,故AM∥PC1,所以四边形AMC1P为平行四边形.从而AP∥C1M,又AP⊄平面C1MN,C1M⊂平面C1MN,所以AP∥平面C1MN.(2)连接AC,在正方形ABCD中,AC⊥BD.20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系.并证明你的结论;(3)证明:直线DF⊥平面BEG.(1)解点F,G,H的位置如图所示.(3)证明 连接FH ,BD .因为ABCD —EFGH 为正方体,所以DH ⊥平面EFGH .因为EG ⊂平面EFGH ,所以DH ⊥EG .又EG ⊥FH ,EG ∩FH =O ,所以EG ⊥平面BFHD .又DF ⊂平面BFHD ,所以DF ⊥EG ,同理DF ⊥BG .又EG ∩BG =G ,所以DF ⊥平面BEG .21.已知等腰梯形ABCD (如图1所示),其中AB ∥CD ,E ,F 分别为AB 和CD 的中点,且AB =EF =2,CD =6,M 为BC 中点.现将梯形ABCD 沿着EF 所在直线折起,使平面EFCB ⊥平面EFDA (如图2所示),N 是线段CD 上一动点,且CN =12ND .(1)求证:MN ∥平面EFDA ;(2)求三棱锥A -MNF 的体积.又CN =12ND ,∴NQ =23CF =23×3=2, 且MP =12(BE +CF )=12×(1+3)=2, ∴MP 綊NQ ,∴四边形MNQP 为平行四边形. ∴MN ∥PQ .又∵MN ⊄平面EFDA ,PQ ⊂平面EFDA ,∴MN ∥平面EFDA .法二:V 三棱台BEA -CDF =13×EF ×(S △BEA +S △BEA ·S △CDF +S △CDF )=13×2×⎝ ⎛⎭⎪⎫12+12×92+92=133, V 四棱锥A -BEFM =13×AE ×S 四边形BEFM =56,V 三棱锥N -ADF =13×2×S △ADF =2,V 三棱锥N -CFM =13×1×S △CFM =12,V 三棱锥A -MNF =V 三棱台BEA -CDF -V 三棱锥N -CFM -V 四棱锥A -BEFM -V 三棱锥N -ADF =133-12-56-2=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 空间平行与垂直1.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.2.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,点D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案a或2a整理得x2-3ax+2a2=0,解得x=a或x=2a.3.如图,正方形BCDE 的边长为a ,已知AB =3BC ,将△ABE 沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,对翻折后的几何体有如下描述:①AB 与DE 所成角的正切值是2; ②AB ∥CE ; ③V B —ACE 是16a 3;④平面ABC ⊥平面ADC .其中正确的是________.(填写你认为正确的序号) 答案 ①③④解析 作出折叠后的几何体的直观图如图所示:∴CE ⊥AD ,又BD ∩AD =D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE⊥平面ABD,又AB⊂平面ABD,4.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF 是平行四边形,点M在线段EF上.(1)求证:BC⊥平面ACEF;(2)当FM为何值时,AM∥平面BDE?证明你的结论.(1)证明∵在等腰梯形ABCD中,AB∥CD,AD=D C=a,∠ABC=60°,∴△ADC是等腰三角形,且∠BCD=∠ADC=120°,∴∠DCA=∠DAC=30°,∴∠ACB=90°,即BC⊥AC.又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF.(2)解当FM=33a时,AM∥平面BDE.证明如下:设AC∩BD=N,连接EN,如图.∴当FM=33a时,AM∥平面BDE.5.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,且DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.6.如图1,在正△ABC中,E,F分别是AB,AC边上的点,且BE=AF=2CF.点P为边BC上的点,将△AEF 沿EF折起到△A1EF的位置,使平面A1EF⊥平面BEFC,连接A1B,A1P,EP,如图2所示.(1)求证:A1E⊥FP;(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请给予证明;若不存在,请说明理由.(1)证明在正△ABC中,取BE的中点D,连接DF,如图1.图1因为EF∩EB=E,所以A1E⊥平面BEFC.因为FP⊂平面BEFC,所以A1E⊥FP.(2)解在平面A1FP上存在过点K的直线与平面A1BE平行.理由如下:如图1,在正△ABC中,因为BP=BE,BE=AF,所以BP=AF,所以FP∥AB,所以FP∥BE.如图2,取A1P的中点M,连接MK,图2易错起源1、空间线面位置关系的判定例1、(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)关于空间两条直线a、b和平面α,下列命题正确的是( )A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a∥α,b∥α,则a∥bD.若a⊥α,b⊥α,则a∥b答案(1)D (2)D解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)线面平行的判定定理中的条件要求a⊄α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D.【变式探究】设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m∥α,m⊥β,则α⊥β.其中真命题的个数为( )A.1B.2C.3D.4答案 B【名师点睛】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【锦囊妙计,战胜自我】空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.易错起源2、空间平行、垂直关系的证明例2、如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离. (1)证明 因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA , 所以BC ∥平面PDA .(2)证明 因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD , 所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD .(3)解 如图,取CD 的中点E ,连接AE 和PE .所以AD ⊥平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD . 设点C 到平面PDA 的距离为h , 因为V 三棱锥C —PDA =V 三棱锥P —ACD , 所以13S △PDA ·h =13S △ACD ·PE ,即h =S △ACD ·PE S △PDA =12×3×6×712×3×4=372,所以点C 到平面PDA 的距离是372.【变式探究】如图,在四棱锥P —ABCD 中,AD ∥BC ,且BC =2AD ,AD ⊥CD ,PB ⊥CD ,点E 在棱PD上,且PE =2ED .(1)求证:平面PCD ⊥平面PBC ;(2)求证:PB ∥平面AEC .因为AD ∥BC ,所以△ADO ∽△CBO , 所以DO ∶OB =AD ∶BC =1∶2,又PE =2ED , 所以OE ∥PB ,又OE ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC . 【名师点睛】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.【锦囊妙计,战胜自我】空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.易错起源3、平面图形的折叠问题例3、如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥P—ABFED,且PB=10.(1)求证:BD⊥PA;(2)求四棱锥P—BFED的体积.(1)证明∵点E,F分别是边CD,CE的中点,(2)解 设AO ∩BD =H .连接BO ,∵∠DAB =60°,∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3,在Rt△BHO 中,BO =BH 2+HO 2=7,在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED ,梯形BFED 的面积S =12(EF +BD )·HO =33, ∴四棱锥P —BFED 的体积 V =13S ·PO =13×33×3=3.【变式探究】如图1,在Rt△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 将△ABC 折成60°的二面角B —AD —C ,如图2.(1)证明:平面ABD ⊥平面BCD ;(2)设点E 为BC 的中点,BD =2,求异面直线AE 和BD 所成的角的大小.所以∠AEF 为异面直线AE 与BD 所成的角.连接AF ,DE ,由BD =2,则EF =1,AD =23,CD =6,DF =3.在Rt△ADF 中,AF =AD 2+DF 2=21.在△BCD 中,由题设∠BDC =60°,则BC 2=BD 2+CD 2-2BD ·CD ·cos∠BDC =28,即BC =27,从而BE =12BC =7, cos∠CBD =BD 2+BC 2-CD 22BD ·BC =-127,【名师点睛】(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.【锦囊妙计,战胜自我】平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.1.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件答案 A解析由l1,l2是异面直线,可得l1,l2不相交,所以p⇒q;由l1,l2不相交,可得l1,l2是异面直线或l1∥l2,所以q⇏p.所以p是q的充分条件,但不是q的必要条件.故选A.2.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件答案 C解析若a,b是平面α内两条不同的直线,l是平面α外的一条直线,l⊥a,l⊥b,a∥b,则l可以与3.设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( )A.若m⊂α,n∥α,则n∥mB.若m⊂α,m⊥β,则α⊥βC.若n⊥α,n⊥β,则α∥βD.若m⊂α,n⊥α,则m⊥n答案 A解析A中,若m⊂α,n∥α,则n∥m或m,n异面.故不正确;B,C,D均正确.故选A.4.将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是( )A.平行B.垂直C.相交成60°角D.异面且成60°角答案 D解析如图,直线AB,CD异面.因为CE∥AB,所以∠ECD即为直线AB,CD所成的角,因为△CDE为等边三角形,故∠ECD =60°.5.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC答案 D6.如图,在空间四边形ABCD 中,点M ∈AB ,点N ∈AD ,若AM MB =AN ND,则直线MN 与平面BDC 的位置关系是________.答案 平行解析 由AM MB =AN ND,得MN ∥BD . 而BD ⊂平面BDC ,MN ⊄平面BDC ,所以MN ∥平面BDC .7.正方体ABCD -A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的是________.(填序号)①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.答案①②③解析因AC⊥平面BDD1B1,故①正确;因B1D1∥平面ABCD,故②正确;记正方体的体积为V,则V E-ABC=16V,为定值,故③正确;B1E与BC1不垂直,故④错误.8.下列四个正方体图形中,点A,B为正方体的两个顶点,点M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).答案①③解析对于①,注意到该正方体的面中过直线AB的侧面与平面MNP平行,因此直线AB平行于平面9.如图,在正方体ABCD—A1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.证明(1)在正方体ABCD—A1B1C1D1中,因为点M,P分别为棱AB,C1D1的中点,所以AM=PC1.又点M,N分别为棱AB,BC的中点,故MN∥AC. 所以MN⊥BD.在正方体ABCD—A1B1C1D1中,DD1⊥平面ABCD,又MN⊂平面ABCD,所以DD1⊥MN,而DD1∩DB=D,DD1,DB⊂平面B1BDD1,所以MN⊥平面B1BDD1,又MN⊂平面C1MN,所以平面B1BDD1⊥平面C1MN.10.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系.并证明你的结论;(3)证明:直线DF⊥平面BEG.(1)解点F,G,H的位置如图所示.(2)解平面BEG∥平面ACH,所以BE∥平面ACH.同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明连接FH,BD.因为ABCD—EFGH为正方体,。

相关文档
最新文档